FROMLIST: psi: introduce state_mask to represent stalled psi states
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33 #include "blk.h"
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 /*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
46 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
49 };
50 #undef BV
51
52 /*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58
59 /*
60 * Our slab pool management
61 */
62 struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
103 GFP_KERNEL);
104 if (!new_bio_slabs)
105 goto out_unlock;
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
117 if (!slab)
118 goto out_unlock;
119
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123 out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126 }
127
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153 out:
154 mutex_unlock(&bio_slab_lock);
155 }
156
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 return bvec_slabs[--idx].nr_vecs;
160 }
161
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
169
170 if (idx == BVEC_POOL_MAX) {
171 mempool_free(bv, pool);
172 } else {
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177 }
178
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
181 {
182 struct bio_vec *bvl;
183
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
214 if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 bvl = mempool_alloc(pool, gfp_mask);
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220
221 /*
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
225 */
226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227
228 /*
229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 * is set, retry with the 1-entry mempool
231 */
232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 *idx = BVEC_POOL_MAX;
235 goto fallback;
236 }
237 }
238
239 (*idx)++;
240 return bvl;
241 }
242
243 void bio_uninit(struct bio *bio)
244 {
245 bio_disassociate_task(bio);
246 }
247 EXPORT_SYMBOL(bio_uninit);
248
249 static void bio_free(struct bio *bio)
250 {
251 struct bio_set *bs = bio->bi_pool;
252 void *p;
253
254 bio_uninit(bio);
255
256 if (bs) {
257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
263 p -= bs->front_pad;
264
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
270 }
271
272 /*
273 * Users of this function have their own bio allocation. Subsequently,
274 * they must remember to pair any call to bio_init() with bio_uninit()
275 * when IO has completed, or when the bio is released.
276 */
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 unsigned short max_vecs)
279 {
280 memset(bio, 0, sizeof(*bio));
281 atomic_set(&bio->__bi_remaining, 1);
282 atomic_set(&bio->__bi_cnt, 1);
283
284 bio->bi_io_vec = table;
285 bio->bi_max_vecs = max_vecs;
286 }
287 EXPORT_SYMBOL(bio_init);
288
289 /**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 *
293 * Description:
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
298 */
299 void bio_reset(struct bio *bio)
300 {
301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302
303 bio_uninit(bio);
304
305 memset(bio, 0, BIO_RESET_BYTES);
306 bio->bi_flags = flags;
307 atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 struct bio *parent = bio->bi_private;
314
315 if (!parent->bi_status)
316 parent->bi_status = bio->bi_status;
317 bio_put(bio);
318 return parent;
319 }
320
321 static void bio_chain_endio(struct bio *bio)
322 {
323 bio_endio(__bio_chain_endio(bio));
324 }
325
326 /**
327 * bio_chain - chain bio completions
328 * @bio: the target bio
329 * @parent: the @bio's parent bio
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
343 bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346
347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 struct bio *bio;
351
352 while (1) {
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
356
357 if (!bio)
358 break;
359
360 generic_make_request(bio);
361 }
362 }
363
364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 struct bio_list punt, nopunt;
367 struct bio *bio;
368
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 return;
371 /*
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
377 *
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
380 */
381
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
384
385 while ((bio = bio_list_pop(&current->bio_list[0])))
386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 current->bio_list[0] = nopunt;
388
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(&current->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
393
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
397
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400
401 /**
402 * bio_alloc_bioset - allocate a bio for I/O
403 * @gfp_mask: the GFP_ mask given to the slab allocator
404 * @nr_iovecs: number of iovecs to pre-allocate
405 * @bs: the bio_set to allocate from.
406 *
407 * Description:
408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409 * backed by the @bs's mempool.
410 *
411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412 * always be able to allocate a bio. This is due to the mempool guarantees.
413 * To make this work, callers must never allocate more than 1 bio at a time
414 * from this pool. Callers that need to allocate more than 1 bio must always
415 * submit the previously allocated bio for IO before attempting to allocate
416 * a new one. Failure to do so can cause deadlocks under memory pressure.
417 *
418 * Note that when running under generic_make_request() (i.e. any block
419 * driver), bios are not submitted until after you return - see the code in
420 * generic_make_request() that converts recursion into iteration, to prevent
421 * stack overflows.
422 *
423 * This would normally mean allocating multiple bios under
424 * generic_make_request() would be susceptible to deadlocks, but we have
425 * deadlock avoidance code that resubmits any blocked bios from a rescuer
426 * thread.
427 *
428 * However, we do not guarantee forward progress for allocations from other
429 * mempools. Doing multiple allocations from the same mempool under
430 * generic_make_request() should be avoided - instead, use bio_set's front_pad
431 * for per bio allocations.
432 *
433 * RETURNS:
434 * Pointer to new bio on success, NULL on failure.
435 */
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 struct bio_set *bs)
438 {
439 gfp_t saved_gfp = gfp_mask;
440 unsigned front_pad;
441 unsigned inline_vecs;
442 struct bio_vec *bvl = NULL;
443 struct bio *bio;
444 void *p;
445
446 if (!bs) {
447 if (nr_iovecs > UIO_MAXIOV)
448 return NULL;
449
450 p = kmalloc(sizeof(struct bio) +
451 nr_iovecs * sizeof(struct bio_vec),
452 gfp_mask);
453 front_pad = 0;
454 inline_vecs = nr_iovecs;
455 } else {
456 /* should not use nobvec bioset for nr_iovecs > 0 */
457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 return NULL;
459 /*
460 * generic_make_request() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
464 *
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath generic_make_request(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
471 *
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
478 */
479
480 if (current->bio_list &&
481 (!bio_list_empty(&current->bio_list[0]) ||
482 !bio_list_empty(&current->bio_list[1])) &&
483 bs->rescue_workqueue)
484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485
486 p = mempool_alloc(bs->bio_pool, gfp_mask);
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(bs->bio_pool, gfp_mask);
491 }
492
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
497 if (unlikely(!p))
498 return NULL;
499
500 bio = p + front_pad;
501 bio_init(bio, NULL, 0);
502
503 if (nr_iovecs > inline_vecs) {
504 unsigned long idx = 0;
505
506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
511 }
512
513 if (unlikely(!bvl))
514 goto err_free;
515
516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
519 }
520
521 bio->bi_pool = bs;
522 bio->bi_max_vecs = nr_iovecs;
523 bio->bi_io_vec = bvl;
524 return bio;
525
526 err_free:
527 mempool_free(p, bs->bio_pool);
528 return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531
532 void zero_fill_bio(struct bio *bio)
533 {
534 unsigned long flags;
535 struct bio_vec bv;
536 struct bvec_iter iter;
537
538 bio_for_each_segment(bv, bio, iter) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
542 bvec_kunmap_irq(data, &flags);
543 }
544 }
545 EXPORT_SYMBOL(zero_fill_bio);
546
547 /**
548 * bio_put - release a reference to a bio
549 * @bio: bio to release reference to
550 *
551 * Description:
552 * Put a reference to a &struct bio, either one you have gotten with
553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
554 **/
555 void bio_put(struct bio *bio)
556 {
557 if (!bio_flagged(bio, BIO_REFFED))
558 bio_free(bio);
559 else {
560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561
562 /*
563 * last put frees it
564 */
565 if (atomic_dec_and_test(&bio->__bi_cnt))
566 bio_free(bio);
567 }
568 }
569 EXPORT_SYMBOL(bio_put);
570
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
572 {
573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 blk_recount_segments(q, bio);
575
576 return bio->bi_phys_segments;
577 }
578 EXPORT_SYMBOL(bio_phys_segments);
579
580 /**
581 * __bio_clone_fast - clone a bio that shares the original bio's biovec
582 * @bio: destination bio
583 * @bio_src: bio to clone
584 *
585 * Clone a &bio. Caller will own the returned bio, but not
586 * the actual data it points to. Reference count of returned
587 * bio will be one.
