c7211e7e182d56cd85e3ec923ee89f81748b26af
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / xtensa / include / asm / uaccess.h
1 /*
2 * include/asm-xtensa/uaccess.h
3 *
4 * User space memory access functions
5 *
6 * These routines provide basic accessing functions to the user memory
7 * space for the kernel. This header file provides functions such as:
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 *
13 * Copyright (C) 2001 - 2005 Tensilica Inc.
14 */
15
16 #ifndef _XTENSA_UACCESS_H
17 #define _XTENSA_UACCESS_H
18
19 #include <linux/errno.h>
20 #ifndef __ASSEMBLY__
21 #include <linux/prefetch.h>
22 #endif
23 #include <asm/types.h>
24
25 #define VERIFY_READ 0
26 #define VERIFY_WRITE 1
27
28 #ifdef __ASSEMBLY__
29
30 #include <asm/current.h>
31 #include <asm/asm-offsets.h>
32 #include <asm/processor.h>
33
34 /*
35 * These assembly macros mirror the C macros that follow below. They
36 * should always have identical functionality. See
37 * arch/xtensa/kernel/sys.S for usage.
38 */
39
40 #define KERNEL_DS 0
41 #define USER_DS 1
42
43 #define get_ds (KERNEL_DS)
44
45 /*
46 * get_fs reads current->thread.current_ds into a register.
47 * On Entry:
48 * <ad> anything
49 * <sp> stack
50 * On Exit:
51 * <ad> contains current->thread.current_ds
52 */
53 .macro get_fs ad, sp
54 GET_CURRENT(\ad,\sp)
55 #if THREAD_CURRENT_DS > 1020
56 addi \ad, \ad, TASK_THREAD
57 l32i \ad, \ad, THREAD_CURRENT_DS - TASK_THREAD
58 #else
59 l32i \ad, \ad, THREAD_CURRENT_DS
60 #endif
61 .endm
62
63 /*
64 * set_fs sets current->thread.current_ds to some value.
65 * On Entry:
66 * <at> anything (temp register)
67 * <av> value to write
68 * <sp> stack
69 * On Exit:
70 * <at> destroyed (actually, current)
71 * <av> preserved, value to write
72 */
73 .macro set_fs at, av, sp
74 GET_CURRENT(\at,\sp)
75 s32i \av, \at, THREAD_CURRENT_DS
76 .endm
77
78 /*
79 * kernel_ok determines whether we should bypass addr/size checking.
80 * See the equivalent C-macro version below for clarity.
81 * On success, kernel_ok branches to a label indicated by parameter
82 * <success>. This implies that the macro falls through to the next
83 * insruction on an error.
84 *
85 * Note that while this macro can be used independently, we designed
86 * in for optimal use in the access_ok macro below (i.e., we fall
87 * through on error).
88 *
89 * On Entry:
90 * <at> anything (temp register)
91 * <success> label to branch to on success; implies
92 * fall-through macro on error
93 * <sp> stack pointer
94 * On Exit:
95 * <at> destroyed (actually, current->thread.current_ds)
96 */
97
98 #if ((KERNEL_DS != 0) || (USER_DS == 0))
99 # error Assembly macro kernel_ok fails
100 #endif
101 .macro kernel_ok at, sp, success
102 get_fs \at, \sp
103 beqz \at, \success
104 .endm
105
106 /*
107 * user_ok determines whether the access to user-space memory is allowed.
108 * See the equivalent C-macro version below for clarity.
109 *
110 * On error, user_ok branches to a label indicated by parameter
111 * <error>. This implies that the macro falls through to the next
112 * instruction on success.
113 *
114 * Note that while this macro can be used independently, we designed
115 * in for optimal use in the access_ok macro below (i.e., we fall
116 * through on success).
117 *
118 * On Entry:
119 * <aa> register containing memory address
120 * <as> register containing memory size
121 * <at> temp register
122 * <error> label to branch to on error; implies fall-through
123 * macro on success
124 * On Exit:
125 * <aa> preserved
126 * <as> preserved
127 * <at> destroyed (actually, (TASK_SIZE + 1 - size))
128 */
129 .macro user_ok aa, as, at, error
130 movi \at, __XTENSA_UL_CONST(TASK_SIZE)
131 bgeu \as, \at, \error
132 sub \at, \at, \as
133 bgeu \aa, \at, \error
134 .endm
135
136 /*
137 * access_ok determines whether a memory access is allowed. See the
138 * equivalent C-macro version below for clarity.
