[COMMON] drivers: modem_if: Apply LCD notification
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 cancel_delayed_work_sync(&q->requeue_work);
343 queue_for_each_hw_ctx(q, hctx, i)
344 cancel_delayed_work_sync(&hctx->run_work);
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350
351 /**
352 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
353 * @q: The queue to run
354 *
355 * Description:
356 * Invoke request handling on a queue if there are any pending requests.
357 * May be used to restart request handling after a request has completed.
358 * This variant runs the queue whether or not the queue has been
359 * stopped. Must be called with the queue lock held and interrupts
360 * disabled. See also @blk_run_queue.
361 */
362 inline void __blk_run_queue_uncond(struct request_queue *q)
363 {
364 lockdep_assert_held(q->queue_lock);
365 WARN_ON_ONCE(q->mq_ops);
366
367 if (unlikely(blk_queue_dead(q)))
368 return;
369
370 /*
371 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
372 * the queue lock internally. As a result multiple threads may be
373 * running such a request function concurrently. Keep track of the
374 * number of active request_fn invocations such that blk_drain_queue()
375 * can wait until all these request_fn calls have finished.
376 */
377 q->request_fn_active++;
378 q->request_fn(q);
379 q->request_fn_active--;
380 }
381 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
382
383 /**
384 * __blk_run_queue - run a single device queue
385 * @q: The queue to run
386 *
387 * Description:
388 * See @blk_run_queue.
389 */
390 void __blk_run_queue(struct request_queue *q)
391 {
392 lockdep_assert_held(q->queue_lock);
393 WARN_ON_ONCE(q->mq_ops);
394
395 if (unlikely(blk_queue_stopped(q)))
396 return;
397
398 __blk_run_queue_uncond(q);
399 }
400 EXPORT_SYMBOL(__blk_run_queue);
401
402 /**
403 * blk_run_queue_async - run a single device queue in workqueue context
404 * @q: The queue to run
405 *
406 * Description:
407 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
408 * of us.
409 *
410 * Note:
411 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
412 * has canceled q->delay_work, callers must hold the queue lock to avoid
413 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
414 */
415 void blk_run_queue_async(struct request_queue *q)
416 {
417 lockdep_assert_held(q->queue_lock);
418 WARN_ON_ONCE(q->mq_ops);
419
420 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
421 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
422 }
423 EXPORT_SYMBOL(blk_run_queue_async);
424
425 /**
426 * blk_run_queue - run a single device queue
427 * @q: The queue to run
428 *
429 * Description:
430 * Invoke request handling on this queue, if it has pending work to do.
431 * May be used to restart queueing when a request has completed.
432 */
433 void blk_run_queue(struct request_queue *q)
434 {
435 unsigned long flags;
436
437 WARN_ON_ONCE(q->mq_ops);
438
439 spin_lock_irqsave(q->queue_lock, flags);
440 __blk_run_queue(q);
441 spin_unlock_irqrestore(q->queue_lock, flags);
442 }
443 EXPORT_SYMBOL(blk_run_queue);
444
445 void blk_put_queue(struct request_queue *q)
446 {
447 kobject_put(&q->kobj);
448 }
449 EXPORT_SYMBOL(blk_put_queue);
450
451 /**
452 * __blk_drain_queue - drain requests from request_queue
453 * @q: queue to drain
454 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
455 *
456 * Drain requests from @q. If @drain_all is set, all requests are drained.
457 * If not, only ELVPRIV requests are drained. The caller is responsible
458 * for ensuring that no new requests which need to be drained are queued.
459 */
460 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
461 __releases(q->queue_lock)
462 __acquires(q->queue_lock)
463 {
464 int i;
465
466 lockdep_assert_held(q->queue_lock);
467 WARN_ON_ONCE(q->mq_ops);
468
469 while (true) {
470 bool drain = false;
471
472 /*
473 * The caller might be trying to drain @q before its
474 * elevator is initialized.
475 */
476 if (q->elevator)
477 elv_drain_elevator(q);
478
479 blkcg_drain_queue(q);
480
481 /*
482 * This function might be called on a queue which failed
483 * driver init after queue creation or is not yet fully
484 * active yet. Some drivers (e.g. fd and loop) get unhappy
485 * in such cases. Kick queue iff dispatch queue has
486 * something on it and @q has request_fn set.
487 */
488 if (!list_empty(&q->queue_head) && q->request_fn)
489 __blk_run_queue(q);
490
491 drain |= q->nr_rqs_elvpriv;
492 drain |= q->request_fn_active;
493
494 /*
495 * Unfortunately, requests are queued at and tracked from
496 * multiple places and there's no single counter which can
497 * be drained. Check all the queues and counters.
498 */
499 if (drain_all) {
500 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
501 drain |= !list_empty(&q->queue_head);
502 for (i = 0; i < 2; i++) {
503 drain |= q->nr_rqs[i];
504 drain |= q->in_flight[i];
505 if (fq)
506 drain |= !list_empty(&fq->flush_queue[i]);
507 }
508 }
509
510 if (!drain)
511 break;
512
513 spin_unlock_irq(q->queue_lock);
514
515 msleep(10);
516
517 spin_lock_irq(q->queue_lock);
518 }
519
520 /*
521 * With queue marked dead, any woken up waiter will fail the
522 * allocation path, so the wakeup chaining is lost and we're
523 * left with hung waiters. We need to wake up those waiters.
524 */
525 if (q->request_fn) {
526 struct request_list *rl;
527
528 blk_queue_for_each_rl(rl, q)
529 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
530 wake_up_all(&rl->wait[i]);
531 }
532 }
533
534 void blk_drain_queue(struct request_queue *q)
535 {
536 spin_lock_irq(q->queue_lock);
537 __blk_drain_queue(q, true);
538 spin_unlock_irq(q->queue_lock);
539 }
540
541 /**
542 * blk_queue_bypass_start - enter queue bypass mode
543 * @q: queue of interest
544 *
545 * In bypass mode, only the dispatch FIFO queue of @q is used. This
546 * function makes @q enter bypass mode and drains all requests which were
547 * throttled or issued before. On return, it's guaranteed that no request
548 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
549 * inside queue or RCU read lock.
550 */
551 void blk_queue_bypass_start(struct request_queue *q)
552 {
553 WARN_ON_ONCE(q->mq_ops);
554
555 spin_lock_irq(q->queue_lock);
556 q->bypass_depth++;
557 queue_flag_set(QUEUE_FLAG_BYPASS, q);
558 spin_unlock_irq(q->queue_lock);
559
560 /*
561 * Queues start drained. Skip actual draining till init is
562 * complete. This avoids lenghty delays during queue init which
563 * can happen many times during boot.
564 */
565 if (blk_queue_init_done(q)) {
566 spin_lock_irq(q->queue_lock);
567 __blk_drain_queue(q, false);
568 spin_unlock_irq(q->queue_lock);
569
570 /* ensure blk_queue_bypass() is %true inside RCU read lock */
571 synchronize_rcu();
572 }
573 }
574 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
575
576 /**
577 * blk_queue_bypass_end - leave queue bypass mode
578 * @q: queue of interest
579 *
580 * Leave bypass mode and restore the normal queueing behavior.
581 *
582 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
583 * this function is called for both blk-sq and blk-mq queues.
584 */
585 void blk_queue_bypass_end(struct request_queue *q)
586 {
587 spin_lock_irq(q->queue_lock);
588 if (!--q->bypass_depth)
589 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
590 WARN_ON_ONCE(q->bypass_depth < 0);
591 spin_unlock_irq(q->queue_lock);
592 }
593 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
594
595 void blk_set_queue_dying(struct request_queue *q)
596 {
597 spin_lock_irq(q->queue_lock);
598 queue_flag_set(QUEUE_FLAG_DYING, q);
599 spin_unlock_irq(q->queue_lock);
600
601 /*
602 * When queue DYING flag is set, we need to block new req
603 * entering queue, so we call blk_freeze_queue_start() to
604 * prevent I/O from crossing blk_queue_enter().
605 */
606 blk_freeze_queue_start(q);
607
608 if (q->mq_ops)
609 blk_mq_wake_waiters(q);
610 else {
611 struct request_list *rl;
612
613 spin_lock_irq(q->queue_lock);
614 blk_queue_for_each_rl(rl, q) {
615 if (rl->rq_pool) {
616 wake_up_all(&rl->wait[BLK_RW_SYNC]);
617 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
618 }
619 }
620 spin_unlock_irq(q->queue_lock);
621 }
622 }
623 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
624
625 /**
626 * blk_cleanup_queue - shutdown a request queue
627 * @q: request queue to shutdown
628 *
629 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
630 * put it. All future requests will be failed immediately with -ENODEV.
631 */
632 void blk_cleanup_queue(struct request_queue *q)
633 {
634 spinlock_t *lock = q->queue_lock;
635
636 /* mark @q DYING, no new request or merges will be allowed afterwards */
637 mutex_lock(&q->sysfs_lock);
638 blk_set_queue_dying(q);
639 spin_lock_irq(lock);
640
641 /*
642 * A dying queue is permanently in bypass mode till released. Note
643 * that, unlike blk_queue_bypass_start(), we aren't performing
644 * synchronize_rcu() after entering bypass mode to avoid the delay
645 * as some drivers create and destroy a lot of queues while
646 * probing. This is still safe because blk_release_queue() will be
647 * called only after the queue refcnt drops to zero and nothing,
648 * RCU or not, would be traversing the queue by then.
649 */
650 q->bypass_depth++;
651 queue_flag_set(QUEUE_FLAG_BYPASS, q);
652
653 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
654 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
655 queue_flag_set(QUEUE_FLAG_DYING, q);
656 spin_unlock_irq(lock);
657 mutex_unlock(&q->sysfs_lock);
658
659 /*
660 * Drain all requests queued before DYING marking. Set DEAD flag to
661 * prevent that q->request_fn() gets invoked after draining finished.
662 */
663 blk_freeze_queue(q);
664 spin_lock_irq(lock);
665 queue_flag_set(QUEUE_FLAG_DEAD, q);
666 spin_unlock_irq(lock);
667
668 /*
669 * make sure all in-progress dispatch are completed because
670 * blk_freeze_queue() can only complete all requests, and
671 * dispatch may still be in-progress since we dispatch requests
672 * from more than one contexts
673 */
674 if (q->mq_ops)
675 blk_mq_quiesce_queue(q);
676
677 /* for synchronous bio-based driver finish in-flight integrity i/o */
678 blk_flush_integrity();
679
680 /* @q won't process any more request, flush async actions */
681 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
682 blk_sync_queue(q);
683
684 if (q->mq_ops)
685 blk_mq_free_queue(q);
686 percpu_ref_exit(&q->q_usage_counter);
687
688 spin_lock_irq(lock);
689 if (q->queue_lock != &q->__queue_lock)
690 q->queue_lock = &q->__queue_lock;
691 spin_unlock_irq(lock);
692
693 /* @q is and will stay empty, shutdown and put */
694 blk_put_queue(q);
695 }
696 EXPORT_SYMBOL(blk_cleanup_queue);
697
698 /* Allocate memory local to the request queue */
699 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
700 {
701 struct request_queue *q = data;
702
703 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
704 }
705
706 static void free_request_simple(void *element, void *data)
707 {
708 kmem_cache_free(request_cachep, element);
709 }
710
711 static void *alloc_request_size(gfp_t gfp_mask, void *data)
712 {
713 struct request_queue *q = data;
714 struct request *rq;
715
716 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
717 q->node);
718 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
719 kfree(rq);
720 rq = NULL;
721 }
722 return rq;
723 }
724
725 static void free_request_size(void *element, void *data)
726 {
727 struct request_queue *q = data;
728
729 if (q->exit_rq_fn)
730 q->exit_rq_fn(q, element);
731 kfree(element);
732 }
733
734 int blk_init_rl(struct request_list *rl, struct request_queue *q,
735 gfp_t gfp_mask)
736 {
737 if (unlikely(rl->rq_pool))
738 return 0;
739
740 rl->q = q;
741 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
742 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
743 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
744 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
745
746 if (q->cmd_size) {
747 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
748 alloc_request_size, free_request_size,
749 q, gfp_mask, q->node);
750 } else {
751 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
752 alloc_request_simple, free_request_simple,
753 q, gfp_mask, q->node);
754 }
755 if (!rl->rq_pool)
756 return -ENOMEM;
757
758 if (rl != &q->root_rl)
759 WARN_ON_ONCE(!blk_get_queue(q));
760
761 return 0;
762 }
763
764 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
765 {
766 if (rl->rq_pool) {
767 mempool_destroy(rl->rq_pool);
768 if (rl != &q->root_rl)
769 blk_put_queue(q);
770 }
771 }
772
773 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
774 {
775 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
776 }
777 EXPORT_SYMBOL(blk_alloc_queue);
778
779 int blk_queue_enter(struct request_queue *q, bool nowait)
780 {
781 while (true) {
782 int ret;
783
784 if (percpu_ref_tryget_live(&q->q_usage_counter))
785 return 0;
786
787 if (nowait)
788 return -EBUSY;
789
790 /*
791 * read pair of barrier in blk_freeze_queue_start(),
792 * we need to order reading __PERCPU_REF_DEAD flag of
793 * .q_usage_counter and reading .mq_freeze_depth or
794 * queue dying flag, otherwise the following wait may
795 * never return if the two reads are reordered.