588 *
589 * Caller must ensure that @bio_src is not freed before @bio.
590 */
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592 {
593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
594
595 /*
596 * most users will be overriding ->bi_disk with a new target,
597 * so we don't set nor calculate new physical/hw segment counts here
598 */
599 bio->bi_disk = bio_src->bi_disk;
600 bio->bi_partno = bio_src->bi_partno;
601 bio_set_flag(bio, BIO_CLONED);
602 if (bio_flagged(bio_src, BIO_THROTTLED))
603 bio_set_flag(bio, BIO_THROTTLED);
604 bio->bi_opf = bio_src->bi_opf;
605 #ifdef CONFIG_CRYPTO_DISKCIPHER_DUN
606 bio->bi_iter.bi_dun = bio_src->bi_iter.bi_dun;
607 #endif
608 bio->bi_write_hint = bio_src->bi_write_hint;
609 bio->bi_iter = bio_src->bi_iter;
610 bio->bi_io_vec = bio_src->bi_io_vec;
611 bio->bi_aux_private = bio_src->bi_aux_private;
612
613 bio_clone_blkcg_association(bio, bio_src);
614 }
615 EXPORT_SYMBOL(__bio_clone_fast);
616
617 /**
618 * bio_clone_fast - clone a bio that shares the original bio's biovec
619 * @bio: bio to clone
620 * @gfp_mask: allocation priority
621 * @bs: bio_set to allocate from
622 *
623 * Like __bio_clone_fast, only also allocates the returned bio
624 */
625 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
626 {
627 struct bio *b;
628
629 b = bio_alloc_bioset(gfp_mask, 0, bs);
630 if (!b)
631 return NULL;
632
633 __bio_clone_fast(b, bio);
634
635 if (bio_integrity(bio)) {
636 int ret;
637
638 ret = bio_integrity_clone(b, bio, gfp_mask);
639
640 if (ret < 0) {
641 bio_put(b);
642 return NULL;
643 }
644 }
645
646 return b;
647 }
648 EXPORT_SYMBOL(bio_clone_fast);
649
650 /**
651 * bio_clone_bioset - clone a bio
652 * @bio_src: bio to clone
653 * @gfp_mask: allocation priority
654 * @bs: bio_set to allocate from
655 *
656 * Clone bio. Caller will own the returned bio, but not the actual data it
657 * points to. Reference count of returned bio will be one.
658 */
659 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
660 struct bio_set *bs)
661 {
662 struct bvec_iter iter;
663 struct bio_vec bv;
664 struct bio *bio;
665
666 /*
667 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
668 * bio_src->bi_io_vec to bio->bi_io_vec.
669 *
670 * We can't do that anymore, because:
671 *
672 * - The point of cloning the biovec is to produce a bio with a biovec
673 * the caller can modify: bi_idx and bi_bvec_done should be 0.
674 *
675 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
676 * we tried to clone the whole thing bio_alloc_bioset() would fail.
677 * But the clone should succeed as long as the number of biovecs we
678 * actually need to allocate is fewer than BIO_MAX_PAGES.
679 *
680 * - Lastly, bi_vcnt should not be looked at or relied upon by code
681 * that does not own the bio - reason being drivers don't use it for
682 * iterating over the biovec anymore, so expecting it to be kept up
683 * to date (i.e. for clones that share the parent biovec) is just
684 * asking for trouble and would force extra work on
685 * __bio_clone_fast() anyways.
686 */
687
688 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
689 if (!bio)
690 return NULL;
691 bio->bi_disk = bio_src->bi_disk;
692 bio->bi_opf = bio_src->bi_opf;
693 bio->bi_write_hint = bio_src->bi_write_hint;
694 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
695 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
696 bio->bi_aux_private = bio_src->bi_aux_private;
697
698 switch (bio_op(bio)) {
699 case REQ_OP_DISCARD:
700 case REQ_OP_SECURE_ERASE:
701 case REQ_OP_WRITE_ZEROES:
702 break;
703 case REQ_OP_WRITE_SAME:
704 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
705 break;
706 default:
707 bio_for_each_segment(bv, bio_src, iter)
708 bio->bi_io_vec[bio->bi_vcnt++] = bv;
709 break;
710 }
711
712 if (bio_integrity(bio_src)) {
713 int ret;
714
715 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
716 if (ret < 0) {
717 bio_put(bio);
718 return NULL;
719 }
720 }
721
722 #ifdef CONFIG_CRYPTO_DISKCIPHER_DUN
723 bio->bi_iter.bi_dun = bio_src->bi_iter.bi_dun;
724 #endif
725 bio_clone_blkcg_association(bio, bio_src);
726
727 return bio;
728 }
729 EXPORT_SYMBOL(bio_clone_bioset);
730
731 /**
732 * bio_add_pc_page - attempt to add page to bio
733 * @q: the target queue
734 * @bio: destination bio
735 * @page: page to add
736 * @len: vec entry length
737 * @offset: vec entry offset
738 *
739 * Attempt to add a page to the bio_vec maplist. This can fail for a
740 * number of reasons, such as the bio being full or target block device
741 * limitations. The target block device must allow bio's up to PAGE_SIZE,
742 * so it is always possible to add a single page to an empty bio.
743 *
744 * This should only be used by REQ_PC bios.
745 */
746 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
747 *page, unsigned int len, unsigned int offset)
748 {
749 int retried_segments = 0;
750 struct bio_vec *bvec;
751
752 /*
753 * cloned bio must not modify vec list
754 */
755 if (unlikely(bio_flagged(bio, BIO_CLONED)))
756 return 0;
757
758 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
759 return 0;
760
761 /*
762 * For filesystems with a blocksize smaller than the pagesize
763 * we will often be called with the same page as last time and
764 * a consecutive offset. Optimize this special case.
