fd686dc45d1a95b5016de15341c6d3fe173837fe
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / xtensa / include / asm / uaccess.h
1 /*
2 * include/asm-xtensa/uaccess.h
3 *
4 * User space memory access functions
5 *
6 * These routines provide basic accessing functions to the user memory
7 * space for the kernel. This header file provides functions such as:
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 *
13 * Copyright (C) 2001 - 2005 Tensilica Inc.
14 */
15
16 #ifndef _XTENSA_UACCESS_H
17 #define _XTENSA_UACCESS_H
18
19 #include <linux/errno.h>
20 #ifndef __ASSEMBLY__
21 #include <linux/prefetch.h>
22 #endif
23 #include <asm/types.h>
24
25 #define VERIFY_READ 0
26 #define VERIFY_WRITE 1
27
28 #ifdef __ASSEMBLY__
29
30 #include <asm/current.h>
31 #include <asm/asm-offsets.h>
32 #include <asm/processor.h>
33
34 /*
35 * These assembly macros mirror the C macros that follow below. They
36 * should always have identical functionality. See
37 * arch/xtensa/kernel/sys.S for usage.
38 */
39
40 #define KERNEL_DS 0
41 #define USER_DS 1
42
43 #define get_ds (KERNEL_DS)
44
45 /*
46 * get_fs reads current->thread.current_ds into a register.
47 * On Entry:
48 * <ad> anything
49 * <sp> stack
50 * On Exit:
51 * <ad> contains current->thread.current_ds
52 */
53 .macro get_fs ad, sp
54 GET_CURRENT(\ad,\sp)
55 l32i \ad, \ad, THREAD_CURRENT_DS
56 .endm
57
58 /*
59 * set_fs sets current->thread.current_ds to some value.
60 * On Entry:
61 * <at> anything (temp register)
62 * <av> value to write
63 * <sp> stack
64 * On Exit:
65 * <at> destroyed (actually, current)
66 * <av> preserved, value to write
67 */
68 .macro set_fs at, av, sp
69 GET_CURRENT(\at,\sp)
70 s32i \av, \at, THREAD_CURRENT_DS
71 .endm
72
73 /*
74 * kernel_ok determines whether we should bypass addr/size checking.
75 * See the equivalent C-macro version below for clarity.
76 * On success, kernel_ok branches to a label indicated by parameter
77 * <success>. This implies that the macro falls through to the next
78 * insruction on an error.
79 *
80 * Note that while this macro can be used independently, we designed
81 * in for optimal use in the access_ok macro below (i.e., we fall
82 * through on error).
83 *
84 * On Entry:
85 * <at> anything (temp register)
86 * <success> label to branch to on success; implies
87 * fall-through macro on error
88 * <sp> stack pointer
89 * On Exit:
90 * <at> destroyed (actually, current->thread.current_ds)
91 */
92
93 #if ((KERNEL_DS != 0) || (USER_DS == 0))
94 # error Assembly macro kernel_ok fails
95 #endif
96 .macro kernel_ok at, sp, success
97 get_fs \at, \sp
98 beqz \at, \success
99 .endm
100
101 /*
102 * user_ok determines whether the access to user-space memory is allowed.
103 * See the equivalent C-macro version below for clarity.
104 *
105 * On error, user_ok branches to a label indicated by parameter
106 * <error>. This implies that the macro falls through to the next
107 * instruction on success.
108 *
109 * Note that while this macro can be used independently, we designed
110 * in for optimal use in the access_ok macro below (i.e., we fall
111 * through on success).
112 *
113 * On Entry:
114 * <aa> register containing memory address
115 * <as> register containing memory size
116 * <at> temp register
117 * <error> label to branch to on error; implies fall-through
118 * macro on success
119 * On Exit:
120 * <aa> preserved
121 * <as> preserved
122 * <at> destroyed (actually, (TASK_SIZE + 1 - size))
123 */
124 .macro user_ok aa, as, at, error
125 movi \at, __XTENSA_UL_CONST(TASK_SIZE)
126 bgeu \as, \at, \error
127 sub \at, \at, \as
128 bgeu \aa, \at, \error
129 .endm
130
131 /*
132 * access_ok determines whether a memory access is allowed. See the
133 * equivalent C-macro version below for clarity.
