Merge 4.9.323 into android-4.9-q
[GitHub/LineageOS/G12/android_kernel_amlogic_linux-4.9.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33
34 /*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38 #define BIO_INLINE_VECS 4
39
40 /*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
46 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
47 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
48 };
49 #undef BV
50
51 /*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57
58 /*
59 * Our slab pool management
60 */
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125 }
126
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152 out:
153 mutex_unlock(&bio_slab_lock);
154 }
155
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 return bvec_slabs[--idx].nr_vecs;
159 }
160
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 if (!idx)
164 return;
165 idx--;
166
167 BIO_BUG_ON(idx >= BVEC_POOL_NR);
168
169 if (idx == BVEC_POOL_MAX) {
170 mempool_free(bv, pool);
171 } else {
172 struct biovec_slab *bvs = bvec_slabs + idx;
173
174 kmem_cache_free(bvs->slab, bv);
175 }
176 }
177
178 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
179 mempool_t *pool)
180 {
181 struct bio_vec *bvl;
182
183 /*
184 * see comment near bvec_array define!
185 */
186 switch (nr) {
187 case 1:
188 *idx = 0;
189 break;
190 case 2 ... 4:
191 *idx = 1;
192 break;
193 case 5 ... 16:
194 *idx = 2;
195 break;
196 case 17 ... 64:
197 *idx = 3;
198 break;
199 case 65 ... 128:
200 *idx = 4;
201 break;
202 case 129 ... BIO_MAX_PAGES:
203 *idx = 5;
204 break;
205 default:
206 return NULL;
207 }
208
209 /*
210 * idx now points to the pool we want to allocate from. only the
211 * 1-vec entry pool is mempool backed.
212 */
213 if (*idx == BVEC_POOL_MAX) {
214 fallback:
215 bvl = mempool_alloc(pool, gfp_mask);
216 } else {
217 struct biovec_slab *bvs = bvec_slabs + *idx;
218 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
219
220 /*
221 * Make this allocation restricted and don't dump info on
222 * allocation failures, since we'll fallback to the mempool
223 * in case of failure.
224 */
225 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
226
227 /*
228 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
229 * is set, retry with the 1-entry mempool
230 */
231 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
232 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
233 *idx = BVEC_POOL_MAX;
234 goto fallback;
235 }
236 }
237
238 (*idx)++;
239 return bvl;
240 }
241
242 static void __bio_free(struct bio *bio)
243 {
244 bio_disassociate_task(bio);
245
246 if (bio_integrity(bio))
247 bio_integrity_free(bio);
248 }
249
250 static void bio_free(struct bio *bio)
251 {
252 struct bio_set *bs = bio->bi_pool;
253 void *p;
254
255 __bio_free(bio);
256
257 if (bs) {
258 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
259
260 /*
261 * If we have front padding, adjust the bio pointer before freeing
262 */
263 p = bio;
264 p -= bs->front_pad;
265
266 mempool_free(p, bs->bio_pool);
267 } else {
268 /* Bio was allocated by bio_kmalloc() */
269 kfree(bio);
270 }
271 }
272
273 void bio_init(struct bio *bio)
274 {
275 memset(bio, 0, sizeof(*bio));
276 atomic_set(&bio->__bi_remaining, 1);
277 atomic_set(&bio->__bi_cnt, 1);
278 }
279 EXPORT_SYMBOL(bio_init);
280
281 /**
282 * bio_reset - reinitialize a bio
283 * @bio: bio to reset
284 *
285 * Description:
286 * After calling bio_reset(), @bio will be in the same state as a freshly
287 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
288 * preserved are the ones that are initialized by bio_alloc_bioset(). See
289 * comment in struct bio.
290 */
291 void bio_reset(struct bio *bio)
292 {
293 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
294
295 __bio_free(bio);
296
297 memset(bio, 0, BIO_RESET_BYTES);
298 bio->bi_flags = flags;
299 atomic_set(&bio->__bi_remaining, 1);
300 }
301 EXPORT_SYMBOL(bio_reset);
302
303 static struct bio *__bio_chain_endio(struct bio *bio)
304 {
305 struct bio *parent = bio->bi_private;
306
307 if (!parent->bi_error)
308 parent->bi_error = bio->bi_error;
309 bio_put(bio);
310 return parent;
311 }
312
313 static void bio_chain_endio(struct bio *bio)
314 {
315 bio_endio(__bio_chain_endio(bio));
316 }
317
318 /**
319 * bio_chain - chain bio completions
320 * @bio: the target bio
321 * @parent: the @bio's parent bio
322 *
323 * The caller won't have a bi_end_io called when @bio completes - instead,
324 * @parent's bi_end_io won't be called until both @parent and @bio have
325 * completed; the chained bio will also be freed when it completes.
326 *
327 * The caller must not set bi_private or bi_end_io in @bio.
328 */
329 void bio_chain(struct bio *bio, struct bio *parent)
330 {
331 BUG_ON(bio->bi_private || bio->bi_end_io);
332
333 bio->bi_private = parent;
334 bio->bi_end_io = bio_chain_endio;
335 bio_inc_remaining(parent);
336 }
337 EXPORT_SYMBOL(bio_chain);
338
339 static void bio_alloc_rescue(struct work_struct *work)
340 {
341 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
342 struct bio *bio;
343
344 while (1) {
345 spin_lock(&bs->rescue_lock);
346 bio = bio_list_pop(&bs->rescue_list);
347 spin_unlock(&bs->rescue_lock);
348
349 if (!bio)
350 break;
351
352 generic_make_request(bio);
353 }
354 }
355
356 static void punt_bios_to_rescuer(struct bio_set *bs)
357 {
358 struct bio_list punt, nopunt;
359 struct bio *bio;
360
361 /*
362 * In order to guarantee forward progress we must punt only bios that
363 * were allocated from this bio_set; otherwise, if there was a bio on
364 * there for a stacking driver higher up in the stack, processing it
365 * could require allocating bios from this bio_set, and doing that from
366 * our own rescuer would be bad.
367 *
368 * Since bio lists are singly linked, pop them all instead of trying to
369 * remove from the middle of the list:
370 */
371
372 bio_list_init(&punt);
373 bio_list_init(&nopunt);
374
375 while ((bio = bio_list_pop(&current->bio_list[0])))
376 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
377 current->bio_list[0] = nopunt;
378
379 bio_list_init(&nopunt);
380 while ((bio = bio_list_pop(&current->bio_list[1])))
381 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
382 current->bio_list[1] = nopunt;
383
384 spin_lock(&bs->rescue_lock);
385 bio_list_merge(&bs->rescue_list, &punt);
386 spin_unlock(&bs->rescue_lock);
387
388 queue_work(bs->rescue_workqueue, &bs->rescue_work);
389 }
390
391 /**
392 * bio_alloc_bioset - allocate a bio for I/O
393 * @gfp_mask: the GFP_ mask given to the slab allocator
394 * @nr_iovecs: number of iovecs to pre-allocate
395 * @bs: the bio_set to allocate from.
396 *
397 * Description:
398 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
399 * backed by the @bs's mempool.
400 *
401 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
402 * always be able to allocate a bio. This is due to the mempool guarantees.