765 */
766 if (bio->bi_vcnt > 0) {
767 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
768
769 if (page == prev->bv_page &&
770 offset == prev->bv_offset + prev->bv_len) {
771 prev->bv_len += len;
772 bio->bi_iter.bi_size += len;
773 goto done;
774 }
775
776 /*
777 * If the queue doesn't support SG gaps and adding this
778 * offset would create a gap, disallow it.
779 */
780 if (bvec_gap_to_prev(q, prev, offset))
781 return 0;
782 }
783
784 if (bio->bi_vcnt >= bio->bi_max_vecs)
785 return 0;
786
787 /*
788 * setup the new entry, we might clear it again later if we
789 * cannot add the page
790 */
791 bvec = &bio->bi_io_vec[bio->bi_vcnt];
792 bvec->bv_page = page;
793 bvec->bv_len = len;
794 bvec->bv_offset = offset;
795 bio->bi_vcnt++;
796 bio->bi_phys_segments++;
797 bio->bi_iter.bi_size += len;
798
799 /*
800 * Perform a recount if the number of segments is greater
801 * than queue_max_segments(q).
802 */
803
804 while (bio->bi_phys_segments > queue_max_segments(q)) {
805
806 if (retried_segments)
807 goto failed;
808
809 retried_segments = 1;
810 blk_recount_segments(q, bio);
811 }
812
813 /* If we may be able to merge these biovecs, force a recount */
814 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
815 bio_clear_flag(bio, BIO_SEG_VALID);
816
817 done:
818 return len;
819
820 failed:
821 bvec->bv_page = NULL;
822 bvec->bv_len = 0;
823 bvec->bv_offset = 0;
824 bio->bi_vcnt--;
825 bio->bi_iter.bi_size -= len;
826 blk_recount_segments(q, bio);
827 return 0;
828 }
829 EXPORT_SYMBOL(bio_add_pc_page);
830
831 /**
832 * bio_add_page - attempt to add page to bio
833 * @bio: destination bio
834 * @page: page to add
835 * @len: vec entry length
836 * @offset: vec entry offset
837 *
838 * Attempt to add a page to the bio_vec maplist. This will only fail
839 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
840 */
841 int bio_add_page(struct bio *bio, struct page *page,
842 unsigned int len, unsigned int offset)
843 {
844 struct bio_vec *bv;
845
846 /*
847 * cloned bio must not modify vec list
848 */
849 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
850 return 0;
851
852 /*
853 * For filesystems with a blocksize smaller than the pagesize
854 * we will often be called with the same page as last time and
855 * a consecutive offset. Optimize this special case.
856 */
857 if (bio->bi_vcnt > 0) {
858 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
859
860 if (page == bv->bv_page &&
861 offset == bv->bv_offset + bv->bv_len) {
862 bv->bv_len += len;
863 goto done;
864 }
865 }
866
867 if (bio->bi_vcnt >= bio->bi_max_vecs)
868 return 0;
869
870 bv = &bio->bi_io_vec[bio->bi_vcnt];
871 bv->bv_page = page;
872 bv->bv_len = len;
873 bv->bv_offset = offset;
874
875 bio->bi_vcnt++;
876 done:
877 bio->bi_iter.bi_size += len;
878 return len;
879 }
880 EXPORT_SYMBOL(bio_add_page);
881
882 /**
883 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
884 * @bio: bio to add pages to
885 * @iter: iov iterator describing the region to be mapped
886 *
887 * Pins as many pages from *iter and appends them to @bio's bvec array. The
888 * pages will have to be released using put_page() when done.
889 */
890 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
891 {
892 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt, idx;
893 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
894 struct page **pages = (struct page **)bv;
895 size_t offset;
896 ssize_t size;
897
898 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
899 if (unlikely(size <= 0))
900 return size ? size : -EFAULT;
901 idx = nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
902
903 /*
904 * Deep magic below: We need to walk the pinned pages backwards
905 * because we are abusing the space allocated for the bio_vecs
906 * for the page array. Because the bio_vecs are larger than the
907 * page pointers by definition this will always work. But it also
908 * means we can't use bio_add_page, so any changes to it's semantics
909 * need to be reflected here as well.
910 */
911 bio->bi_iter.bi_size += size;
912 bio->bi_vcnt += nr_pages;
913
914 while (idx--) {
915 bv[idx].bv_page = pages[idx];
916 bv[idx].bv_len = PAGE_SIZE;
917 bv[idx].bv_offset = 0;
918 }
919
920 bv[0].bv_offset += offset;
921 bv[0].bv_len -= offset;
922 bv[nr_pages - 1].bv_len -= nr_pages * PAGE_SIZE - offset - size;
923
924 iov_iter_advance(iter, size);
925 return 0;
926 }
927 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
928
929 struct submit_bio_ret {
930 struct completion event;
931 int error;
932 };
933
934 static void submit_bio_wait_endio(struct bio *bio)
935 {
936 struct submit_bio_ret *ret = bio->bi_private;
937
938 ret->error = blk_status_to_errno(bio->bi_status);
939 complete(&ret->event);
940 }
941
942 /**
943 * submit_bio_wait - submit a bio, and wait until it completes
944 * @bio: The &struct bio which describes the I/O
945 *
946 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
947 * bio_endio() on failure.
948 *
949 * WARNING: Unlike to how submit_bio() is usually used, this function does not
950 * result in bio reference to be consumed. The caller must drop the reference
951 * on his own.
952 */
953 int submit_bio_wait(struct bio *bio)
954 {
955 struct submit_bio_ret ret;
956
957 init_completion(&ret.event);
958 bio->bi_private = &ret;
959 bio->bi_end_io = submit_bio_wait_endio;
960 bio->bi_opf |= REQ_SYNC;
961 submit_bio(bio);
962 wait_for_completion_io(&ret.event);
963
964 return ret.error;
965 }
966 EXPORT_SYMBOL(submit_bio_wait);
967
968 /**
969 * bio_advance - increment/complete a bio by some number of bytes
970 * @bio: bio to advance
971 * @bytes: number of bytes to complete
972 *
973 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
974 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
975 * be updated on the last bvec as well.
976 *
977 * @bio will then represent the remaining, uncompleted portion of the io.
978 */
979 void bio_advance(struct bio *bio, unsigned bytes)
980 {
981 if (bio_integrity(bio))
982 bio_integrity_advance(bio, bytes);
983
984 bio_advance_iter(bio, &bio->bi_iter, bytes);
985 }
986 EXPORT_SYMBOL(bio_advance);
987
988 /**
989 * bio_alloc_pages - allocates a single page for each bvec in a bio
990 * @bio: bio to allocate pages for
991 * @gfp_mask: flags for allocation
992 *
993 * Allocates pages up to @bio->bi_vcnt.
994 *
995 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
996 * freed.