796 */
797 smp_rmb();
798
799 ret = wait_event_interruptible(q->mq_freeze_wq,
800 !atomic_read(&q->mq_freeze_depth) ||
801 blk_queue_dying(q));
802 if (blk_queue_dying(q))
803 return -ENODEV;
804 if (ret)
805 return ret;
806 }
807 }
808
809 void blk_queue_exit(struct request_queue *q)
810 {
811 percpu_ref_put(&q->q_usage_counter);
812 }
813
814 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
815 {
816 struct request_queue *q =
817 container_of(ref, struct request_queue, q_usage_counter);
818
819 wake_up_all(&q->mq_freeze_wq);
820 }
821
822 static void blk_rq_timed_out_timer(unsigned long data)
823 {
824 struct request_queue *q = (struct request_queue *)data;
825
826 kblockd_schedule_work(&q->timeout_work);
827 }
828
829 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
830 {
831 struct request_queue *q;
832
833 q = kmem_cache_alloc_node(blk_requestq_cachep,
834 gfp_mask | __GFP_ZERO, node_id);
835 if (!q)
836 return NULL;
837
838 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
839 if (q->id < 0)
840 goto fail_q;
841
842 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
843 if (!q->bio_split)
844 goto fail_id;
845
846 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
847 if (!q->backing_dev_info)
848 goto fail_split;
849
850 q->stats = blk_alloc_queue_stats();
851 if (!q->stats)
852 goto fail_stats;
853
854 q->backing_dev_info->ra_pages =
855 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
856 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
857 q->backing_dev_info->name = "block";
858 q->node = node_id;
859
860 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
861 laptop_mode_timer_fn, (unsigned long) q);
862 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
863 INIT_WORK(&q->timeout_work, NULL);
864 INIT_LIST_HEAD(&q->queue_head);
865 INIT_LIST_HEAD(&q->timeout_list);
866 INIT_LIST_HEAD(&q->icq_list);
867 #ifdef CONFIG_BLK_CGROUP
868 INIT_LIST_HEAD(&q->blkg_list);
869 #endif
870 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
871
872 kobject_init(&q->kobj, &blk_queue_ktype);
873
874 #ifdef CONFIG_BLK_DEV_IO_TRACE
875 mutex_init(&q->blk_trace_mutex);
876 #endif
877 mutex_init(&q->sysfs_lock);
878 spin_lock_init(&q->__queue_lock);
879
880 /*
881 * By default initialize queue_lock to internal lock and driver can
882 * override it later if need be.
883 */
884 q->queue_lock = &q->__queue_lock;
885
886 /*
887 * A queue starts its life with bypass turned on to avoid
888 * unnecessary bypass on/off overhead and nasty surprises during
889 * init. The initial bypass will be finished when the queue is
890 * registered by blk_register_queue().
891 */
892 q->bypass_depth = 1;
893 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
894
895 init_waitqueue_head(&q->mq_freeze_wq);
896
897 /*
898 * Init percpu_ref in atomic mode so that it's faster to shutdown.
899 * See blk_register_queue() for details.
900 */
901 if (percpu_ref_init(&q->q_usage_counter,
902 blk_queue_usage_counter_release,
903 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
904 goto fail_bdi;
905
906 if (blkcg_init_queue(q))
907 goto fail_ref;
908
909 return q;
910
911 fail_ref:
912 percpu_ref_exit(&q->q_usage_counter);
913 fail_bdi:
914 blk_free_queue_stats(q->stats);
915 fail_stats:
916 bdi_put(q->backing_dev_info);
917 fail_split:
918 bioset_free(q->bio_split);
919 fail_id:
920 ida_simple_remove(&blk_queue_ida, q->id);
921 fail_q:
922 kmem_cache_free(blk_requestq_cachep, q);
923 return NULL;
924 }
925 EXPORT_SYMBOL(blk_alloc_queue_node);
926
927 /**
928 * blk_init_queue - prepare a request queue for use with a block device
929 * @rfn: The function to be called to process requests that have been
930 * placed on the queue.
931 * @lock: Request queue spin lock
932 *
933 * Description:
934 * If a block device wishes to use the standard request handling procedures,
935 * which sorts requests and coalesces adjacent requests, then it must
936 * call blk_init_queue(). The function @rfn will be called when there
937 * are requests on the queue that need to be processed. If the device
938 * supports plugging, then @rfn may not be called immediately when requests
939 * are available on the queue, but may be called at some time later instead.
940 * Plugged queues are generally unplugged when a buffer belonging to one
941 * of the requests on the queue is needed, or due to memory pressure.
942 *
943 * @rfn is not required, or even expected, to remove all requests off the
944 * queue, but only as many as it can handle at a time. If it does leave
945 * requests on the queue, it is responsible for arranging that the requests
946 * get dealt with eventually.
947 *
948 * The queue spin lock must be held while manipulating the requests on the
949 * request queue; this lock will be taken also from interrupt context, so irq
950 * disabling is needed for it.
951 *
952 * Function returns a pointer to the initialized request queue, or %NULL if
953 * it didn't succeed.
954 *
955 * Note:
956 * blk_init_queue() must be paired with a blk_cleanup_queue() call
957 * when the block device is deactivated (such as at module unload).
958 **/
959
960 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
961 {
962 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
963 }
964 EXPORT_SYMBOL(blk_init_queue);
965
966 struct request_queue *
967 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
968 {
969 struct request_queue *q;
970
971 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
972 if (!q)
973 return NULL;
974
975 q->request_fn = rfn;
976 if (lock)
977 q->queue_lock = lock;
978 if (blk_init_allocated_queue(q) < 0) {
979 blk_cleanup_queue(q);
980 return NULL;
981 }
982
983 return q;
984 }
985 EXPORT_SYMBOL(blk_init_queue_node);
986
987 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
988
989
990 int blk_init_allocated_queue(struct request_queue *q)
991 {
992 WARN_ON_ONCE(q->mq_ops);
993
994 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
995 if (!q->fq)
996 return -ENOMEM;
997
998 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
999 goto out_free_flush_queue;
1000
1001 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1002 goto out_exit_flush_rq;
1003
1004 INIT_WORK(&q->timeout_work, blk_timeout_work);
1005 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1006
1007 /*
1008 * This also sets hw/phys segments, boundary and size
1009 */
1010 blk_queue_make_request(q, blk_queue_bio);
1011
1012 q->sg_reserved_size = INT_MAX;
1013
1014 /* Protect q->elevator from elevator_change */
1015 mutex_lock(&q->sysfs_lock);
1016
1017 /* init elevator */
1018 if (elevator_init(q, NULL)) {
1019 mutex_unlock(&q->sysfs_lock);
1020 goto out_exit_flush_rq;
1021 }
1022
1023 mutex_unlock(&q->sysfs_lock);
1024 return 0;
1025
1026 out_exit_flush_rq:
1027 if (q->exit_rq_fn)
1028 q->exit_rq_fn(q, q->fq->flush_rq);
1029 out_free_flush_queue:
1030 blk_free_flush_queue(q->fq);
1031 return -ENOMEM;
1032 }
1033 EXPORT_SYMBOL(blk_init_allocated_queue);
1034
1035 bool blk_get_queue(struct request_queue *q)
1036 {
1037 if (likely(!blk_queue_dying(q))) {
1038 __blk_get_queue(q);
1039 return true;
1040 }
1041
1042 return false;
1043 }
1044 EXPORT_SYMBOL(blk_get_queue);
1045
1046 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1047 {
1048 if (rq->rq_flags & RQF_ELVPRIV) {
1049 elv_put_request(rl->q, rq);
1050 if (rq->elv.icq)
1051 put_io_context(rq->elv.icq->ioc);
1052 }
1053
1054 mempool_free(rq, rl->rq_pool);
1055 }
1056
1057 /*
1058 * ioc_batching returns true if the ioc is a valid batching request and
1059 * should be given priority access to a request.
1060 */
1061 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1062 {
1063 if (!ioc)
1064 return 0;
1065
1066 /*
1067 * Make sure the process is able to allocate at least 1 request
1068 * even if the batch times out, otherwise we could theoretically
1069 * lose wakeups.
1070 */
1071 return ioc->nr_batch_requests == q->nr_batching ||
1072 (ioc->nr_batch_requests > 0
1073 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1074 }
1075
1076 /*
1077 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1078 * will cause the process to be a "batcher" on all queues in the system. This
1079 * is the behaviour we want though - once it gets a wakeup it should be given
1080 * a nice run.
1081 */
1082 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1083 {
1084 if (!ioc || ioc_batching(q, ioc))
1085 return;
1086
1087 ioc->nr_batch_requests = q->nr_batching;
1088 ioc->last_waited = jiffies;
1089 }
1090
1091 static void __freed_request(struct request_list *rl, int sync)
1092 {
1093 struct request_queue *q = rl->q;
1094
1095 if (rl->count[sync] < queue_congestion_off_threshold(q))
1096 blk_clear_congested(rl, sync);
1097
1098 if (rl->count[sync] + 1 <= q->nr_requests) {
1099 if (waitqueue_active(&rl->wait[sync]))
1100 wake_up(&rl->wait[sync]);
1101
1102 blk_clear_rl_full(rl, sync);
1103 }
1104 }
1105
1106 /*
1107 * A request has just been released. Account for it, update the full and
1108 * congestion status, wake up any waiters. Called under q->queue_lock.
1109 */
1110 static void freed_request(struct request_list *rl, bool sync,
1111 req_flags_t rq_flags)
1112 {
1113 struct request_queue *q = rl->q;
1114
1115 q->nr_rqs[sync]--;
1116 rl->count[sync]--;
1117 if (rq_flags & RQF_ELVPRIV)
1118 q->nr_rqs_elvpriv--;
1119
1120 __freed_request(rl, sync);
1121
1122 if (unlikely(rl->starved[sync ^ 1]))
1123 __freed_request(rl, sync ^ 1);
1124 }
1125
1126 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1127 {
1128 struct request_list *rl;
1129 int on_thresh, off_thresh;
1130
1131 WARN_ON_ONCE(q->mq_ops);
1132
1133 spin_lock_irq(q->queue_lock);
1134 q->nr_requests = nr;
1135 blk_queue_congestion_threshold(q);
1136 on_thresh = queue_congestion_on_threshold(q);
1137 off_thresh = queue_congestion_off_threshold(q);
1138
1139 blk_queue_for_each_rl(rl, q) {
1140 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1141 blk_set_congested(rl, BLK_RW_SYNC);
1142 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1143 blk_clear_congested(rl, BLK_RW_SYNC);
1144
1145 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1146 blk_set_congested(rl, BLK_RW_ASYNC);
1147 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1148 blk_clear_congested(rl, BLK_RW_ASYNC);
1149
1150 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1151 blk_set_rl_full(rl, BLK_RW_SYNC);
1152 } else {
1153 blk_clear_rl_full(rl, BLK_RW_SYNC);
1154 wake_up(&rl->wait[BLK_RW_SYNC]);
1155 }
1156
1157 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1158 blk_set_rl_full(rl, BLK_RW_ASYNC);
1159 } else {
1160 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1161 wake_up(&rl->wait[BLK_RW_ASYNC]);
1162 }
1163 }
1164
1165 spin_unlock_irq(q->queue_lock);
1166 return 0;
1167 }
1168
1169 /**
1170 * __get_request - get a free request
1171 * @rl: request list to allocate from
1172 * @op: operation and flags
1173 * @bio: bio to allocate request for (can be %NULL)
1174 * @gfp_mask: allocation mask
1175 *
1176 * Get a free request from @q. This function may fail under memory
1177 * pressure or if @q is dead.
1178 *
1179 * Must be called with @q->queue_lock held and,
1180 * Returns ERR_PTR on failure, with @q->queue_lock held.
1181 * Returns request pointer on success, with @q->queue_lock *not held*.
1182 */
1183 static struct request *__get_request(struct request_list *rl, unsigned int op,
1184 struct bio *bio, gfp_t gfp_mask)
1185 {
1186 struct request_queue *q = rl->q;
1187 struct request *rq;
1188 struct elevator_type *et = q->elevator->type;
1189 struct io_context *ioc = rq_ioc(bio);
1190 struct io_cq *icq = NULL;
1191 const bool is_sync = op_is_sync(op);
1192 int may_queue;
1193 req_flags_t rq_flags = RQF_ALLOCED;
1194
1195 lockdep_assert_held(q->queue_lock);
1196
1197 if (unlikely(blk_queue_dying(q)))
1198 return ERR_PTR(-ENODEV);
1199
1200 may_queue = elv_may_queue(q, op);
1201 if (may_queue == ELV_MQUEUE_NO)
1202 goto rq_starved;
1203
1204 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1205 if (rl->count[is_sync]+1 >= q->nr_requests) {
1206 /*
1207 * The queue will fill after this allocation, so set
1208 * it as full, and mark this process as "batching".