403 * To make this work, callers must never allocate more than 1 bio at a time
404 * from this pool. Callers that need to allocate more than 1 bio must always
405 * submit the previously allocated bio for IO before attempting to allocate
406 * a new one. Failure to do so can cause deadlocks under memory pressure.
407 *
408 * Note that when running under generic_make_request() (i.e. any block
409 * driver), bios are not submitted until after you return - see the code in
410 * generic_make_request() that converts recursion into iteration, to prevent
411 * stack overflows.
412 *
413 * This would normally mean allocating multiple bios under
414 * generic_make_request() would be susceptible to deadlocks, but we have
415 * deadlock avoidance code that resubmits any blocked bios from a rescuer
416 * thread.
417 *
418 * However, we do not guarantee forward progress for allocations from other
419 * mempools. Doing multiple allocations from the same mempool under
420 * generic_make_request() should be avoided - instead, use bio_set's front_pad
421 * for per bio allocations.
422 *
423 * RETURNS:
424 * Pointer to new bio on success, NULL on failure.
425 */
426 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
427 {
428 gfp_t saved_gfp = gfp_mask;
429 unsigned front_pad;
430 unsigned inline_vecs;
431 struct bio_vec *bvl = NULL;
432 struct bio *bio;
433 void *p;
434
435 if (!bs) {
436 if (nr_iovecs > UIO_MAXIOV)
437 return NULL;
438
439 p = kmalloc(sizeof(struct bio) +
440 nr_iovecs * sizeof(struct bio_vec),
441 gfp_mask);
442 front_pad = 0;
443 inline_vecs = nr_iovecs;
444 } else {
445 /* should not use nobvec bioset for nr_iovecs > 0 */
446 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
447 return NULL;
448 /*
449 * generic_make_request() converts recursion to iteration; this
450 * means if we're running beneath it, any bios we allocate and
451 * submit will not be submitted (and thus freed) until after we
452 * return.
453 *
454 * This exposes us to a potential deadlock if we allocate
455 * multiple bios from the same bio_set() while running
456 * underneath generic_make_request(). If we were to allocate
457 * multiple bios (say a stacking block driver that was splitting
458 * bios), we would deadlock if we exhausted the mempool's
459 * reserve.
460 *
461 * We solve this, and guarantee forward progress, with a rescuer
462 * workqueue per bio_set. If we go to allocate and there are
463 * bios on current->bio_list, we first try the allocation
464 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
465 * bios we would be blocking to the rescuer workqueue before
466 * we retry with the original gfp_flags.
467 */
468
469 if (current->bio_list &&
470 (!bio_list_empty(&current->bio_list[0]) ||
471 !bio_list_empty(&current->bio_list[1])))
472 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
473
474 p = mempool_alloc(bs->bio_pool, gfp_mask);
475 if (!p && gfp_mask != saved_gfp) {
476 punt_bios_to_rescuer(bs);
477 gfp_mask = saved_gfp;
478 p = mempool_alloc(bs->bio_pool, gfp_mask);
479 }
480
481 front_pad = bs->front_pad;
482 inline_vecs = BIO_INLINE_VECS;
483 }
484
485 if (unlikely(!p))
486 return NULL;
487
488 bio = p + front_pad;
489 bio_init(bio);
490
491 if (nr_iovecs > inline_vecs) {
492 unsigned long idx = 0;
493
494 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
495 if (!bvl && gfp_mask != saved_gfp) {
496 punt_bios_to_rescuer(bs);
497 gfp_mask = saved_gfp;
498 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
499 }
500
501 if (unlikely(!bvl))
502 goto err_free;
503
504 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
505 } else if (nr_iovecs) {
506 bvl = bio->bi_inline_vecs;
507 }
508
509 bio->bi_pool = bs;
510 bio->bi_max_vecs = nr_iovecs;
511 bio->bi_io_vec = bvl;
512 return bio;
513
514 err_free:
515 mempool_free(p, bs->bio_pool);
516 return NULL;
517 }
518 EXPORT_SYMBOL(bio_alloc_bioset);
519
520 void zero_fill_bio(struct bio *bio)
521 {
522 unsigned long flags;
523 struct bio_vec bv;
524 struct bvec_iter iter;
525
526 bio_for_each_segment(bv, bio, iter) {
527 char *data = bvec_kmap_irq(&bv, &flags);
528 memset(data, 0, bv.bv_len);
529 flush_dcache_page(bv.bv_page);
530 bvec_kunmap_irq(data, &flags);
531 }
532 }
533 EXPORT_SYMBOL(zero_fill_bio);
534
535 /**
536 * bio_put - release a reference to a bio
537 * @bio: bio to release reference to
538 *
539 * Description:
540 * Put a reference to a &struct bio, either one you have gotten with
541 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
542 **/
543 void bio_put(struct bio *bio)
544 {
545 if (!bio_flagged(bio, BIO_REFFED))
546 bio_free(bio);
547 else {
548 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
549
550 /*
551 * last put frees it
552 */
553 if (atomic_dec_and_test(&bio->__bi_cnt))
554 bio_free(bio);
555 }
556 }
557 EXPORT_SYMBOL(bio_put);
558
559 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
560 {
561 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
562 blk_recount_segments(q, bio);
563
564 return bio->bi_phys_segments;
565 }
566 EXPORT_SYMBOL(bio_phys_segments);
567
568 /**
569 * __bio_clone_fast - clone a bio that shares the original bio's biovec
570 * @bio: destination bio
571 * @bio_src: bio to clone
572 *
573 * Clone a &bio. Caller will own the returned bio, but not
574 * the actual data it points to. Reference count of returned
575 * bio will be one.
576 *
577 * Caller must ensure that @bio_src is not freed before @bio.
578 */
579 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
580 {
581 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
582
583 /*
584 * most users will be overriding ->bi_bdev with a new target,
585 * so we don't set nor calculate new physical/hw segment counts here
586 */
587 bio->bi_bdev = bio_src->bi_bdev;
588 bio_set_flag(bio, BIO_CLONED);
589 bio->bi_opf = bio_src->bi_opf;
590 bio->bi_iter = bio_src->bi_iter;
591 bio->bi_io_vec = bio_src->bi_io_vec;
592
593 bio_clone_blkcg_association(bio, bio_src);
594 }
595 EXPORT_SYMBOL(__bio_clone_fast);
596
597 /**
598 * bio_clone_fast - clone a bio that shares the original bio's biovec
599 * @bio: bio to clone
600 * @gfp_mask: allocation priority
601 * @bs: bio_set to allocate from
602 *
603 * Like __bio_clone_fast, only also allocates the returned bio
604 */
605 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
606 {
607 struct bio *b;
608
609 b = bio_alloc_bioset(gfp_mask, 0, bs);
610 if (!b)
611 return NULL;
612
613 __bio_clone_fast(b, bio);
614
615 if (bio_integrity(bio)) {
616 int ret;
617
618 ret = bio_integrity_clone(b, bio, gfp_mask);
619
620 if (ret < 0) {
621 bio_put(b);
622 return NULL;
623 }
624 }
625
626 return b;
627 }
628 EXPORT_SYMBOL(bio_clone_fast);
629
630 /**
631 * bio_clone_bioset - clone a bio
632 * @bio_src: bio to clone
633 * @gfp_mask: allocation priority
634 * @bs: bio_set to allocate from
635 *
636 * Clone bio. Caller will own the returned bio, but not the actual data it
637 * points to. Reference count of returned bio will be one.