997 */
998 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
999 {
1000 int i;
1001 struct bio_vec *bv;
1002
1003 bio_for_each_segment_all(bv, bio, i) {
1004 bv->bv_page = alloc_page(gfp_mask);
1005 if (!bv->bv_page) {
1006 while (--bv >= bio->bi_io_vec)
1007 __free_page(bv->bv_page);
1008 return -ENOMEM;
1009 }
1010 }
1011
1012 return 0;
1013 }
1014 EXPORT_SYMBOL(bio_alloc_pages);
1015
1016 /**
1017 * bio_copy_data - copy contents of data buffers from one chain of bios to
1018 * another
1019 * @src: source bio list
1020 * @dst: destination bio list
1021 *
1022 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1023 * @src and @dst as linked lists of bios.
1024 *
1025 * Stops when it reaches the end of either @src or @dst - that is, copies
1026 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1027 */
1028 void bio_copy_data(struct bio *dst, struct bio *src)
1029 {
1030 struct bvec_iter src_iter, dst_iter;
1031 struct bio_vec src_bv, dst_bv;
1032 void *src_p, *dst_p;
1033 unsigned bytes;
1034
1035 src_iter = src->bi_iter;
1036 dst_iter = dst->bi_iter;
1037
1038 while (1) {
1039 if (!src_iter.bi_size) {
1040 src = src->bi_next;
1041 if (!src)
1042 break;
1043
1044 src_iter = src->bi_iter;
1045 }
1046
1047 if (!dst_iter.bi_size) {
1048 dst = dst->bi_next;
1049 if (!dst)
1050 break;
1051
1052 dst_iter = dst->bi_iter;
1053 }
1054
1055 src_bv = bio_iter_iovec(src, src_iter);
1056 dst_bv = bio_iter_iovec(dst, dst_iter);
1057
1058 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1059
1060 src_p = kmap_atomic(src_bv.bv_page);
1061 dst_p = kmap_atomic(dst_bv.bv_page);
1062
1063 memcpy(dst_p + dst_bv.bv_offset,
1064 src_p + src_bv.bv_offset,
1065 bytes);
1066
1067 kunmap_atomic(dst_p);
1068 kunmap_atomic(src_p);
1069
1070 bio_advance_iter(src, &src_iter, bytes);
1071 bio_advance_iter(dst, &dst_iter, bytes);
1072 }
1073 }
1074 EXPORT_SYMBOL(bio_copy_data);
1075
1076 struct bio_map_data {
1077 int is_our_pages;
1078 struct iov_iter iter;
1079 struct iovec iov[];
1080 };
1081
1082 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1083 gfp_t gfp_mask)
1084 {
1085 if (iov_count > UIO_MAXIOV)
1086 return NULL;
1087
1088 return kmalloc(sizeof(struct bio_map_data) +
1089 sizeof(struct iovec) * iov_count, gfp_mask);
1090 }
1091
1092 /**
1093 * bio_copy_from_iter - copy all pages from iov_iter to bio
1094 * @bio: The &struct bio which describes the I/O as destination
1095 * @iter: iov_iter as source
1096 *
1097 * Copy all pages from iov_iter to bio.
1098 * Returns 0 on success, or error on failure.
1099 */
1100 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1101 {
1102 int i;
1103 struct bio_vec *bvec;
1104
1105 bio_for_each_segment_all(bvec, bio, i) {
1106 ssize_t ret;
1107
1108 ret = copy_page_from_iter(bvec->bv_page,
1109 bvec->bv_offset,
1110 bvec->bv_len,
1111 &iter);
1112
1113 if (!iov_iter_count(&iter))
1114 break;
1115
1116 if (ret < bvec->bv_len)
1117 return -EFAULT;
1118 }
1119
1120 return 0;
1121 }
1122
1123 /**
1124 * bio_copy_to_iter - copy all pages from bio to iov_iter
1125 * @bio: The &struct bio which describes the I/O as source
1126 * @iter: iov_iter as destination
1127 *
1128 * Copy all pages from bio to iov_iter.
1129 * Returns 0 on success, or error on failure.
1130 */
1131 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1132 {
1133 int i;
1134 struct bio_vec *bvec;
1135
1136 bio_for_each_segment_all(bvec, bio, i) {
1137 ssize_t ret;
1138
1139 ret = copy_page_to_iter(bvec->bv_page,
1140 bvec->bv_offset,
1141 bvec->bv_len,
1142 &iter);
1143
1144 if (!iov_iter_count(&iter))
1145 break;
1146
1147 if (ret < bvec->bv_len)
1148 return -EFAULT;
1149 }
1150
1151 return 0;
1152 }
1153
1154 void bio_free_pages(struct bio *bio)
1155 {
1156 struct bio_vec *bvec;
1157 int i;
1158
1159 bio_for_each_segment_all(bvec, bio, i)
1160 __free_page(bvec->bv_page);
1161 }
1162 EXPORT_SYMBOL(bio_free_pages);
1163
1164 /**
1165 * bio_uncopy_user - finish previously mapped bio
1166 * @bio: bio being terminated
1167 *
1168 * Free pages allocated from bio_copy_user_iov() and write back data
1169 * to user space in case of a read.
1170 */
1171 int bio_uncopy_user(struct bio *bio)
1172 {
1173 struct bio_map_data *bmd = bio->bi_private;
1174 int ret = 0;
1175
1176 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1177 /*
1178 * if we're in a workqueue, the request is orphaned, so
1179 * don't copy into a random user address space, just free
1180 * and return -EINTR so user space doesn't expect any data.
1181 */
1182 if (!current->mm)
1183 ret = -EINTR;
1184 else if (bio_data_dir(bio) == READ)
1185 ret = bio_copy_to_iter(bio, bmd->iter);
1186 if (bmd->is_our_pages)
1187 bio_free_pages(bio);
1188 }
1189 kfree(bmd);
1190 bio_put(bio);
1191 return ret;
1192 }
1193
1194 /**
1195 * bio_copy_user_iov - copy user data to bio
1196 * @q: destination block queue
1197 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1198 * @iter: iovec iterator
1199 * @gfp_mask: memory allocation flags
1200 *
1201 * Prepares and returns a bio for indirect user io, bouncing data
1202 * to/from kernel pages as necessary. Must be paired with
1203 * call bio_uncopy_user() on io completion.
1204 */
1205 struct bio *bio_copy_user_iov(struct request_queue *q,
1206 struct rq_map_data *map_data,
1207 const struct iov_iter *iter,
1208 gfp_t gfp_mask)
1209 {
1210 struct bio_map_data *bmd;
1211 struct page *page;
1212 struct bio *bio;
1213 int i, ret;
1214 int nr_pages = 0;
1215 unsigned int len = iter->count;
1216 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1217
1218 for (i = 0; i < iter->nr_segs; i++) {
1219 unsigned long uaddr;
1220 unsigned long end;
1221 unsigned long start;
1222
1223 uaddr = (unsigned long) iter->iov[i].iov_base;
1224 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1225 >> PAGE_SHIFT;
1226 start = uaddr >> PAGE_SHIFT;
1227
1228 /*
1229 * Overflow, abort
1230 */
1231 if (end < start)
1232 return ERR_PTR(-EINVAL);
1233
1234 nr_pages += end - start;
1235 }
1236
1237 if (offset)
1238 nr_pages++;
1239
1240 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1241 if (!bmd)
1242 return ERR_PTR(-ENOMEM);
1243
1244 /*
1245 * We need to do a deep copy of the iov_iter including the iovecs.