1209 * This process will be allowed to complete a batch of
1210 * requests, others will be blocked.
1211 */
1212 if (!blk_rl_full(rl, is_sync)) {
1213 ioc_set_batching(q, ioc);
1214 blk_set_rl_full(rl, is_sync);
1215 } else {
1216 if (may_queue != ELV_MQUEUE_MUST
1217 && !ioc_batching(q, ioc)) {
1218 /*
1219 * The queue is full and the allocating
1220 * process is not a "batcher", and not
1221 * exempted by the IO scheduler
1222 */
1223 return ERR_PTR(-ENOMEM);
1224 }
1225 }
1226 }
1227 blk_set_congested(rl, is_sync);
1228 }
1229
1230 /*
1231 * Only allow batching queuers to allocate up to 50% over the defined
1232 * limit of requests, otherwise we could have thousands of requests
1233 * allocated with any setting of ->nr_requests
1234 */
1235 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1236 return ERR_PTR(-ENOMEM);
1237
1238 q->nr_rqs[is_sync]++;
1239 rl->count[is_sync]++;
1240 rl->starved[is_sync] = 0;
1241
1242 /*
1243 * Decide whether the new request will be managed by elevator. If
1244 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1245 * prevent the current elevator from being destroyed until the new
1246 * request is freed. This guarantees icq's won't be destroyed and
1247 * makes creating new ones safe.
1248 *
1249 * Flush requests do not use the elevator so skip initialization.
1250 * This allows a request to share the flush and elevator data.
1251 *
1252 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1253 * it will be created after releasing queue_lock.
1254 */
1255 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1256 rq_flags |= RQF_ELVPRIV;
1257 q->nr_rqs_elvpriv++;
1258 if (et->icq_cache && ioc)
1259 icq = ioc_lookup_icq(ioc, q);
1260 }
1261
1262 if (blk_queue_io_stat(q))
1263 rq_flags |= RQF_IO_STAT;
1264 spin_unlock_irq(q->queue_lock);
1265
1266 /* allocate and init request */
1267 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1268 if (!rq)
1269 goto fail_alloc;
1270
1271 blk_rq_init(q, rq);
1272 blk_rq_set_rl(rq, rl);
1273 rq->cmd_flags = op;
1274 rq->rq_flags = rq_flags;
1275
1276 /* init elvpriv */
1277 if (rq_flags & RQF_ELVPRIV) {
1278 if (unlikely(et->icq_cache && !icq)) {
1279 if (ioc)
1280 icq = ioc_create_icq(ioc, q, gfp_mask);
1281 if (!icq)
1282 goto fail_elvpriv;
1283 }
1284
1285 rq->elv.icq = icq;
1286 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1287 goto fail_elvpriv;
1288
1289 /* @rq->elv.icq holds io_context until @rq is freed */
1290 if (icq)
1291 get_io_context(icq->ioc);
1292 }
1293 out:
1294 /*
1295 * ioc may be NULL here, and ioc_batching will be false. That's
1296 * OK, if the queue is under the request limit then requests need
1297 * not count toward the nr_batch_requests limit. There will always
1298 * be some limit enforced by BLK_BATCH_TIME.
1299 */
1300 if (ioc_batching(q, ioc))
1301 ioc->nr_batch_requests--;
1302
1303 trace_block_getrq(q, bio, op);
1304 return rq;
1305
1306 fail_elvpriv:
1307 /*
1308 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1309 * and may fail indefinitely under memory pressure and thus
1310 * shouldn't stall IO. Treat this request as !elvpriv. This will
1311 * disturb iosched and blkcg but weird is bettern than dead.
1312 */
1313 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1314 __func__, dev_name(q->backing_dev_info->dev));
1315
1316 rq->rq_flags &= ~RQF_ELVPRIV;
1317 rq->elv.icq = NULL;
1318
1319 spin_lock_irq(q->queue_lock);
1320 q->nr_rqs_elvpriv--;
1321 spin_unlock_irq(q->queue_lock);
1322 goto out;
1323
1324 fail_alloc:
1325 /*
1326 * Allocation failed presumably due to memory. Undo anything we
1327 * might have messed up.
1328 *
1329 * Allocating task should really be put onto the front of the wait
1330 * queue, but this is pretty rare.
1331 */
1332 spin_lock_irq(q->queue_lock);
1333 freed_request(rl, is_sync, rq_flags);
1334
1335 /*
1336 * in the very unlikely event that allocation failed and no
1337 * requests for this direction was pending, mark us starved so that
1338 * freeing of a request in the other direction will notice
1339 * us. another possible fix would be to split the rq mempool into
1340 * READ and WRITE
1341 */
1342 rq_starved:
1343 if (unlikely(rl->count[is_sync] == 0))
1344 rl->starved[is_sync] = 1;
1345 return ERR_PTR(-ENOMEM);
1346 }
1347
1348 /**
1349 * get_request - get a free request
1350 * @q: request_queue to allocate request from
1351 * @op: operation and flags
1352 * @bio: bio to allocate request for (can be %NULL)
1353 * @gfp_mask: allocation mask
1354 *
1355 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1356 * this function keeps retrying under memory pressure and fails iff @q is dead.
1357 *
1358 * Must be called with @q->queue_lock held and,
1359 * Returns ERR_PTR on failure, with @q->queue_lock held.
1360 * Returns request pointer on success, with @q->queue_lock *not held*.
1361 */
1362 static struct request *get_request(struct request_queue *q, unsigned int op,
1363 struct bio *bio, gfp_t gfp_mask)
1364 {
1365 const bool is_sync = op_is_sync(op);
1366 DEFINE_WAIT(wait);
1367 struct request_list *rl;
1368 struct request *rq;
1369
1370 lockdep_assert_held(q->queue_lock);
1371 WARN_ON_ONCE(q->mq_ops);
1372
1373 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1374 retry:
1375 rq = __get_request(rl, op, bio, gfp_mask);
1376 if (!IS_ERR(rq))
1377 return rq;
1378
1379 if (op & REQ_NOWAIT) {
1380 blk_put_rl(rl);
1381 return ERR_PTR(-EAGAIN);
1382 }
1383
1384 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1385 blk_put_rl(rl);
1386 return rq;
1387 }
1388
1389 /* wait on @rl and retry */
1390 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1391 TASK_UNINTERRUPTIBLE);
1392
1393 trace_block_sleeprq(q, bio, op);
1394
1395 spin_unlock_irq(q->queue_lock);
1396 io_schedule();
1397
1398 /*
1399 * After sleeping, we become a "batching" process and will be able
1400 * to allocate at least one request, and up to a big batch of them
1401 * for a small period time. See ioc_batching, ioc_set_batching
1402 */
1403 ioc_set_batching(q, current->io_context);
1404
1405 spin_lock_irq(q->queue_lock);
1406 finish_wait(&rl->wait[is_sync], &wait);
1407
1408 goto retry;
1409 }
1410
1411 static struct request *blk_old_get_request(struct request_queue *q,
1412 unsigned int op, gfp_t gfp_mask)
1413 {
1414 struct request *rq;
1415
1416 WARN_ON_ONCE(q->mq_ops);
1417
1418 /* create ioc upfront */
1419 create_io_context(gfp_mask, q->node);
1420
1421 spin_lock_irq(q->queue_lock);
1422 rq = get_request(q, op, NULL, gfp_mask);
1423 if (IS_ERR(rq)) {
1424 spin_unlock_irq(q->queue_lock);
1425 return rq;
1426 }
1427
1428 /* q->queue_lock is unlocked at this point */
1429 rq->__data_len = 0;
1430 rq->__sector = (sector_t) -1;
1431 rq->bio = rq->biotail = NULL;
1432 return rq;
1433 }
1434
1435 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1436 gfp_t gfp_mask)
1437 {
1438 struct request *req;
1439
1440 if (q->mq_ops) {
1441 req = blk_mq_alloc_request(q, op,
1442 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1443 0 : BLK_MQ_REQ_NOWAIT);
1444 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1445 q->mq_ops->initialize_rq_fn(req);
1446 } else {
1447 req = blk_old_get_request(q, op, gfp_mask);
1448 if (!IS_ERR(req) && q->initialize_rq_fn)
1449 q->initialize_rq_fn(req);
1450 }
1451
1452 return req;
1453 }
1454 EXPORT_SYMBOL(blk_get_request);
1455
1456 /**
1457 * blk_requeue_request - put a request back on queue
1458 * @q: request queue where request should be inserted
1459 * @rq: request to be inserted
1460 *
1461 * Description:
1462 * Drivers often keep queueing requests until the hardware cannot accept
1463 * more, when that condition happens we need to put the request back
1464 * on the queue. Must be called with queue lock held.
1465 */
1466 void blk_requeue_request(struct request_queue *q, struct request *rq)
1467 {
1468 lockdep_assert_held(q->queue_lock);
1469 WARN_ON_ONCE(q->mq_ops);
1470
1471 blk_delete_timer(rq);
1472 blk_clear_rq_complete(rq);
1473 trace_block_rq_requeue(q, rq);
1474 wbt_requeue(q->rq_wb, &rq->issue_stat);
1475
1476 if (rq->rq_flags & RQF_QUEUED)
1477 blk_queue_end_tag(q, rq);
1478
1479 BUG_ON(blk_queued_rq(rq));
1480
1481 elv_requeue_request(q, rq);
1482 }
1483 EXPORT_SYMBOL(blk_requeue_request);
1484
1485 static void add_acct_request(struct request_queue *q, struct request *rq,
1486 int where)
1487 {
1488 blk_account_io_start(rq, true);
1489 __elv_add_request(q, rq, where);
1490 }
1491
1492 static void part_round_stats_single(struct request_queue *q, int cpu,
1493 struct hd_struct *part, unsigned long now,
1494 unsigned int inflight)
1495 {
1496 if (inflight) {
1497 __part_stat_add(cpu, part, time_in_queue,
1498 inflight * (now - part->stamp));
1499 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1500 }
1501 part->stamp = now;
1502 }
1503
1504 /**
1505 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1506 * @q: target block queue
1507 * @cpu: cpu number for stats access
1508 * @part: target partition
1509 *
1510 * The average IO queue length and utilisation statistics are maintained
1511 * by observing the current state of the queue length and the amount of
1512 * time it has been in this state for.
1513 *
1514 * Normally, that accounting is done on IO completion, but that can result
1515 * in more than a second's worth of IO being accounted for within any one
1516 * second, leading to >100% utilisation. To deal with that, we call this
1517 * function to do a round-off before returning the results when reading
1518 * /proc/diskstats. This accounts immediately for all queue usage up to
1519 * the current jiffies and restarts the counters again.
