cf10dfcda99d88392be71324b97ae9684be7a861
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
31 #include <trace/block.h>
32
33 #include "blk.h"
34
35 DEFINE_TRACE(block_plug);
36 DEFINE_TRACE(block_unplug_io);
37 DEFINE_TRACE(block_unplug_timer);
38 DEFINE_TRACE(block_getrq);
39 DEFINE_TRACE(block_sleeprq);
40 DEFINE_TRACE(block_rq_requeue);
41 DEFINE_TRACE(block_bio_backmerge);
42 DEFINE_TRACE(block_bio_frontmerge);
43 DEFINE_TRACE(block_bio_queue);
44 DEFINE_TRACE(block_rq_complete);
45 DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
47
48 static int __make_request(struct request_queue *q, struct bio *bio);
49
50 /*
51 * For the allocated request tables
52 */
53 static struct kmem_cache *request_cachep;
54
55 /*
56 * For queue allocation
57 */
58 struct kmem_cache *blk_requestq_cachep;
59
60 /*
61 * Controlling structure to kblockd
62 */
63 static struct workqueue_struct *kblockd_workqueue;
64
65 static void drive_stat_acct(struct request *rq, int new_io)
66 {
67 struct hd_struct *part;
68 int rw = rq_data_dir(rq);
69 int cpu;
70
71 if (!blk_fs_request(rq) || !blk_do_io_stat(rq))
72 return;
73
74 cpu = part_stat_lock();
75 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
76
77 if (!new_io)
78 part_stat_inc(cpu, part, merges[rw]);
79 else {
80 part_round_stats(cpu, part);
81 part_inc_in_flight(part);
82 }
83
84 part_stat_unlock();
85 }
86
87 void blk_queue_congestion_threshold(struct request_queue *q)
88 {
89 int nr;
90
91 nr = q->nr_requests - (q->nr_requests / 8) + 1;
92 if (nr > q->nr_requests)
93 nr = q->nr_requests;
94 q->nr_congestion_on = nr;
95
96 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
97 if (nr < 1)
98 nr = 1;
99 q->nr_congestion_off = nr;
100 }
101
102 /**
103 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
104 * @bdev: device
105 *
106 * Locates the passed device's request queue and returns the address of its
107 * backing_dev_info
108 *
109 * Will return NULL if the request queue cannot be located.
110 */
111 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
112 {
113 struct backing_dev_info *ret = NULL;
114 struct request_queue *q = bdev_get_queue(bdev);
115
116 if (q)
117 ret = &q->backing_dev_info;
118 return ret;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 memset(rq, 0, sizeof(*rq));
125
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->sector = rq->hard_sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->ref_count = 1;
137 }
138 EXPORT_SYMBOL(blk_rq_init);
139
140 static void req_bio_endio(struct request *rq, struct bio *bio,
141 unsigned int nbytes, int error)
142 {
143 struct request_queue *q = rq->q;
144
145 if (&q->bar_rq != rq) {
146 if (error)
147 clear_bit(BIO_UPTODATE, &bio->bi_flags);
148 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
149 error = -EIO;
150
151 if (unlikely(nbytes > bio->bi_size)) {
152 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
153 __func__, nbytes, bio->bi_size);
154 nbytes = bio->bi_size;
155 }
156
157 if (unlikely(rq->cmd_flags & REQ_QUIET))
158 set_bit(BIO_QUIET, &bio->bi_flags);
159
160 bio->bi_size -= nbytes;
161 bio->bi_sector += (nbytes >> 9);
162
163 if (bio_integrity(bio))
164 bio_integrity_advance(bio, nbytes);
165
166 if (bio->bi_size == 0)
167 bio_endio(bio, error);
168 } else {
169
170 /*
171 * Okay, this is the barrier request in progress, just
172 * record the error;
173 */
174 if (error && !q->orderr)
175 q->orderr = error;
176 }
177 }
178
179 void blk_dump_rq_flags(struct request *rq, char *msg)
180 {
181 int bit;
182
183 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
184 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
185 rq->cmd_flags);
186
187 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
188 (unsigned long long)rq->sector,
189 rq->nr_sectors,
190 rq->current_nr_sectors);
191 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
192 rq->bio, rq->biotail,
193 rq->buffer, rq->data,
194 rq->data_len);
195
196 if (blk_pc_request(rq)) {
197 printk(KERN_INFO " cdb: ");
198 for (bit = 0; bit < BLK_MAX_CDB; bit++)
199 printk("%02x ", rq->cmd[bit]);
200 printk("\n");
201 }
202 }
203 EXPORT_SYMBOL(blk_dump_rq_flags);
204
205 /*
206 * "plug" the device if there are no outstanding requests: this will
207 * force the transfer to start only after we have put all the requests
208 * on the list.
209 *
210 * This is called with interrupts off and no requests on the queue and
211 * with the queue lock held.
212 */
213 void blk_plug_device(struct request_queue *q)
214 {
215 WARN_ON(!irqs_disabled());
216
217 /*
218 * don't plug a stopped queue, it must be paired with blk_start_queue()
219 * which will restart the queueing
220 */
221 if (blk_queue_stopped(q))
222 return;
223
224 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
225 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
226 trace_block_plug(q);
227 }
228 }
229 EXPORT_SYMBOL(blk_plug_device);
230
231 /**
232 * blk_plug_device_unlocked - plug a device without queue lock held
233 * @q: The &struct request_queue to plug
234 *
235 * Description:
236 * Like @blk_plug_device(), but grabs the queue lock and disables
237 * interrupts.
238 **/
239 void blk_plug_device_unlocked(struct request_queue *q)
240 {
241 unsigned long flags;
242
243 spin_lock_irqsave(q->queue_lock, flags);
244 blk_plug_device(q);
245 spin_unlock_irqrestore(q->queue_lock, flags);
246 }
247 EXPORT_SYMBOL(blk_plug_device_unlocked);
248
249 /*
250 * remove the queue from the plugged list, if present. called with
251 * queue lock held and interrupts disabled.
252 */
253 int blk_remove_plug(struct request_queue *q)
254 {
255 WARN_ON(!irqs_disabled());
256
257 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
258 return 0;
259
260 del_timer(&q->unplug_timer);
261 return 1;
262 }
263 EXPORT_SYMBOL(blk_remove_plug);
264
265 /*
266 * remove the plug and let it rip..
267 */
268 void __generic_unplug_device(struct request_queue *q)
269 {
270 if (unlikely(blk_queue_stopped(q)))
271 return;
272 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
273 return;
274
275 q->request_fn(q);
276 }
277
278 /**
279 * generic_unplug_device - fire a request queue
280 * @q: The &struct request_queue in question
281 *
282 * Description:
283 * Linux uses plugging to build bigger requests queues before letting
284 * the device have at them. If a queue is plugged, the I/O scheduler
285 * is still adding and merging requests on the queue. Once the queue
286 * gets unplugged, the request_fn defined for the queue is invoked and
287 * transfers started.
288 **/
289 void generic_unplug_device(struct request_queue *q)
290 {
291 if (blk_queue_plugged(q)) {
292 spin_lock_irq(q->queue_lock);
293 __generic_unplug_device(q);
294 spin_unlock_irq(q->queue_lock);
295 }
296 }
297 EXPORT_SYMBOL(generic_unplug_device);
298
299 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
300 struct page *page)
301 {
302 struct request_queue *q = bdi->unplug_io_data;
303
304 blk_unplug(q);
305 }
306
307 void blk_unplug_work(struct work_struct *work)
308 {
309 struct request_queue *q =
310 container_of(work, struct request_queue, unplug_work);
311
312 trace_block_unplug_io(q);
313 q->unplug_fn(q);
314 }
315
316 void blk_unplug_timeout(unsigned long data)
317 {
318 struct request_queue *q = (struct request_queue *)data;
319
320 trace_block_unplug_timer(q);
321 kblockd_schedule_work(q, &q->unplug_work);
322 }
323
324 void blk_unplug(struct request_queue *q)
325 {
326 /*
327 * devices don't necessarily have an ->unplug_fn defined
328 */
329 if (q->unplug_fn) {
330 trace_block_unplug_io(q);
331 q->unplug_fn(q);
332 }
333 }
334 EXPORT_SYMBOL(blk_unplug);
335
336 /**
337 * blk_start_queue - restart a previously stopped queue
338 * @q: The &struct request_queue in question
339 *
340 * Description:
341 * blk_start_queue() will clear the stop flag on the queue, and call
342 * the request_fn for the queue if it was in a stopped state when
343 * entered. Also see blk_stop_queue(). Queue lock must be held.