1246 * The caller provided iov might point to an on-stack or otherwise
1247 * shortlived one.
1248 */
1249 bmd->is_our_pages = map_data ? 0 : 1;
1250 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1251 bmd->iter = *iter;
1252 bmd->iter.iov = bmd->iov;
1253
1254 ret = -ENOMEM;
1255 bio = bio_kmalloc(gfp_mask, nr_pages);
1256 if (!bio)
1257 goto out_bmd;
1258
1259 ret = 0;
1260
1261 if (map_data) {
1262 nr_pages = 1 << map_data->page_order;
1263 i = map_data->offset / PAGE_SIZE;
1264 }
1265 while (len) {
1266 unsigned int bytes = PAGE_SIZE;
1267
1268 bytes -= offset;
1269
1270 if (bytes > len)
1271 bytes = len;
1272
1273 if (map_data) {
1274 if (i == map_data->nr_entries * nr_pages) {
1275 ret = -ENOMEM;
1276 break;
1277 }
1278
1279 page = map_data->pages[i / nr_pages];
1280 page += (i % nr_pages);
1281
1282 i++;
1283 } else {
1284 page = alloc_page(q->bounce_gfp | gfp_mask);
1285 if (!page) {
1286 ret = -ENOMEM;
1287 break;
1288 }
1289 }
1290
1291 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1292 if (!map_data)
1293 __free_page(page);
1294 break;
1295 }
1296
1297 len -= bytes;
1298 offset = 0;
1299 }
1300
1301 if (ret)
1302 goto cleanup;
1303
1304 /*
1305 * success
1306 */
1307 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1308 (map_data && map_data->from_user)) {
1309 ret = bio_copy_from_iter(bio, *iter);
1310 if (ret)
1311 goto cleanup;
1312 }
1313
1314 bio->bi_private = bmd;
1315 return bio;
1316 cleanup:
1317 if (!map_data)
1318 bio_free_pages(bio);
1319 bio_put(bio);
1320 out_bmd:
1321 kfree(bmd);
1322 return ERR_PTR(ret);
1323 }
1324
1325 /**
1326 * bio_map_user_iov - map user iovec into bio
1327 * @q: the struct request_queue for the bio
1328 * @iter: iovec iterator
1329 * @gfp_mask: memory allocation flags
1330 *
1331 * Map the user space address into a bio suitable for io to a block
1332 * device. Returns an error pointer in case of error.
1333 */
1334 struct bio *bio_map_user_iov(struct request_queue *q,
1335 const struct iov_iter *iter,
1336 gfp_t gfp_mask)
1337 {
1338 int j;
1339 int nr_pages = 0;
1340 struct page **pages;
1341 struct bio *bio;
1342 int cur_page = 0;
1343 int ret, offset;
1344 struct iov_iter i;
1345 struct iovec iov;
1346 struct bio_vec *bvec;
1347
1348 iov_for_each(iov, i, *iter) {
1349 unsigned long uaddr = (unsigned long) iov.iov_base;
1350 unsigned long len = iov.iov_len;
1351 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1352 unsigned long start = uaddr >> PAGE_SHIFT;
1353
1354 /*
1355 * Overflow, abort
1356 */
1357 if (end < start)
1358 return ERR_PTR(-EINVAL);
1359
1360 nr_pages += end - start;
1361 /*
1362 * buffer must be aligned to at least logical block size for now
1363 */
1364 if (uaddr & queue_dma_alignment(q))
1365 return ERR_PTR(-EINVAL);
1366 }
1367
1368 if (!nr_pages)
1369 return ERR_PTR(-EINVAL);
1370
1371 bio = bio_kmalloc(gfp_mask, nr_pages);
1372 if (!bio)
1373 return ERR_PTR(-ENOMEM);
1374
1375 ret = -ENOMEM;
1376 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1377 if (!pages)
1378 goto out;
1379
1380 iov_for_each(iov, i, *iter) {
1381 unsigned long uaddr = (unsigned long) iov.iov_base;
1382 unsigned long len = iov.iov_len;
1383 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1384 unsigned long start = uaddr >> PAGE_SHIFT;
1385 const int local_nr_pages = end - start;
1386 const int page_limit = cur_page + local_nr_pages;
1387
1388 ret = get_user_pages_fast(uaddr, local_nr_pages,
1389 (iter->type & WRITE) != WRITE,
1390 &pages[cur_page]);
1391 if (unlikely(ret < local_nr_pages)) {
1392 for (j = cur_page; j < page_limit; j++) {
1393 if (!pages[j])
1394 break;
1395 put_page(pages[j]);
1396 }
1397 ret = -EFAULT;
1398 goto out_unmap;
1399 }
1400
1401 offset = offset_in_page(uaddr);
1402 for (j = cur_page; j < page_limit; j++) {
1403 unsigned int bytes = PAGE_SIZE - offset;
1404 unsigned short prev_bi_vcnt = bio->bi_vcnt;
1405
1406 if (len <= 0)
1407 break;
1408
1409 if (bytes > len)
1410 bytes = len;
1411
1412 /*
1413 * sorry...
1414 */
1415 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1416 bytes)
1417 break;
1418
1419 /*
1420 * check if vector was merged with previous
1421 * drop page reference if needed
1422 */
1423 if (bio->bi_vcnt == prev_bi_vcnt)
1424 put_page(pages[j]);
1425
1426 len -= bytes;
1427 offset = 0;
1428 }
1429
1430 cur_page = j;
1431 /*
1432 * release the pages we didn't map into the bio, if any
1433 */
1434 while (j < page_limit)
1435 put_page(pages[j++]);
1436 }
1437
1438 kfree(pages);
1439
1440 bio_set_flag(bio, BIO_USER_MAPPED);
1441
1442 /*
1443 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1444 * it would normally disappear when its bi_end_io is run.
1445 * however, we need it for the unmap, so grab an extra
1446 * reference to it
1447 */
1448 bio_get(bio);
1449 return bio;
1450
1451 out_unmap:
1452 bio_for_each_segment_all(bvec, bio, j) {
1453 put_page(bvec->bv_page);
1454 }
1455 out:
1456 kfree(pages);
1457 bio_put(bio);
1458 return ERR_PTR(ret);
1459 }
1460
1461 static void __bio_unmap_user(struct bio *bio)
1462 {
1463 struct bio_vec *bvec;
1464 int i;
1465
1466 /*
1467 * make sure we dirty pages we wrote to
1468 */
1469 bio_for_each_segment_all(bvec, bio, i) {
1470 if (bio_data_dir(bio) == READ)
1471 set_page_dirty_lock(bvec->bv_page);
1472
1473 put_page(bvec->bv_page);
1474 }
1475
1476 bio_put(bio);
1477 }
1478
1479 /**
1480 * bio_unmap_user - unmap a bio
1481 * @bio: the bio being unmapped
1482 *
1483 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1484 * process context.