1520 */
1521 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1522 {
1523 struct hd_struct *part2 = NULL;
1524 unsigned long now = jiffies;
1525 unsigned int inflight[2];
1526 int stats = 0;
1527
1528 if (part->stamp != now)
1529 stats |= 1;
1530
1531 if (part->partno) {
1532 part2 = &part_to_disk(part)->part0;
1533 if (part2->stamp != now)
1534 stats |= 2;
1535 }
1536
1537 if (!stats)
1538 return;
1539
1540 part_in_flight(q, part, inflight);
1541
1542 if (stats & 2)
1543 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1544 if (stats & 1)
1545 part_round_stats_single(q, cpu, part, now, inflight[0]);
1546 }
1547 EXPORT_SYMBOL_GPL(part_round_stats);
1548
1549 #ifdef CONFIG_PM
1550 static void blk_pm_put_request(struct request *rq)
1551 {
1552 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1553 pm_runtime_mark_last_busy(rq->q->dev);
1554 }
1555 #else
1556 static inline void blk_pm_put_request(struct request *rq) {}
1557 #endif
1558
1559 void __blk_put_request(struct request_queue *q, struct request *req)
1560 {
1561 req_flags_t rq_flags = req->rq_flags;
1562
1563 if (unlikely(!q))
1564 return;
1565
1566 if (q->mq_ops) {
1567 blk_mq_free_request(req);
1568 return;
1569 }
1570
1571 lockdep_assert_held(q->queue_lock);
1572
1573 blk_pm_put_request(req);
1574
1575 elv_completed_request(q, req);
1576
1577 /* this is a bio leak */
1578 WARN_ON(req->bio != NULL);
1579
1580 wbt_done(q->rq_wb, &req->issue_stat);
1581
1582 /*
1583 * Request may not have originated from ll_rw_blk. if not,
1584 * it didn't come out of our reserved rq pools
1585 */
1586 if (rq_flags & RQF_ALLOCED) {
1587 struct request_list *rl = blk_rq_rl(req);
1588 bool sync = op_is_sync(req->cmd_flags);
1589
1590 BUG_ON(!list_empty(&req->queuelist));
1591 BUG_ON(ELV_ON_HASH(req));
1592
1593 blk_free_request(rl, req);
1594 freed_request(rl, sync, rq_flags);
1595 blk_put_rl(rl);
1596 }
1597 }
1598 EXPORT_SYMBOL_GPL(__blk_put_request);
1599
1600 void blk_put_request(struct request *req)
1601 {
1602 struct request_queue *q = req->q;
1603
1604 if (q->mq_ops)
1605 blk_mq_free_request(req);
1606 else {
1607 unsigned long flags;
1608
1609 spin_lock_irqsave(q->queue_lock, flags);
1610 __blk_put_request(q, req);
1611 spin_unlock_irqrestore(q->queue_lock, flags);
1612 }
1613 }
1614 EXPORT_SYMBOL(blk_put_request);
1615
1616 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1617 struct bio *bio)
1618 {
1619 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1620
1621 if (!ll_back_merge_fn(q, req, bio))
1622 return false;
1623
1624 trace_block_bio_backmerge(q, req, bio);
1625
1626 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1627 blk_rq_set_mixed_merge(req);
1628
1629 req->biotail->bi_next = bio;
1630 req->biotail = bio;
1631 req->__data_len += bio->bi_iter.bi_size;
1632 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1633
1634 blk_account_io_start(req, false);
1635 return true;
1636 }
1637
1638 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1639 struct bio *bio)
1640 {
1641 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1642
1643 if (!ll_front_merge_fn(q, req, bio))
1644 return false;
1645
1646 trace_block_bio_frontmerge(q, req, bio);
1647
1648 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1649 blk_rq_set_mixed_merge(req);
1650
1651 bio->bi_next = req->bio;
1652 req->bio = bio;
1653
1654 req->__sector = bio->bi_iter.bi_sector;
1655 req->__data_len += bio->bi_iter.bi_size;
1656 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1657
1658 blk_account_io_start(req, false);
1659 return true;
1660 }
1661
1662 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1663 struct bio *bio)
1664 {
1665 unsigned short segments = blk_rq_nr_discard_segments(req);
1666
1667 if (segments >= queue_max_discard_segments(q))
1668 goto no_merge;
1669 if (blk_rq_sectors(req) + bio_sectors(bio) >
1670 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1671 goto no_merge;
1672
1673 req->biotail->bi_next = bio;
1674 req->biotail = bio;
1675 req->__data_len += bio->bi_iter.bi_size;
1676 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1677 req->nr_phys_segments = segments + 1;
1678
1679 blk_account_io_start(req, false);
1680 return true;
1681 no_merge:
1682 req_set_nomerge(q, req);
1683 return false;
1684 }
1685
1686 /**
1687 * blk_attempt_plug_merge - try to merge with %current's plugged list
1688 * @q: request_queue new bio is being queued at
1689 * @bio: new bio being queued
1690 * @request_count: out parameter for number of traversed plugged requests
1691 * @same_queue_rq: pointer to &struct request that gets filled in when
1692 * another request associated with @q is found on the plug list
1693 * (optional, may be %NULL)
1694 *
1695 * Determine whether @bio being queued on @q can be merged with a request
1696 * on %current's plugged list. Returns %true if merge was successful,
1697 * otherwise %false.
1698 *
1699 * Plugging coalesces IOs from the same issuer for the same purpose without
1700 * going through @q->queue_lock. As such it's more of an issuing mechanism
1701 * than scheduling, and the request, while may have elvpriv data, is not
1702 * added on the elevator at this point. In addition, we don't have
1703 * reliable access to the elevator outside queue lock. Only check basic
1704 * merging parameters without querying the elevator.
1705 *
1706 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1707 */
1708 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1709 unsigned int *request_count,
1710 struct request **same_queue_rq)
1711 {
1712 struct blk_plug *plug;
1713 struct request *rq;
1714 struct list_head *plug_list;
1715
1716 plug = current->plug;
1717 if (!plug)
1718 return false;
1719 *request_count = 0;
1720
1721 if (q->mq_ops)
1722 plug_list = &plug->mq_list;
1723 else
1724 plug_list = &plug->list;
1725
1726 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1727 bool merged = false;
1728
1729 if (rq->q == q) {
1730 (*request_count)++;
1731 /*
1732 * Only blk-mq multiple hardware queues case checks the
1733 * rq in the same queue, there should be only one such
1734 * rq in a queue
1735 **/
1736 if (same_queue_rq)
1737 *same_queue_rq = rq;
1738 }
1739
1740 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1741 continue;
1742
1743 switch (blk_try_merge(rq, bio)) {
1744 case ELEVATOR_BACK_MERGE:
1745 merged = bio_attempt_back_merge(q, rq, bio);
1746 break;
1747 case ELEVATOR_FRONT_MERGE:
1748 merged = bio_attempt_front_merge(q, rq, bio);
1749 break;
1750 case ELEVATOR_DISCARD_MERGE:
1751 merged = bio_attempt_discard_merge(q, rq, bio);
1752 break;
1753 default:
1754 break;
1755 }
1756
1757 if (merged)
1758 return true;
1759 }
1760
1761 return false;
1762 }
1763
1764 unsigned int blk_plug_queued_count(struct request_queue *q)
1765 {
1766 struct blk_plug *plug;
1767 struct request *rq;
1768 struct list_head *plug_list;
1769 unsigned int ret = 0;
1770
1771 plug = current->plug;
1772 if (!plug)
1773 goto out;
1774
1775 if (q->mq_ops)
1776 plug_list = &plug->mq_list;
1777 else
1778 plug_list = &plug->list;
1779
1780 list_for_each_entry(rq, plug_list, queuelist) {
1781 if (rq->q == q)
1782 ret++;
1783 }
1784 out:
1785 return ret;
1786 }
1787
1788 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1789 {
1790 struct io_context *ioc = rq_ioc(bio);
1791
1792 if (bio->bi_opf & REQ_RAHEAD)
1793 req->cmd_flags |= REQ_FAILFAST_MASK;
1794
1795 req->__sector = bio->bi_iter.bi_sector;
1796 if (ioprio_valid(bio_prio(bio)))
1797 req->ioprio = bio_prio(bio);
1798 else if (ioc)
1799 req->ioprio = ioc->ioprio;
1800 else
1801 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1802 req->write_hint = bio->bi_write_hint;
1803 #ifdef CONFIG_CRYPTO_DISKCIPHER_DUN
1804 req->__dun = bio->bi_iter.bi_dun;
1805 #endif
1806 blk_rq_bio_prep(req->q, req, bio);
1807 }
1808 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1809
1810 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1811 {
1812 struct blk_plug *plug;
1813 int where = ELEVATOR_INSERT_SORT;
1814 struct request *req, *free;
1815 unsigned int request_count = 0;
1816 unsigned int wb_acct;
1817
1818 /*
1819 * low level driver can indicate that it wants pages above a
1820 * certain limit bounced to low memory (ie for highmem, or even
1821 * ISA dma in theory)
1822 */
1823 blk_queue_bounce(q, &bio);
1824
1825 blk_queue_split(q, &bio);
1826
1827 if (!bio_integrity_prep(bio))
1828 return BLK_QC_T_NONE;
1829
1830 if (op_is_flush(bio->bi_opf)) {
1831 spin_lock_irq(q->queue_lock);
1832 where = ELEVATOR_INSERT_FLUSH;
1833 goto get_rq;
1834 }
1835
1836 /*
1837 * Check if we can merge with the plugged list before grabbing
1838 * any locks.
1839 */
1840 if (!blk_queue_nomerges(q)) {
1841 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1842 return BLK_QC_T_NONE;
1843 } else
1844 request_count = blk_plug_queued_count(q);
1845
1846 spin_lock_irq(q->queue_lock);
1847
1848 switch (elv_merge(q, &req, bio)) {
1849 case ELEVATOR_BACK_MERGE:
1850 if (!bio_attempt_back_merge(q, req, bio))
1851 break;
1852 elv_bio_merged(q, req, bio);
1853 free = attempt_back_merge(q, req);
1854 if (free)
1855 __blk_put_request(q, free);
1856 else
1857 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1858 goto out_unlock;
1859 case ELEVATOR_FRONT_MERGE:
1860 if (!bio_attempt_front_merge(q, req, bio))
1861 break;
1862 elv_bio_merged(q, req, bio);
1863 free = attempt_front_merge(q, req);
1864 if (free)
1865 __blk_put_request(q, free);
1866 else
1867 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1868 goto out_unlock;
1869 default:
1870 break;
1871 }
1872
1873 get_rq:
1874 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1875
1876 /*
1877 * Grab a free request. This is might sleep but can not fail.
1878 * Returns with the queue unlocked.
1879 */
1880 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1881 if (IS_ERR(req)) {
1882 __wbt_done(q->rq_wb, wb_acct);
1883 if (PTR_ERR(req) == -ENOMEM)
1884 bio->bi_status = BLK_STS_RESOURCE;
1885 else
1886 bio->bi_status = BLK_STS_IOERR;
1887 bio_endio(bio);
1888 goto out_unlock;
1889 }
1890
1891 wbt_track(&req->issue_stat, wb_acct);
1892
1893 /*
1894 * After dropping the lock and possibly sleeping here, our request
1895 * may now be mergeable after it had proven unmergeable (above).
1896 * We don't worry about that case for efficiency. It won't happen
1897 * often, and the elevators are able to handle it.
1898 */
1899 blk_init_request_from_bio(req, bio);
1900
1901 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1902 req->cpu = raw_smp_processor_id();
1903
1904 plug = current->plug;
1905 if (plug) {
1906 /*
1907 * If this is the first request added after a plug, fire
1908 * of a plug trace.
1909 *
1910 * @request_count may become stale because of schedule
1911 * out, so check plug list again.
1912 */
1913 if (!request_count || list_empty(&plug->list))
1914 trace_block_plug(q);
1915 else {
1916 struct request *last = list_entry_rq(plug->list.prev);
1917 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1918 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1919 blk_flush_plug_list(plug, false);
1920 trace_block_plug(q);
1921 }
1922 }
1923 list_add_tail(&req->queuelist, &plug->list);
1924 blk_account_io_start(req, true);
1925 } else {
1926 spin_lock_irq(q->queue_lock);
1927 add_acct_request(q, req, where);
1928 __blk_run_queue(q);
1929 out_unlock:
1930 spin_unlock_irq(q->queue_lock);
1931 }
1932
1933 return BLK_QC_T_NONE;
1934 }
1935
1936 static void handle_bad_sector(struct bio *bio)
1937 {
1938 char b[BDEVNAME_SIZE];
1939
1940 printk(KERN_INFO "attempt to access beyond end of device\n");
1941 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1942 bio_devname(bio, b), bio->bi_opf,
1943 (unsigned long long)bio_end_sector(bio),
1944 (long long)get_capacity(bio->bi_disk));
1945 }
1946
1947 #ifdef CONFIG_FAIL_MAKE_REQUEST
1948
1949 static DECLARE_FAULT_ATTR(fail_make_request);
1950
1951 static int __init setup_fail_make_request(char *str)
1952 {
1953 return setup_fault_attr(&fail_make_request, str);
1954 }
1955 __setup("fail_make_request=", setup_fail_make_request);
1956
1957 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1958 {
1959 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1960 }
1961
1962 static int __init fail_make_request_debugfs(void)
1963 {
1964 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1965 NULL, &fail_make_request);
1966
1967 return PTR_ERR_OR_ZERO(dir);
1968 }
1969
1970 late_initcall(fail_make_request_debugfs);
1971
1972 #else /* CONFIG_FAIL_MAKE_REQUEST */
1973
1974 static inline bool should_fail_request(struct hd_struct *part,
1975 unsigned int bytes)
1976 {
1977 return false;
1978 }
1979
1980 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1981
1982 /*
1983 * Remap block n of partition p to block n+start(p) of the disk.
1984 */
1985 static inline int blk_partition_remap(struct bio *bio)
1986 {
1987 struct hd_struct *p;
1988 int ret = 0;
1989
1990 /*
1991 * Zone reset does not include bi_size so bio_sectors() is always 0.
1992 * Include a test for the reset op code and perform the remap if needed.
1993 */
1994 if (!bio->bi_partno ||
1995 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
1996 return 0;
1997
1998 rcu_read_lock();
1999 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2000 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2001 bio->bi_iter.bi_sector += p->start_sect;
2002 bio->bi_partno = 0;
2003 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2004 bio->bi_iter.bi_sector - p->start_sect);
2005 } else {
2006 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2007 ret = -EIO;
2008 }
2009 rcu_read_unlock();
2010
2011 return ret;
2012 }
2013
2014 /*
2015 * Check whether this bio extends beyond the end of the device.
