x86: i386-show-unhandled-signals-v3
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86_64 / kernel / traps.c
1 /*
2 * linux/arch/x86-64/traps.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
6 *
7 * Pentium III FXSR, SSE support
8 * Gareth Hughes <gareth@valinux.com>, May 2000
9 */
10
11 /*
12 * 'Traps.c' handles hardware traps and faults after we have saved some
13 * state in 'entry.S'.
14 */
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/errno.h>
19 #include <linux/ptrace.h>
20 #include <linux/timer.h>
21 #include <linux/mm.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/kallsyms.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/nmi.h>
30 #include <linux/kprobes.h>
31 #include <linux/kexec.h>
32 #include <linux/unwind.h>
33 #include <linux/uaccess.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36
37 #if defined(CONFIG_EDAC)
38 #include <linux/edac.h>
39 #endif
40
41 #include <asm/system.h>
42 #include <asm/io.h>
43 #include <asm/atomic.h>
44 #include <asm/debugreg.h>
45 #include <asm/desc.h>
46 #include <asm/i387.h>
47 #include <asm/processor.h>
48 #include <asm/unwind.h>
49 #include <asm/smp.h>
50 #include <asm/pgalloc.h>
51 #include <asm/pda.h>
52 #include <asm/proto.h>
53 #include <asm/nmi.h>
54 #include <asm/stacktrace.h>
55
56 asmlinkage void divide_error(void);
57 asmlinkage void debug(void);
58 asmlinkage void nmi(void);
59 asmlinkage void int3(void);
60 asmlinkage void overflow(void);
61 asmlinkage void bounds(void);
62 asmlinkage void invalid_op(void);
63 asmlinkage void device_not_available(void);
64 asmlinkage void double_fault(void);
65 asmlinkage void coprocessor_segment_overrun(void);
66 asmlinkage void invalid_TSS(void);
67 asmlinkage void segment_not_present(void);
68 asmlinkage void stack_segment(void);
69 asmlinkage void general_protection(void);
70 asmlinkage void page_fault(void);
71 asmlinkage void coprocessor_error(void);
72 asmlinkage void simd_coprocessor_error(void);
73 asmlinkage void reserved(void);
74 asmlinkage void alignment_check(void);
75 asmlinkage void machine_check(void);
76 asmlinkage void spurious_interrupt_bug(void);
77
78 static inline void conditional_sti(struct pt_regs *regs)
79 {
80 if (regs->eflags & X86_EFLAGS_IF)
81 local_irq_enable();
82 }
83
84 static inline void preempt_conditional_sti(struct pt_regs *regs)
85 {
86 preempt_disable();
87 if (regs->eflags & X86_EFLAGS_IF)
88 local_irq_enable();
89 }
90
91 static inline void preempt_conditional_cli(struct pt_regs *regs)
92 {
93 if (regs->eflags & X86_EFLAGS_IF)
94 local_irq_disable();
95 /* Make sure to not schedule here because we could be running
96 on an exception stack. */
97 preempt_enable_no_resched();
98 }
99
100 int kstack_depth_to_print = 12;
101
102 #ifdef CONFIG_KALLSYMS
103 void printk_address(unsigned long address)
104 {
105 unsigned long offset = 0, symsize;
106 const char *symname;
107 char *modname;
108 char *delim = ":";
109 char namebuf[128];
110
111 symname = kallsyms_lookup(address, &symsize, &offset,
112 &modname, namebuf);
113 if (!symname) {
114 printk(" [<%016lx>]\n", address);
115 return;
116 }
117 if (!modname)
118 modname = delim = "";
119 printk(" [<%016lx>] %s%s%s%s+0x%lx/0x%lx\n",
120 address, delim, modname, delim, symname, offset, symsize);
121 }
122 #else
123 void printk_address(unsigned long address)
124 {
125 printk(" [<%016lx>]\n", address);
126 }
127 #endif
128
129 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
130 unsigned *usedp, char **idp)
131 {
132 static char ids[][8] = {
133 [DEBUG_STACK - 1] = "#DB",
134 [NMI_STACK - 1] = "NMI",
135 [DOUBLEFAULT_STACK - 1] = "#DF",
136 [STACKFAULT_STACK - 1] = "#SS",
137 [MCE_STACK - 1] = "#MC",
138 #if DEBUG_STKSZ > EXCEPTION_STKSZ
139 [N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
140 #endif
141 };
142 unsigned k;
143
144 /*
145 * Iterate over all exception stacks, and figure out whether
146 * 'stack' is in one of them:
147 */
148 for (k = 0; k < N_EXCEPTION_STACKS; k++) {
149 unsigned long end = per_cpu(orig_ist, cpu).ist[k];
150 /*
151 * Is 'stack' above this exception frame's end?