1485 *
1486 * bio_unmap_user() may sleep.
1487 */
1488 void bio_unmap_user(struct bio *bio)
1489 {
1490 __bio_unmap_user(bio);
1491 bio_put(bio);
1492 }
1493
1494 static void bio_map_kern_endio(struct bio *bio)
1495 {
1496 bio_put(bio);
1497 }
1498
1499 /**
1500 * bio_map_kern - map kernel address into bio
1501 * @q: the struct request_queue for the bio
1502 * @data: pointer to buffer to map
1503 * @len: length in bytes
1504 * @gfp_mask: allocation flags for bio allocation
1505 *
1506 * Map the kernel address into a bio suitable for io to a block
1507 * device. Returns an error pointer in case of error.
1508 */
1509 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1510 gfp_t gfp_mask)
1511 {
1512 unsigned long kaddr = (unsigned long)data;
1513 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1514 unsigned long start = kaddr >> PAGE_SHIFT;
1515 const int nr_pages = end - start;
1516 int offset, i;
1517 struct bio *bio;
1518
1519 bio = bio_kmalloc(gfp_mask, nr_pages);
1520 if (!bio)
1521 return ERR_PTR(-ENOMEM);
1522
1523 offset = offset_in_page(kaddr);
1524 for (i = 0; i < nr_pages; i++) {
1525 unsigned int bytes = PAGE_SIZE - offset;
1526
1527 if (len <= 0)
1528 break;
1529
1530 if (bytes > len)
1531 bytes = len;
1532
1533 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1534 offset) < bytes) {
1535 /* we don't support partial mappings */
1536 bio_put(bio);
1537 return ERR_PTR(-EINVAL);
1538 }
1539
1540 data += bytes;
1541 len -= bytes;
1542 offset = 0;
1543 }
1544
1545 bio->bi_end_io = bio_map_kern_endio;
1546 return bio;
1547 }
1548 EXPORT_SYMBOL(bio_map_kern);
1549
1550 static void bio_copy_kern_endio(struct bio *bio)
1551 {
1552 bio_free_pages(bio);
1553 bio_put(bio);
1554 }
1555
1556 static void bio_copy_kern_endio_read(struct bio *bio)
1557 {
1558 char *p = bio->bi_private;
1559 struct bio_vec *bvec;
1560 int i;
1561
1562 bio_for_each_segment_all(bvec, bio, i) {
1563 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1564 p += bvec->bv_len;
1565 }
1566
1567 bio_copy_kern_endio(bio);
1568 }
1569
1570 /**
1571 * bio_copy_kern - copy kernel address into bio
1572 * @q: the struct request_queue for the bio
1573 * @data: pointer to buffer to copy
1574 * @len: length in bytes
1575 * @gfp_mask: allocation flags for bio and page allocation
1576 * @reading: data direction is READ
1577 *
1578 * copy the kernel address into a bio suitable for io to a block
1579 * device. Returns an error pointer in case of error.
1580 */
1581 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1582 gfp_t gfp_mask, int reading)
1583 {
1584 unsigned long kaddr = (unsigned long)data;
1585 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1586 unsigned long start = kaddr >> PAGE_SHIFT;
1587 struct bio *bio;
1588 void *p = data;
1589 int nr_pages = 0;
1590
1591 /*
1592 * Overflow, abort
1593 */
1594 if (end < start)
1595 return ERR_PTR(-EINVAL);
1596
1597 nr_pages = end - start;
1598 bio = bio_kmalloc(gfp_mask, nr_pages);
1599 if (!bio)
1600 return ERR_PTR(-ENOMEM);
1601
1602 while (len) {
1603 struct page *page;
1604 unsigned int bytes = PAGE_SIZE;
1605
1606 if (bytes > len)
1607 bytes = len;
1608
1609 page = alloc_page(q->bounce_gfp | gfp_mask);
1610 if (!page)
1611 goto cleanup;
1612
1613 if (!reading)
1614 memcpy(page_address(page), p, bytes);
1615
1616 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1617 break;
1618
1619 len -= bytes;
1620 p += bytes;
1621 }
1622
1623 if (reading) {
1624 bio->bi_end_io = bio_copy_kern_endio_read;
1625 bio->bi_private = data;
1626 } else {
1627 bio->bi_end_io = bio_copy_kern_endio;
1628 }
1629
1630 return bio;
1631
1632 cleanup:
1633 bio_free_pages(bio);
1634 bio_put(bio);
1635 return ERR_PTR(-ENOMEM);
1636 }
1637
1638 /*
1639 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1640 * for performing direct-IO in BIOs.
1641 *
1642 * The problem is that we cannot run set_page_dirty() from interrupt context
1643 * because the required locks are not interrupt-safe. So what we can do is to
1644 * mark the pages dirty _before_ performing IO. And in interrupt context,
1645 * check that the pages are still dirty. If so, fine. If not, redirty them
1646 * in process context.
1647 *
1648 * We special-case compound pages here: normally this means reads into hugetlb
1649 * pages. The logic in here doesn't really work right for compound pages
1650 * because the VM does not uniformly chase down the head page in all cases.
1651 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1652 * handle them at all. So we skip compound pages here at an early stage.
1653 *
1654 * Note that this code is very hard to test under normal circumstances because
1655 * direct-io pins the pages with get_user_pages(). This makes
1656 * is_page_cache_freeable return false, and the VM will not clean the pages.
1657 * But other code (eg, flusher threads) could clean the pages if they are mapped
1658 * pagecache.
1659 *
1660 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1661 * deferred bio dirtying paths.
1662 */
1663
1664 /*
1665 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1666 */
1667 void bio_set_pages_dirty(struct bio *bio)
1668 {
1669 struct bio_vec *bvec;
1670 int i;
1671
1672 bio_for_each_segment_all(bvec, bio, i) {
1673 struct page *page = bvec->bv_page;
1674
1675 if (page && !PageCompound(page))
1676 set_page_dirty_lock(page);
1677 }
1678 }
1679
1680 static void bio_release_pages(struct bio *bio)
1681 {
1682 struct bio_vec *bvec;
1683 int i;
1684
1685 bio_for_each_segment_all(bvec, bio, i) {
1686 struct page *page = bvec->bv_page;
1687
1688 if (page)
1689 put_page(page);
1690 }
1691 }
1692
1693 /*
1694 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1695 * If they are, then fine. If, however, some pages are clean then they must
1696 * have been written out during the direct-IO read. So we take another ref on
1697 * the BIO and the offending pages and re-dirty the pages in process context.
1698 *
1699 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1700 * here on. It will run one put_page() against each page and will run one
1701 * bio_put() against the BIO.