2016 */
2017 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2018 {
2019 sector_t maxsector;
2020
2021 if (!nr_sectors)
2022 return 0;
2023
2024 /* Test device or partition size, when known. */
2025 maxsector = get_capacity(bio->bi_disk);
2026 if (maxsector) {
2027 sector_t sector = bio->bi_iter.bi_sector;
2028
2029 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2030 /*
2031 * This may well happen - the kernel calls bread()
2032 * without checking the size of the device, e.g., when
2033 * mounting a device.
2034 */
2035 handle_bad_sector(bio);
2036 return 1;
2037 }
2038 }
2039
2040 return 0;
2041 }
2042
2043 static noinline_for_stack bool
2044 generic_make_request_checks(struct bio *bio)
2045 {
2046 struct request_queue *q;
2047 int nr_sectors = bio_sectors(bio);
2048 blk_status_t status = BLK_STS_IOERR;
2049 char b[BDEVNAME_SIZE];
2050
2051 might_sleep();
2052
2053 if (bio_check_eod(bio, nr_sectors))
2054 goto end_io;
2055
2056 q = bio->bi_disk->queue;
2057 if (unlikely(!q)) {
2058 printk(KERN_ERR
2059 "generic_make_request: Trying to access "
2060 "nonexistent block-device %s (%Lu)\n",
2061 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2062 goto end_io;
2063 }
2064
2065 /*
2066 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2067 * if queue is not a request based queue.
2068 */
2069
2070 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2071 goto not_supported;
2072
2073 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2074 goto end_io;
2075
2076 if (blk_partition_remap(bio))
2077 goto end_io;
2078
2079 if (bio_check_eod(bio, nr_sectors))
2080 goto end_io;
2081
2082 /*
2083 * Filter flush bio's early so that make_request based
2084 * drivers without flush support don't have to worry
2085 * about them.
2086 */
2087 if (op_is_flush(bio->bi_opf) &&
2088 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2089 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2090 if (!nr_sectors) {
2091 status = BLK_STS_OK;
2092 goto end_io;
2093 }
2094 }
2095
2096 switch (bio_op(bio)) {
2097 case REQ_OP_DISCARD:
2098 if (!blk_queue_discard(q))
2099 goto not_supported;
2100 break;
2101 case REQ_OP_SECURE_ERASE:
2102 if (!blk_queue_secure_erase(q))
2103 goto not_supported;
2104 break;
2105 case REQ_OP_WRITE_SAME:
2106 if (!q->limits.max_write_same_sectors)
2107 goto not_supported;
2108 break;
2109 case REQ_OP_ZONE_REPORT:
2110 case REQ_OP_ZONE_RESET:
2111 if (!blk_queue_is_zoned(q))
2112 goto not_supported;
2113 break;
2114 case REQ_OP_WRITE_ZEROES:
2115 if (!q->limits.max_write_zeroes_sectors)
2116 goto not_supported;
2117 break;
2118 default:
2119 break;
2120 }
2121
2122 /*
2123 * Various block parts want %current->io_context and lazy ioc
2124 * allocation ends up trading a lot of pain for a small amount of
2125 * memory. Just allocate it upfront. This may fail and block
2126 * layer knows how to live with it.
2127 */
2128 create_io_context(GFP_ATOMIC, q->node);
2129
2130 if (!blkcg_bio_issue_check(q, bio))
2131 return false;
2132
2133 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2134 trace_block_bio_queue(q, bio);
2135 /* Now that enqueuing has been traced, we need to trace
2136 * completion as well.
2137 */
2138 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2139 }
2140 return true;
2141
2142 not_supported:
2143 status = BLK_STS_NOTSUPP;
2144 end_io:
2145 bio->bi_status = status;
2146 bio_endio(bio);
2147 return false;
2148 }
2149
2150 /**
2151 * generic_make_request - hand a buffer to its device driver for I/O
2152 * @bio: The bio describing the location in memory and on the device.
2153 *
2154 * generic_make_request() is used to make I/O requests of block
2155 * devices. It is passed a &struct bio, which describes the I/O that needs
2156 * to be done.
2157 *
2158 * generic_make_request() does not return any status. The
2159 * success/failure status of the request, along with notification of
2160 * completion, is delivered asynchronously through the bio->bi_end_io
2161 * function described (one day) else where.
2162 *
2163 * The caller of generic_make_request must make sure that bi_io_vec
2164 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2165 * set to describe the device address, and the
2166 * bi_end_io and optionally bi_private are set to describe how
2167 * completion notification should be signaled.
2168 *
2169 * generic_make_request and the drivers it calls may use bi_next if this
2170 * bio happens to be merged with someone else, and may resubmit the bio to
2171 * a lower device by calling into generic_make_request recursively, which
2172 * means the bio should NOT be touched after the call to ->make_request_fn.
2173 */
2174 blk_qc_t generic_make_request(struct bio *bio)
2175 {
2176 /*
2177 * bio_list_on_stack[0] contains bios submitted by the current
2178 * make_request_fn.
2179 * bio_list_on_stack[1] contains bios that were submitted before
2180 * the current make_request_fn, but that haven't been processed
2181 * yet.
2182 */
2183 struct bio_list bio_list_on_stack[2];
2184 blk_qc_t ret = BLK_QC_T_NONE;
2185
2186 if (!generic_make_request_checks(bio))
2187 goto out;
2188
2189 /*
2190 * We only want one ->make_request_fn to be active at a time, else
2191 * stack usage with stacked devices could be a problem. So use
2192 * current->bio_list to keep a list of requests submited by a
2193 * make_request_fn function. current->bio_list is also used as a
2194 * flag to say if generic_make_request is currently active in this
2195 * task or not. If it is NULL, then no make_request is active. If
2196 * it is non-NULL, then a make_request is active, and new requests
2197 * should be added at the tail
2198 */
2199 if (current->bio_list) {
2200 bio_list_add(&current->bio_list[0], bio);
2201 goto out;
2202 }
2203
2204 /* following loop may be a bit non-obvious, and so deserves some
2205 * explanation.
2206 * Before entering the loop, bio->bi_next is NULL (as all callers
2207 * ensure that) so we have a list with a single bio.
2208 * We pretend that we have just taken it off a longer list, so
2209 * we assign bio_list to a pointer to the bio_list_on_stack,
2210 * thus initialising the bio_list of new bios to be
2211 * added. ->make_request() may indeed add some more bios
2212 * through a recursive call to generic_make_request. If it
2213 * did, we find a non-NULL value in bio_list and re-enter the loop
2214 * from the top. In this case we really did just take the bio
2215 * of the top of the list (no pretending) and so remove it from
2216 * bio_list, and call into ->make_request() again.
2217 */
2218 BUG_ON(bio->bi_next);
2219 bio_list_init(&bio_list_on_stack[0]);
2220 current->bio_list = bio_list_on_stack;
2221 do {
2222 struct request_queue *q = bio->bi_disk->queue;
2223
2224 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
2225 struct bio_list lower, same;
2226
2227 /* Create a fresh bio_list for all subordinate requests */
2228 bio_list_on_stack[1] = bio_list_on_stack[0];
2229 bio_list_init(&bio_list_on_stack[0]);
2230 ret = q->make_request_fn(q, bio);
2231
2232 blk_queue_exit(q);
2233
2234 /* sort new bios into those for a lower level
2235 * and those for the same level
2236 */
2237 bio_list_init(&lower);
2238 bio_list_init(&same);
2239 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2240 if (q == bio->bi_disk->queue)
2241 bio_list_add(&same, bio);
2242 else
2243 bio_list_add(&lower, bio);
2244 /* now assemble so we handle the lowest level first */
2245 bio_list_merge(&bio_list_on_stack[0], &lower);
2246 bio_list_merge(&bio_list_on_stack[0], &same);
2247 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2248 } else {
2249 if (unlikely(!blk_queue_dying(q) &&
2250 (bio->bi_opf & REQ_NOWAIT)))
2251 bio_wouldblock_error(bio);
2252 else
2253 bio_io_error(bio);
2254 }
2255 bio = bio_list_pop(&bio_list_on_stack[0]);
2256 } while (bio);
2257 current->bio_list = NULL; /* deactivate */
2258
2259 out:
2260 return ret;
2261 }
2262 EXPORT_SYMBOL(generic_make_request);
2263
2264 /**
2265 * submit_bio - submit a bio to the block device layer for I/O
2266 * @bio: The &struct bio which describes the I/O
2267 *
2268 * submit_bio() is very similar in purpose to generic_make_request(), and
2269 * uses that function to do most of the work. Both are fairly rough
2270 * interfaces; @bio must be presetup and ready for I/O.
2271 *
2272 */
2273 blk_qc_t submit_bio(struct bio *bio)
2274 {
2275 /*
2276 * If it's a regular read/write or a barrier with data attached,
2277 * go through the normal accounting stuff before submission.
2278 */
2279 if (bio_has_data(bio)) {
2280 unsigned int count;
2281
2282 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2283 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2284 else
2285 count = bio_sectors(bio);
2286
2287 if (op_is_write(bio_op(bio))) {
2288 count_vm_events(PGPGOUT, count);
2289 } else {
2290 task_io_account_read(bio->bi_iter.bi_size);
2291 count_vm_events(PGPGIN, count);
2292 }
2293
2294 if (unlikely(block_dump)) {
2295 char b[BDEVNAME_SIZE];
2296 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2297 current->comm, task_pid_nr(current),
2298 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2299 (unsigned long long)bio->bi_iter.bi_sector,
2300 bio_devname(bio, b), count);
2301 }
2302 }
2303
2304 return generic_make_request(bio);
2305 }
2306 EXPORT_SYMBOL(submit_bio);
2307
2308 /**
2309 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2310 * for new the queue limits
2311 * @q: the queue
2312 * @rq: the request being checked
2313 *
2314 * Description:
2315 * @rq may have been made based on weaker limitations of upper-level queues
2316 * in request stacking drivers, and it may violate the limitation of @q.
2317 * Since the block layer and the underlying device driver trust @rq
2318 * after it is inserted to @q, it should be checked against @q before
2319 * the insertion using this generic function.
2320 *
2321 * Request stacking drivers like request-based dm may change the queue
2322 * limits when retrying requests on other queues. Those requests need
2323 * to be checked against the new queue limits again during dispatch.
2324 */
2325 static int blk_cloned_rq_check_limits(struct request_queue *q,
2326 struct request *rq)
2327 {
2328 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2329 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2330 return -EIO;
2331 }
2332
2333 /*
2334 * queue's settings related to segment counting like q->bounce_pfn
2335 * may differ from that of other stacking queues.
2336 * Recalculate it to check the request correctly on this queue's
2337 * limitation.
2338 */
2339 blk_recalc_rq_segments(rq);
2340 if (rq->nr_phys_segments > queue_max_segments(q)) {
2341 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2342 return -EIO;
2343 }
2344
2345 return 0;
2346 }
2347
2348 /**
2349 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2350 * @q: the queue to submit the request
2351 * @rq: the request being queued
2352 */
2353 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2354 {
2355 unsigned long flags;
2356 int where = ELEVATOR_INSERT_BACK;
2357
2358 if (blk_cloned_rq_check_limits(q, rq))
2359 return BLK_STS_IOERR;
2360
2361 if (rq->rq_disk &&
2362 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2363 return BLK_STS_IOERR;
2364
2365 if (q->mq_ops) {
2366 if (blk_queue_io_stat(q))
2367 blk_account_io_start(rq, true);
2368 /*
2369 * Since we have a scheduler attached on the top device,
2370 * bypass a potential scheduler on the bottom device for
2371 * insert.
2372 */
2373 blk_mq_request_bypass_insert(rq);
2374 return BLK_STS_OK;
2375 }
2376
2377 spin_lock_irqsave(q->queue_lock, flags);
2378 if (unlikely(blk_queue_dying(q))) {
2379 spin_unlock_irqrestore(q->queue_lock, flags);
2380 return BLK_STS_IOERR;
2381 }
2382
2383 /*
2384 * Submitting request must be dequeued before calling this function
2385 * because it will be linked to another request_queue
2386 */
2387 BUG_ON(blk_queued_rq(rq));
2388
2389 if (op_is_flush(rq->cmd_flags))
2390 where = ELEVATOR_INSERT_FLUSH;
2391
2392 add_acct_request(q, rq, where);
2393 if (where == ELEVATOR_INSERT_FLUSH)
2394 __blk_run_queue(q);
2395 spin_unlock_irqrestore(q->queue_lock, flags);
2396
2397 return BLK_STS_OK;
2398 }
2399 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2400
2401 /**
2402 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2403 * @rq: request to examine
2404 *
2405 * Description:
2406 * A request could be merge of IOs which require different failure
2407 * handling. This function determines the number of bytes which
2408 * can be failed from the beginning of the request without
2409 * crossing into area which need to be retried further.