344 **/
345 void blk_start_queue(struct request_queue *q)
346 {
347 WARN_ON(!irqs_disabled());
348
349 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
350 __blk_run_queue(q);
351 }
352 EXPORT_SYMBOL(blk_start_queue);
353
354 /**
355 * blk_stop_queue - stop a queue
356 * @q: The &struct request_queue in question
357 *
358 * Description:
359 * The Linux block layer assumes that a block driver will consume all
360 * entries on the request queue when the request_fn strategy is called.
361 * Often this will not happen, because of hardware limitations (queue
362 * depth settings). If a device driver gets a 'queue full' response,
363 * or if it simply chooses not to queue more I/O at one point, it can
364 * call this function to prevent the request_fn from being called until
365 * the driver has signalled it's ready to go again. This happens by calling
366 * blk_start_queue() to restart queue operations. Queue lock must be held.
367 **/
368 void blk_stop_queue(struct request_queue *q)
369 {
370 blk_remove_plug(q);
371 queue_flag_set(QUEUE_FLAG_STOPPED, q);
372 }
373 EXPORT_SYMBOL(blk_stop_queue);
374
375 /**
376 * blk_sync_queue - cancel any pending callbacks on a queue
377 * @q: the queue
378 *
379 * Description:
380 * The block layer may perform asynchronous callback activity
381 * on a queue, such as calling the unplug function after a timeout.
382 * A block device may call blk_sync_queue to ensure that any
383 * such activity is cancelled, thus allowing it to release resources
384 * that the callbacks might use. The caller must already have made sure
385 * that its ->make_request_fn will not re-add plugging prior to calling
386 * this function.
387 *
388 */
389 void blk_sync_queue(struct request_queue *q)
390 {
391 del_timer_sync(&q->unplug_timer);
392 del_timer_sync(&q->timeout);
393 cancel_work_sync(&q->unplug_work);
394 }
395 EXPORT_SYMBOL(blk_sync_queue);
396
397 /**
398 * __blk_run_queue - run a single device queue
399 * @q: The queue to run
400 *
401 * Description:
402 * See @blk_run_queue. This variant must be called with the queue lock
403 * held and interrupts disabled.
404 *
405 */
406 void __blk_run_queue(struct request_queue *q)
407 {
408 blk_remove_plug(q);
409
410 if (unlikely(blk_queue_stopped(q)))
411 return;
412
413 if (elv_queue_empty(q))
414 return;
415
416 /*
417 * Only recurse once to avoid overrunning the stack, let the unplug
418 * handling reinvoke the handler shortly if we already got there.
419 */
420 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
421 q->request_fn(q);
422 queue_flag_clear(QUEUE_FLAG_REENTER, q);
423 } else {
424 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
425 kblockd_schedule_work(q, &q->unplug_work);
426 }
427 }
428 EXPORT_SYMBOL(__blk_run_queue);
429
430 /**
431 * blk_run_queue - run a single device queue
432 * @q: The queue to run
433 *
434 * Description:
435 * Invoke request handling on this queue, if it has pending work to do.
436 * May be used to restart queueing when a request has completed.
437 */
438 void blk_run_queue(struct request_queue *q)
439 {
440 unsigned long flags;
441
442 spin_lock_irqsave(q->queue_lock, flags);
443 __blk_run_queue(q);
444 spin_unlock_irqrestore(q->queue_lock, flags);
445 }
446 EXPORT_SYMBOL(blk_run_queue);
447
448 void blk_put_queue(struct request_queue *q)
449 {
450 kobject_put(&q->kobj);
451 }
452
453 void blk_cleanup_queue(struct request_queue *q)
454 {
455 /*
456 * We know we have process context here, so we can be a little
457 * cautious and ensure that pending block actions on this device
458 * are done before moving on. Going into this function, we should
459 * not have processes doing IO to this device.
460 */
461 blk_sync_queue(q);
462
463 mutex_lock(&q->sysfs_lock);
464 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
465 mutex_unlock(&q->sysfs_lock);
466
467 if (q->elevator)
468 elevator_exit(q->elevator);
469
470 blk_put_queue(q);
471 }
472 EXPORT_SYMBOL(blk_cleanup_queue);
473
474 static int blk_init_free_list(struct request_queue *q)
475 {
476 struct request_list *rl = &q->rq;
477
478 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
479 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
480 rl->elvpriv = 0;
481 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
482 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
483
484 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
485 mempool_free_slab, request_cachep, q->node);
486
487 if (!rl->rq_pool)
488 return -ENOMEM;
489
490 return 0;
491 }
492
493 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
494 {
495 return blk_alloc_queue_node(gfp_mask, -1);
496 }
497 EXPORT_SYMBOL(blk_alloc_queue);
498
499 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
500 {
501 struct request_queue *q;
502 int err;
503
504 q = kmem_cache_alloc_node(blk_requestq_cachep,
505 gfp_mask | __GFP_ZERO, node_id);
506 if (!q)
507 return NULL;
508
509 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
510 q->backing_dev_info.unplug_io_data = q;
511 err = bdi_init(&q->backing_dev_info);
512 if (err) {
513 kmem_cache_free(blk_requestq_cachep, q);
514 return NULL;
515 }
516
517 init_timer(&q->unplug_timer);
518 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
519 INIT_LIST_HEAD(&q->timeout_list);
520 INIT_WORK(&q->unplug_work, blk_unplug_work);
521
522 kobject_init(&q->kobj, &blk_queue_ktype);
523
524 mutex_init(&q->sysfs_lock);
525 spin_lock_init(&q->__queue_lock);
526
527 return q;
528 }
529 EXPORT_SYMBOL(blk_alloc_queue_node);
530
531 /**
532 * blk_init_queue - prepare a request queue for use with a block device
533 * @rfn: The function to be called to process requests that have been
534 * placed on the queue.
535 * @lock: Request queue spin lock
536 *
537 * Description:
538 * If a block device wishes to use the standard request handling procedures,
539 * which sorts requests and coalesces adjacent requests, then it must
540 * call blk_init_queue(). The function @rfn will be called when there
541 * are requests on the queue that need to be processed. If the device
542 * supports plugging, then @rfn may not be called immediately when requests
543 * are available on the queue, but may be called at some time later instead.
544 * Plugged queues are generally unplugged when a buffer belonging to one
545 * of the requests on the queue is needed, or due to memory pressure.
546 *
547 * @rfn is not required, or even expected, to remove all requests off the
548 * queue, but only as many as it can handle at a time. If it does leave
549 * requests on the queue, it is responsible for arranging that the requests
550 * get dealt with eventually.
551 *
552 * The queue spin lock must be held while manipulating the requests on the
553 * request queue; this lock will be taken also from interrupt context, so irq
554 * disabling is needed for it.
555 *
556 * Function returns a pointer to the initialized request queue, or %NULL if
557 * it didn't succeed.
558 *
559 * Note:
560 * blk_init_queue() must be paired with a blk_cleanup_queue() call
561 * when the block device is deactivated (such as at module unload).