134 *
135 * On error, access_ok branches to a label indicated by parameter
136 * <error>. This implies that the macro falls through to the next
137 * instruction on success.
138 *
139 * Note that we assume success is the common case, and we optimize the
140 * branch fall-through case on success.
141 *
142 * On Entry:
143 * <aa> register containing memory address
144 * <as> register containing memory size
145 * <at> temp register
146 * <sp>
147 * <error> label to branch to on error; implies fall-through
148 * macro on success
149 * On Exit:
150 * <aa> preserved
151 * <as> preserved
152 * <at> destroyed
153 */
154 .macro access_ok aa, as, at, sp, error
155 kernel_ok \at, \sp, .Laccess_ok_\@
156 user_ok \aa, \as, \at, \error
157 .Laccess_ok_\@:
158 .endm
159
160 #else /* __ASSEMBLY__ not defined */
161
162 #include <linux/sched.h>
163
164 /*
165 * The fs value determines whether argument validity checking should
166 * be performed or not. If get_fs() == USER_DS, checking is
167 * performed, with get_fs() == KERNEL_DS, checking is bypassed.
168 *
169 * For historical reasons (Data Segment Register?), these macros are
170 * grossly misnamed.
171 */
172
173 #define KERNEL_DS ((mm_segment_t) { 0 })
174 #define USER_DS ((mm_segment_t) { 1 })
175
176 #define get_ds() (KERNEL_DS)
177 #define get_fs() (current->thread.current_ds)
178 #define set_fs(val) (current->thread.current_ds = (val))
179
180 #define segment_eq(a,b) ((a).seg == (b).seg)
181
182 #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))
183 #define __user_ok(addr,size) \
184 (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size)))
185 #define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size)))
186 #define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size))
187
188 /*
189 * These are the main single-value transfer routines. They
190 * automatically use the right size if we just have the right pointer
191 * type.
192 *
193 * This gets kind of ugly. We want to return _two_ values in
194 * "get_user()" and yet we don't want to do any pointers, because that
195 * is too much of a performance impact. Thus we have a few rather ugly
196 * macros here, and hide all the uglyness from the user.
197 *
198 * Careful to not
199 * (a) re-use the arguments for side effects (sizeof is ok)
200 * (b) require any knowledge of processes at this stage
201 */
202 #define put_user(x,ptr) __put_user_check((x),(ptr),sizeof(*(ptr)))
203 #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr)))
204
205 /*
206 * The "__xxx" versions of the user access functions are versions that
207 * do not verify the address space, that must have been done previously
208 * with a separate "access_ok()" call (this is used when we do multiple
209 * accesses to the same area of user memory).
210 */
211 #define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr)))
212 #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
213
214
215 extern long __put_user_bad(void);
216
217 #define __put_user_nocheck(x,ptr,size) \
218 ({ \
219 long __pu_err; \
220 __put_user_size((x),(ptr),(size),__pu_err); \
221 __pu_err; \
222 })
223
224 #define __put_user_check(x,ptr,size) \
225 ({ \
226 long __pu_err = -EFAULT; \
227 __typeof__(*(ptr)) *__pu_addr = (ptr); \
228 if (access_ok(VERIFY_WRITE,__pu_addr,size)) \
229 __put_user_size((x),__pu_addr,(size),__pu_err); \
230 __pu_err; \
231 })
232
233 #define __put_user_size(x,ptr,size,retval) \
234 do { \
235 int __cb; \
236 retval = 0; \
237 switch (size) { \
238 case 1: __put_user_asm(x,ptr,retval,1,"s8i",__cb); break; \
239 case 2: __put_user_asm(x,ptr,retval,2,"s16i",__cb); break; \
240 case 4: __put_user_asm(x,ptr,retval,4,"s32i",__cb); break; \
241 case 8: { \
242 __typeof__(*ptr) __v64 = x; \
243 retval = __copy_to_user(ptr,&__v64,8); \
244 break; \
245 } \
246 default: __put_user_bad(); \
247 } \
248 } while (0)
249
250
251 /*
252 * Consider a case of a user single load/store would cause both an
253 * unaligned exception and an MMU-related exception (unaligned
254 * exceptions happen first):
255 *
256 * User code passes a bad variable ptr to a system call.