638 */
639 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
640 struct bio_set *bs)
641 {
642 struct bvec_iter iter;
643 struct bio_vec bv;
644 struct bio *bio;
645
646 /*
647 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
648 * bio_src->bi_io_vec to bio->bi_io_vec.
649 *
650 * We can't do that anymore, because:
651 *
652 * - The point of cloning the biovec is to produce a bio with a biovec
653 * the caller can modify: bi_idx and bi_bvec_done should be 0.
654 *
655 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
656 * we tried to clone the whole thing bio_alloc_bioset() would fail.
657 * But the clone should succeed as long as the number of biovecs we
658 * actually need to allocate is fewer than BIO_MAX_PAGES.
659 *
660 * - Lastly, bi_vcnt should not be looked at or relied upon by code
661 * that does not own the bio - reason being drivers don't use it for
662 * iterating over the biovec anymore, so expecting it to be kept up
663 * to date (i.e. for clones that share the parent biovec) is just
664 * asking for trouble and would force extra work on
665 * __bio_clone_fast() anyways.
666 */
667
668 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
669 if (!bio)
670 return NULL;
671 bio->bi_bdev = bio_src->bi_bdev;
672 bio->bi_opf = bio_src->bi_opf;
673 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
674 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
675
676 switch (bio_op(bio)) {
677 case REQ_OP_DISCARD:
678 case REQ_OP_SECURE_ERASE:
679 break;
680 case REQ_OP_WRITE_SAME:
681 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
682 break;
683 default:
684 bio_for_each_segment(bv, bio_src, iter)
685 bio->bi_io_vec[bio->bi_vcnt++] = bv;
686 break;
687 }
688
689 if (bio_integrity(bio_src)) {
690 int ret;
691
692 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
693 if (ret < 0) {
694 bio_put(bio);
695 return NULL;
696 }
697 }
698
699 bio_clone_blkcg_association(bio, bio_src);
700
701 return bio;
702 }
703 EXPORT_SYMBOL(bio_clone_bioset);
704
705 /**
706 * bio_add_pc_page - attempt to add page to bio
707 * @q: the target queue
708 * @bio: destination bio
709 * @page: page to add
710 * @len: vec entry length
711 * @offset: vec entry offset
712 *
713 * Attempt to add a page to the bio_vec maplist. This can fail for a
714 * number of reasons, such as the bio being full or target block device
715 * limitations. The target block device must allow bio's up to PAGE_SIZE,
716 * so it is always possible to add a single page to an empty bio.
717 *
718 * This should only be used by REQ_PC bios.
719 */
720 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
721 *page, unsigned int len, unsigned int offset)
722 {
723 int retried_segments = 0;
724 struct bio_vec *bvec;
725
726 /*
727 * cloned bio must not modify vec list
728 */
729 if (unlikely(bio_flagged(bio, BIO_CLONED)))
730 return 0;
731
732 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
733 return 0;
734
735 /*
736 * For filesystems with a blocksize smaller than the pagesize
737 * we will often be called with the same page as last time and
738 * a consecutive offset. Optimize this special case.
739 */
740 if (bio->bi_vcnt > 0) {
741 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
742
743 if (page == prev->bv_page &&
744 offset == prev->bv_offset + prev->bv_len) {
745 prev->bv_len += len;
746 bio->bi_iter.bi_size += len;
747 goto done;
748 }
749
750 /*
751 * If the queue doesn't support SG gaps and adding this
752 * offset would create a gap, disallow it.
753 */
754 if (bvec_gap_to_prev(q, prev, offset))
755 return 0;
756 }
757
758 if (bio->bi_vcnt >= bio->bi_max_vecs)
759 return 0;
760
761 /*
762 * setup the new entry, we might clear it again later if we
763 * cannot add the page
764 */
765 bvec = &bio->bi_io_vec[bio->bi_vcnt];
766 bvec->bv_page = page;
767 bvec->bv_len = len;
768 bvec->bv_offset = offset;
769 bio->bi_vcnt++;
770 bio->bi_phys_segments++;
771 bio->bi_iter.bi_size += len;
772
773 /*
774 * Perform a recount if the number of segments is greater
775 * than queue_max_segments(q).
776 */
777
778 while (bio->bi_phys_segments > queue_max_segments(q)) {
779
780 if (retried_segments)
781 goto failed;
782
783 retried_segments = 1;
784 blk_recount_segments(q, bio);
785 }
786
787 /* If we may be able to merge these biovecs, force a recount */
788 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
789 bio_clear_flag(bio, BIO_SEG_VALID);
790
791 done:
792 return len;
793
794 failed:
795 bvec->bv_page = NULL;
796 bvec->bv_len = 0;
797 bvec->bv_offset = 0;
798 bio->bi_vcnt--;
799 bio->bi_iter.bi_size -= len;
800 blk_recount_segments(q, bio);
801 return 0;
802 }
803 EXPORT_SYMBOL(bio_add_pc_page);
804
805 /**
806 * bio_add_page - attempt to add page to bio
807 * @bio: destination bio
808 * @page: page to add
809 * @len: vec entry length
810 * @offset: vec entry offset
811 *
812 * Attempt to add a page to the bio_vec maplist. This will only fail
813 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
814 */
815 int bio_add_page(struct bio *bio, struct page *page,
816 unsigned int len, unsigned int offset)
817 {
818 struct bio_vec *bv;
819
820 /*
821 * cloned bio must not modify vec list
822 */
823 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
824 return 0;
825
826 /*
827 * For filesystems with a blocksize smaller than the pagesize
828 * we will often be called with the same page as last time and
829 * a consecutive offset. Optimize this special case.
830 */
831 if (bio->bi_vcnt > 0) {
832 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
833
834 if (page == bv->bv_page &&
835 offset == bv->bv_offset + bv->bv_len) {
836 bv->bv_len += len;
837 goto done;
838 }
839 }
840
841 if (bio->bi_vcnt >= bio->bi_max_vecs)
842 return 0;
843
844 bv = &bio->bi_io_vec[bio->bi_vcnt];
845 bv->bv_page = page;
846 bv->bv_len = len;
847 bv->bv_offset = offset;
848
849 bio->bi_vcnt++;
850 done:
851 bio->bi_iter.bi_size += len;
852
853 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
854 bio_set_flag(bio, BIO_WORKINGSET);
855 return len;
856 }
857 EXPORT_SYMBOL(bio_add_page);
858
859 struct submit_bio_ret {
860 struct completion event;
861 int error;
862 };
863
864 static void submit_bio_wait_endio(struct bio *bio)
865 {
866 struct submit_bio_ret *ret = bio->bi_private;
867
868 ret->error = bio->bi_error;
869 complete(&ret->event);
870 }
871
872 /**
873 * submit_bio_wait - submit a bio, and wait until it completes
874 * @bio: The &struct bio which describes the I/O
875 *
876 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
877 * bio_endio() on failure.