152 * If yes then skip to the next frame.
153 */
154 if (stack >= end)
155 continue;
156 /*
157 * Is 'stack' above this exception frame's start address?
158 * If yes then we found the right frame.
159 */
160 if (stack >= end - EXCEPTION_STKSZ) {
161 /*
162 * Make sure we only iterate through an exception
163 * stack once. If it comes up for the second time
164 * then there's something wrong going on - just
165 * break out and return NULL:
166 */
167 if (*usedp & (1U << k))
168 break;
169 *usedp |= 1U << k;
170 *idp = ids[k];
171 return (unsigned long *)end;
172 }
173 /*
174 * If this is a debug stack, and if it has a larger size than
175 * the usual exception stacks, then 'stack' might still
176 * be within the lower portion of the debug stack:
177 */
178 #if DEBUG_STKSZ > EXCEPTION_STKSZ
179 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
180 unsigned j = N_EXCEPTION_STACKS - 1;
181
182 /*
183 * Black magic. A large debug stack is composed of
184 * multiple exception stack entries, which we
185 * iterate through now. Dont look:
186 */
187 do {
188 ++j;
189 end -= EXCEPTION_STKSZ;
190 ids[j][4] = '1' + (j - N_EXCEPTION_STACKS);
191 } while (stack < end - EXCEPTION_STKSZ);
192 if (*usedp & (1U << j))
193 break;
194 *usedp |= 1U << j;
195 *idp = ids[j];
196 return (unsigned long *)end;
197 }
198 #endif
199 }
200 return NULL;
201 }
202
203 #define MSG(txt) ops->warning(data, txt)
204
205 /*
206 * x86-64 can have upto three kernel stacks:
207 * process stack
208 * interrupt stack
209 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
210 */
211
212 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
213 {
214 void *t = (void *)tinfo;
215 return p > t && p < t + THREAD_SIZE - 3;
216 }
217
218 void dump_trace(struct task_struct *tsk, struct pt_regs *regs,
219 unsigned long *stack,
220 struct stacktrace_ops *ops, void *data)
221 {
222 const unsigned cpu = get_cpu();
223 unsigned long *irqstack_end = (unsigned long*)cpu_pda(cpu)->irqstackptr;
224 unsigned used = 0;
225 struct thread_info *tinfo;
226
227 if (!tsk)
228 tsk = current;
229
230 if (!stack) {
231 unsigned long dummy;
232 stack = &dummy;
233 if (tsk && tsk != current)
234 stack = (unsigned long *)tsk->thread.rsp;
235 }
236
237 /*
238 * Print function call entries within a stack. 'cond' is the
239 * "end of stackframe" condition, that the 'stack++'
240 * iteration will eventually trigger.
241 */
242 #define HANDLE_STACK(cond) \
243 do while (cond) { \
244 unsigned long addr = *stack++; \
245 /* Use unlocked access here because except for NMIs \
246 we should be already protected against module unloads */ \
247 if (__kernel_text_address(addr)) { \
248 /* \
249 * If the address is either in the text segment of the \
250 * kernel, or in the region which contains vmalloc'ed \
251 * memory, it *may* be the address of a calling \
252 * routine; if so, print it so that someone tracing \
253 * down the cause of the crash will be able to figure \
254 * out the call path that was taken. \
255 */ \
256 ops->address(data, addr); \
257 } \
258 } while (0)
259
260 /*
261 * Print function call entries in all stacks, starting at the
262 * current stack address. If the stacks consist of nested
263 * exceptions
264 */
265 for (;;) {
266 char *id;
267 unsigned long *estack_end;
268 estack_end = in_exception_stack(cpu, (unsigned long)stack,
269 &used, &id);
270
271 if (estack_end) {
272 if (ops->stack(data, id) < 0)
273 break;
274 HANDLE_STACK (stack < estack_end);
275 ops->stack(data, "<EOE>");
276 /*
277 * We link to the next stack via the
278 * second-to-last pointer (index -2 to end) in the
279 * exception stack:
280 */
281 stack = (unsigned long *) estack_end[-2];
282 continue;
283 }
284 if (irqstack_end) {
285 unsigned long *irqstack;
286 irqstack = irqstack_end -
287 (IRQSTACKSIZE - 64) / sizeof(*irqstack);
288
289 if (stack >= irqstack && stack < irqstack_end) {
290 if (ops->stack(data, "IRQ") < 0)
291 break;
292 HANDLE_STACK (stack < irqstack_end);
293 /*
294 * We link to the next stack (which would be
295 * the process stack normally) the last
296 * pointer (index -1 to end) in the IRQ stack:
297 */
298 stack = (unsigned long *) (irqstack_end[-1]);
299 irqstack_end = NULL;
300 ops->stack(data, "EOI");
301 continue;
302 }
303 }
304 break;
305 }
306
307 /*
308 * This handles the process stack:
309 */
310 tinfo = task_thread_info(tsk);
311 HANDLE_STACK (valid_stack_ptr(tinfo, stack));
312 #undef HANDLE_STACK
313 put_cpu();
314 }
315 EXPORT_SYMBOL(dump_trace);
316
317 static void
318 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
319 {
320 print_symbol(msg, symbol);
321 printk("\n");
322 }
323
324 static void print_trace_warning(void *data, char *msg)
325 {
326 printk("%s\n", msg);
327 }
328
329 static int print_trace_stack(void *data, char *name)
330 {
331 printk(" <%s> ", name);
332 return 0;
333 }
334
335 static void print_trace_address(void *data, unsigned long addr)
336 {
337 touch_nmi_watchdog();
338 printk_address(addr);
339 }
340
341 static struct stacktrace_ops print_trace_ops = {
342 .warning = print_trace_warning,
343 .warning_symbol = print_trace_warning_symbol,
344 .stack = print_trace_stack,
345 .address = print_trace_address,
346 };
347
348 void
349 show_trace(struct task_struct *tsk, struct pt_regs *regs, unsigned long *stack)
350 {
351 printk("\nCall Trace:\n");
352 dump_trace(tsk, regs, stack, &print_trace_ops, NULL);
353 printk("\n");
354 }
355
356 static void
357 _show_stack(struct task_struct *tsk, struct pt_regs *regs, unsigned long *rsp)
358 {
359 unsigned long *stack;
360 int i;
361 const int cpu = smp_processor_id();
362 unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr);
363 unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE);
364
365 // debugging aid: "show_stack(NULL, NULL);" prints the
366 // back trace for this cpu.
367
368 if (rsp == NULL) {
369 if (tsk)
370 rsp = (unsigned long *)tsk->thread.rsp;
371 else
372 rsp = (unsigned long *)&rsp;
373 }
374
375 stack = rsp;
376 for(i=0; i < kstack_depth_to_print; i++) {
377 if (stack >= irqstack && stack <= irqstack_end) {
378 if (stack == irqstack_end) {
379 stack = (unsigned long *) (irqstack_end[-1]);
380 printk(" <EOI> ");
381 }
382 } else {
383 if (((long) stack & (THREAD_SIZE-1)) == 0)
384 break;
385 }
386 if (i && ((i % 4) == 0))
387 printk("\n");
388 printk(" %016lx", *stack++);
389 touch_nmi_watchdog();
390 }
391 show_trace(tsk, regs, rsp);
392 }
393
394 void show_stack(struct task_struct *tsk, unsigned long * rsp)
395 {
396 _show_stack(tsk, NULL, rsp);
397 }
398
399 /*
400 * The architecture-independent dump_stack generator
401 */
402 void dump_stack(void)
403 {
404 unsigned long dummy;
405 show_trace(NULL, NULL, &dummy);
406 }
407
408 EXPORT_SYMBOL(dump_stack);
409
410 void show_registers(struct pt_regs *regs)
411 {
412 int i;
413 int in_kernel = !user_mode(regs);
414 unsigned long rsp;
415 const int cpu = smp_processor_id();
416 struct task_struct *cur = cpu_pda(cpu)->pcurrent;
417
418 rsp = regs->rsp;
419 printk("CPU %d ", cpu);
420 __show_regs(regs);
421 printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
422 cur->comm, cur->pid, task_thread_info(cur), cur);
423
424 /*
425 * When in-kernel, we also print out the stack and code at the
426 * time of the fault..