139 *
140 * On error, access_ok branches to a label indicated by parameter
141 * <error>. This implies that the macro falls through to the next
142 * instruction on success.
143 *
144 * Note that we assume success is the common case, and we optimize the
145 * branch fall-through case on success.
146 *
147 * On Entry:
148 * <aa> register containing memory address
149 * <as> register containing memory size
150 * <at> temp register
151 * <sp>
152 * <error> label to branch to on error; implies fall-through
153 * macro on success
154 * On Exit:
155 * <aa> preserved
156 * <as> preserved
157 * <at> destroyed
158 */
159 .macro access_ok aa, as, at, sp, error
160 kernel_ok \at, \sp, .Laccess_ok_\@
161 user_ok \aa, \as, \at, \error
162 .Laccess_ok_\@:
163 .endm
164
165 #else /* __ASSEMBLY__ not defined */
166
167 #include <linux/sched.h>
168
169 /*
170 * The fs value determines whether argument validity checking should
171 * be performed or not. If get_fs() == USER_DS, checking is
172 * performed, with get_fs() == KERNEL_DS, checking is bypassed.
173 *
174 * For historical reasons (Data Segment Register?), these macros are
175 * grossly misnamed.
176 */
177
178 #define KERNEL_DS ((mm_segment_t) { 0 })
179 #define USER_DS ((mm_segment_t) { 1 })
180
181 #define get_ds() (KERNEL_DS)
182 #define get_fs() (current->thread.current_ds)
183 #define set_fs(val) (current->thread.current_ds = (val))
184
185 #define segment_eq(a,b) ((a).seg == (b).seg)
186
187 #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))
188 #define __user_ok(addr,size) \
189 (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size)))
190 #define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size)))
191 #define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size))
192
193 /*
194 * These are the main single-value transfer routines. They
195 * automatically use the right size if we just have the right pointer
196 * type.
197 *
198 * This gets kind of ugly. We want to return _two_ values in
199 * "get_user()" and yet we don't want to do any pointers, because that
200 * is too much of a performance impact. Thus we have a few rather ugly
201 * macros here, and hide all the uglyness from the user.
202 *
203 * Careful to not
204 * (a) re-use the arguments for side effects (sizeof is ok)
205 * (b) require any knowledge of processes at this stage
206 */
207 #define put_user(x,ptr) __put_user_check((x),(ptr),sizeof(*(ptr)))
208 #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr)))
209
210 /*
211 * The "__xxx" versions of the user access functions are versions that
212 * do not verify the address space, that must have been done previously
213 * with a separate "access_ok()" call (this is used when we do multiple
214 * accesses to the same area of user memory).
215 */
216 #define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr)))
217 #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
218
219
220 extern long __put_user_bad(void);
221
222 #define __put_user_nocheck(x,ptr,size) \
223 ({ \
224 long __pu_err; \
225 __put_user_size((x),(ptr),(size),__pu_err); \
226 __pu_err; \
227 })
228
229 #define __put_user_check(x,ptr,size) \
230 ({ \
231 long __pu_err = -EFAULT; \
232 __typeof__(*(ptr)) *__pu_addr = (ptr); \
233 if (access_ok(VERIFY_WRITE,__pu_addr,size)) \
234 __put_user_size((x),__pu_addr,(size),__pu_err); \
235 __pu_err; \
236 })
237
238 #define __put_user_size(x,ptr,size,retval) \
239 do { \
240 int __cb; \
241 retval = 0; \
242 switch (size) { \
243 case 1: __put_user_asm(x,ptr,retval,1,"s8i",__cb); break; \
244 case 2: __put_user_asm(x,ptr,retval,2,"s16i",__cb); break; \
245 case 4: __put_user_asm(x,ptr,retval,4,"s32i",__cb); break; \
246 case 8: { \
247 __typeof__(*ptr) __v64 = x; \
248 retval = __copy_to_user(ptr,&__v64,8); \
249 break; \
250 } \
251 default: __put_user_bad(); \
252 } \
253 } while (0)
254
255
256 /*
257 * Consider a case of a user single load/store would cause both an
258 * unaligned exception and an MMU-related exception (unaligned
259 * exceptions happen first):
260 *
261 * User code passes a bad variable ptr to a system call.