878 */
879 int submit_bio_wait(struct bio *bio)
880 {
881 struct submit_bio_ret ret;
882
883 init_completion(&ret.event);
884 bio->bi_private = &ret;
885 bio->bi_end_io = submit_bio_wait_endio;
886 bio->bi_opf |= REQ_SYNC;
887 submit_bio(bio);
888 wait_for_completion_io(&ret.event);
889
890 return ret.error;
891 }
892 EXPORT_SYMBOL(submit_bio_wait);
893
894 /**
895 * bio_advance - increment/complete a bio by some number of bytes
896 * @bio: bio to advance
897 * @bytes: number of bytes to complete
898 *
899 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
900 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
901 * be updated on the last bvec as well.
902 *
903 * @bio will then represent the remaining, uncompleted portion of the io.
904 */
905 void bio_advance(struct bio *bio, unsigned bytes)
906 {
907 if (bio_integrity(bio))
908 bio_integrity_advance(bio, bytes);
909
910 bio_advance_iter(bio, &bio->bi_iter, bytes);
911 }
912 EXPORT_SYMBOL(bio_advance);
913
914 /**
915 * bio_alloc_pages - allocates a single page for each bvec in a bio
916 * @bio: bio to allocate pages for
917 * @gfp_mask: flags for allocation
918 *
919 * Allocates pages up to @bio->bi_vcnt.
920 *
921 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
922 * freed.
923 */
924 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
925 {
926 int i;
927 struct bio_vec *bv;
928
929 bio_for_each_segment_all(bv, bio, i) {
930 bv->bv_page = alloc_page(gfp_mask);
931 if (!bv->bv_page) {
932 while (--bv >= bio->bi_io_vec)
933 __free_page(bv->bv_page);
934 return -ENOMEM;
935 }
936 }
937
938 return 0;
939 }
940 EXPORT_SYMBOL(bio_alloc_pages);
941
942 /**
943 * bio_copy_data - copy contents of data buffers from one chain of bios to
944 * another
945 * @src: source bio list
946 * @dst: destination bio list
947 *
948 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
949 * @src and @dst as linked lists of bios.
950 *
951 * Stops when it reaches the end of either @src or @dst - that is, copies
952 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
953 */
954 void bio_copy_data(struct bio *dst, struct bio *src)
955 {
956 struct bvec_iter src_iter, dst_iter;
957 struct bio_vec src_bv, dst_bv;
958 void *src_p, *dst_p;
959 unsigned bytes;
960
961 src_iter = src->bi_iter;
962 dst_iter = dst->bi_iter;
963
964 while (1) {
965 if (!src_iter.bi_size) {
966 src = src->bi_next;
967 if (!src)
968 break;
969
970 src_iter = src->bi_iter;
971 }
972
973 if (!dst_iter.bi_size) {
974 dst = dst->bi_next;
975 if (!dst)
976 break;
977
978 dst_iter = dst->bi_iter;
979 }
980
981 src_bv = bio_iter_iovec(src, src_iter);
982 dst_bv = bio_iter_iovec(dst, dst_iter);
983
984 bytes = min(src_bv.bv_len, dst_bv.bv_len);
985
986 src_p = kmap_atomic(src_bv.bv_page);
987 dst_p = kmap_atomic(dst_bv.bv_page);
988
989 memcpy(dst_p + dst_bv.bv_offset,
990 src_p + src_bv.bv_offset,
991 bytes);
992
993 kunmap_atomic(dst_p);
994 kunmap_atomic(src_p);
995
996 bio_advance_iter(src, &src_iter, bytes);
997 bio_advance_iter(dst, &dst_iter, bytes);
998 }
999 }
1000 EXPORT_SYMBOL(bio_copy_data);
1001
1002 struct bio_map_data {
1003 int is_our_pages;
1004 struct iov_iter iter;
1005 struct iovec iov[];
1006 };
1007
1008 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1009 gfp_t gfp_mask)
1010 {
1011 if (iov_count > UIO_MAXIOV)
1012 return NULL;
1013
1014 return kmalloc(sizeof(struct bio_map_data) +
1015 sizeof(struct iovec) * iov_count, gfp_mask);
1016 }
1017
1018 /**
1019 * bio_copy_from_iter - copy all pages from iov_iter to bio
1020 * @bio: The &struct bio which describes the I/O as destination
1021 * @iter: iov_iter as source
1022 *
1023 * Copy all pages from iov_iter to bio.
1024 * Returns 0 on success, or error on failure.
1025 */
1026 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1027 {
1028 int i;
1029 struct bio_vec *bvec;
1030
1031 bio_for_each_segment_all(bvec, bio, i) {
1032 ssize_t ret;
1033
1034 ret = copy_page_from_iter(bvec->bv_page,
1035 bvec->bv_offset,
1036 bvec->bv_len,
1037 &iter);
1038
1039 if (!iov_iter_count(&iter))
1040 break;
1041
1042 if (ret < bvec->bv_len)
1043 return -EFAULT;
1044 }
1045
1046 return 0;
1047 }
1048
1049 /**
1050 * bio_copy_to_iter - copy all pages from bio to iov_iter
1051 * @bio: The &struct bio which describes the I/O as source
1052 * @iter: iov_iter as destination
1053 *
1054 * Copy all pages from bio to iov_iter.
1055 * Returns 0 on success, or error on failure.
1056 */
1057 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1058 {
1059 int i;
1060 struct bio_vec *bvec;
1061
1062 bio_for_each_segment_all(bvec, bio, i) {
1063 ssize_t ret;
1064
1065 ret = copy_page_to_iter(bvec->bv_page,
1066 bvec->bv_offset,
1067 bvec->bv_len,
1068 &iter);
1069
1070 if (!iov_iter_count(&iter))
1071 break;
1072
1073 if (ret < bvec->bv_len)
1074 return -EFAULT;
1075 }
1076
1077 return 0;
1078 }
1079
1080 void bio_free_pages(struct bio *bio)
1081 {
1082 struct bio_vec *bvec;
1083 int i;
1084
1085 bio_for_each_segment_all(bvec, bio, i)
1086 __free_page(bvec->bv_page);
1087 }
1088 EXPORT_SYMBOL(bio_free_pages);
1089
1090 /**
1091 * bio_uncopy_user - finish previously mapped bio
1092 * @bio: bio being terminated
1093 *
1094 * Free pages allocated from bio_copy_user_iov() and write back data
1095 * to user space in case of a read.
1096 */
1097 int bio_uncopy_user(struct bio *bio)
1098 {
1099 struct bio_map_data *bmd = bio->bi_private;
1100 int ret = 0;
1101
1102 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1103 /*
1104 * if we're in a workqueue, the request is orphaned, so
1105 * don't copy into a random user address space, just free
1106 * and return -EINTR so user space doesn't expect any data.
1107 */
1108 if (!current->mm)
1109 ret = -EINTR;
1110 else if (bio_data_dir(bio) == READ)
1111 ret = bio_copy_to_iter(bio, bmd->iter);
1112 if (bmd->is_our_pages)
1113 bio_free_pages(bio);
1114 }
1115 kfree(bmd);
1116 bio_put(bio);
1117 return ret;
1118 }
1119
1120 /**
1121 * bio_copy_user_iov - copy user data to bio
1122 * @q: destination block queue
1123 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1124 * @iter: iovec iterator
1125 * @gfp_mask: memory allocation flags
1126 *
1127 * Prepares and returns a bio for indirect user io, bouncing data
1128 * to/from kernel pages as necessary. Must be paired with
1129 * call bio_uncopy_user() on io completion.