427 */
428 if (in_kernel) {
429 printk("Stack: ");
430 _show_stack(NULL, regs, (unsigned long*)rsp);
431
432 printk("\nCode: ");
433 if (regs->rip < PAGE_OFFSET)
434 goto bad;
435
436 for (i=0; i<20; i++) {
437 unsigned char c;
438 if (__get_user(c, &((unsigned char*)regs->rip)[i])) {
439 bad:
440 printk(" Bad RIP value.");
441 break;
442 }
443 printk("%02x ", c);
444 }
445 }
446 printk("\n");
447 }
448
449 int is_valid_bugaddr(unsigned long rip)
450 {
451 unsigned short ud2;
452
453 if (__copy_from_user(&ud2, (const void __user *) rip, sizeof(ud2)))
454 return 0;
455
456 return ud2 == 0x0b0f;
457 }
458
459 #ifdef CONFIG_BUG
460 void out_of_line_bug(void)
461 {
462 BUG();
463 }
464 EXPORT_SYMBOL(out_of_line_bug);
465 #endif
466
467 static DEFINE_SPINLOCK(die_lock);
468 static int die_owner = -1;
469 static unsigned int die_nest_count;
470
471 unsigned __kprobes long oops_begin(void)
472 {
473 int cpu;
474 unsigned long flags;
475
476 oops_enter();
477
478 /* racy, but better than risking deadlock. */
479 local_irq_save(flags);
480 cpu = smp_processor_id();
481 if (!spin_trylock(&die_lock)) {
482 if (cpu == die_owner)
483 /* nested oops. should stop eventually */;
484 else
485 spin_lock(&die_lock);
486 }
487 die_nest_count++;
488 die_owner = cpu;
489 console_verbose();
490 bust_spinlocks(1);
491 return flags;
492 }
493
494 void __kprobes oops_end(unsigned long flags)
495 {
496 die_owner = -1;
497 bust_spinlocks(0);
498 die_nest_count--;
499 if (die_nest_count)
500 /* We still own the lock */
501 local_irq_restore(flags);
502 else
503 /* Nest count reaches zero, release the lock. */
504 spin_unlock_irqrestore(&die_lock, flags);
505 if (panic_on_oops)
506 panic("Fatal exception");
507 oops_exit();
508 }
509
510 void __kprobes __die(const char * str, struct pt_regs * regs, long err)
511 {
512 static int die_counter;
513 printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff,++die_counter);
514 #ifdef CONFIG_PREEMPT
515 printk("PREEMPT ");
516 #endif
517 #ifdef CONFIG_SMP
518 printk("SMP ");
519 #endif
520 #ifdef CONFIG_DEBUG_PAGEALLOC
521 printk("DEBUG_PAGEALLOC");
522 #endif
523 printk("\n");
524 notify_die(DIE_OOPS, str, regs, err, current->thread.trap_no, SIGSEGV);
525 show_registers(regs);
526 add_taint(TAINT_DIE);
527 /* Executive summary in case the oops scrolled away */
528 printk(KERN_ALERT "RIP ");
529 printk_address(regs->rip);
530 printk(" RSP <%016lx>\n", regs->rsp);
531 if (kexec_should_crash(current))
532 crash_kexec(regs);
533 }
534
535 void die(const char * str, struct pt_regs * regs, long err)
536 {
537 unsigned long flags = oops_begin();
538
539 if (!user_mode(regs))
540 report_bug(regs->rip, regs);
541
542 __die(str, regs, err);
543 oops_end(flags);
544 do_exit(SIGSEGV);
545 }
546
547 void __kprobes die_nmi(char *str, struct pt_regs *regs, int do_panic)
548 {
549 unsigned long flags = oops_begin();
550
551 /*
552 * We are in trouble anyway, lets at least try
553 * to get a message out.
554 */
555 printk(str, smp_processor_id());
556 show_registers(regs);
557 if (kexec_should_crash(current))
558 crash_kexec(regs);
559 if (do_panic || panic_on_oops)
560 panic("Non maskable interrupt");
561 oops_end(flags);
562 nmi_exit();
563 local_irq_enable();
564 do_exit(SIGSEGV);
565 }
566
567 static void __kprobes do_trap(int trapnr, int signr, char *str,
568 struct pt_regs * regs, long error_code,
569 siginfo_t *info)
570 {
571 struct task_struct *tsk = current;
572
573 if (user_mode(regs)) {
574 /*
575 * We want error_code and trap_no set for userspace
576 * faults and kernelspace faults which result in
577 * die(), but not kernelspace faults which are fixed
578 * up. die() gives the process no chance to handle
579 * the signal and notice the kernel fault information,
580 * so that won't result in polluting the information
581 * about previously queued, but not yet delivered,
582 * faults. See also do_general_protection below.