2410 *
2411 * Return:
2412 * The number of bytes to fail.
2413 */
2414 unsigned int blk_rq_err_bytes(const struct request *rq)
2415 {
2416 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2417 unsigned int bytes = 0;
2418 struct bio *bio;
2419
2420 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2421 return blk_rq_bytes(rq);
2422
2423 /*
2424 * Currently the only 'mixing' which can happen is between
2425 * different fastfail types. We can safely fail portions
2426 * which have all the failfast bits that the first one has -
2427 * the ones which are at least as eager to fail as the first
2428 * one.
2429 */
2430 for (bio = rq->bio; bio; bio = bio->bi_next) {
2431 if ((bio->bi_opf & ff) != ff)
2432 break;
2433 bytes += bio->bi_iter.bi_size;
2434 }
2435
2436 /* this could lead to infinite loop */
2437 BUG_ON(blk_rq_bytes(rq) && !bytes);
2438 return bytes;
2439 }
2440 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2441
2442 void blk_account_io_completion(struct request *req, unsigned int bytes)
2443 {
2444 if (blk_do_io_stat(req)) {
2445 const int rw = rq_data_dir(req);
2446 struct hd_struct *part;
2447 int cpu;
2448
2449 cpu = part_stat_lock();
2450 part = req->part;
2451 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2452 part_stat_unlock();
2453 }
2454 }
2455
2456 void blk_account_io_done(struct request *req)
2457 {
2458 /*
2459 * Account IO completion. flush_rq isn't accounted as a
2460 * normal IO on queueing nor completion. Accounting the
2461 * containing request is enough.
2462 */
2463 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2464 unsigned long duration = jiffies - req->start_time;
2465 const int rw = rq_data_dir(req);
2466 struct hd_struct *part;
2467 int cpu;
2468
2469 cpu = part_stat_lock();
2470 part = req->part;
2471
2472 part_stat_inc(cpu, part, ios[rw]);
2473 part_stat_add(cpu, part, ticks[rw], duration);
2474 part_round_stats(req->q, cpu, part);
2475 part_dec_in_flight(req->q, part, rw);
2476
2477 hd_struct_put(part);
2478 part_stat_unlock();
2479 }
2480 }
2481
2482 #ifdef CONFIG_PM
2483 /*
2484 * Don't process normal requests when queue is suspended
2485 * or in the process of suspending/resuming
2486 */
2487 static struct request *blk_pm_peek_request(struct request_queue *q,
2488 struct request *rq)
2489 {
2490 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2491 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2492 return NULL;
2493 else
2494 return rq;
2495 }
2496 #else
2497 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2498 struct request *rq)
2499 {
2500 return rq;
2501 }
2502 #endif
2503
2504 void blk_account_io_start(struct request *rq, bool new_io)
2505 {
2506 struct hd_struct *part;
2507 int rw = rq_data_dir(rq);
2508 int cpu;
2509
2510 if (!blk_do_io_stat(rq))
2511 return;
2512
2513 cpu = part_stat_lock();
2514
2515 if (!new_io) {
2516 part = rq->part;
2517 part_stat_inc(cpu, part, merges[rw]);
2518 } else {
2519 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2520 if (!hd_struct_try_get(part)) {
2521 /*
2522 * The partition is already being removed,
2523 * the request will be accounted on the disk only
2524 *
2525 * We take a reference on disk->part0 although that
2526 * partition will never be deleted, so we can treat
2527 * it as any other partition.
2528 */
2529 part = &rq->rq_disk->part0;
2530 hd_struct_get(part);
2531 }
2532 part_round_stats(rq->q, cpu, part);
2533 part_inc_in_flight(rq->q, part, rw);
2534 rq->part = part;
2535 }
2536
2537 part_stat_unlock();
2538 }
2539
2540 /**
2541 * blk_peek_request - peek at the top of a request queue
2542 * @q: request queue to peek at
2543 *
2544 * Description:
2545 * Return the request at the top of @q. The returned request
2546 * should be started using blk_start_request() before LLD starts
2547 * processing it.
2548 *
2549 * Return:
2550 * Pointer to the request at the top of @q if available. Null
2551 * otherwise.
2552 */
2553 struct request *blk_peek_request(struct request_queue *q)
2554 {
2555 struct request *rq;
2556 int ret;
2557
2558 lockdep_assert_held(q->queue_lock);
2559 WARN_ON_ONCE(q->mq_ops);
2560
2561 while ((rq = __elv_next_request(q)) != NULL) {
2562
2563 rq = blk_pm_peek_request(q, rq);
2564 if (!rq)
2565 break;
2566
2567 if (!(rq->rq_flags & RQF_STARTED)) {
2568 /*
2569 * This is the first time the device driver
2570 * sees this request (possibly after
2571 * requeueing). Notify IO scheduler.
2572 */
2573 if (rq->rq_flags & RQF_SORTED)
2574 elv_activate_rq(q, rq);
2575
2576 /*
2577 * just mark as started even if we don't start
2578 * it, a request that has been delayed should
2579 * not be passed by new incoming requests
2580 */
2581 rq->rq_flags |= RQF_STARTED;
2582 trace_block_rq_issue(q, rq);
2583 }
2584
2585 if (!q->boundary_rq || q->boundary_rq == rq) {
2586 q->end_sector = rq_end_sector(rq);
2587 q->boundary_rq = NULL;
2588 }
2589
2590 if (rq->rq_flags & RQF_DONTPREP)
2591 break;
2592
2593 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2594 /*
2595 * make sure space for the drain appears we
2596 * know we can do this because max_hw_segments
2597 * has been adjusted to be one fewer than the
2598 * device can handle
2599 */
2600 rq->nr_phys_segments++;
2601 }
2602
2603 if (!q->prep_rq_fn)
2604 break;
2605
2606 ret = q->prep_rq_fn(q, rq);
2607 if (ret == BLKPREP_OK) {
2608 break;
2609 } else if (ret == BLKPREP_DEFER) {
2610 /*
2611 * the request may have been (partially) prepped.
2612 * we need to keep this request in the front to
2613 * avoid resource deadlock. RQF_STARTED will
2614 * prevent other fs requests from passing this one.
2615 */
2616 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2617 !(rq->rq_flags & RQF_DONTPREP)) {
2618 /*
2619 * remove the space for the drain we added
2620 * so that we don't add it again
2621 */
2622 --rq->nr_phys_segments;
2623 }
2624
2625 rq = NULL;
2626 break;
2627 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2628 rq->rq_flags |= RQF_QUIET;
2629 /*
2630 * Mark this request as started so we don't trigger
2631 * any debug logic in the end I/O path.
2632 */
2633 blk_start_request(rq);
2634 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2635 BLK_STS_TARGET : BLK_STS_IOERR);
2636 } else {
2637 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2638 break;
2639 }
2640 }
2641
2642 return rq;
2643 }
2644 EXPORT_SYMBOL(blk_peek_request);
2645
2646 static void blk_dequeue_request(struct request *rq)
2647 {
2648 struct request_queue *q = rq->q;
2649
2650 BUG_ON(list_empty(&rq->queuelist));
2651 BUG_ON(ELV_ON_HASH(rq));
2652
2653 list_del_init(&rq->queuelist);
2654
2655 /*
2656 * the time frame between a request being removed from the lists
2657 * and to it is freed is accounted as io that is in progress at
2658 * the driver side.
2659 */
2660 if (blk_account_rq(rq)) {
2661 q->in_flight[rq_is_sync(rq)]++;
2662 set_io_start_time_ns(rq);
2663 }
2664 }
2665
2666 /**
2667 * blk_start_request - start request processing on the driver
2668 * @req: request to dequeue
2669 *
2670 * Description:
2671 * Dequeue @req and start timeout timer on it. This hands off the
2672 * request to the driver.
2673 */
2674 void blk_start_request(struct request *req)
2675 {
2676 lockdep_assert_held(req->q->queue_lock);
2677 WARN_ON_ONCE(req->q->mq_ops);
2678
2679 blk_dequeue_request(req);
2680
2681 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2682 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2683 req->rq_flags |= RQF_STATS;
2684 wbt_issue(req->q->rq_wb, &req->issue_stat);
2685 }
2686
2687 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2688 blk_add_timer(req);
2689 }
2690 EXPORT_SYMBOL(blk_start_request);
2691
2692 /**
2693 * blk_fetch_request - fetch a request from a request queue
2694 * @q: request queue to fetch a request from
2695 *
2696 * Description:
2697 * Return the request at the top of @q. The request is started on
2698 * return and LLD can start processing it immediately.
2699 *
2700 * Return:
2701 * Pointer to the request at the top of @q if available. Null
2702 * otherwise.
2703 */
2704 struct request *blk_fetch_request(struct request_queue *q)
2705 {
2706 struct request *rq;
2707
2708 lockdep_assert_held(q->queue_lock);
2709 WARN_ON_ONCE(q->mq_ops);
2710
2711 rq = blk_peek_request(q);
2712 if (rq)
2713 blk_start_request(rq);
2714 return rq;
2715 }
2716 EXPORT_SYMBOL(blk_fetch_request);
2717
2718 /**
2719 * blk_update_request - Special helper function for request stacking drivers
2720 * @req: the request being processed
2721 * @error: block status code
2722 * @nr_bytes: number of bytes to complete @req
2723 *
2724 * Description:
2725 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2726 * the request structure even if @req doesn't have leftover.
2727 * If @req has leftover, sets it up for the next range of segments.
2728 *
2729 * This special helper function is only for request stacking drivers
2730 * (e.g. request-based dm) so that they can handle partial completion.
2731 * Actual device drivers should use blk_end_request instead.
2732 *
2733 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2734 * %false return from this function.
2735 *
2736 * Return:
2737 * %false - this request doesn't have any more data
2738 * %true - this request has more data
2739 **/
2740 bool blk_update_request(struct request *req, blk_status_t error,
2741 unsigned int nr_bytes)
2742 {
2743 int total_bytes;
2744
2745 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2746
2747 if (!req->bio)
2748 return false;
2749
2750 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2751 !(req->rq_flags & RQF_QUIET)))
2752 print_req_error(req, error);
2753
2754 blk_account_io_completion(req, nr_bytes);
2755
2756 total_bytes = 0;
2757 while (req->bio) {
2758 struct bio *bio = req->bio;
2759 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2760
2761 if (bio_bytes == bio->bi_iter.bi_size)
2762 req->bio = bio->bi_next;
2763
2764 /* Completion has already been traced */
2765 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2766 req_bio_endio(req, bio, bio_bytes, error);
2767
2768 total_bytes += bio_bytes;
2769 nr_bytes -= bio_bytes;
2770
2771 if (!nr_bytes)
2772 break;
2773 }
2774
2775 /*
2776 * completely done
2777 */
2778 if (!req->bio) {
2779 /*
2780 * Reset counters so that the request stacking driver
2781 * can find how many bytes remain in the request
2782 * later.
2783 */
2784 req->__data_len = 0;
2785 return false;
2786 }
2787
2788 req->__data_len -= total_bytes;
2789
2790 /* update sector only for requests with clear definition of sector */
2791 if (!blk_rq_is_passthrough(req)) {
2792 req->__sector += total_bytes >> 9;
2793 #ifdef CONFIG_CRYPTO_DISKCIPHER_DUN
2794 if (req->__dun)
2795 req->__dun += total_bytes >> 12;
2796 #endif
2797 }
2798
2799 /* mixed attributes always follow the first bio */
2800 if (req->rq_flags & RQF_MIXED_MERGE) {
2801 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2802 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2803 }
2804
2805 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2806 /*
2807 * If total number of sectors is less than the first segment
2808 * size, something has gone terribly wrong.
2809 */
2810 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2811 blk_dump_rq_flags(req, "request botched");
2812 req->__data_len = blk_rq_cur_bytes(req);
2813 }
2814
2815 /* recalculate the number of segments */
2816 blk_recalc_rq_segments(req);
2817 }
2818
2819 return true;
2820 }
2821 EXPORT_SYMBOL_GPL(blk_update_request);
2822
2823 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2824 unsigned int nr_bytes,
2825 unsigned int bidi_bytes)
2826 {
2827 if (blk_update_request(rq, error, nr_bytes))
2828 return true;
2829
2830 /* Bidi request must be completed as a whole */
2831 if (unlikely(blk_bidi_rq(rq)) &&
2832 blk_update_request(rq->next_rq, error, bidi_bytes))
2833 return true;
2834
2835 if (blk_queue_add_random(rq->q))
2836 add_disk_randomness(rq->rq_disk);
2837
2838 return false;
2839 }
2840
2841 /**
2842 * blk_unprep_request - unprepare a request
2843 * @req: the request
2844 *
2845 * This function makes a request ready for complete resubmission (or
2846 * completion). It happens only after all error handling is complete,
2847 * so represents the appropriate moment to deallocate any resources
2848 * that were allocated to the request in the prep_rq_fn. The queue
2849 * lock is held when calling this.