257 * Kernel tries to access the variable.
258 * Unaligned exception occurs.
259 * Unaligned exception handler tries to make aligned accesses.
260 * Double exception occurs for MMU-related cause (e.g., page not mapped).
261 * do_page_fault() thinks the fault address belongs to the kernel, not the
262 * user, and panics.
263 *
264 * The kernel currently prohibits user unaligned accesses. We use the
265 * __check_align_* macros to check for unaligned addresses before
266 * accessing user space so we don't crash the kernel. Both
267 * __put_user_asm and __get_user_asm use these alignment macros, so
268 * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in
269 * sync.
270 */
271
272 #define __check_align_1 ""
273
274 #define __check_align_2 \
275 " _bbci.l %3, 0, 1f \n" \
276 " movi %0, %4 \n" \
277 " _j 2f \n"
278
279 #define __check_align_4 \
280 " _bbsi.l %3, 0, 0f \n" \
281 " _bbci.l %3, 1, 1f \n" \
282 "0: movi %0, %4 \n" \
283 " _j 2f \n"
284
285
286 /*
287 * We don't tell gcc that we are accessing memory, but this is OK
288 * because we do not write to any memory gcc knows about, so there
289 * are no aliasing issues.
290 *
291 * WARNING: If you modify this macro at all, verify that the
292 * __check_align_* macros still work.
293 */
294 #define __put_user_asm(x, addr, err, align, insn, cb) \
295 __asm__ __volatile__( \
296 __check_align_##align \
297 "1: "insn" %2, %3, 0 \n" \
298 "2: \n" \
299 " .section .fixup,\"ax\" \n" \
300 " .align 4 \n" \
301 "4: \n" \
302 " .long 2b \n" \
303 "5: \n" \
304 " l32r %1, 4b \n" \
305 " movi %0, %4 \n" \
306 " jx %1 \n" \
307 " .previous \n" \
308 " .section __ex_table,\"a\" \n" \
309 " .long 1b, 5b \n" \
310 " .previous" \
311 :"=r" (err), "=r" (cb) \
312 :"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err))
313
314 #define __get_user_nocheck(x,ptr,size) \
315 ({ \
316 long __gu_err, __gu_val; \
317 __get_user_size(__gu_val,(ptr),(size),__gu_err); \
318 (x) = (__typeof__(*(ptr)))__gu_val; \
319 __gu_err; \
320 })
321
322 #define __get_user_check(x,ptr,size) \
323 ({ \
324 long __gu_err = -EFAULT, __gu_val = 0; \
325 const __typeof__(*(ptr)) *__gu_addr = (ptr); \
326 if (access_ok(VERIFY_READ,__gu_addr,size)) \
327 __get_user_size(__gu_val,__gu_addr,(size),__gu_err); \
328 (x) = (__typeof__(*(ptr)))__gu_val; \
329 __gu_err; \
330 })
331
332 extern long __get_user_bad(void);
333
334 #define __get_user_size(x,ptr,size,retval) \
335 do { \
336 int __cb; \
337 retval = 0; \
338 switch (size) { \
339 case 1: __get_user_asm(x,ptr,retval,1,"l8ui",__cb); break; \
340 case 2: __get_user_asm(x,ptr,retval,2,"l16ui",__cb); break; \
341 case 4: __get_user_asm(x,ptr,retval,4,"l32i",__cb); break; \
342 case 8: retval = __copy_from_user(&x,ptr,8); break; \
343 default: (x) = __get_user_bad(); \
344 } \
345 } while (0)
346
347
348 /*
349 * WARNING: If you modify this macro at all, verify that the
350 * __check_align_* macros still work.