583 */
584 tsk->thread.error_code = error_code;
585 tsk->thread.trap_no = trapnr;
586
587 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
588 printk_ratelimit())
589 printk(KERN_INFO
590 "%s[%d] trap %s rip:%lx rsp:%lx error:%lx\n",
591 tsk->comm, tsk->pid, str,
592 regs->rip, regs->rsp, error_code);
593
594 if (info)
595 force_sig_info(signr, info, tsk);
596 else
597 force_sig(signr, tsk);
598 return;
599 }
600
601
602 /* kernel trap */
603 {
604 const struct exception_table_entry *fixup;
605 fixup = search_exception_tables(regs->rip);
606 if (fixup)
607 regs->rip = fixup->fixup;
608 else {
609 tsk->thread.error_code = error_code;
610 tsk->thread.trap_no = trapnr;
611 die(str, regs, error_code);
612 }
613 return;
614 }
615 }
616
617 #define DO_ERROR(trapnr, signr, str, name) \
618 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
619 { \
620 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
621 == NOTIFY_STOP) \
622 return; \
623 conditional_sti(regs); \
624 do_trap(trapnr, signr, str, regs, error_code, NULL); \
625 }
626
627 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
628 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
629 { \
630 siginfo_t info; \
631 info.si_signo = signr; \
632 info.si_errno = 0; \
633 info.si_code = sicode; \
634 info.si_addr = (void __user *)siaddr; \
635 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
636 == NOTIFY_STOP) \
637 return; \
638 conditional_sti(regs); \
639 do_trap(trapnr, signr, str, regs, error_code, &info); \
640 }
641
642 DO_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->rip)
643 DO_ERROR( 4, SIGSEGV, "overflow", overflow)
644 DO_ERROR( 5, SIGSEGV, "bounds", bounds)
645 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->rip)
646 DO_ERROR( 7, SIGSEGV, "device not available", device_not_available)
647 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
648 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
649 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
650 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
651 DO_ERROR(18, SIGSEGV, "reserved", reserved)
652
653 /* Runs on IST stack */
654 asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code)
655 {
656 if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
657 12, SIGBUS) == NOTIFY_STOP)
658 return;
659 preempt_conditional_sti(regs);
660 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
661 preempt_conditional_cli(regs);
662 }
663
664 asmlinkage void do_double_fault(struct pt_regs * regs, long error_code)
665 {
666 static const char str[] = "double fault";
667 struct task_struct *tsk = current;
668
669 /* Return not checked because double check cannot be ignored */
670 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
671
672 tsk->thread.error_code = error_code;
673 tsk->thread.trap_no = 8;
674
675 /* This is always a kernel trap and never fixable (and thus must
676 never return). */
677 for (;;)
678 die(str, regs, error_code);
679 }
680
681 asmlinkage void __kprobes do_general_protection(struct pt_regs * regs,
682 long error_code)
683 {
684 struct task_struct *tsk = current;
685
686 conditional_sti(regs);
687
688 if (user_mode(regs)) {
689 tsk->thread.error_code = error_code;
690 tsk->thread.trap_no = 13;
691
692 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
693 printk_ratelimit())
694 printk(KERN_INFO
695 "%s[%d] general protection rip:%lx rsp:%lx error:%lx\n",
696 tsk->comm, tsk->pid,
697 regs->rip, regs->rsp, error_code);
698
699 force_sig(SIGSEGV, tsk);
700 return;
701 }
702
703 /* kernel gp */
704 {
705 const struct exception_table_entry *fixup;
706 fixup = search_exception_tables(regs->rip);
707 if (fixup) {
708 regs->rip = fixup->fixup;
709 return;
710 }
711
712 tsk->thread.error_code = error_code;
713 tsk->thread.trap_no = 13;
714 if (notify_die(DIE_GPF, "general protection fault", regs,
715 error_code, 13, SIGSEGV) == NOTIFY_STOP)
716 return;
717 die("general protection fault", regs, error_code);
718 }
719 }
720
721 static __kprobes void
722 mem_parity_error(unsigned char reason, struct pt_regs * regs)
723 {
724 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
725 reason);
726 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
727
728 #if defined(CONFIG_EDAC)
729 if(edac_handler_set()) {
730 edac_atomic_assert_error();
731 return;
732 }
733 #endif
734
735 if (panic_on_unrecovered_nmi)
736 panic("NMI: Not continuing");
737
738 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
739
740 /* Clear and disable the memory parity error line. */
741 reason = (reason & 0xf) | 4;
742 outb(reason, 0x61);
743 }
744
745 static __kprobes void
746 io_check_error(unsigned char reason, struct pt_regs * regs)
747 {
748 printk("NMI: IOCK error (debug interrupt?)\n");
749 show_registers(regs);
750
751 /* Re-enable the IOCK line, wait for a few seconds */
752 reason = (reason & 0xf) | 8;
753 outb(reason, 0x61);
754 mdelay(2000);
755 reason &= ~8;
756 outb(reason, 0x61);
757 }
758
759 static __kprobes void
760 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
761 {
762 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
763 reason);
764 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
765
766 if (panic_on_unrecovered_nmi)
767 panic("NMI: Not continuing");
768
769 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
770 }
771
772 /* Runs on IST stack. This code must keep interrupts off all the time.