1130 */
1131 struct bio *bio_copy_user_iov(struct request_queue *q,
1132 struct rq_map_data *map_data,
1133 const struct iov_iter *iter,
1134 gfp_t gfp_mask)
1135 {
1136 struct bio_map_data *bmd;
1137 struct page *page;
1138 struct bio *bio;
1139 int i, ret;
1140 int nr_pages = 0;
1141 unsigned int len = iter->count;
1142 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1143
1144 for (i = 0; i < iter->nr_segs; i++) {
1145 unsigned long uaddr;
1146 unsigned long end;
1147 unsigned long start;
1148
1149 uaddr = (unsigned long) iter->iov[i].iov_base;
1150 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1151 >> PAGE_SHIFT;
1152 start = uaddr >> PAGE_SHIFT;
1153
1154 /*
1155 * Overflow, abort
1156 */
1157 if (end < start)
1158 return ERR_PTR(-EINVAL);
1159
1160 nr_pages += end - start;
1161 }
1162
1163 if (offset)
1164 nr_pages++;
1165
1166 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1167 if (!bmd)
1168 return ERR_PTR(-ENOMEM);
1169
1170 /*
1171 * We need to do a deep copy of the iov_iter including the iovecs.
1172 * The caller provided iov might point to an on-stack or otherwise
1173 * shortlived one.
1174 */
1175 bmd->is_our_pages = map_data ? 0 : 1;
1176 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1177 bmd->iter = *iter;
1178 bmd->iter.iov = bmd->iov;
1179
1180 ret = -ENOMEM;
1181 bio = bio_kmalloc(gfp_mask, nr_pages);
1182 if (!bio)
1183 goto out_bmd;
1184
1185 if (iter->type & WRITE)
1186 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1187
1188 ret = 0;
1189
1190 if (map_data) {
1191 nr_pages = 1 << map_data->page_order;
1192 i = map_data->offset / PAGE_SIZE;
1193 }
1194 while (len) {
1195 unsigned int bytes = PAGE_SIZE;
1196
1197 bytes -= offset;
1198
1199 if (bytes > len)
1200 bytes = len;
1201
1202 if (map_data) {
1203 if (i == map_data->nr_entries * nr_pages) {
1204 ret = -ENOMEM;
1205 break;
1206 }
1207
1208 page = map_data->pages[i / nr_pages];
1209 page += (i % nr_pages);
1210
1211 i++;
1212 } else {
1213 page = alloc_page(q->bounce_gfp | gfp_mask);
1214 if (!page) {
1215 ret = -ENOMEM;
1216 break;
1217 }
1218 }
1219
1220 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1221 if (!map_data)
1222 __free_page(page);
1223 break;
1224 }
1225
1226 len -= bytes;
1227 offset = 0;
1228 }
1229
1230 if (ret)
1231 goto cleanup;
1232
1233 /*
1234 * success
1235 */
1236 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1237 (map_data && map_data->from_user)) {
1238 ret = bio_copy_from_iter(bio, *iter);
1239 if (ret)
1240 goto cleanup;
1241 }
1242
1243 bio->bi_private = bmd;
1244 return bio;
1245 cleanup:
1246 if (!map_data)
1247 bio_free_pages(bio);
1248 bio_put(bio);
1249 out_bmd:
1250 kfree(bmd);
1251 return ERR_PTR(ret);
1252 }
1253
1254 /**
1255 * bio_map_user_iov - map user iovec into bio
1256 * @q: the struct request_queue for the bio
1257 * @iter: iovec iterator
1258 * @gfp_mask: memory allocation flags
1259 *
1260 * Map the user space address into a bio suitable for io to a block
1261 * device. Returns an error pointer in case of error.
1262 */
1263 struct bio *bio_map_user_iov(struct request_queue *q,
1264 const struct iov_iter *iter,
1265 gfp_t gfp_mask)
1266 {
1267 int j;
1268 int nr_pages = 0;
1269 struct page **pages;
1270 struct bio *bio;
1271 int cur_page = 0;
1272 int ret, offset;
1273 struct iov_iter i;
1274 struct iovec iov;
1275 struct bio_vec *bvec;
1276
1277 iov_for_each(iov, i, *iter) {
1278 unsigned long uaddr = (unsigned long) iov.iov_base;
1279 unsigned long len = iov.iov_len;
1280 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1281 unsigned long start = uaddr >> PAGE_SHIFT;
1282
1283 /*
1284 * Overflow, abort
1285 */
1286 if (end < start)
1287 return ERR_PTR(-EINVAL);
1288
1289 nr_pages += end - start;
1290 /*
1291 * buffer must be aligned to at least logical block size for now
1292 */
1293 if (uaddr & queue_dma_alignment(q))
1294 return ERR_PTR(-EINVAL);
1295 }
1296
1297 if (!nr_pages)
1298 return ERR_PTR(-EINVAL);
1299
1300 bio = bio_kmalloc(gfp_mask, nr_pages);
1301 if (!bio)
1302 return ERR_PTR(-ENOMEM);
1303
1304 ret = -ENOMEM;
1305 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1306 if (!pages)
1307 goto out;
1308
1309 iov_for_each(iov, i, *iter) {
1310 unsigned long uaddr = (unsigned long) iov.iov_base;
1311 unsigned long len = iov.iov_len;
1312 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1313 unsigned long start = uaddr >> PAGE_SHIFT;
1314 const int local_nr_pages = end - start;
1315 const int page_limit = cur_page + local_nr_pages;
1316
1317 ret = get_user_pages_fast(uaddr, local_nr_pages,
1318 (iter->type & WRITE) != WRITE,
1319 &pages[cur_page]);
1320 if (unlikely(ret < local_nr_pages)) {
1321 for (j = cur_page; j < page_limit; j++) {
1322 if (!pages[j])
1323 break;
1324 put_page(pages[j]);
1325 }
1326 ret = -EFAULT;
1327 goto out_unmap;
1328 }
1329
1330 offset = offset_in_page(uaddr);
1331 for (j = cur_page; j < page_limit; j++) {
1332 unsigned int bytes = PAGE_SIZE - offset;
1333 unsigned short prev_bi_vcnt = bio->bi_vcnt;
1334
1335 if (len <= 0)
1336 break;
1337
1338 if (bytes > len)
1339 bytes = len;
1340
1341 /*
1342 * sorry...
1343 */
1344 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1345 bytes)
1346 break;
1347
1348 /*
1349 * check if vector was merged with previous
1350 * drop page reference if needed
1351 */
1352 if (bio->bi_vcnt == prev_bi_vcnt)
1353 put_page(pages[j]);
1354
1355 len -= bytes;
1356 offset = 0;
1357 }
1358
1359 cur_page = j;
1360 /*
1361 * release the pages we didn't map into the bio, if any
1362 */
1363 while (j < page_limit)
1364 put_page(pages[j++]);
1365 }
1366
1367 kfree(pages);
1368
1369 /*
1370 * set data direction, and check if mapped pages need bouncing
1371 */
1372 if (iter->type & WRITE)
1373 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1374
1375 bio_set_flag(bio, BIO_USER_MAPPED);
1376
1377 /*
1378 * subtle -- if __bio_map_user() ended up bouncing a bio,
1379 * it would normally disappear when its bi_end_io is run.