562 **/
563
564 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
565 {
566 return blk_init_queue_node(rfn, lock, -1);
567 }
568 EXPORT_SYMBOL(blk_init_queue);
569
570 struct request_queue *
571 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
572 {
573 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
574
575 if (!q)
576 return NULL;
577
578 q->node = node_id;
579 if (blk_init_free_list(q)) {
580 kmem_cache_free(blk_requestq_cachep, q);
581 return NULL;
582 }
583
584 /*
585 * if caller didn't supply a lock, they get per-queue locking with
586 * our embedded lock
587 */
588 if (!lock)
589 lock = &q->__queue_lock;
590
591 q->request_fn = rfn;
592 q->prep_rq_fn = NULL;
593 q->unplug_fn = generic_unplug_device;
594 q->queue_flags = QUEUE_FLAG_DEFAULT;
595 q->queue_lock = lock;
596
597 /*
598 * This also sets hw/phys segments, boundary and size
599 */
600 blk_queue_make_request(q, __make_request);
601
602 q->sg_reserved_size = INT_MAX;
603
604 blk_set_cmd_filter_defaults(&q->cmd_filter);
605
606 /*
607 * all done
608 */
609 if (!elevator_init(q, NULL)) {
610 blk_queue_congestion_threshold(q);
611 return q;
612 }
613
614 blk_put_queue(q);
615 return NULL;
616 }
617 EXPORT_SYMBOL(blk_init_queue_node);
618
619 int blk_get_queue(struct request_queue *q)
620 {
621 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
622 kobject_get(&q->kobj);
623 return 0;
624 }
625
626 return 1;
627 }
628
629 static inline void blk_free_request(struct request_queue *q, struct request *rq)
630 {
631 if (rq->cmd_flags & REQ_ELVPRIV)
632 elv_put_request(q, rq);
633 mempool_free(rq, q->rq.rq_pool);
634 }
635
636 static struct request *
637 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
638 {
639 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
640
641 if (!rq)
642 return NULL;
643
644 blk_rq_init(q, rq);
645
646 rq->cmd_flags = flags | REQ_ALLOCED;
647
648 if (priv) {
649 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
650 mempool_free(rq, q->rq.rq_pool);
651 return NULL;
652 }
653 rq->cmd_flags |= REQ_ELVPRIV;
654 }
655
656 return rq;
657 }
658
659 /*
660 * ioc_batching returns true if the ioc is a valid batching request and
661 * should be given priority access to a request.
662 */
663 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
664 {
665 if (!ioc)
666 return 0;
667
668 /*
669 * Make sure the process is able to allocate at least 1 request
670 * even if the batch times out, otherwise we could theoretically
671 * lose wakeups.
672 */
673 return ioc->nr_batch_requests == q->nr_batching ||
674 (ioc->nr_batch_requests > 0
675 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
676 }
677
678 /*
679 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
680 * will cause the process to be a "batcher" on all queues in the system. This
681 * is the behaviour we want though - once it gets a wakeup it should be given
682 * a nice run.
683 */
684 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
685 {
686 if (!ioc || ioc_batching(q, ioc))
687 return;
688
689 ioc->nr_batch_requests = q->nr_batching;
690 ioc->last_waited = jiffies;
691 }
692
693 static void __freed_request(struct request_queue *q, int sync)
694 {
695 struct request_list *rl = &q->rq;
696
697 if (rl->count[sync] < queue_congestion_off_threshold(q))
698 blk_clear_queue_congested(q, sync);
699
700 if (rl->count[sync] + 1 <= q->nr_requests) {
701 if (waitqueue_active(&rl->wait[sync]))
702 wake_up(&rl->wait[sync]);
703
704 blk_clear_queue_full(q, sync);
705 }
706 }
707
708 /*
709 * A request has just been released. Account for it, update the full and
710 * congestion status, wake up any waiters. Called under q->queue_lock.
711 */
712 static void freed_request(struct request_queue *q, int sync, int priv)
713 {
714 struct request_list *rl = &q->rq;
715
716 rl->count[sync]--;
717 if (priv)
718 rl->elvpriv--;
719
720 __freed_request(q, sync);
721
722 if (unlikely(rl->starved[sync ^ 1]))
723 __freed_request(q, sync ^ 1);
724 }
725
726 /*
727 * Get a free request, queue_lock must be held.
728 * Returns NULL on failure, with queue_lock held.
729 * Returns !NULL on success, with queue_lock *not held*.
730 */
731 static struct request *get_request(struct request_queue *q, int rw_flags,
732 struct bio *bio, gfp_t gfp_mask)
733 {
734 struct request *rq = NULL;
735 struct request_list *rl = &q->rq;
736 struct io_context *ioc = NULL;
737 const bool is_sync = rw_is_sync(rw_flags) != 0;
738 int may_queue, priv;
739
740 may_queue = elv_may_queue(q, rw_flags);
741 if (may_queue == ELV_MQUEUE_NO)
742 goto rq_starved;
743
744 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
745 if (rl->count[is_sync]+1 >= q->nr_requests) {
746 ioc = current_io_context(GFP_ATOMIC, q->node);
747 /*
748 * The queue will fill after this allocation, so set
749 * it as full, and mark this process as "batching".
750 * This process will be allowed to complete a batch of
751 * requests, others will be blocked.
752 */
753 if (!blk_queue_full(q, is_sync)) {
754 ioc_set_batching(q, ioc);
755 blk_set_queue_full(q, is_sync);
756 } else {
757 if (may_queue != ELV_MQUEUE_MUST
758 && !ioc_batching(q, ioc)) {
759 /*
760 * The queue is full and the allocating
761 * process is not a "batcher", and not
762 * exempted by the IO scheduler
763 */
764 goto out;
765 }
766 }
767 }
768 blk_set_queue_congested(q, is_sync);
769 }
770
771 /*
772 * Only allow batching queuers to allocate up to 50% over the defined
773 * limit of requests, otherwise we could have thousands of requests
774 * allocated with any setting of ->nr_requests
775 */
776 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
777 goto out;
778
779 rl->count[is_sync]++;
780 rl->starved[is_sync] = 0;
781
782 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
783 if (priv)
784 rl->elvpriv++;
785
786 if (blk_queue_io_stat(q))
787 rw_flags |= REQ_IO_STAT;
788 spin_unlock_irq(q->queue_lock);
789
790 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
791 if (unlikely(!rq)) {
792 /*
793 * Allocation failed presumably due to memory. Undo anything
794 * we might have messed up.
795 *
796 * Allocating task should really be put onto the front of the
797 * wait queue, but this is pretty rare.
798 */
799 spin_lock_irq(q->queue_lock);
800 freed_request(q, is_sync, priv);
801
802 /*
803 * in the very unlikely event that allocation failed and no
804 * requests for this direction was pending, mark us starved
805 * so that freeing of a request in the other direction will
806 * notice us. another possible fix would be to split the
807 * rq mempool into READ and WRITE
808 */
809 rq_starved:
810 if (unlikely(rl->count[is_sync] == 0))
811 rl->starved[is_sync] = 1;
812
813 goto out;
814 }
815
816 /*
817 * ioc may be NULL here, and ioc_batching will be false. That's
818 * OK, if the queue is under the request limit then requests need
819 * not count toward the nr_batch_requests limit. There will always
820 * be some limit enforced by BLK_BATCH_TIME.
821 */
822 if (ioc_batching(q, ioc))
823 ioc->nr_batch_requests--;
824
825 trace_block_getrq(q, bio, rw_flags & 1);
826 out:
827 return rq;
828 }
829
830 /*
831 * No available requests for this queue, unplug the device and wait for some
832 * requests to become available.
833 *
834 * Called with q->queue_lock held, and returns with it unlocked.
835 */
836 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
837 struct bio *bio)
838 {
839 const bool is_sync = rw_is_sync(rw_flags) != 0;
840 struct request *rq;
841
842 rq = get_request(q, rw_flags, bio, GFP_NOIO);
843 while (!rq) {
844 DEFINE_WAIT(wait);
845 struct io_context *ioc;
846 struct request_list *rl = &q->rq;
847
848 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
849 TASK_UNINTERRUPTIBLE);
850
851 trace_block_sleeprq(q, bio, rw_flags & 1);
852
853 __generic_unplug_device(q);
854 spin_unlock_irq(q->queue_lock);
855 io_schedule();
856
857 /*
858 * After sleeping, we become a "batching" process and
859 * will be able to allocate at least one request, and
860 * up to a big batch of them for a small period time.