773 Nested NMIs are prevented by the CPU. */
774 asmlinkage __kprobes void default_do_nmi(struct pt_regs *regs)
775 {
776 unsigned char reason = 0;
777 int cpu;
778
779 cpu = smp_processor_id();
780
781 /* Only the BSP gets external NMIs from the system. */
782 if (!cpu)
783 reason = get_nmi_reason();
784
785 if (!(reason & 0xc0)) {
786 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
787 == NOTIFY_STOP)
788 return;
789 /*
790 * Ok, so this is none of the documented NMI sources,
791 * so it must be the NMI watchdog.
792 */
793 if (nmi_watchdog_tick(regs,reason))
794 return;
795 if (!do_nmi_callback(regs,cpu))
796 unknown_nmi_error(reason, regs);
797
798 return;
799 }
800 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
801 return;
802
803 /* AK: following checks seem to be broken on modern chipsets. FIXME */
804
805 if (reason & 0x80)
806 mem_parity_error(reason, regs);
807 if (reason & 0x40)
808 io_check_error(reason, regs);
809 }
810
811 /* runs on IST stack. */
812 asmlinkage void __kprobes do_int3(struct pt_regs * regs, long error_code)
813 {
814 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) == NOTIFY_STOP) {
815 return;
816 }
817 preempt_conditional_sti(regs);
818 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
819 preempt_conditional_cli(regs);
820 }
821
822 /* Help handler running on IST stack to switch back to user stack
823 for scheduling or signal handling. The actual stack switch is done in
824 entry.S */
825 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
826 {
827 struct pt_regs *regs = eregs;
828 /* Did already sync */
829 if (eregs == (struct pt_regs *)eregs->rsp)
830 ;
831 /* Exception from user space */
832 else if (user_mode(eregs))
833 regs = task_pt_regs(current);
834 /* Exception from kernel and interrupts are enabled. Move to
835 kernel process stack. */
836 else if (eregs->eflags & X86_EFLAGS_IF)
837 regs = (struct pt_regs *)(eregs->rsp -= sizeof(struct pt_regs));
838 if (eregs != regs)
839 *regs = *eregs;
840 return regs;
841 }
842
843 /* runs on IST stack. */
844 asmlinkage void __kprobes do_debug(struct pt_regs * regs,
845 unsigned long error_code)
846 {
847 unsigned long condition;
848 struct task_struct *tsk = current;
849 siginfo_t info;
850
851 get_debugreg(condition, 6);
852
853 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
854 SIGTRAP) == NOTIFY_STOP)
855 return;
856
857 preempt_conditional_sti(regs);
858
859 /* Mask out spurious debug traps due to lazy DR7 setting */
860 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
861 if (!tsk->thread.debugreg7) {
862 goto clear_dr7;
863 }
864 }
865
866 tsk->thread.debugreg6 = condition;
867
868 /* Mask out spurious TF errors due to lazy TF clearing */
869 if (condition & DR_STEP) {
870 /*
871 * The TF error should be masked out only if the current
872 * process is not traced and if the TRAP flag has been set
873 * previously by a tracing process (condition detected by
874 * the PT_DTRACE flag); remember that the i386 TRAP flag
875 * can be modified by the process itself in user mode,
876 * allowing programs to debug themselves without the ptrace()
877 * interface.