1380 * however, we need it for the unmap, so grab an extra
1381 * reference to it
1382 */
1383 bio_get(bio);
1384 return bio;
1385
1386 out_unmap:
1387 bio_for_each_segment_all(bvec, bio, j) {
1388 put_page(bvec->bv_page);
1389 }
1390 out:
1391 kfree(pages);
1392 bio_put(bio);
1393 return ERR_PTR(ret);
1394 }
1395
1396 static void __bio_unmap_user(struct bio *bio)
1397 {
1398 struct bio_vec *bvec;
1399 int i;
1400
1401 /*
1402 * make sure we dirty pages we wrote to
1403 */
1404 bio_for_each_segment_all(bvec, bio, i) {
1405 if (bio_data_dir(bio) == READ)
1406 set_page_dirty_lock(bvec->bv_page);
1407
1408 put_page(bvec->bv_page);
1409 }
1410
1411 bio_put(bio);
1412 }
1413
1414 /**
1415 * bio_unmap_user - unmap a bio
1416 * @bio: the bio being unmapped
1417 *
1418 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1419 * a process context.
1420 *
1421 * bio_unmap_user() may sleep.
1422 */
1423 void bio_unmap_user(struct bio *bio)
1424 {
1425 __bio_unmap_user(bio);
1426 bio_put(bio);
1427 }
1428
1429 static void bio_map_kern_endio(struct bio *bio)
1430 {
1431 bio_put(bio);
1432 }
1433
1434 /**
1435 * bio_map_kern - map kernel address into bio
1436 * @q: the struct request_queue for the bio
1437 * @data: pointer to buffer to map
1438 * @len: length in bytes
1439 * @gfp_mask: allocation flags for bio allocation
1440 *
1441 * Map the kernel address into a bio suitable for io to a block
1442 * device. Returns an error pointer in case of error.
1443 */
1444 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1445 gfp_t gfp_mask)
1446 {
1447 unsigned long kaddr = (unsigned long)data;
1448 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1449 unsigned long start = kaddr >> PAGE_SHIFT;
1450 const int nr_pages = end - start;
1451 int offset, i;
1452 struct bio *bio;
1453
1454 bio = bio_kmalloc(gfp_mask, nr_pages);
1455 if (!bio)
1456 return ERR_PTR(-ENOMEM);
1457
1458 offset = offset_in_page(kaddr);
1459 for (i = 0; i < nr_pages; i++) {
1460 unsigned int bytes = PAGE_SIZE - offset;
1461
1462 if (len <= 0)
1463 break;
1464
1465 if (bytes > len)
1466 bytes = len;
1467
1468 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1469 offset) < bytes) {
1470 /* we don't support partial mappings */
1471 bio_put(bio);
1472 return ERR_PTR(-EINVAL);
1473 }
1474
1475 data += bytes;
1476 len -= bytes;
1477 offset = 0;
1478 }
1479
1480 bio->bi_end_io = bio_map_kern_endio;
1481 return bio;
1482 }
1483 EXPORT_SYMBOL(bio_map_kern);
1484
1485 static void bio_copy_kern_endio(struct bio *bio)
1486 {
1487 bio_free_pages(bio);
1488 bio_put(bio);
1489 }
1490
1491 static void bio_copy_kern_endio_read(struct bio *bio)
1492 {
1493 char *p = bio->bi_private;
1494 struct bio_vec *bvec;
1495 int i;
1496
1497 bio_for_each_segment_all(bvec, bio, i) {
1498 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1499 p += bvec->bv_len;
1500 }
1501
1502 bio_copy_kern_endio(bio);
1503 }
1504
1505 /**
1506 * bio_copy_kern - copy kernel address into bio
1507 * @q: the struct request_queue for the bio
1508 * @data: pointer to buffer to copy
1509 * @len: length in bytes
1510 * @gfp_mask: allocation flags for bio and page allocation
1511 * @reading: data direction is READ
1512 *
1513 * copy the kernel address into a bio suitable for io to a block
1514 * device. Returns an error pointer in case of error.
1515 */
1516 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1517 gfp_t gfp_mask, int reading)
1518 {
1519 unsigned long kaddr = (unsigned long)data;
1520 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1521 unsigned long start = kaddr >> PAGE_SHIFT;
1522 struct bio *bio;
1523 void *p = data;
1524 int nr_pages = 0;
1525
1526 /*
1527 * Overflow, abort
1528 */
1529 if (end < start)
1530 return ERR_PTR(-EINVAL);
1531
1532 nr_pages = end - start;
1533 bio = bio_kmalloc(gfp_mask, nr_pages);
1534 if (!bio)
1535 return ERR_PTR(-ENOMEM);
1536
1537 while (len) {
1538 struct page *page;
1539 unsigned int bytes = PAGE_SIZE;
1540
1541 if (bytes > len)
1542 bytes = len;
1543
1544 page = alloc_page(q->bounce_gfp | __GFP_ZERO | gfp_mask);
1545 if (!page)
1546 goto cleanup;
1547
1548 if (!reading)
1549 memcpy(page_address(page), p, bytes);
1550
1551 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1552 break;
1553
1554 len -= bytes;
1555 p += bytes;
1556 }
1557
1558 if (reading) {
1559 bio->bi_end_io = bio_copy_kern_endio_read;
1560 bio->bi_private = data;
1561 } else {
1562 bio->bi_end_io = bio_copy_kern_endio;
1563 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1564 }
1565
1566 return bio;
1567
1568 cleanup:
1569 bio_free_pages(bio);
1570 bio_put(bio);
1571 return ERR_PTR(-ENOMEM);
1572 }
1573
1574 /*
1575 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1576 * for performing direct-IO in BIOs.
1577 *
1578 * The problem is that we cannot run set_page_dirty() from interrupt context
1579 * because the required locks are not interrupt-safe. So what we can do is to
1580 * mark the pages dirty _before_ performing IO. And in interrupt context,
1581 * check that the pages are still dirty. If so, fine. If not, redirty them
1582 * in process context.
1583 *
1584 * We special-case compound pages here: normally this means reads into hugetlb
1585 * pages. The logic in here doesn't really work right for compound pages
1586 * because the VM does not uniformly chase down the head page in all cases.
1587 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1588 * handle them at all. So we skip compound pages here at an early stage.
1589 *
1590 * Note that this code is very hard to test under normal circumstances because
1591 * direct-io pins the pages with get_user_pages(). This makes
1592 * is_page_cache_freeable return false, and the VM will not clean the pages.
1593 * But other code (eg, flusher threads) could clean the pages if they are mapped
1594 * pagecache.
1595 *
1596 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1597 * deferred bio dirtying paths.