861 * See ioc_batching, ioc_set_batching
862 */
863 ioc = current_io_context(GFP_NOIO, q->node);
864 ioc_set_batching(q, ioc);
865
866 spin_lock_irq(q->queue_lock);
867 finish_wait(&rl->wait[is_sync], &wait);
868
869 rq = get_request(q, rw_flags, bio, GFP_NOIO);
870 };
871
872 return rq;
873 }
874
875 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
876 {
877 struct request *rq;
878
879 BUG_ON(rw != READ && rw != WRITE);
880
881 spin_lock_irq(q->queue_lock);
882 if (gfp_mask & __GFP_WAIT) {
883 rq = get_request_wait(q, rw, NULL);
884 } else {
885 rq = get_request(q, rw, NULL, gfp_mask);
886 if (!rq)
887 spin_unlock_irq(q->queue_lock);
888 }
889 /* q->queue_lock is unlocked at this point */
890
891 return rq;
892 }
893 EXPORT_SYMBOL(blk_get_request);
894
895 /**
896 * blk_requeue_request - put a request back on queue
897 * @q: request queue where request should be inserted
898 * @rq: request to be inserted
899 *
900 * Description:
901 * Drivers often keep queueing requests until the hardware cannot accept
902 * more, when that condition happens we need to put the request back
903 * on the queue. Must be called with queue lock held.
904 */
905 void blk_requeue_request(struct request_queue *q, struct request *rq)
906 {
907 blk_delete_timer(rq);
908 blk_clear_rq_complete(rq);
909 trace_block_rq_requeue(q, rq);
910
911 if (blk_rq_tagged(rq))
912 blk_queue_end_tag(q, rq);
913
914 elv_requeue_request(q, rq);
915 }
916 EXPORT_SYMBOL(blk_requeue_request);
917
918 /**
919 * blk_insert_request - insert a special request into a request queue
920 * @q: request queue where request should be inserted
921 * @rq: request to be inserted
922 * @at_head: insert request at head or tail of queue
923 * @data: private data
924 *
925 * Description:
926 * Many block devices need to execute commands asynchronously, so they don't
927 * block the whole kernel from preemption during request execution. This is
928 * accomplished normally by inserting aritficial requests tagged as
929 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
930 * be scheduled for actual execution by the request queue.
931 *
932 * We have the option of inserting the head or the tail of the queue.
933 * Typically we use the tail for new ioctls and so forth. We use the head
934 * of the queue for things like a QUEUE_FULL message from a device, or a
935 * host that is unable to accept a particular command.
936 */
937 void blk_insert_request(struct request_queue *q, struct request *rq,
938 int at_head, void *data)
939 {
940 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
941 unsigned long flags;
942
943 /*
944 * tell I/O scheduler that this isn't a regular read/write (ie it
945 * must not attempt merges on this) and that it acts as a soft
946 * barrier
947 */
948 rq->cmd_type = REQ_TYPE_SPECIAL;
949
950 rq->special = data;
951
952 spin_lock_irqsave(q->queue_lock, flags);
953
954 /*
955 * If command is tagged, release the tag
956 */
957 if (blk_rq_tagged(rq))
958 blk_queue_end_tag(q, rq);
959
960 drive_stat_acct(rq, 1);
961 __elv_add_request(q, rq, where, 0);
962 __blk_run_queue(q);
963 spin_unlock_irqrestore(q->queue_lock, flags);
964 }
965 EXPORT_SYMBOL(blk_insert_request);
966
967 /*
968 * add-request adds a request to the linked list.
969 * queue lock is held and interrupts disabled, as we muck with the
970 * request queue list.
971 */
972 static inline void add_request(struct request_queue *q, struct request *req)
973 {
974 drive_stat_acct(req, 1);
975
976 /*
977 * elevator indicated where it wants this request to be
978 * inserted at elevator_merge time
979 */
980 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
981 }
982
983 static void part_round_stats_single(int cpu, struct hd_struct *part,
984 unsigned long now)
985 {
986 if (now == part->stamp)
987 return;
988
989 if (part->in_flight) {
990 __part_stat_add(cpu, part, time_in_queue,
991 part->in_flight * (now - part->stamp));
992 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
993 }
994 part->stamp = now;
995 }
996
997 /**
998 * part_round_stats() - Round off the performance stats on a struct disk_stats.
999 * @cpu: cpu number for stats access
1000 * @part: target partition
1001 *
1002 * The average IO queue length and utilisation statistics are maintained
1003 * by observing the current state of the queue length and the amount of
1004 * time it has been in this state for.
1005 *
1006 * Normally, that accounting is done on IO completion, but that can result
1007 * in more than a second's worth of IO being accounted for within any one
1008 * second, leading to >100% utilisation. To deal with that, we call this
1009 * function to do a round-off before returning the results when reading
1010 * /proc/diskstats. This accounts immediately for all queue usage up to
1011 * the current jiffies and restarts the counters again.
1012 */
1013 void part_round_stats(int cpu, struct hd_struct *part)
1014 {
1015 unsigned long now = jiffies;
1016
1017 if (part->partno)
1018 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1019 part_round_stats_single(cpu, part, now);
1020 }
1021 EXPORT_SYMBOL_GPL(part_round_stats);
1022
1023 /*
1024 * queue lock must be held
1025 */
1026 void __blk_put_request(struct request_queue *q, struct request *req)
1027 {
1028 if (unlikely(!q))
1029 return;
1030 if (unlikely(--req->ref_count))
1031 return;
1032
1033 elv_completed_request(q, req);
1034
1035 /* this is a bio leak */
1036 WARN_ON(req->bio != NULL);
1037
1038 /*
1039 * Request may not have originated from ll_rw_blk. if not,
1040 * it didn't come out of our reserved rq pools
1041 */
1042 if (req->cmd_flags & REQ_ALLOCED) {
1043 int is_sync = rq_is_sync(req) != 0;
1044 int priv = req->cmd_flags & REQ_ELVPRIV;
1045
1046 BUG_ON(!list_empty(&req->queuelist));
1047 BUG_ON(!hlist_unhashed(&req->hash));
1048
1049 blk_free_request(q, req);
1050 freed_request(q, is_sync, priv);
1051 }
1052 }
1053 EXPORT_SYMBOL_GPL(__blk_put_request);
1054
1055 void blk_put_request(struct request *req)
1056 {
1057 unsigned long flags;
1058 struct request_queue *q = req->q;
1059
1060 spin_lock_irqsave(q->queue_lock, flags);
1061 __blk_put_request(q, req);
1062 spin_unlock_irqrestore(q->queue_lock, flags);
1063 }
1064 EXPORT_SYMBOL(blk_put_request);
1065
1066 void init_request_from_bio(struct request *req, struct bio *bio)
1067 {
1068 req->cpu = bio->bi_comp_cpu;
1069 req->cmd_type = REQ_TYPE_FS;
1070
1071 /*
1072 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1073 */
1074 if (bio_rw_ahead(bio))
1075 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1076 REQ_FAILFAST_DRIVER);
1077 if (bio_failfast_dev(bio))
1078 req->cmd_flags |= REQ_FAILFAST_DEV;
1079 if (bio_failfast_transport(bio))
1080 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1081 if (bio_failfast_driver(bio))
1082 req->cmd_flags |= REQ_FAILFAST_DRIVER;
1083
1084 if (unlikely(bio_discard(bio))) {
1085 req->cmd_flags |= REQ_DISCARD;
1086 if (bio_barrier(bio))
1087 req->cmd_flags |= REQ_SOFTBARRIER;
1088 req->q->prepare_discard_fn(req->q, req);
1089 } else if (unlikely(bio_barrier(bio)))
1090 req->cmd_flags |= REQ_HARDBARRIER;
1091
1092 if (bio_sync(bio))
1093 req->cmd_flags |= REQ_RW_SYNC;
1094 if (bio_rw_meta(bio))
1095 req->cmd_flags |= REQ_RW_META;
1096 if (bio_noidle(bio))
1097 req->cmd_flags |= REQ_NOIDLE;
1098
1099 req->errors = 0;
1100 req->hard_sector = req->sector = bio->bi_sector;
1101 req->ioprio = bio_prio(bio);
1102 req->start_time = jiffies;
1103 blk_rq_bio_prep(req->q, req, bio);
1104 }
1105
1106 /*
1107 * Only disabling plugging for non-rotational devices if it does tagging
1108 * as well, otherwise we do need the proper merging
1109 */
1110 static inline bool queue_should_plug(struct request_queue *q)
1111 {
1112 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1113 }
1114
1115 static int __make_request(struct request_queue *q, struct bio *bio)
1116 {
1117 struct request *req;
1118 int el_ret, nr_sectors;
1119 const unsigned short prio = bio_prio(bio);
1120 const int sync = bio_sync(bio);
1121 const int unplug = bio_unplug(bio);
1122 int rw_flags;
1123
1124 nr_sectors = bio_sectors(bio);
1125
1126 /*
1127 * low level driver can indicate that it wants pages above a
1128 * certain limit bounced to low memory (ie for highmem, or even
1129 * ISA dma in theory)
1130 */
1131 blk_queue_bounce(q, &bio);
1132
1133 spin_lock_irq(q->queue_lock);
1134
1135 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1136 goto get_rq;
1137
1138 el_ret = elv_merge(q, &req, bio);
1139 switch (el_ret) {
1140 case ELEVATOR_BACK_MERGE:
1141 BUG_ON(!rq_mergeable(req));
1142
1143 if (!ll_back_merge_fn(q, req, bio))
1144 break;
1145
1146 trace_block_bio_backmerge(q, bio);
1147
1148 req->biotail->bi_next = bio;
1149 req->biotail = bio;
1150 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1151 req->ioprio = ioprio_best(req->ioprio, prio);
1152 if (!blk_rq_cpu_valid(req))
1153 req->cpu = bio->bi_comp_cpu;
1154 drive_stat_acct(req, 0);
1155 if (!attempt_back_merge(q, req))
1156 elv_merged_request(q, req, el_ret);
1157 goto out;
1158
1159 case ELEVATOR_FRONT_MERGE:
1160 BUG_ON(!rq_mergeable(req));
1161
1162 if (!ll_front_merge_fn(q, req, bio))
1163 break;
1164
1165 trace_block_bio_frontmerge(q, bio);
1166
1167 bio->bi_next = req->bio;
1168 req->bio = bio;
1169
1170 /*
1171 * may not be valid. if the low level driver said
1172 * it didn't need a bounce buffer then it better
1173 * not touch req->buffer either...