878 */
879 if (!user_mode(regs))
880 goto clear_TF_reenable;
881 /*
882 * Was the TF flag set by a debugger? If so, clear it now,
883 * so that register information is correct.
884 */
885 if (tsk->ptrace & PT_DTRACE) {
886 regs->eflags &= ~TF_MASK;
887 tsk->ptrace &= ~PT_DTRACE;
888 }
889 }
890
891 /* Ok, finally something we can handle */
892 tsk->thread.trap_no = 1;
893 tsk->thread.error_code = error_code;
894 info.si_signo = SIGTRAP;
895 info.si_errno = 0;
896 info.si_code = TRAP_BRKPT;
897 info.si_addr = user_mode(regs) ? (void __user *)regs->rip : NULL;
898 force_sig_info(SIGTRAP, &info, tsk);
899
900 clear_dr7:
901 set_debugreg(0UL, 7);
902 preempt_conditional_cli(regs);
903 return;
904
905 clear_TF_reenable:
906 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
907 regs->eflags &= ~TF_MASK;
908 preempt_conditional_cli(regs);
909 }
910
911 static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr)
912 {
913 const struct exception_table_entry *fixup;
914 fixup = search_exception_tables(regs->rip);
915 if (fixup) {
916 regs->rip = fixup->fixup;
917 return 1;
918 }
919 notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE);
920 /* Illegal floating point operation in the kernel */
921 current->thread.trap_no = trapnr;
922 die(str, regs, 0);
923 return 0;
924 }
925
926 /*
927 * Note that we play around with the 'TS' bit in an attempt to get
928 * the correct behaviour even in the presence of the asynchronous
929 * IRQ13 behaviour
930 */
931 asmlinkage void do_coprocessor_error(struct pt_regs *regs)
932 {
933 void __user *rip = (void __user *)(regs->rip);
934 struct task_struct * task;
935 siginfo_t info;
936 unsigned short cwd, swd;
937
938 conditional_sti(regs);
939 if (!user_mode(regs) &&
940 kernel_math_error(regs, "kernel x87 math error", 16))
941 return;
942
943 /*
944 * Save the info for the exception handler and clear the error.
945 */
946 task = current;
947 save_init_fpu(task);
948 task->thread.trap_no = 16;
949 task->thread.error_code = 0;
950 info.si_signo = SIGFPE;
951 info.si_errno = 0;
952 info.si_code = __SI_FAULT;
953 info.si_addr = rip;
954 /*
955 * (~cwd & swd) will mask out exceptions that are not set to unmasked
956 * status. 0x3f is the exception bits in these regs, 0x200 is the
957 * C1 reg you need in case of a stack fault, 0x040 is the stack
958 * fault bit. We should only be taking one exception at a time,
959 * so if this combination doesn't produce any single exception,
960 * then we have a bad program that isn't synchronizing its FPU usage
961 * and it will suffer the consequences since we won't be able to
962 * fully reproduce the context of the exception
963 */
964 cwd = get_fpu_cwd(task);
965 swd = get_fpu_swd(task);
966 switch (swd & ~cwd & 0x3f) {
967 case 0x000:
968 default:
969 break;
970 case 0x001: /* Invalid Op */
971 /*
972 * swd & 0x240 == 0x040: Stack Underflow
973 * swd & 0x240 == 0x240: Stack Overflow
974 * User must clear the SF bit (0x40) if set
975 */
976 info.si_code = FPE_FLTINV;
977 break;
978 case 0x002: /* Denormalize */
979 case 0x010: /* Underflow */
980 info.si_code = FPE_FLTUND;
981 break;
982 case 0x004: /* Zero Divide */
983 info.si_code = FPE_FLTDIV;
984 break;
985 case 0x008: /* Overflow */
986 info.si_code = FPE_FLTOVF;
987 break;
988 case 0x020: /* Precision */
989 info.si_code = FPE_FLTRES;
990 break;
991 }
992 force_sig_info(SIGFPE, &info, task);
993 }
994
995 asmlinkage void bad_intr(void)
996 {
997 printk("bad interrupt");
998 }
999
1000 asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs)
1001 {
1002 void __user *rip = (void __user *)(regs->rip);
1003 struct task_struct * task;
1004 siginfo_t info;
1005 unsigned short mxcsr;
1006
1007 conditional_sti(regs);
1008 if (!user_mode(regs) &&
1009 kernel_math_error(regs, "kernel simd math error", 19))
1010 return;
1011
1012 /*
1013 * Save the info for the exception handler and clear the error.