262 * Kernel tries to access the variable.
263 * Unaligned exception occurs.
264 * Unaligned exception handler tries to make aligned accesses.
265 * Double exception occurs for MMU-related cause (e.g., page not mapped).
266 * do_page_fault() thinks the fault address belongs to the kernel, not the
267 * user, and panics.
268 *
269 * The kernel currently prohibits user unaligned accesses. We use the
270 * __check_align_* macros to check for unaligned addresses before
271 * accessing user space so we don't crash the kernel. Both
272 * __put_user_asm and __get_user_asm use these alignment macros, so
273 * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in
274 * sync.
275 */
276
277 #define __check_align_1 ""
278
279 #define __check_align_2 \
280 " _bbci.l %3, 0, 1f \n" \
281 " movi %0, %4 \n" \
282 " _j 2f \n"
283
284 #define __check_align_4 \
285 " _bbsi.l %3, 0, 0f \n" \
286 " _bbci.l %3, 1, 1f \n" \
287 "0: movi %0, %4 \n" \
288 " _j 2f \n"
289
290
291 /*
292 * We don't tell gcc that we are accessing memory, but this is OK
293 * because we do not write to any memory gcc knows about, so there
294 * are no aliasing issues.
295 *
296 * WARNING: If you modify this macro at all, verify that the
297 * __check_align_* macros still work.
298 */
299 #define __put_user_asm(x, addr, err, align, insn, cb) \
300 __asm__ __volatile__( \
301 __check_align_##align \
302 "1: "insn" %2, %3, 0 \n" \
303 "2: \n" \
304 " .section .fixup,\"ax\" \n" \
305 " .align 4 \n" \
306 "4: \n" \
307 " .long 2b \n" \
308 "5: \n" \
309 " l32r %1, 4b \n" \
310 " movi %0, %4 \n" \
311 " jx %1 \n" \
312 " .previous \n" \
313 " .section __ex_table,\"a\" \n" \
314 " .long 1b, 5b \n" \
315 " .previous" \
316 :"=r" (err), "=r" (cb) \
317 :"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err))
318
319 #define __get_user_nocheck(x,ptr,size) \
320 ({ \
321 long __gu_err, __gu_val; \
322 __get_user_size(__gu_val,(ptr),(size),__gu_err); \
323 (x) = (__typeof__(*(ptr)))__gu_val; \
324 __gu_err; \
325 })
326
327 #define __get_user_check(x,ptr,size) \
328 ({ \
329 long __gu_err = -EFAULT, __gu_val = 0; \
330 const __typeof__(*(ptr)) *__gu_addr = (ptr); \
331 if (access_ok(VERIFY_READ,__gu_addr,size)) \
332 __get_user_size(__gu_val,__gu_addr,(size),__gu_err); \
333 (x) = (__typeof__(*(ptr)))__gu_val; \
334 __gu_err; \
335 })
336
337 extern long __get_user_bad(void);
338
339 #define __get_user_size(x,ptr,size,retval) \
340 do { \
341 int __cb; \
342 retval = 0; \
343 switch (size) { \
344 case 1: __get_user_asm(x,ptr,retval,1,"l8ui",__cb); break; \
345 case 2: __get_user_asm(x,ptr,retval,2,"l16ui",__cb); break; \
346 case 4: __get_user_asm(x,ptr,retval,4,"l32i",__cb); break; \
347 case 8: retval = __copy_from_user(&x,ptr,8); break; \
348 default: (x) = __get_user_bad(); \
349 } \
350 } while (0)
351
352
353 /*
354 * WARNING: If you modify this macro at all, verify that the
355 * __check_align_* macros still work.