2850 */
2851 void blk_unprep_request(struct request *req)
2852 {
2853 struct request_queue *q = req->q;
2854
2855 req->rq_flags &= ~RQF_DONTPREP;
2856 if (q->unprep_rq_fn)
2857 q->unprep_rq_fn(q, req);
2858 }
2859 EXPORT_SYMBOL_GPL(blk_unprep_request);
2860
2861 void blk_finish_request(struct request *req, blk_status_t error)
2862 {
2863 struct request_queue *q = req->q;
2864
2865 lockdep_assert_held(req->q->queue_lock);
2866 WARN_ON_ONCE(q->mq_ops);
2867
2868 if (req->rq_flags & RQF_STATS)
2869 blk_stat_add(req);
2870
2871 if (req->rq_flags & RQF_QUEUED)
2872 blk_queue_end_tag(q, req);
2873
2874 BUG_ON(blk_queued_rq(req));
2875
2876 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2877 laptop_io_completion(req->q->backing_dev_info);
2878
2879 blk_delete_timer(req);
2880
2881 if (req->rq_flags & RQF_DONTPREP)
2882 blk_unprep_request(req);
2883
2884 blk_account_io_done(req);
2885
2886 if (req->end_io) {
2887 wbt_done(req->q->rq_wb, &req->issue_stat);
2888 req->end_io(req, error);
2889 } else {
2890 if (blk_bidi_rq(req))
2891 __blk_put_request(req->next_rq->q, req->next_rq);
2892
2893 __blk_put_request(q, req);
2894 }
2895 }
2896 EXPORT_SYMBOL(blk_finish_request);
2897
2898 /**
2899 * blk_end_bidi_request - Complete a bidi request
2900 * @rq: the request to complete
2901 * @error: block status code
2902 * @nr_bytes: number of bytes to complete @rq
2903 * @bidi_bytes: number of bytes to complete @rq->next_rq
2904 *
2905 * Description:
2906 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2907 * Drivers that supports bidi can safely call this member for any
2908 * type of request, bidi or uni. In the later case @bidi_bytes is
2909 * just ignored.
2910 *
2911 * Return:
2912 * %false - we are done with this request
2913 * %true - still buffers pending for this request
2914 **/
2915 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
2916 unsigned int nr_bytes, unsigned int bidi_bytes)
2917 {
2918 struct request_queue *q = rq->q;
2919 unsigned long flags;
2920
2921 WARN_ON_ONCE(q->mq_ops);
2922
2923 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2924 return true;
2925
2926 spin_lock_irqsave(q->queue_lock, flags);
2927 blk_finish_request(rq, error);
2928 spin_unlock_irqrestore(q->queue_lock, flags);
2929
2930 return false;
2931 }
2932
2933 /**
2934 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2935 * @rq: the request to complete
2936 * @error: block status code
2937 * @nr_bytes: number of bytes to complete @rq
2938 * @bidi_bytes: number of bytes to complete @rq->next_rq
2939 *
2940 * Description:
2941 * Identical to blk_end_bidi_request() except that queue lock is
2942 * assumed to be locked on entry and remains so on return.
2943 *
2944 * Return:
2945 * %false - we are done with this request
2946 * %true - still buffers pending for this request
2947 **/
2948 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
2949 unsigned int nr_bytes, unsigned int bidi_bytes)
2950 {
2951 lockdep_assert_held(rq->q->queue_lock);
2952 WARN_ON_ONCE(rq->q->mq_ops);
2953
2954 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2955 return true;
2956
2957 blk_finish_request(rq, error);
2958
2959 return false;
2960 }
2961
2962 /**
2963 * blk_end_request - Helper function for drivers to complete the request.
2964 * @rq: the request being processed
2965 * @error: block status code
2966 * @nr_bytes: number of bytes to complete
2967 *
2968 * Description:
2969 * Ends I/O on a number of bytes attached to @rq.
2970 * If @rq has leftover, sets it up for the next range of segments.
2971 *
2972 * Return:
2973 * %false - we are done with this request
2974 * %true - still buffers pending for this request
2975 **/
2976 bool blk_end_request(struct request *rq, blk_status_t error,
2977 unsigned int nr_bytes)
2978 {
2979 WARN_ON_ONCE(rq->q->mq_ops);
2980 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2981 }
2982 EXPORT_SYMBOL(blk_end_request);
2983
2984 /**
2985 * blk_end_request_all - Helper function for drives to finish the request.
2986 * @rq: the request to finish
2987 * @error: block status code
2988 *
2989 * Description:
2990 * Completely finish @rq.
2991 */
2992 void blk_end_request_all(struct request *rq, blk_status_t error)
2993 {
2994 bool pending;
2995 unsigned int bidi_bytes = 0;
2996
2997 if (unlikely(blk_bidi_rq(rq)))
2998 bidi_bytes = blk_rq_bytes(rq->next_rq);
2999
3000 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3001 BUG_ON(pending);
3002 }
3003 EXPORT_SYMBOL(blk_end_request_all);
3004
3005 /**
3006 * __blk_end_request - Helper function for drivers to complete the request.
3007 * @rq: the request being processed
3008 * @error: block status code
3009 * @nr_bytes: number of bytes to complete
3010 *
3011 * Description:
3012 * Must be called with queue lock held unlike blk_end_request().
3013 *
3014 * Return:
3015 * %false - we are done with this request
3016 * %true - still buffers pending for this request
3017 **/
3018 bool __blk_end_request(struct request *rq, blk_status_t error,
3019 unsigned int nr_bytes)
3020 {
3021 lockdep_assert_held(rq->q->queue_lock);
3022 WARN_ON_ONCE(rq->q->mq_ops);
3023
3024 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3025 }
3026 EXPORT_SYMBOL(__blk_end_request);
3027
3028 /**
3029 * __blk_end_request_all - Helper function for drives to finish the request.
3030 * @rq: the request to finish
3031 * @error: block status code
3032 *
3033 * Description:
3034 * Completely finish @rq. Must be called with queue lock held.
3035 */
3036 void __blk_end_request_all(struct request *rq, blk_status_t error)
3037 {
3038 bool pending;
3039 unsigned int bidi_bytes = 0;
3040
3041 lockdep_assert_held(rq->q->queue_lock);
3042 WARN_ON_ONCE(rq->q->mq_ops);
3043
3044 if (unlikely(blk_bidi_rq(rq)))
3045 bidi_bytes = blk_rq_bytes(rq->next_rq);
3046
3047 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3048 BUG_ON(pending);
3049 }
3050 EXPORT_SYMBOL(__blk_end_request_all);
3051
3052 /**
3053 * __blk_end_request_cur - Helper function to finish the current request chunk.
3054 * @rq: the request to finish the current chunk for
3055 * @error: block status code
3056 *
3057 * Description:
3058 * Complete the current consecutively mapped chunk from @rq. Must
3059 * be called with queue lock held.
3060 *
3061 * Return:
3062 * %false - we are done with this request
3063 * %true - still buffers pending for this request
3064 */
3065 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3066 {
3067 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3068 }
3069 EXPORT_SYMBOL(__blk_end_request_cur);
3070
3071 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3072 struct bio *bio)
3073 {
3074 if (bio_has_data(bio))
3075 rq->nr_phys_segments = bio_phys_segments(q, bio);
3076 else if (bio_op(bio) == REQ_OP_DISCARD)
3077 rq->nr_phys_segments = 1;
3078
3079 rq->__data_len = bio->bi_iter.bi_size;
3080 rq->bio = rq->biotail = bio;
3081
3082 if (bio->bi_disk)
3083 rq->rq_disk = bio->bi_disk;
3084 }
3085
3086 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3087 /**
3088 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3089 * @rq: the request to be flushed
3090 *
3091 * Description:
3092 * Flush all pages in @rq.
3093 */
3094 void rq_flush_dcache_pages(struct request *rq)
3095 {
3096 struct req_iterator iter;
3097 struct bio_vec bvec;
3098
3099 rq_for_each_segment(bvec, rq, iter)
3100 flush_dcache_page(bvec.bv_page);
3101 }
3102 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3103 #endif
3104
3105 /**
3106 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3107 * @q : the queue of the device being checked
3108 *
3109 * Description:
3110 * Check if underlying low-level drivers of a device are busy.
3111 * If the drivers want to export their busy state, they must set own
3112 * exporting function using blk_queue_lld_busy() first.
3113 *
3114 * Basically, this function is used only by request stacking drivers
3115 * to stop dispatching requests to underlying devices when underlying
3116 * devices are busy. This behavior helps more I/O merging on the queue
3117 * of the request stacking driver and prevents I/O throughput regression
3118 * on burst I/O load.
3119 *
3120 * Return:
3121 * 0 - Not busy (The request stacking driver should dispatch request)
3122 * 1 - Busy (The request stacking driver should stop dispatching request)
3123 */
3124 int blk_lld_busy(struct request_queue *q)
3125 {
3126 if (q->lld_busy_fn)
3127 return q->lld_busy_fn(q);
3128
3129 return 0;
3130 }
3131 EXPORT_SYMBOL_GPL(blk_lld_busy);
3132
3133 /**
3134 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3135 * @rq: the clone request to be cleaned up
3136 *
3137 * Description:
3138 * Free all bios in @rq for a cloned request.
3139 */
3140 void blk_rq_unprep_clone(struct request *rq)
3141 {
3142 struct bio *bio;
3143
3144 while ((bio = rq->bio) != NULL) {
3145 rq->bio = bio->bi_next;
3146
3147 bio_put(bio);
3148 }
3149 }
3150 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3151
3152 /*
3153 * Copy attributes of the original request to the clone request.
3154 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3155 */
3156 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3157 {
3158 dst->cpu = src->cpu;
3159 dst->__sector = blk_rq_pos(src);
3160 dst->__data_len = blk_rq_bytes(src);
3161 #ifdef CONFIG_CRYPTO_DISKCIPHER_DUN
3162 dst->__dun = blk_rq_dun(src);
3163 #endif
3164 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3165 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3166 dst->special_vec = src->special_vec;
3167 }
3168 dst->nr_phys_segments = src->nr_phys_segments;
3169 dst->ioprio = src->ioprio;
3170 dst->extra_len = src->extra_len;
3171 }
3172
3173 /**
3174 * blk_rq_prep_clone - Helper function to setup clone request
3175 * @rq: the request to be setup
3176 * @rq_src: original request to be cloned
3177 * @bs: bio_set that bios for clone are allocated from
3178 * @gfp_mask: memory allocation mask for bio
3179 * @bio_ctr: setup function to be called for each clone bio.
3180 * Returns %0 for success, non %0 for failure.
3181 * @data: private data to be passed to @bio_ctr
3182 *
3183 * Description:
3184 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3185 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3186 * are not copied, and copying such parts is the caller's responsibility.
3187 * Also, pages which the original bios are pointing to are not copied
3188 * and the cloned bios just point same pages.
3189 * So cloned bios must be completed before original bios, which means
3190 * the caller must complete @rq before @rq_src.
3191 */
3192 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3193 struct bio_set *bs, gfp_t gfp_mask,
3194 int (*bio_ctr)(struct bio *, struct bio *, void *),
3195 void *data)
3196 {
3197 struct bio *bio, *bio_src;
3198
3199 if (!bs)
3200 bs = fs_bio_set;
3201
3202 __rq_for_each_bio(bio_src, rq_src) {
3203 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3204 if (!bio)
3205 goto free_and_out;
3206
3207 if (bio_ctr && bio_ctr(bio, bio_src, data))
3208 goto free_and_out;
3209
3210 if (rq->bio) {
3211 rq->biotail->bi_next = bio;
3212 rq->biotail = bio;
3213 } else
3214 rq->bio = rq->biotail = bio;
3215 }
3216
3217 __blk_rq_prep_clone(rq, rq_src);
3218
3219 return 0;
3220
3221 free_and_out:
3222 if (bio)
3223 bio_put(bio);
3224 blk_rq_unprep_clone(rq);
3225
3226 return -ENOMEM;
3227 }
3228 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3229
3230 int kblockd_schedule_work(struct work_struct *work)
3231 {
3232 return queue_work(kblockd_workqueue, work);
3233 }
3234 EXPORT_SYMBOL(kblockd_schedule_work);
3235
3236 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3237 {
3238 return queue_work_on(cpu, kblockd_workqueue, work);
3239 }
3240 EXPORT_SYMBOL(kblockd_schedule_work_on);
3241
3242 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3243 unsigned long delay)
3244 {
3245 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3246 }
3247 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3248
3249 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3250 unsigned long delay)
3251 {
3252 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3253 }
3254 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3255
3256 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3257 unsigned long delay)
3258 {
3259 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3260 }
3261 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3262
3263 /**
3264 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3265 * @plug: The &struct blk_plug that needs to be initialized
3266 *
3267 * Description:
3268 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3269 * pending I/O should the task end up blocking between blk_start_plug() and
3270 * blk_finish_plug(). This is important from a performance perspective, but
3271 * also ensures that we don't deadlock. For instance, if the task is blocking
3272 * for a memory allocation, memory reclaim could end up wanting to free a
3273 * page belonging to that request that is currently residing in our private
3274 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3275 * this kind of deadlock.