1174 */
1175 req->buffer = bio_data(bio);
1176 req->current_nr_sectors = bio_cur_sectors(bio);
1177 req->hard_cur_sectors = req->current_nr_sectors;
1178 req->sector = req->hard_sector = bio->bi_sector;
1179 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1180 req->ioprio = ioprio_best(req->ioprio, prio);
1181 if (!blk_rq_cpu_valid(req))
1182 req->cpu = bio->bi_comp_cpu;
1183 drive_stat_acct(req, 0);
1184 if (!attempt_front_merge(q, req))
1185 elv_merged_request(q, req, el_ret);
1186 goto out;
1187
1188 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1189 default:
1190 ;
1191 }
1192
1193 get_rq:
1194 /*
1195 * This sync check and mask will be re-done in init_request_from_bio(),
1196 * but we need to set it earlier to expose the sync flag to the
1197 * rq allocator and io schedulers.
1198 */
1199 rw_flags = bio_data_dir(bio);
1200 if (sync)
1201 rw_flags |= REQ_RW_SYNC;
1202
1203 /*
1204 * Grab a free request. This is might sleep but can not fail.
1205 * Returns with the queue unlocked.
1206 */
1207 req = get_request_wait(q, rw_flags, bio);
1208
1209 /*
1210 * After dropping the lock and possibly sleeping here, our request
1211 * may now be mergeable after it had proven unmergeable (above).
1212 * We don't worry about that case for efficiency. It won't happen
1213 * often, and the elevators are able to handle it.
1214 */
1215 init_request_from_bio(req, bio);
1216
1217 spin_lock_irq(q->queue_lock);
1218 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1219 bio_flagged(bio, BIO_CPU_AFFINE))
1220 req->cpu = blk_cpu_to_group(smp_processor_id());
1221 if (queue_should_plug(q) && elv_queue_empty(q))
1222 blk_plug_device(q);
1223 add_request(q, req);
1224 out:
1225 if (unplug || !queue_should_plug(q))
1226 __generic_unplug_device(q);
1227 spin_unlock_irq(q->queue_lock);
1228 return 0;
1229 }
1230
1231 /*
1232 * If bio->bi_dev is a partition, remap the location
1233 */
1234 static inline void blk_partition_remap(struct bio *bio)
1235 {
1236 struct block_device *bdev = bio->bi_bdev;
1237
1238 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1239 struct hd_struct *p = bdev->bd_part;
1240
1241 bio->bi_sector += p->start_sect;
1242 bio->bi_bdev = bdev->bd_contains;
1243
1244 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1245 bdev->bd_dev, bio->bi_sector,
1246 bio->bi_sector - p->start_sect);
1247 }
1248 }
1249
1250 static void handle_bad_sector(struct bio *bio)
1251 {
1252 char b[BDEVNAME_SIZE];
1253
1254 printk(KERN_INFO "attempt to access beyond end of device\n");
1255 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1256 bdevname(bio->bi_bdev, b),
1257 bio->bi_rw,
1258 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1259 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1260
1261 set_bit(BIO_EOF, &bio->bi_flags);
1262 }
1263
1264 #ifdef CONFIG_FAIL_MAKE_REQUEST
1265
1266 static DECLARE_FAULT_ATTR(fail_make_request);
1267
1268 static int __init setup_fail_make_request(char *str)
1269 {
1270 return setup_fault_attr(&fail_make_request, str);
1271 }
1272 __setup("fail_make_request=", setup_fail_make_request);
1273
1274 static int should_fail_request(struct bio *bio)
1275 {
1276 struct hd_struct *part = bio->bi_bdev->bd_part;
1277
1278 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1279 return should_fail(&fail_make_request, bio->bi_size);
1280
1281 return 0;
1282 }
1283
1284 static int __init fail_make_request_debugfs(void)
1285 {
1286 return init_fault_attr_dentries(&fail_make_request,
1287 "fail_make_request");
1288 }
1289
1290 late_initcall(fail_make_request_debugfs);
1291
1292 #else /* CONFIG_FAIL_MAKE_REQUEST */
1293
1294 static inline int should_fail_request(struct bio *bio)
1295 {
1296 return 0;
1297 }
1298
1299 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1300
1301 /*
1302 * Check whether this bio extends beyond the end of the device.
1303 */
1304 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1305 {
1306 sector_t maxsector;
1307
1308 if (!nr_sectors)
1309 return 0;
1310
1311 /* Test device or partition size, when known. */
1312 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1313 if (maxsector) {
1314 sector_t sector = bio->bi_sector;
1315
1316 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1317 /*
1318 * This may well happen - the kernel calls bread()
1319 * without checking the size of the device, e.g., when
1320 * mounting a device.
1321 */
1322 handle_bad_sector(bio);
1323 return 1;
1324 }
1325 }
1326
1327 return 0;
1328 }
1329
1330 /**
1331 * generic_make_request - hand a buffer to its device driver for I/O
1332 * @bio: The bio describing the location in memory and on the device.
1333 *
1334 * generic_make_request() is used to make I/O requests of block
1335 * devices. It is passed a &struct bio, which describes the I/O that needs
1336 * to be done.
1337 *
1338 * generic_make_request() does not return any status. The
1339 * success/failure status of the request, along with notification of
1340 * completion, is delivered asynchronously through the bio->bi_end_io
1341 * function described (one day) else where.
1342 *
1343 * The caller of generic_make_request must make sure that bi_io_vec
1344 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1345 * set to describe the device address, and the
1346 * bi_end_io and optionally bi_private are set to describe how
1347 * completion notification should be signaled.
1348 *
1349 * generic_make_request and the drivers it calls may use bi_next if this
1350 * bio happens to be merged with someone else, and may change bi_dev and
1351 * bi_sector for remaps as it sees fit. So the values of these fields
1352 * should NOT be depended on after the call to generic_make_request.
1353 */
1354 static inline void __generic_make_request(struct bio *bio)
1355 {
1356 struct request_queue *q;
1357 sector_t old_sector;
1358 int ret, nr_sectors = bio_sectors(bio);
1359 dev_t old_dev;
1360 int err = -EIO;
1361
1362 might_sleep();
1363
1364 if (bio_check_eod(bio, nr_sectors))
1365 goto end_io;
1366
1367 /*
1368 * Resolve the mapping until finished. (drivers are
1369 * still free to implement/resolve their own stacking
1370 * by explicitly returning 0)
1371 *
1372 * NOTE: we don't repeat the blk_size check for each new device.