356 */
357 #define __get_user_asm(x, addr, err, align, insn, cb) \
358 __asm__ __volatile__( \
359 __check_align_##align \
360 "1: "insn" %2, %3, 0 \n" \
361 "2: \n" \
362 " .section .fixup,\"ax\" \n" \
363 " .align 4 \n" \
364 "4: \n" \
365 " .long 2b \n" \
366 "5: \n" \
367 " l32r %1, 4b \n" \
368 " movi %2, 0 \n" \
369 " movi %0, %4 \n" \
370 " jx %1 \n" \
371 " .previous \n" \
372 " .section __ex_table,\"a\" \n" \
373 " .long 1b, 5b \n" \
374 " .previous" \
375 :"=r" (err), "=r" (cb), "=r" (x) \
376 :"r" (addr), "i" (-EFAULT), "0" (err))
377
378
379 /*
380 * Copy to/from user space
381 */
382
383 /*
384 * We use a generic, arbitrary-sized copy subroutine. The Xtensa
385 * architecture would cause heavy code bloat if we tried to inline
386 * these functions and provide __constant_copy_* equivalents like the
387 * i386 versions. __xtensa_copy_user is quite efficient. See the
388 * .fixup section of __xtensa_copy_user for a discussion on the
389 * X_zeroing equivalents for Xtensa.
390 */
391
392 extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n);
393 #define __copy_user(to,from,size) __xtensa_copy_user(to,from,size)
394
395
396 static inline unsigned long
397 __generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n)
398 {
399 return __copy_user(to,from,n);
400 }
401
402 static inline unsigned long
403 __generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n)
404 {
405 return __copy_user(to,from,n);
406 }
407
408 static inline unsigned long
409 __generic_copy_to_user(void *to, const void *from, unsigned long n)
410 {
411 prefetch(from);
412 if (access_ok(VERIFY_WRITE, to, n))
413 return __copy_user(to,from,n);
414 return n;
415 }
416
417 static inline unsigned long
418 __generic_copy_from_user(void *to, const void *from, unsigned long n)
419 {
420 prefetchw(to);
421 if (access_ok(VERIFY_READ, from, n))
422 return __copy_user(to,from,n);
423 else
424 memset(to, 0, n);
425 return n;
426 }
427
428 #define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n))
429 #define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n))
430 #define __copy_to_user(to,from,n) \
431 __generic_copy_to_user_nocheck((to),(from),(n))
432 #define __copy_from_user(to,from,n) \
433 __generic_copy_from_user_nocheck((to),(from),(n))
434 #define __copy_to_user_inatomic __copy_to_user
435 #define __copy_from_user_inatomic __copy_from_user
436
437
438 /*
439 * We need to return the number of bytes not cleared. Our memset()
440 * returns zero if a problem occurs while accessing user-space memory.
441 * In that event, return no memory cleared. Otherwise, zero for
442 * success.
443 */
444
445 static inline unsigned long
446 __xtensa_clear_user(void *addr, unsigned long size)
447 {
448 if ( ! memset(addr, 0, size) )
449 return size;
450 return 0;
451 }
452
453 static inline unsigned long
454 clear_user(void *addr, unsigned long size)
455 {
456 if (access_ok(VERIFY_WRITE, addr, size))
457 return __xtensa_clear_user(addr, size);
458 return size ? -EFAULT : 0;
459 }
460
461 #define __clear_user __xtensa_clear_user
462
463
464 extern long __strncpy_user(char *, const char *, long);
465 #define __strncpy_from_user __strncpy_user
466
467 static inline long
468 strncpy_from_user(char *dst, const char *src, long count)
469 {
470 if (access_ok(VERIFY_READ, src, 1))
471 return __strncpy_from_user(dst, src, count);
472 return -EFAULT;
473 }
474
475
476 #define strlen_user(str) strnlen_user((str), TASK_SIZE - 1)
477
478 /*
479 * Return the size of a string (including the ending 0!)
480 */
481 extern long __strnlen_user(const char *, long);
482
483 static inline long strnlen_user(const char *str, long len)
484 {
485 unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1;
486
487 if ((unsigned long)str > top)
488 return 0;
489 return __strnlen_user(str, len);
490 }
491
492
493 struct exception_table_entry
494 {
495 unsigned long insn, fixup;
496 };
497
498 /* Returns 0 if exception not found and fixup.unit otherwise. */
499
500 extern unsigned long search_exception_table(unsigned long addr);
501 extern void sort_exception_table(void);
502
503 /* Returns the new pc */
504 #define fixup_exception(map_reg, fixup_unit, pc) \
505 ({ \
506 fixup_unit; \
507 })
508
509 #endif /* __ASSEMBLY__ */
510 #endif /* _XTENSA_UACCESS_H */