1702 */
1703
1704 static void bio_dirty_fn(struct work_struct *work);
1705
1706 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1707 static DEFINE_SPINLOCK(bio_dirty_lock);
1708 static struct bio *bio_dirty_list;
1709
1710 /*
1711 * This runs in process context
1712 */
1713 static void bio_dirty_fn(struct work_struct *work)
1714 {
1715 unsigned long flags;
1716 struct bio *bio;
1717
1718 spin_lock_irqsave(&bio_dirty_lock, flags);
1719 bio = bio_dirty_list;
1720 bio_dirty_list = NULL;
1721 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1722
1723 while (bio) {
1724 struct bio *next = bio->bi_private;
1725
1726 bio_set_pages_dirty(bio);
1727 bio_release_pages(bio);
1728 bio_put(bio);
1729 bio = next;
1730 }
1731 }
1732
1733 void bio_check_pages_dirty(struct bio *bio)
1734 {
1735 struct bio_vec *bvec;
1736 int nr_clean_pages = 0;
1737 int i;
1738
1739 bio_for_each_segment_all(bvec, bio, i) {
1740 struct page *page = bvec->bv_page;
1741
1742 if (PageDirty(page) || PageCompound(page)) {
1743 put_page(page);
1744 bvec->bv_page = NULL;
1745 } else {
1746 nr_clean_pages++;
1747 }
1748 }
1749
1750 if (nr_clean_pages) {
1751 unsigned long flags;
1752
1753 spin_lock_irqsave(&bio_dirty_lock, flags);
1754 bio->bi_private = bio_dirty_list;
1755 bio_dirty_list = bio;
1756 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1757 schedule_work(&bio_dirty_work);
1758 } else {
1759 bio_put(bio);
1760 }
1761 }
1762
1763 void generic_start_io_acct(struct request_queue *q, int rw,
1764 unsigned long sectors, struct hd_struct *part)
1765 {
1766 int cpu = part_stat_lock();
1767
1768 part_round_stats(q, cpu, part);
1769 part_stat_inc(cpu, part, ios[rw]);
1770 part_stat_add(cpu, part, sectors[rw], sectors);
1771 part_inc_in_flight(q, part, rw);
1772
1773 part_stat_unlock();
1774 }
1775 EXPORT_SYMBOL(generic_start_io_acct);
1776
1777 void generic_end_io_acct(struct request_queue *q, int rw,
1778 struct hd_struct *part, unsigned long start_time)
1779 {
1780 unsigned long duration = jiffies - start_time;
1781 int cpu = part_stat_lock();
1782
1783 part_stat_add(cpu, part, ticks[rw], duration);
1784 part_round_stats(q, cpu, part);
1785 part_dec_in_flight(q, part, rw);
1786
1787 part_stat_unlock();
1788 }
1789 EXPORT_SYMBOL(generic_end_io_acct);
1790
1791 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1792 void bio_flush_dcache_pages(struct bio *bi)
1793 {
1794 struct bio_vec bvec;
1795 struct bvec_iter iter;
1796
1797 bio_for_each_segment(bvec, bi, iter)
1798 flush_dcache_page(bvec.bv_page);
1799 }
1800 EXPORT_SYMBOL(bio_flush_dcache_pages);
1801 #endif
1802
1803 static inline bool bio_remaining_done(struct bio *bio)
1804 {
1805 /*
1806 * If we're not chaining, then ->__bi_remaining is always 1 and
1807 * we always end io on the first invocation.
1808 */
1809 if (!bio_flagged(bio, BIO_CHAIN))
1810 return true;
1811
1812 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1813
1814 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1815 bio_clear_flag(bio, BIO_CHAIN);
1816 return true;
1817 }
1818
1819 return false;
1820 }
1821
1822 /**
1823 * bio_endio - end I/O on a bio
1824 * @bio: bio
1825 *
1826 * Description:
1827 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1828 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1829 * bio unless they own it and thus know that it has an end_io function.
1830 *
1831 * bio_endio() can be called several times on a bio that has been chained
1832 * using bio_chain(). The ->bi_end_io() function will only be called the
1833 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1834 * generated if BIO_TRACE_COMPLETION is set.
1835 **/
1836 void bio_endio(struct bio *bio)
1837 {
1838 again:
1839 if (!bio_remaining_done(bio))
1840 return;
1841 if (!bio_integrity_endio(bio))
1842 return;
1843
1844 /*
1845 * Need to have a real endio function for chained bios, otherwise
1846 * various corner cases will break (like stacking block devices that
1847 * save/restore bi_end_io) - however, we want to avoid unbounded
1848 * recursion and blowing the stack. Tail call optimization would
1849 * handle this, but compiling with frame pointers also disables
1850 * gcc's sibling call optimization.
1851 */
1852 if (bio->bi_end_io == bio_chain_endio) {
1853 bio = __bio_chain_endio(bio);
1854 goto again;
1855 }
1856
1857 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1858 trace_block_bio_complete(bio->bi_disk->queue, bio,
1859 blk_status_to_errno(bio->bi_status));
1860 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1861 }
1862
1863 blk_throtl_bio_endio(bio);
1864 /* release cgroup info */
1865 bio_uninit(bio);
1866 if (bio->bi_end_io)
1867 bio->bi_end_io(bio);
1868 }
1869 EXPORT_SYMBOL(bio_endio);
1870
1871 /**
1872 * bio_split - split a bio
1873 * @bio: bio to split
1874 * @sectors: number of sectors to split from the front of @bio
1875 * @gfp: gfp mask
1876 * @bs: bio set to allocate from
1877 *
1878 * Allocates and returns a new bio which represents @sectors from the start of
1879 * @bio, and updates @bio to represent the remaining sectors.
1880 *
1881 * Unless this is a discard request the newly allocated bio will point
1882 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1883 * @bio is not freed before the split.
1884 */
1885 struct bio *bio_split(struct bio *bio, int sectors,
1886 gfp_t gfp, struct bio_set *bs)
1887 {
1888 struct bio *split = NULL;
1889
1890 BUG_ON(sectors <= 0);
1891 BUG_ON(sectors >= bio_sectors(bio));
1892
1893 split = bio_clone_fast(bio, gfp, bs);
1894 if (!split)
1895 return NULL;
1896
1897 split->bi_iter.bi_size = sectors << 9;
1898
1899 if (bio_integrity(split))
1900 bio_integrity_trim(split);
1901
1902 bio_advance(bio, split->bi_iter.bi_size);
1903 bio->bi_iter.bi_done = 0;
1904
1905 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1906 bio_set_flag(split, BIO_TRACE_COMPLETION);
1907
1908 return split;
1909 }
1910 EXPORT_SYMBOL(bio_split);
1911
1912 /**
1913 * bio_trim - trim a bio
1914 * @bio: bio to trim
1915 * @offset: number of sectors to trim from the front of @bio
1916 * @size: size we want to trim @bio to, in sectors
1917 */
1918 void bio_trim(struct bio *bio, int offset, int size)
1919 {
1920 /* 'bio' is a cloned bio which we need to trim to match
1921 * the given offset and size.