1373 * Stacking drivers are expected to know what they are doing.
1374 */
1375 old_sector = -1;
1376 old_dev = 0;
1377 do {
1378 char b[BDEVNAME_SIZE];
1379
1380 q = bdev_get_queue(bio->bi_bdev);
1381 if (unlikely(!q)) {
1382 printk(KERN_ERR
1383 "generic_make_request: Trying to access "
1384 "nonexistent block-device %s (%Lu)\n",
1385 bdevname(bio->bi_bdev, b),
1386 (long long) bio->bi_sector);
1387 goto end_io;
1388 }
1389
1390 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1391 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1392 bdevname(bio->bi_bdev, b),
1393 bio_sectors(bio),
1394 q->max_hw_sectors);
1395 goto end_io;
1396 }
1397
1398 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1399 goto end_io;
1400
1401 if (should_fail_request(bio))
1402 goto end_io;
1403
1404 /*
1405 * If this device has partitions, remap block n
1406 * of partition p to block n+start(p) of the disk.
1407 */
1408 blk_partition_remap(bio);
1409
1410 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1411 goto end_io;
1412
1413 if (old_sector != -1)
1414 trace_block_remap(q, bio, old_dev, bio->bi_sector,
1415 old_sector);
1416
1417 trace_block_bio_queue(q, bio);
1418
1419 old_sector = bio->bi_sector;
1420 old_dev = bio->bi_bdev->bd_dev;
1421
1422 if (bio_check_eod(bio, nr_sectors))
1423 goto end_io;
1424
1425 if (bio_discard(bio) && !q->prepare_discard_fn) {
1426 err = -EOPNOTSUPP;
1427 goto end_io;
1428 }
1429 if (bio_barrier(bio) && bio_has_data(bio) &&
1430 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1431 err = -EOPNOTSUPP;
1432 goto end_io;
1433 }
1434
1435 ret = q->make_request_fn(q, bio);
1436 } while (ret);
1437
1438 return;
1439
1440 end_io:
1441 bio_endio(bio, err);
1442 }
1443
1444 /*
1445 * We only want one ->make_request_fn to be active at a time,
1446 * else stack usage with stacked devices could be a problem.
1447 * So use current->bio_{list,tail} to keep a list of requests
1448 * submited by a make_request_fn function.
1449 * current->bio_tail is also used as a flag to say if
1450 * generic_make_request is currently active in this task or not.
1451 * If it is NULL, then no make_request is active. If it is non-NULL,
1452 * then a make_request is active, and new requests should be added
1453 * at the tail
1454 */
1455 void generic_make_request(struct bio *bio)
1456 {
1457 if (current->bio_tail) {
1458 /* make_request is active */
1459 *(current->bio_tail) = bio;
1460 bio->bi_next = NULL;
1461 current->bio_tail = &bio->bi_next;
1462 return;
1463 }
1464 /* following loop may be a bit non-obvious, and so deserves some
1465 * explanation.
1466 * Before entering the loop, bio->bi_next is NULL (as all callers
1467 * ensure that) so we have a list with a single bio.
1468 * We pretend that we have just taken it off a longer list, so
1469 * we assign bio_list to the next (which is NULL) and bio_tail
1470 * to &bio_list, thus initialising the bio_list of new bios to be
1471 * added. __generic_make_request may indeed add some more bios
1472 * through a recursive call to generic_make_request. If it
1473 * did, we find a non-NULL value in bio_list and re-enter the loop
1474 * from the top. In this case we really did just take the bio
1475 * of the top of the list (no pretending) and so fixup bio_list and
1476 * bio_tail or bi_next, and call into __generic_make_request again.
1477 *
1478 * The loop was structured like this to make only one call to
1479 * __generic_make_request (which is important as it is large and
1480 * inlined) and to keep the structure simple.
1481 */
1482 BUG_ON(bio->bi_next);
1483 do {
1484 current->bio_list = bio->bi_next;
1485 if (bio->bi_next == NULL)
1486 current->bio_tail = &current->bio_list;
1487 else
1488 bio->bi_next = NULL;
1489 __generic_make_request(bio);
1490 bio = current->bio_list;
1491 } while (bio);
1492 current->bio_tail = NULL; /* deactivate */
1493 }
1494 EXPORT_SYMBOL(generic_make_request);
1495
1496 /**
1497 * submit_bio - submit a bio to the block device layer for I/O
1498 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1499 * @bio: The &struct bio which describes the I/O
1500 *
1501 * submit_bio() is very similar in purpose to generic_make_request(), and
1502 * uses that function to do most of the work. Both are fairly rough
1503 * interfaces; @bio must be presetup and ready for I/O.
1504 *
1505 */
1506 void submit_bio(int rw, struct bio *bio)
1507 {
1508 int count = bio_sectors(bio);
1509
1510 bio->bi_rw |= rw;
1511
1512 /*
1513 * If it's a regular read/write or a barrier with data attached,
1514 * go through the normal accounting stuff before submission.
1515 */
1516 if (bio_has_data(bio)) {
1517 if (rw & WRITE) {
1518 count_vm_events(PGPGOUT, count);
1519 } else {
1520 task_io_account_read(bio->bi_size);
1521 count_vm_events(PGPGIN, count);
1522 }
1523
1524 if (unlikely(block_dump)) {
1525 char b[BDEVNAME_SIZE];
1526 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1527 current->comm, task_pid_nr(current),
1528 (rw & WRITE) ? "WRITE" : "READ",
1529 (unsigned long long)bio->bi_sector,
1530 bdevname(bio->bi_bdev, b));
1531 }
1532 }
1533
1534 generic_make_request(bio);
1535 }
1536 EXPORT_SYMBOL(submit_bio);
1537
1538 /**
1539 * blk_rq_check_limits - Helper function to check a request for the queue limit
1540 * @q: the queue
1541 * @rq: the request being checked
1542 *
1543 * Description:
1544 * @rq may have been made based on weaker limitations of upper-level queues
1545 * in request stacking drivers, and it may violate the limitation of @q.
1546 * Since the block layer and the underlying device driver trust @rq
1547 * after it is inserted to @q, it should be checked against @q before
1548 * the insertion using this generic function.
1549 *
1550 * This function should also be useful for request stacking drivers
1551 * in some cases below, so export this fuction.
1552 * Request stacking drivers like request-based dm may change the queue
1553 * limits while requests are in the queue (e.g. dm's table swapping).
1554 * Such request stacking drivers should check those requests agaist
1555 * the new queue limits again when they dispatch those requests,
1556 * although such checkings are also done against the old queue limits
1557 * when submitting requests.
1558 */
1559 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1560 {
1561 if (rq->nr_sectors > q->max_sectors ||
1562 rq->data_len > q->max_hw_sectors << 9) {
1563 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1564 return -EIO;
1565 }
1566
1567 /*
1568 * queue's settings related to segment counting like q->bounce_pfn
1569 * may differ from that of other stacking queues.
1570 * Recalculate it to check the request correctly on this queue's
1571 * limitation.
1572 */
1573 blk_recalc_rq_segments(rq);
1574 if (rq->nr_phys_segments > q->max_phys_segments ||
1575 rq->nr_phys_segments > q->max_hw_segments) {
1576 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1577 return -EIO;
1578 }
1579
1580 return 0;
1581 }
1582 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1583
1584 /**
1585 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1586 * @q: the queue to submit the request
1587 * @rq: the request being queued
1588 */
1589 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1590 {
1591 unsigned long flags;
1592
1593 if (blk_rq_check_limits(q, rq))
1594 return -EIO;
1595
1596 #ifdef CONFIG_FAIL_MAKE_REQUEST
1597 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1598 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1599 return -EIO;
1600 #endif
1601
1602 spin_lock_irqsave(q->queue_lock, flags);
1603
1604 /*
1605 * Submitting request must be dequeued before calling this function
1606 * because it will be linked to another request_queue
1607 */
1608 BUG_ON(blk_queued_rq(rq));
1609
1610 drive_stat_acct(rq, 1);
1611 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1612
1613 spin_unlock_irqrestore(q->queue_lock, flags);
1614
1615 return 0;
1616 }
1617 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1618
1619 /**
1620 * blkdev_dequeue_request - dequeue request and start timeout timer
1621 * @req: request to dequeue
1622 *
1623 * Dequeue @req and start timeout timer on it. This hands off the
1624 * request to the driver.