3276 */
3277 void blk_start_plug(struct blk_plug *plug)
3278 {
3279 struct task_struct *tsk = current;
3280
3281 /*
3282 * If this is a nested plug, don't actually assign it.
3283 */
3284 if (tsk->plug)
3285 return;
3286
3287 INIT_LIST_HEAD(&plug->list);
3288 INIT_LIST_HEAD(&plug->mq_list);
3289 INIT_LIST_HEAD(&plug->cb_list);
3290 /*
3291 * Store ordering should not be needed here, since a potential
3292 * preempt will imply a full memory barrier
3293 */
3294 tsk->plug = plug;
3295 }
3296 EXPORT_SYMBOL(blk_start_plug);
3297
3298 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3299 {
3300 struct request *rqa = container_of(a, struct request, queuelist);
3301 struct request *rqb = container_of(b, struct request, queuelist);
3302
3303 return !(rqa->q < rqb->q ||
3304 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3305 }
3306
3307 /*
3308 * If 'from_schedule' is true, then postpone the dispatch of requests
3309 * until a safe kblockd context. We due this to avoid accidental big
3310 * additional stack usage in driver dispatch, in places where the originally
3311 * plugger did not intend it.
3312 */
3313 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3314 bool from_schedule)
3315 __releases(q->queue_lock)
3316 {
3317 lockdep_assert_held(q->queue_lock);
3318
3319 trace_block_unplug(q, depth, !from_schedule);
3320
3321 if (from_schedule)
3322 blk_run_queue_async(q);
3323 else
3324 __blk_run_queue(q);
3325 spin_unlock(q->queue_lock);
3326 }
3327
3328 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3329 {
3330 LIST_HEAD(callbacks);
3331
3332 while (!list_empty(&plug->cb_list)) {
3333 list_splice_init(&plug->cb_list, &callbacks);
3334
3335 while (!list_empty(&callbacks)) {
3336 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3337 struct blk_plug_cb,
3338 list);
3339 list_del(&cb->list);
3340 cb->callback(cb, from_schedule);
3341 }
3342 }
3343 }
3344
3345 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3346 int size)
3347 {
3348 struct blk_plug *plug = current->plug;
3349 struct blk_plug_cb *cb;
3350
3351 if (!plug)
3352 return NULL;
3353
3354 list_for_each_entry(cb, &plug->cb_list, list)
3355 if (cb->callback == unplug && cb->data == data)
3356 return cb;
3357
3358 /* Not currently on the callback list */
3359 BUG_ON(size < sizeof(*cb));
3360 cb = kzalloc(size, GFP_ATOMIC);
3361 if (cb) {
3362 cb->data = data;
3363 cb->callback = unplug;
3364 list_add(&cb->list, &plug->cb_list);
3365 }
3366 return cb;
3367 }
3368 EXPORT_SYMBOL(blk_check_plugged);
3369
3370 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3371 {
3372 struct request_queue *q;
3373 unsigned long flags;
3374 struct request *rq;
3375 LIST_HEAD(list);
3376 unsigned int depth;
3377
3378 flush_plug_callbacks(plug, from_schedule);
3379
3380 if (!list_empty(&plug->mq_list))
3381 blk_mq_flush_plug_list(plug, from_schedule);
3382
3383 if (list_empty(&plug->list))
3384 return;
3385
3386 list_splice_init(&plug->list, &list);
3387
3388 list_sort(NULL, &list, plug_rq_cmp);
3389
3390 q = NULL;
3391 depth = 0;
3392
3393 /*
3394 * Save and disable interrupts here, to avoid doing it for every
3395 * queue lock we have to take.
3396 */
3397 local_irq_save(flags);
3398 while (!list_empty(&list)) {
3399 rq = list_entry_rq(list.next);
3400 list_del_init(&rq->queuelist);
3401 BUG_ON(!rq->q);
3402 if (rq->q != q) {
3403 /*
3404 * This drops the queue lock
3405 */
3406 if (q)
3407 queue_unplugged(q, depth, from_schedule);
3408 q = rq->q;
3409 depth = 0;
3410 spin_lock(q->queue_lock);
3411 }
3412
3413 /*
3414 * Short-circuit if @q is dead
3415 */
3416 if (unlikely(blk_queue_dying(q))) {
3417 __blk_end_request_all(rq, BLK_STS_IOERR);
3418 continue;
3419 }
3420
3421 /*
3422 * rq is already accounted, so use raw insert
3423 */
3424 if (op_is_flush(rq->cmd_flags))
3425 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3426 else
3427 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3428
3429 depth++;
3430 }
3431
3432 /*
3433 * This drops the queue lock
3434 */
3435 if (q)
3436 queue_unplugged(q, depth, from_schedule);
3437
3438 local_irq_restore(flags);
3439 }
3440
3441 void blk_finish_plug(struct blk_plug *plug)
3442 {
3443 if (plug != current->plug)
3444 return;
3445 blk_flush_plug_list(plug, false);
3446
3447 current->plug = NULL;
3448 }
3449 EXPORT_SYMBOL(blk_finish_plug);
3450
3451 #ifdef CONFIG_PM
3452 /**
3453 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3454 * @q: the queue of the device
3455 * @dev: the device the queue belongs to
3456 *
3457 * Description:
3458 * Initialize runtime-PM-related fields for @q and start auto suspend for
3459 * @dev. Drivers that want to take advantage of request-based runtime PM
3460 * should call this function after @dev has been initialized, and its
3461 * request queue @q has been allocated, and runtime PM for it can not happen
3462 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3463 * cases, driver should call this function before any I/O has taken place.
3464 *
3465 * This function takes care of setting up using auto suspend for the device,
3466 * the autosuspend delay is set to -1 to make runtime suspend impossible
3467 * until an updated value is either set by user or by driver. Drivers do
3468 * not need to touch other autosuspend settings.
3469 *
3470 * The block layer runtime PM is request based, so only works for drivers
3471 * that use request as their IO unit instead of those directly use bio's.
3472 */
3473 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3474 {
3475 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3476 if (q->mq_ops)
3477 return;
3478
3479 q->dev = dev;
3480 q->rpm_status = RPM_ACTIVE;
3481 pm_runtime_set_autosuspend_delay(q->dev, -1);
3482 pm_runtime_use_autosuspend(q->dev);
3483 }
3484 EXPORT_SYMBOL(blk_pm_runtime_init);
3485
3486 /**
3487 * blk_pre_runtime_suspend - Pre runtime suspend check
3488 * @q: the queue of the device
3489 *
3490 * Description:
3491 * This function will check if runtime suspend is allowed for the device
3492 * by examining if there are any requests pending in the queue. If there
3493 * are requests pending, the device can not be runtime suspended; otherwise,
3494 * the queue's status will be updated to SUSPENDING and the driver can
3495 * proceed to suspend the device.
3496 *
3497 * For the not allowed case, we mark last busy for the device so that
3498 * runtime PM core will try to autosuspend it some time later.
3499 *
3500 * This function should be called near the start of the device's
3501 * runtime_suspend callback.
3502 *
3503 * Return:
3504 * 0 - OK to runtime suspend the device
3505 * -EBUSY - Device should not be runtime suspended
3506 */
3507 int blk_pre_runtime_suspend(struct request_queue *q)
3508 {
3509 int ret = 0;
3510
3511 if (!q->dev)
3512 return ret;
3513
3514 spin_lock_irq(q->queue_lock);
3515 if (q->nr_pending) {
3516 ret = -EBUSY;
3517 pm_runtime_mark_last_busy(q->dev);
3518 } else {
3519 q->rpm_status = RPM_SUSPENDING;
3520 }
3521 spin_unlock_irq(q->queue_lock);
3522 return ret;
3523 }
3524 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3525
3526 /**
3527 * blk_post_runtime_suspend - Post runtime suspend processing
3528 * @q: the queue of the device
3529 * @err: return value of the device's runtime_suspend function
3530 *
3531 * Description:
3532 * Update the queue's runtime status according to the return value of the
3533 * device's runtime suspend function and mark last busy for the device so
3534 * that PM core will try to auto suspend the device at a later time.
3535 *
3536 * This function should be called near the end of the device's
3537 * runtime_suspend callback.
3538 */
3539 void blk_post_runtime_suspend(struct request_queue *q, int err)
3540 {
3541 if (!q->dev)
3542 return;
3543
3544 spin_lock_irq(q->queue_lock);
3545 if (!err) {
3546 q->rpm_status = RPM_SUSPENDED;
3547 } else {
3548 q->rpm_status = RPM_ACTIVE;
3549 pm_runtime_mark_last_busy(q->dev);
3550 }
3551 spin_unlock_irq(q->queue_lock);
3552 }
3553 EXPORT_SYMBOL(blk_post_runtime_suspend);
3554
3555 /**
3556 * blk_pre_runtime_resume - Pre runtime resume processing
3557 * @q: the queue of the device
3558 *
3559 * Description:
3560 * Update the queue's runtime status to RESUMING in preparation for the
3561 * runtime resume of the device.
3562 *
3563 * This function should be called near the start of the device's
3564 * runtime_resume callback.
3565 */
3566 void blk_pre_runtime_resume(struct request_queue *q)
3567 {
3568 if (!q->dev)
3569 return;
3570
3571 spin_lock_irq(q->queue_lock);
3572 q->rpm_status = RPM_RESUMING;
3573 spin_unlock_irq(q->queue_lock);
3574 }
3575 EXPORT_SYMBOL(blk_pre_runtime_resume);
3576
3577 /**
3578 * blk_post_runtime_resume - Post runtime resume processing
3579 * @q: the queue of the device
3580 * @err: return value of the device's runtime_resume function
3581 *
3582 * Description:
3583 * Update the queue's runtime status according to the return value of the
3584 * device's runtime_resume function. If it is successfully resumed, process
3585 * the requests that are queued into the device's queue when it is resuming
3586 * and then mark last busy and initiate autosuspend for it.
3587 *
3588 * This function should be called near the end of the device's
3589 * runtime_resume callback.
3590 */
3591 void blk_post_runtime_resume(struct request_queue *q, int err)
3592 {
3593 if (!q->dev)
3594 return;
3595
3596 spin_lock_irq(q->queue_lock);
3597 if (!err) {
3598 q->rpm_status = RPM_ACTIVE;
3599 __blk_run_queue(q);
3600 pm_runtime_mark_last_busy(q->dev);
3601 pm_request_autosuspend(q->dev);
3602 } else {
3603 q->rpm_status = RPM_SUSPENDED;
3604 }
3605 spin_unlock_irq(q->queue_lock);
3606 }
3607 EXPORT_SYMBOL(blk_post_runtime_resume);
3608
3609 /**
3610 * blk_set_runtime_active - Force runtime status of the queue to be active
3611 * @q: the queue of the device
3612 *
3613 * If the device is left runtime suspended during system suspend the resume
3614 * hook typically resumes the device and corrects runtime status
3615 * accordingly. However, that does not affect the queue runtime PM status
3616 * which is still "suspended". This prevents processing requests from the
3617 * queue.
3618 *
3619 * This function can be used in driver's resume hook to correct queue
3620 * runtime PM status and re-enable peeking requests from the queue. It
3621 * should be called before first request is added to the queue.
3622 */
3623 void blk_set_runtime_active(struct request_queue *q)
3624 {
3625 spin_lock_irq(q->queue_lock);
3626 q->rpm_status = RPM_ACTIVE;
3627 pm_runtime_mark_last_busy(q->dev);
3628 pm_request_autosuspend(q->dev);
3629 spin_unlock_irq(q->queue_lock);
3630 }
3631 EXPORT_SYMBOL(blk_set_runtime_active);
3632 #endif
3633
3634 int __init blk_dev_init(void)
3635 {
3636 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3637 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3638 FIELD_SIZEOF(struct request, cmd_flags));
3639 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3640 FIELD_SIZEOF(struct bio, bi_opf));
3641
3642 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3643 kblockd_workqueue = alloc_workqueue("kblockd",
3644 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3645 if (!kblockd_workqueue)
3646 panic("Failed to create kblockd\n");
3647
3648 request_cachep = kmem_cache_create("blkdev_requests",
3649 sizeof(struct request), 0, SLAB_PANIC, NULL);
3650
3651 blk_requestq_cachep = kmem_cache_create("request_queue",
3652 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3653
3654 #ifdef CONFIG_DEBUG_FS
3655 blk_debugfs_root = debugfs_create_dir("block", NULL);
3656 #endif
3657
3658 return 0;
3659 }