1922 */
1923
1924 size <<= 9;
1925 if (offset == 0 && size == bio->bi_iter.bi_size)
1926 return;
1927
1928 bio_clear_flag(bio, BIO_SEG_VALID);
1929
1930 bio_advance(bio, offset << 9);
1931
1932 bio->bi_iter.bi_size = size;
1933
1934 if (bio_integrity(bio))
1935 bio_integrity_trim(bio);
1936
1937 }
1938 EXPORT_SYMBOL_GPL(bio_trim);
1939
1940 /*
1941 * create memory pools for biovec's in a bio_set.
1942 * use the global biovec slabs created for general use.
1943 */
1944 mempool_t *biovec_create_pool(int pool_entries)
1945 {
1946 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1947
1948 return mempool_create_slab_pool(pool_entries, bp->slab);
1949 }
1950
1951 void bioset_free(struct bio_set *bs)
1952 {
1953 if (bs->rescue_workqueue)
1954 destroy_workqueue(bs->rescue_workqueue);
1955
1956 if (bs->bio_pool)
1957 mempool_destroy(bs->bio_pool);
1958
1959 if (bs->bvec_pool)
1960 mempool_destroy(bs->bvec_pool);
1961
1962 bioset_integrity_free(bs);
1963 bio_put_slab(bs);
1964
1965 kfree(bs);
1966 }
1967 EXPORT_SYMBOL(bioset_free);
1968
1969 /**
1970 * bioset_create - Create a bio_set
1971 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1972 * @front_pad: Number of bytes to allocate in front of the returned bio
1973 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1974 * and %BIOSET_NEED_RESCUER
1975 *
1976 * Description:
1977 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1978 * to ask for a number of bytes to be allocated in front of the bio.
1979 * Front pad allocation is useful for embedding the bio inside
1980 * another structure, to avoid allocating extra data to go with the bio.
1981 * Note that the bio must be embedded at the END of that structure always,
1982 * or things will break badly.
1983 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1984 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1985 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1986 * dispatch queued requests when the mempool runs out of space.
1987 *
1988 */
1989 struct bio_set *bioset_create(unsigned int pool_size,
1990 unsigned int front_pad,
1991 int flags)
1992 {
1993 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1994 struct bio_set *bs;
1995
1996 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1997 if (!bs)
1998 return NULL;
1999
2000 bs->front_pad = front_pad;
2001
2002 spin_lock_init(&bs->rescue_lock);
2003 bio_list_init(&bs->rescue_list);
2004 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2005
2006 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2007 if (!bs->bio_slab) {
2008 kfree(bs);
2009 return NULL;
2010 }
2011
2012 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
2013 if (!bs->bio_pool)
2014 goto bad;
2015
2016 if (flags & BIOSET_NEED_BVECS) {
2017 bs->bvec_pool = biovec_create_pool(pool_size);
2018 if (!bs->bvec_pool)
2019 goto bad;
2020 }
2021
2022 if (!(flags & BIOSET_NEED_RESCUER))
2023 return bs;
2024
2025 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2026 if (!bs->rescue_workqueue)
2027 goto bad;
2028
2029 return bs;
2030 bad:
2031 bioset_free(bs);
2032 return NULL;
2033 }
2034 EXPORT_SYMBOL(bioset_create);
2035
2036 #ifdef CONFIG_BLK_CGROUP
2037
2038 /**
2039 * bio_associate_blkcg - associate a bio with the specified blkcg
2040 * @bio: target bio
2041 * @blkcg_css: css of the blkcg to associate
2042 *
2043 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2044 * treat @bio as if it were issued by a task which belongs to the blkcg.
2045 *
2046 * This function takes an extra reference of @blkcg_css which will be put
2047 * when @bio is released. The caller must own @bio and is responsible for
2048 * synchronizing calls to this function.
2049 */
2050 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2051 {
2052 if (unlikely(bio->bi_css))
2053 return -EBUSY;
2054 css_get(blkcg_css);
2055 bio->bi_css = blkcg_css;
2056 return 0;
2057 }
2058 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2059
2060 /**
2061 * bio_associate_current - associate a bio with %current
2062 * @bio: target bio
2063 *
2064 * Associate @bio with %current if it hasn't been associated yet. Block
2065 * layer will treat @bio as if it were issued by %current no matter which
2066 * task actually issues it.
2067 *
2068 * This function takes an extra reference of @task's io_context and blkcg
2069 * which will be put when @bio is released. The caller must own @bio,
2070 * ensure %current->io_context exists, and is responsible for synchronizing
2071 * calls to this function.
2072 */
2073 int bio_associate_current(struct bio *bio)
2074 {
2075 struct io_context *ioc;
2076
2077 if (bio->bi_css)
2078 return -EBUSY;
2079
2080 ioc = current->io_context;
2081 if (!ioc)
2082 return -ENOENT;
2083
2084 get_io_context_active(ioc);
2085 bio->bi_ioc = ioc;
2086 bio->bi_css = task_get_css(current, io_cgrp_id);
2087 return 0;
2088 }
2089 EXPORT_SYMBOL_GPL(bio_associate_current);
2090
2091 /**
2092 * bio_disassociate_task - undo bio_associate_current()
2093 * @bio: target bio
2094 */
2095 void bio_disassociate_task(struct bio *bio)
2096 {
2097 if (bio->bi_ioc) {
2098 put_io_context(bio->bi_ioc);
2099 bio->bi_ioc = NULL;
2100 }
2101 if (bio->bi_css) {
2102 css_put(bio->bi_css);
2103 bio->bi_css = NULL;
2104 }
2105 }
2106
2107 /**
2108 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2109 * @dst: destination bio
2110 * @src: source bio
2111 */
2112 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2113 {
2114 if (src->bi_css)
2115 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2116 }
2117 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2118 #endif /* CONFIG_BLK_CGROUP */
2119
2120 static void __init biovec_init_slabs(void)
2121 {
2122 int i;
2123
2124 for (i = 0; i < BVEC_POOL_NR; i++) {
2125 int size;
2126 struct biovec_slab *bvs = bvec_slabs + i;
2127
2128 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2129 bvs->slab = NULL;
2130 continue;
2131 }
2132
2133 size = bvs->nr_vecs * sizeof(struct bio_vec);
2134 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2135 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2136 }
2137 }
2138
2139 static int __init init_bio(void)
2140 {
2141 bio_slab_max = 2;
2142 bio_slab_nr = 0;
2143 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2144 if (!bio_slabs)
2145 panic("bio: can't allocate bios\n");
2146
2147 bio_integrity_init();
2148 biovec_init_slabs();
2149
2150 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2151 if (!fs_bio_set)
2152 panic("bio: can't allocate bios\n");
2153
2154 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2155 panic("bio: can't create integrity pool\n");
2156
2157 return 0;
2158 }
2159 subsys_initcall(init_bio);