1625 *
1626 * Block internal functions which don't want to start timer should
1627 * call elv_dequeue_request().
1628 */
1629 void blkdev_dequeue_request(struct request *req)
1630 {
1631 elv_dequeue_request(req->q, req);
1632
1633 /*
1634 * We are now handing the request to the hardware, add the
1635 * timeout handler.
1636 */
1637 blk_add_timer(req);
1638 }
1639 EXPORT_SYMBOL(blkdev_dequeue_request);
1640
1641 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1642 {
1643 if (!blk_do_io_stat(req))
1644 return;
1645
1646 if (blk_fs_request(req)) {
1647 const int rw = rq_data_dir(req);
1648 struct hd_struct *part;
1649 int cpu;
1650
1651 cpu = part_stat_lock();
1652 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1653 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1654 part_stat_unlock();
1655 }
1656 }
1657
1658 static void blk_account_io_done(struct request *req)
1659 {
1660 if (!blk_do_io_stat(req))
1661 return;
1662
1663 /*
1664 * Account IO completion. bar_rq isn't accounted as a normal
1665 * IO on queueing nor completion. Accounting the containing
1666 * request is enough.
1667 */
1668 if (blk_fs_request(req) && req != &req->q->bar_rq) {
1669 unsigned long duration = jiffies - req->start_time;
1670 const int rw = rq_data_dir(req);
1671 struct hd_struct *part;
1672 int cpu;
1673
1674 cpu = part_stat_lock();
1675 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1676
1677 part_stat_inc(cpu, part, ios[rw]);
1678 part_stat_add(cpu, part, ticks[rw], duration);
1679 part_round_stats(cpu, part);
1680 part_dec_in_flight(part);
1681
1682 part_stat_unlock();
1683 }
1684 }
1685
1686 /**
1687 * __end_that_request_first - end I/O on a request
1688 * @req: the request being processed
1689 * @error: %0 for success, < %0 for error
1690 * @nr_bytes: number of bytes to complete
1691 *
1692 * Description:
1693 * Ends I/O on a number of bytes attached to @req, and sets it up
1694 * for the next range of segments (if any) in the cluster.
1695 *
1696 * Return:
1697 * %0 - we are done with this request, call end_that_request_last()
1698 * %1 - still buffers pending for this request
1699 **/
1700 static int __end_that_request_first(struct request *req, int error,
1701 int nr_bytes)
1702 {
1703 int total_bytes, bio_nbytes, next_idx = 0;
1704 struct bio *bio;
1705
1706 trace_block_rq_complete(req->q, req);
1707
1708 /*
1709 * For fs requests, rq is just carrier of independent bio's
1710 * and each partial completion should be handled separately.
1711 * Reset per-request error on each partial completion.
1712 *
1713 * TODO: tj: This is too subtle. It would be better to let
1714 * low level drivers do what they see fit.
1715 */
1716 if (blk_fs_request(req))
1717 req->errors = 0;
1718
1719 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1720 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1721 req->rq_disk ? req->rq_disk->disk_name : "?",
1722 (unsigned long long)req->sector);
1723 }
1724
1725 blk_account_io_completion(req, nr_bytes);
1726
1727 total_bytes = bio_nbytes = 0;
1728 while ((bio = req->bio) != NULL) {
1729 int nbytes;
1730
1731 if (nr_bytes >= bio->bi_size) {
1732 req->bio = bio->bi_next;
1733 nbytes = bio->bi_size;
1734 req_bio_endio(req, bio, nbytes, error);
1735 next_idx = 0;
1736 bio_nbytes = 0;
1737 } else {
1738 int idx = bio->bi_idx + next_idx;
1739
1740 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1741 blk_dump_rq_flags(req, "__end_that");
1742 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1743 __func__, bio->bi_idx, bio->bi_vcnt);
1744 break;
1745 }
1746
1747 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1748 BIO_BUG_ON(nbytes > bio->bi_size);
1749
1750 /*
1751 * not a complete bvec done
1752 */
1753 if (unlikely(nbytes > nr_bytes)) {
1754 bio_nbytes += nr_bytes;
1755 total_bytes += nr_bytes;
1756 break;
1757 }
1758
1759 /*
1760 * advance to the next vector
1761 */
1762 next_idx++;
1763 bio_nbytes += nbytes;
1764 }
1765
1766 total_bytes += nbytes;
1767 nr_bytes -= nbytes;
1768
1769 bio = req->bio;
1770 if (bio) {
1771 /*
1772 * end more in this run, or just return 'not-done'
1773 */
1774 if (unlikely(nr_bytes <= 0))
1775 break;
1776 }
1777 }
1778
1779 /*
1780 * completely done
1781 */
1782 if (!req->bio)
1783 return 0;
1784
1785 /*
1786 * if the request wasn't completed, update state
1787 */
1788 if (bio_nbytes) {
1789 req_bio_endio(req, bio, bio_nbytes, error);
1790 bio->bi_idx += next_idx;
1791 bio_iovec(bio)->bv_offset += nr_bytes;
1792 bio_iovec(bio)->bv_len -= nr_bytes;
1793 }
1794
1795 blk_recalc_rq_sectors(req, total_bytes >> 9);
1796 blk_recalc_rq_segments(req);
1797 return 1;
1798 }
1799
1800 /*
1801 * queue lock must be held
1802 */
1803 static void end_that_request_last(struct request *req, int error)
1804 {
1805 if (blk_rq_tagged(req))
1806 blk_queue_end_tag(req->q, req);
1807
1808 if (blk_queued_rq(req))
1809 elv_dequeue_request(req->q, req);
1810
1811 if (unlikely(laptop_mode) && blk_fs_request(req))
1812 laptop_io_completion();
1813
1814 blk_delete_timer(req);
1815
1816 blk_account_io_done(req);
1817
1818 if (req->end_io)
1819 req->end_io(req, error);
1820 else {
1821 if (blk_bidi_rq(req))
1822 __blk_put_request(req->next_rq->q, req->next_rq);
1823
1824 __blk_put_request(req->q, req);
1825 }
1826 }
1827
1828 /**
1829 * blk_rq_bytes - Returns bytes left to complete in the entire request
1830 * @rq: the request being processed
1831 **/
1832 unsigned int blk_rq_bytes(struct request *rq)
1833 {
1834 if (blk_fs_request(rq))
1835 return rq->hard_nr_sectors << 9;
1836
1837 return rq->data_len;
1838 }
1839 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1840
1841 /**
1842 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1843 * @rq: the request being processed
1844 **/
1845 unsigned int blk_rq_cur_bytes(struct request *rq)
1846 {
1847 if (blk_fs_request(rq))
1848 return rq->current_nr_sectors << 9;
1849
1850 if (rq->bio)
1851 return rq->bio->bi_size;
1852
1853 return rq->data_len;
1854 }
1855 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1856
1857 /**
1858 * end_request - end I/O on the current segment of the request
1859 * @req: the request being processed
1860 * @uptodate: error value or %0/%1 uptodate flag
1861 *
1862 * Description:
1863 * Ends I/O on the current segment of a request. If that is the only
1864 * remaining segment, the request is also completed and freed.
1865 *
1866 * This is a remnant of how older block drivers handled I/O completions.
1867 * Modern drivers typically end I/O on the full request in one go, unless
1868 * they have a residual value to account for. For that case this function
1869 * isn't really useful, unless the residual just happens to be the
1870 * full current segment. In other words, don't use this function in new
1871 * code. Use blk_end_request() or __blk_end_request() to end a request.