1598 */
1599
1600 /*
1601 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1602 */
1603 void bio_set_pages_dirty(struct bio *bio)
1604 {
1605 struct bio_vec *bvec;
1606 int i;
1607
1608 bio_for_each_segment_all(bvec, bio, i) {
1609 struct page *page = bvec->bv_page;
1610
1611 if (page && !PageCompound(page))
1612 set_page_dirty_lock(page);
1613 }
1614 }
1615
1616 static void bio_release_pages(struct bio *bio)
1617 {
1618 struct bio_vec *bvec;
1619 int i;
1620
1621 bio_for_each_segment_all(bvec, bio, i) {
1622 struct page *page = bvec->bv_page;
1623
1624 if (page)
1625 put_page(page);
1626 }
1627 }
1628
1629 /*
1630 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1631 * If they are, then fine. If, however, some pages are clean then they must
1632 * have been written out during the direct-IO read. So we take another ref on
1633 * the BIO and the offending pages and re-dirty the pages in process context.
1634 *
1635 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1636 * here on. It will run one put_page() against each page and will run one
1637 * bio_put() against the BIO.
1638 */
1639
1640 static void bio_dirty_fn(struct work_struct *work);
1641
1642 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1643 static DEFINE_SPINLOCK(bio_dirty_lock);
1644 static struct bio *bio_dirty_list;
1645
1646 /*
1647 * This runs in process context
1648 */
1649 static void bio_dirty_fn(struct work_struct *work)
1650 {
1651 unsigned long flags;
1652 struct bio *bio;
1653
1654 spin_lock_irqsave(&bio_dirty_lock, flags);
1655 bio = bio_dirty_list;
1656 bio_dirty_list = NULL;
1657 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1658
1659 while (bio) {
1660 struct bio *next = bio->bi_private;
1661
1662 bio_set_pages_dirty(bio);
1663 bio_release_pages(bio);
1664 bio_put(bio);
1665 bio = next;
1666 }
1667 }
1668
1669 void bio_check_pages_dirty(struct bio *bio)
1670 {
1671 struct bio_vec *bvec;
1672 int nr_clean_pages = 0;
1673 int i;
1674
1675 bio_for_each_segment_all(bvec, bio, i) {
1676 struct page *page = bvec->bv_page;
1677
1678 if (PageDirty(page) || PageCompound(page)) {
1679 put_page(page);
1680 bvec->bv_page = NULL;
1681 } else {
1682 nr_clean_pages++;
1683 }
1684 }
1685
1686 if (nr_clean_pages) {
1687 unsigned long flags;
1688
1689 spin_lock_irqsave(&bio_dirty_lock, flags);
1690 bio->bi_private = bio_dirty_list;
1691 bio_dirty_list = bio;
1692 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1693 schedule_work(&bio_dirty_work);
1694 } else {
1695 bio_put(bio);
1696 }
1697 }
1698
1699 void generic_start_io_acct(int rw, unsigned long sectors,
1700 struct hd_struct *part)
1701 {
1702 int cpu = part_stat_lock();
1703
1704 part_round_stats(cpu, part);
1705 part_stat_inc(cpu, part, ios[rw]);
1706 part_stat_add(cpu, part, sectors[rw], sectors);
1707 part_inc_in_flight(part, rw);
1708
1709 part_stat_unlock();
1710 }
1711 EXPORT_SYMBOL(generic_start_io_acct);
1712
1713 void generic_end_io_acct(int rw, struct hd_struct *part,
1714 unsigned long start_time)
1715 {
1716 unsigned long duration = jiffies - start_time;
1717 int cpu = part_stat_lock();
1718
1719 part_stat_add(cpu, part, ticks[rw], duration);
1720 part_round_stats(cpu, part);
1721 part_dec_in_flight(part, rw);
1722
1723 part_stat_unlock();
1724 }
1725 EXPORT_SYMBOL(generic_end_io_acct);
1726
1727 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1728 void bio_flush_dcache_pages(struct bio *bi)
1729 {
1730 struct bio_vec bvec;
1731 struct bvec_iter iter;
1732
1733 bio_for_each_segment(bvec, bi, iter)
1734 flush_dcache_page(bvec.bv_page);
1735 }
1736 EXPORT_SYMBOL(bio_flush_dcache_pages);
1737 #endif
1738
1739 static inline bool bio_remaining_done(struct bio *bio)
1740 {
1741 /*
1742 * If we're not chaining, then ->__bi_remaining is always 1 and
1743 * we always end io on the first invocation.
1744 */
1745 if (!bio_flagged(bio, BIO_CHAIN))
1746 return true;
1747
1748 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1749
1750 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1751 bio_clear_flag(bio, BIO_CHAIN);
1752 return true;
1753 }
1754
1755 return false;
1756 }
1757
1758 /**
1759 * bio_endio - end I/O on a bio
1760 * @bio: bio
1761 *
1762 * Description:
1763 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1764 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1765 * bio unless they own it and thus know that it has an end_io function.
1766 **/
1767 void bio_endio(struct bio *bio)
1768 {
1769 again:
1770 if (!bio_remaining_done(bio))
1771 return;
1772
1773 /*
1774 * Need to have a real endio function for chained bios, otherwise
1775 * various corner cases will break (like stacking block devices that
1776 * save/restore bi_end_io) - however, we want to avoid unbounded
1777 * recursion and blowing the stack. Tail call optimization would
1778 * handle this, but compiling with frame pointers also disables
1779 * gcc's sibling call optimization.
1780 */
1781 if (bio->bi_end_io == bio_chain_endio) {
1782 bio = __bio_chain_endio(bio);
1783 goto again;
1784 }
1785
1786 if (bio->bi_end_io)
1787 bio->bi_end_io(bio);
1788 }
1789 EXPORT_SYMBOL(bio_endio);
1790
1791 /**
1792 * bio_split - split a bio
1793 * @bio: bio to split
1794 * @sectors: number of sectors to split from the front of @bio
1795 * @gfp: gfp mask
1796 * @bs: bio set to allocate from
1797 *
1798 * Allocates and returns a new bio which represents @sectors from the start of
1799 * @bio, and updates @bio to represent the remaining sectors.
1800 *
1801 * Unless this is a discard request the newly allocated bio will point
1802 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1803 * @bio is not freed before the split.
1804 */
1805 struct bio *bio_split(struct bio *bio, int sectors,
1806 gfp_t gfp, struct bio_set *bs)
1807 {
1808 struct bio *split = NULL;
1809
1810 BUG_ON(sectors <= 0);
1811 BUG_ON(sectors >= bio_sectors(bio));
1812
1813 /*
1814 * Discards need a mutable bio_vec to accommodate the payload
1815 * required by the DSM TRIM and UNMAP commands.
1816 */
1817 if (bio_op(bio) == REQ_OP_DISCARD || bio_op(bio) == REQ_OP_SECURE_ERASE)
1818 split = bio_clone_bioset(bio, gfp, bs);
1819 else
1820 split = bio_clone_fast(bio, gfp, bs);
1821
1822 if (!split)
1823 return NULL;
1824
1825 split->bi_iter.bi_size = sectors << 9;
1826
1827 if (bio_integrity(split))
1828 bio_integrity_trim(split, 0, sectors);
1829
1830 bio_advance(bio, split->bi_iter.bi_size);
1831
1832 return split;
1833 }
1834 EXPORT_SYMBOL(bio_split);
1835
1836 /**
1837 * bio_trim - trim a bio
1838 * @bio: bio to trim
1839 * @offset: number of sectors to trim from the front of @bio
1840 * @size: size we want to trim @bio to, in sectors
1841 */
1842 void bio_trim(struct bio *bio, int offset, int size)
1843 {
1844 /* 'bio' is a cloned bio which we need to trim to match
1845 * the given offset and size.