1014 */
1015 task = current;
1016 save_init_fpu(task);
1017 task->thread.trap_no = 19;
1018 task->thread.error_code = 0;
1019 info.si_signo = SIGFPE;
1020 info.si_errno = 0;
1021 info.si_code = __SI_FAULT;
1022 info.si_addr = rip;
1023 /*
1024 * The SIMD FPU exceptions are handled a little differently, as there
1025 * is only a single status/control register. Thus, to determine which
1026 * unmasked exception was caught we must mask the exception mask bits
1027 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1028 */
1029 mxcsr = get_fpu_mxcsr(task);
1030 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1031 case 0x000:
1032 default:
1033 break;
1034 case 0x001: /* Invalid Op */
1035 info.si_code = FPE_FLTINV;
1036 break;
1037 case 0x002: /* Denormalize */
1038 case 0x010: /* Underflow */
1039 info.si_code = FPE_FLTUND;
1040 break;
1041 case 0x004: /* Zero Divide */
1042 info.si_code = FPE_FLTDIV;
1043 break;
1044 case 0x008: /* Overflow */
1045 info.si_code = FPE_FLTOVF;
1046 break;
1047 case 0x020: /* Precision */
1048 info.si_code = FPE_FLTRES;
1049 break;
1050 }
1051 force_sig_info(SIGFPE, &info, task);
1052 }
1053
1054 asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs)
1055 {
1056 }
1057
1058 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
1059 {
1060 }
1061
1062 asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void)
1063 {
1064 }
1065
1066 /*
1067 * 'math_state_restore()' saves the current math information in the
1068 * old math state array, and gets the new ones from the current task
1069 *
1070 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1071 * Don't touch unless you *really* know how it works.
1072 */
1073 asmlinkage void math_state_restore(void)
1074 {
1075 struct task_struct *me = current;
1076 clts(); /* Allow maths ops (or we recurse) */
1077
1078 if (!used_math())
1079 init_fpu(me);
1080 restore_fpu_checking(&me->thread.i387.fxsave);
1081 task_thread_info(me)->status |= TS_USEDFPU;
1082 me->fpu_counter++;
1083 }
1084
1085 void __init trap_init(void)
1086 {
1087 set_intr_gate(0,&divide_error);
1088 set_intr_gate_ist(1,&debug,DEBUG_STACK);
1089 set_intr_gate_ist(2,&nmi,NMI_STACK);
1090 set_system_gate_ist(3,&int3,DEBUG_STACK); /* int3 can be called from all */
1091 set_system_gate(4,&overflow); /* int4 can be called from all */
1092 set_intr_gate(5,&bounds);
1093 set_intr_gate(6,&invalid_op);
1094 set_intr_gate(7,&device_not_available);
1095 set_intr_gate_ist(8,&double_fault, DOUBLEFAULT_STACK);
1096 set_intr_gate(9,&coprocessor_segment_overrun);
1097 set_intr_gate(10,&invalid_TSS);
1098 set_intr_gate(11,&segment_not_present);
1099 set_intr_gate_ist(12,&stack_segment,STACKFAULT_STACK);
1100 set_intr_gate(13,&general_protection);
1101 set_intr_gate(14,&page_fault);
1102 set_intr_gate(15,&spurious_interrupt_bug);
1103 set_intr_gate(16,&coprocessor_error);
1104 set_intr_gate(17,&alignment_check);
1105 #ifdef CONFIG_X86_MCE
1106 set_intr_gate_ist(18,&machine_check, MCE_STACK);
1107 #endif
1108 set_intr_gate(19,&simd_coprocessor_error);
1109
1110 #ifdef CONFIG_IA32_EMULATION
1111 set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
1112 #endif
1113
1114 /*
1115 * Should be a barrier for any external CPU state.
1116 */
1117 cpu_init();
1118 }
1119
1120
1121 static int __init oops_setup(char *s)
1122 {
1123 if (!s)
1124 return -EINVAL;
1125 if (!strcmp(s, "panic"))
1126 panic_on_oops = 1;
1127 return 0;
1128 }
1129 early_param("oops", oops_setup);
1130
1131 static int __init kstack_setup(char *s)
1132 {
1133 if (!s)
1134 return -EINVAL;
1135 kstack_depth_to_print = simple_strtoul(s,NULL,0);
1136 return 0;
1137 }
1138 early_param("kstack", kstack_setup);