1872 **/
1873 void end_request(struct request *req, int uptodate)
1874 {
1875 int error = 0;
1876
1877 if (uptodate <= 0)
1878 error = uptodate ? uptodate : -EIO;
1879
1880 __blk_end_request(req, error, req->hard_cur_sectors << 9);
1881 }
1882 EXPORT_SYMBOL(end_request);
1883
1884 static int end_that_request_data(struct request *rq, int error,
1885 unsigned int nr_bytes, unsigned int bidi_bytes)
1886 {
1887 if (rq->bio) {
1888 if (__end_that_request_first(rq, error, nr_bytes))
1889 return 1;
1890
1891 /* Bidi request must be completed as a whole */
1892 if (blk_bidi_rq(rq) &&
1893 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1894 return 1;
1895 }
1896
1897 return 0;
1898 }
1899
1900 /**
1901 * blk_end_io - Generic end_io function to complete a request.
1902 * @rq: the request being processed
1903 * @error: %0 for success, < %0 for error
1904 * @nr_bytes: number of bytes to complete @rq
1905 * @bidi_bytes: number of bytes to complete @rq->next_rq
1906 * @drv_callback: function called between completion of bios in the request
1907 * and completion of the request.
1908 * If the callback returns non %0, this helper returns without
1909 * completion of the request.
1910 *
1911 * Description:
1912 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1913 * If @rq has leftover, sets it up for the next range of segments.
1914 *
1915 * Return:
1916 * %0 - we are done with this request
1917 * %1 - this request is not freed yet, it still has pending buffers.
1918 **/
1919 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1920 unsigned int bidi_bytes,
1921 int (drv_callback)(struct request *))
1922 {
1923 struct request_queue *q = rq->q;
1924 unsigned long flags = 0UL;
1925
1926 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1927 return 1;
1928
1929 /* Special feature for tricky drivers */
1930 if (drv_callback && drv_callback(rq))
1931 return 1;
1932
1933 add_disk_randomness(rq->rq_disk);
1934
1935 spin_lock_irqsave(q->queue_lock, flags);
1936 end_that_request_last(rq, error);
1937 spin_unlock_irqrestore(q->queue_lock, flags);
1938
1939 return 0;
1940 }
1941
1942 /**
1943 * blk_end_request - Helper function for drivers to complete the request.
1944 * @rq: the request being processed
1945 * @error: %0 for success, < %0 for error
1946 * @nr_bytes: number of bytes to complete
1947 *
1948 * Description:
1949 * Ends I/O on a number of bytes attached to @rq.
1950 * If @rq has leftover, sets it up for the next range of segments.
1951 *
1952 * Return:
1953 * %0 - we are done with this request
1954 * %1 - still buffers pending for this request
1955 **/
1956 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1957 {
1958 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1959 }
1960 EXPORT_SYMBOL_GPL(blk_end_request);
1961
1962 /**
1963 * __blk_end_request - Helper function for drivers to complete the request.
1964 * @rq: the request being processed
1965 * @error: %0 for success, < %0 for error
1966 * @nr_bytes: number of bytes to complete
1967 *
1968 * Description:
1969 * Must be called with queue lock held unlike blk_end_request().
1970 *
1971 * Return:
1972 * %0 - we are done with this request
1973 * %1 - still buffers pending for this request
1974 **/
1975 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1976 {
1977 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
1978 return 1;
1979
1980 add_disk_randomness(rq->rq_disk);
1981
1982 end_that_request_last(rq, error);
1983
1984 return 0;
1985 }
1986 EXPORT_SYMBOL_GPL(__blk_end_request);
1987
1988 /**
1989 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1990 * @rq: the bidi request being processed
1991 * @error: %0 for success, < %0 for error
1992 * @nr_bytes: number of bytes to complete @rq
1993 * @bidi_bytes: number of bytes to complete @rq->next_rq
1994 *
1995 * Description:
1996 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1997 *
1998 * Return:
1999 * %0 - we are done with this request
2000 * %1 - still buffers pending for this request
2001 **/
2002 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
2003 unsigned int bidi_bytes)
2004 {
2005 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2006 }
2007 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2008
2009 /**
2010 * blk_update_request - Special helper function for request stacking drivers
2011 * @rq: the request being processed
2012 * @error: %0 for success, < %0 for error
2013 * @nr_bytes: number of bytes to complete @rq
2014 *
2015 * Description:
2016 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
2017 * the request structure even if @rq doesn't have leftover.
2018 * If @rq has leftover, sets it up for the next range of segments.
2019 *
2020 * This special helper function is only for request stacking drivers
2021 * (e.g. request-based dm) so that they can handle partial completion.
2022 * Actual device drivers should use blk_end_request instead.
2023 */
2024 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2025 {
2026 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2027 /*
2028 * These members are not updated in end_that_request_data()
2029 * when all bios are completed.
2030 * Update them so that the request stacking driver can find
2031 * how many bytes remain in the request later.
2032 */
2033 rq->nr_sectors = rq->hard_nr_sectors = 0;
2034 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2035 }
2036 }
2037 EXPORT_SYMBOL_GPL(blk_update_request);
2038
2039 /**
2040 * blk_end_request_callback - Special helper function for tricky drivers
2041 * @rq: the request being processed
2042 * @error: %0 for success, < %0 for error
2043 * @nr_bytes: number of bytes to complete
2044 * @drv_callback: function called between completion of bios in the request
2045 * and completion of the request.
2046 * If the callback returns non %0, this helper returns without
2047 * completion of the request.
2048 *
2049 * Description:
2050 * Ends I/O on a number of bytes attached to @rq.
2051 * If @rq has leftover, sets it up for the next range of segments.
2052 *
2053 * This special helper function is used only for existing tricky drivers.
2054 * (e.g. cdrom_newpc_intr() of ide-cd)
2055 * This interface will be removed when such drivers are rewritten.
2056 * Don't use this interface in other places anymore.
2057 *
2058 * Return:
2059 * %0 - we are done with this request
2060 * %1 - this request is not freed yet.
2061 * this request still has pending buffers or
2062 * the driver doesn't want to finish this request yet.
2063 **/
2064 int blk_end_request_callback(struct request *rq, int error,
2065 unsigned int nr_bytes,
2066 int (drv_callback)(struct request *))
2067 {
2068 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2069 }
2070 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2071
2072 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2073 struct bio *bio)
2074 {
2075 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2076 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2077 rq->cmd_flags |= (bio->bi_rw & 3);
2078
2079 if (bio_has_data(bio)) {
2080 rq->nr_phys_segments = bio_phys_segments(q, bio);
2081 rq->buffer = bio_data(bio);
2082 }
2083 rq->current_nr_sectors = bio_cur_sectors(bio);
2084 rq->hard_cur_sectors = rq->current_nr_sectors;
2085 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2086 rq->data_len = bio->bi_size;
2087
2088 rq->bio = rq->biotail = bio;
2089
2090 if (bio->bi_bdev)
2091 rq->rq_disk = bio->bi_bdev->bd_disk;
2092 }
2093
2094 /**
2095 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2096 * @q : the queue of the device being checked
2097 *
2098 * Description:
2099 * Check if underlying low-level drivers of a device are busy.
2100 * If the drivers want to export their busy state, they must set own
2101 * exporting function using blk_queue_lld_busy() first.
2102 *
2103 * Basically, this function is used only by request stacking drivers
2104 * to stop dispatching requests to underlying devices when underlying
2105 * devices are busy. This behavior helps more I/O merging on the queue
2106 * of the request stacking driver and prevents I/O throughput regression
2107 * on burst I/O load.
2108 *
2109 * Return:
2110 * 0 - Not busy (The request stacking driver should dispatch request)
2111 * 1 - Busy (The request stacking driver should stop dispatching request)
2112 */
2113 int blk_lld_busy(struct request_queue *q)
2114 {
2115 if (q->lld_busy_fn)
2116 return q->lld_busy_fn(q);
2117
2118 return 0;
2119 }
2120 EXPORT_SYMBOL_GPL(blk_lld_busy);
2121
2122 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2123 {
2124 return queue_work(kblockd_workqueue, work);
2125 }
2126 EXPORT_SYMBOL(kblockd_schedule_work);
2127
2128 int __init blk_dev_init(void)
2129 {
2130 kblockd_workqueue = create_workqueue("kblockd");
2131 if (!kblockd_workqueue)
2132 panic("Failed to create kblockd\n");
2133
2134 request_cachep = kmem_cache_create("blkdev_requests",
2135 sizeof(struct request), 0, SLAB_PANIC, NULL);
2136
2137 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2138 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2139
2140 return 0;
2141 }
2142