1846 */
1847
1848 size <<= 9;
1849 if (offset == 0 && size == bio->bi_iter.bi_size)
1850 return;
1851
1852 bio_clear_flag(bio, BIO_SEG_VALID);
1853
1854 bio_advance(bio, offset << 9);
1855
1856 bio->bi_iter.bi_size = size;
1857 }
1858 EXPORT_SYMBOL_GPL(bio_trim);
1859
1860 /*
1861 * create memory pools for biovec's in a bio_set.
1862 * use the global biovec slabs created for general use.
1863 */
1864 mempool_t *biovec_create_pool(int pool_entries)
1865 {
1866 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1867
1868 return mempool_create_slab_pool(pool_entries, bp->slab);
1869 }
1870
1871 void bioset_free(struct bio_set *bs)
1872 {
1873 if (bs->rescue_workqueue)
1874 destroy_workqueue(bs->rescue_workqueue);
1875
1876 if (bs->bio_pool)
1877 mempool_destroy(bs->bio_pool);
1878
1879 if (bs->bvec_pool)
1880 mempool_destroy(bs->bvec_pool);
1881
1882 bioset_integrity_free(bs);
1883 bio_put_slab(bs);
1884
1885 kfree(bs);
1886 }
1887 EXPORT_SYMBOL(bioset_free);
1888
1889 static struct bio_set *__bioset_create(unsigned int pool_size,
1890 unsigned int front_pad,
1891 bool create_bvec_pool)
1892 {
1893 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1894 struct bio_set *bs;
1895
1896 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1897 if (!bs)
1898 return NULL;
1899
1900 bs->front_pad = front_pad;
1901
1902 spin_lock_init(&bs->rescue_lock);
1903 bio_list_init(&bs->rescue_list);
1904 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1905
1906 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1907 if (!bs->bio_slab) {
1908 kfree(bs);
1909 return NULL;
1910 }
1911
1912 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1913 if (!bs->bio_pool)
1914 goto bad;
1915
1916 if (create_bvec_pool) {
1917 bs->bvec_pool = biovec_create_pool(pool_size);
1918 if (!bs->bvec_pool)
1919 goto bad;
1920 }
1921
1922 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1923 if (!bs->rescue_workqueue)
1924 goto bad;
1925
1926 return bs;
1927 bad:
1928 bioset_free(bs);
1929 return NULL;
1930 }
1931
1932 /**
1933 * bioset_create - Create a bio_set
1934 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1935 * @front_pad: Number of bytes to allocate in front of the returned bio
1936 *
1937 * Description:
1938 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1939 * to ask for a number of bytes to be allocated in front of the bio.
1940 * Front pad allocation is useful for embedding the bio inside
1941 * another structure, to avoid allocating extra data to go with the bio.
1942 * Note that the bio must be embedded at the END of that structure always,
1943 * or things will break badly.
1944 */
1945 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1946 {
1947 return __bioset_create(pool_size, front_pad, true);
1948 }
1949 EXPORT_SYMBOL(bioset_create);
1950
1951 /**
1952 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1953 * @pool_size: Number of bio to cache in the mempool
1954 * @front_pad: Number of bytes to allocate in front of the returned bio
1955 *
1956 * Description:
1957 * Same functionality as bioset_create() except that mempool is not
1958 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1959 */
1960 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1961 {
1962 return __bioset_create(pool_size, front_pad, false);
1963 }
1964 EXPORT_SYMBOL(bioset_create_nobvec);
1965
1966 #ifdef CONFIG_BLK_CGROUP
1967
1968 /**
1969 * bio_associate_blkcg - associate a bio with the specified blkcg
1970 * @bio: target bio
1971 * @blkcg_css: css of the blkcg to associate
1972 *
1973 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1974 * treat @bio as if it were issued by a task which belongs to the blkcg.
1975 *
1976 * This function takes an extra reference of @blkcg_css which will be put
1977 * when @bio is released. The caller must own @bio and is responsible for
1978 * synchronizing calls to this function.
1979 */
1980 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1981 {
1982 if (unlikely(bio->bi_css))
1983 return -EBUSY;
1984 css_get(blkcg_css);
1985 bio->bi_css = blkcg_css;
1986 return 0;
1987 }
1988 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1989
1990 /**
1991 * bio_associate_current - associate a bio with %current
1992 * @bio: target bio
1993 *
1994 * Associate @bio with %current if it hasn't been associated yet. Block
1995 * layer will treat @bio as if it were issued by %current no matter which
1996 * task actually issues it.
1997 *
1998 * This function takes an extra reference of @task's io_context and blkcg
1999 * which will be put when @bio is released. The caller must own @bio,
2000 * ensure %current->io_context exists, and is responsible for synchronizing
2001 * calls to this function.
2002 */
2003 int bio_associate_current(struct bio *bio)
2004 {
2005 struct io_context *ioc;
2006
2007 if (bio->bi_css)
2008 return -EBUSY;
2009
2010 ioc = current->io_context;
2011 if (!ioc)
2012 return -ENOENT;
2013
2014 get_io_context_active(ioc);
2015 bio->bi_ioc = ioc;
2016 bio->bi_css = task_get_css(current, io_cgrp_id);
2017 return 0;
2018 }
2019 EXPORT_SYMBOL_GPL(bio_associate_current);
2020
2021 /**
2022 * bio_disassociate_task - undo bio_associate_current()
2023 * @bio: target bio
2024 */
2025 void bio_disassociate_task(struct bio *bio)
2026 {
2027 if (bio->bi_ioc) {
2028 put_io_context(bio->bi_ioc);
2029 bio->bi_ioc = NULL;
2030 }
2031 if (bio->bi_css) {
2032 css_put(bio->bi_css);
2033 bio->bi_css = NULL;
2034 }
2035 }
2036
2037 /**
2038 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2039 * @dst: destination bio
2040 * @src: source bio
2041 */
2042 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2043 {
2044 if (src->bi_css)
2045 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2046 }
2047
2048 #endif /* CONFIG_BLK_CGROUP */
2049
2050 static void __init biovec_init_slabs(void)
2051 {
2052 int i;
2053
2054 for (i = 0; i < BVEC_POOL_NR; i++) {
2055 int size;
2056 struct biovec_slab *bvs = bvec_slabs + i;
2057
2058 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2059 bvs->slab = NULL;
2060 continue;
2061 }
2062
2063 size = bvs->nr_vecs * sizeof(struct bio_vec);
2064 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2065 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2066 }
2067 }
2068
2069 static int __init init_bio(void)
2070 {
2071 bio_slab_max = 2;
2072 bio_slab_nr = 0;
2073 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2074 if (!bio_slabs)
2075 panic("bio: can't allocate bios\n");
2076
2077 bio_integrity_init();
2078 biovec_init_slabs();
2079
2080 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2081 if (!fs_bio_set)
2082 panic("bio: can't allocate bios\n");
2083
2084 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2085 panic("bio: can't create integrity pool\n");
2086
2087 return 0;
2088 }
2089 subsys_initcall(init_bio);