351 */
352 #define __get_user_asm(x, addr, err, align, insn, cb) \
353 __asm__ __volatile__( \
354 __check_align_##align \
355 "1: "insn" %2, %3, 0 \n" \
356 "2: \n" \
357 " .section .fixup,\"ax\" \n" \
358 " .align 4 \n" \
359 "4: \n" \
360 " .long 2b \n" \
361 "5: \n" \
362 " l32r %1, 4b \n" \
363 " movi %2, 0 \n" \
364 " movi %0, %4 \n" \
365 " jx %1 \n" \
366 " .previous \n" \
367 " .section __ex_table,\"a\" \n" \
368 " .long 1b, 5b \n" \
369 " .previous" \
370 :"=r" (err), "=r" (cb), "=r" (x) \
371 :"r" (addr), "i" (-EFAULT), "0" (err))
372
373
374 /*
375 * Copy to/from user space
376 */
377
378 /*
379 * We use a generic, arbitrary-sized copy subroutine. The Xtensa
380 * architecture would cause heavy code bloat if we tried to inline
381 * these functions and provide __constant_copy_* equivalents like the
382 * i386 versions. __xtensa_copy_user is quite efficient. See the
383 * .fixup section of __xtensa_copy_user for a discussion on the
384 * X_zeroing equivalents for Xtensa.
385 */
386
387 extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n);
388 #define __copy_user(to,from,size) __xtensa_copy_user(to,from,size)
389
390
391 static inline unsigned long
392 __generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n)
393 {
394 return __copy_user(to,from,n);
395 }
396
397 static inline unsigned long
398 __generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n)
399 {
400 return __copy_user(to,from,n);
401 }
402
403 static inline unsigned long
404 __generic_copy_to_user(void *to, const void *from, unsigned long n)
405 {
406 prefetch(from);
407 if (access_ok(VERIFY_WRITE, to, n))
408 return __copy_user(to,from,n);
409 return n;
410 }
411
412 static inline unsigned long
413 __generic_copy_from_user(void *to, const void *from, unsigned long n)
414 {
415 prefetchw(to);
416 if (access_ok(VERIFY_READ, from, n))
417 return __copy_user(to,from,n);
418 else
419 memset(to, 0, n);
420 return n;
421 }
422
423 #define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n))
424 #define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n))
425 #define __copy_to_user(to,from,n) \
426 __generic_copy_to_user_nocheck((to),(from),(n))
427 #define __copy_from_user(to,from,n) \
428 __generic_copy_from_user_nocheck((to),(from),(n))
429 #define __copy_to_user_inatomic __copy_to_user
430 #define __copy_from_user_inatomic __copy_from_user
431
432
433 /*
434 * We need to return the number of bytes not cleared. Our memset()
435 * returns zero if a problem occurs while accessing user-space memory.
436 * In that event, return no memory cleared. Otherwise, zero for
437 * success.
438 */
439
440 static inline unsigned long
441 __xtensa_clear_user(void *addr, unsigned long size)
442 {
443 if ( ! memset(addr, 0, size) )
444 return size;
445 return 0;
446 }
447
448 static inline unsigned long
449 clear_user(void *addr, unsigned long size)
450 {
451 if (access_ok(VERIFY_WRITE, addr, size))
452 return __xtensa_clear_user(addr, size);
453 return size ? -EFAULT : 0;
454 }
455
456 #define __clear_user __xtensa_clear_user
457
458
459 extern long __strncpy_user(char *, const char *, long);
460 #define __strncpy_from_user __strncpy_user
461
462 static inline long
463 strncpy_from_user(char *dst, const char *src, long count)
464 {
465 if (access_ok(VERIFY_READ, src, 1))
466 return __strncpy_from_user(dst, src, count);
467 return -EFAULT;
468 }
469
470
471 #define strlen_user(str) strnlen_user((str), TASK_SIZE - 1)
472
473 /*
474 * Return the size of a string (including the ending 0!)
475 */
476 extern long __strnlen_user(const char *, long);
477
478 static inline long strnlen_user(const char *str, long len)
479 {
480 unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1;
481
482 if ((unsigned long)str > top)
483 return 0;
484 return __strnlen_user(str, len);
485 }
486
487
488 struct exception_table_entry
489 {
490 unsigned long insn, fixup;
491 };
492
493 /* Returns 0 if exception not found and fixup.unit otherwise. */
494
495 extern unsigned long search_exception_table(unsigned long addr);
496 extern void sort_exception_table(void);
497
498 /* Returns the new pc */
499 #define fixup_exception(map_reg, fixup_unit, pc) \
500 ({ \
501 fixup_unit; \
502 })
503
504 #endif /* __ASSEMBLY__ */
505 #endif /* _XTENSA_UACCESS_H */