Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-for-linus-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86_64 / kernel / smp.c
1 /*
2 * Intel SMP support routines.
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 * (c) 2002,2003 Andi Kleen, SuSE Labs.
7 *
8 * This code is released under the GNU General Public License version 2 or
9 * later.
10 */
11
12 #include <linux/init.h>
13
14 #include <linux/mm.h>
15 #include <linux/delay.h>
16 #include <linux/spinlock.h>
17 #include <linux/smp_lock.h>
18 #include <linux/smp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/interrupt.h>
22
23 #include <asm/mtrr.h>
24 #include <asm/pgalloc.h>
25 #include <asm/tlbflush.h>
26 #include <asm/mach_apic.h>
27 #include <asm/mmu_context.h>
28 #include <asm/proto.h>
29 #include <asm/apicdef.h>
30
31 #define __cpuinit __init
32
33 /*
34 * Smarter SMP flushing macros.
35 * c/o Linus Torvalds.
36 *
37 * These mean you can really definitely utterly forget about
38 * writing to user space from interrupts. (Its not allowed anyway).
39 *
40 * Optimizations Manfred Spraul <manfred@colorfullife.com>
41 *
42 * More scalable flush, from Andi Kleen
43 *
44 * To avoid global state use 8 different call vectors.
45 * Each CPU uses a specific vector to trigger flushes on other
46 * CPUs. Depending on the received vector the target CPUs look into
47 * the right per cpu variable for the flush data.
48 *
49 * With more than 8 CPUs they are hashed to the 8 available
50 * vectors. The limited global vector space forces us to this right now.
51 * In future when interrupts are split into per CPU domains this could be
52 * fixed, at the cost of triggering multiple IPIs in some cases.
53 */
54
55 union smp_flush_state {
56 struct {
57 cpumask_t flush_cpumask;
58 struct mm_struct *flush_mm;
59 unsigned long flush_va;
60 #define FLUSH_ALL -1ULL
61 spinlock_t tlbstate_lock;
62 };
63 char pad[SMP_CACHE_BYTES];
64 } ____cacheline_aligned;
65
66 /* State is put into the per CPU data section, but padded
67 to a full cache line because other CPUs can access it and we don't
68 want false sharing in the per cpu data segment. */
69 static DEFINE_PER_CPU(union smp_flush_state, flush_state);
70
71 /*
72 * We cannot call mmdrop() because we are in interrupt context,
73 * instead update mm->cpu_vm_mask.
74 */
75 static inline void leave_mm(int cpu)
76 {
77 if (read_pda(mmu_state) == TLBSTATE_OK)
78 BUG();
79 clear_bit(cpu, &read_pda(active_mm)->cpu_vm_mask);
80 load_cr3(swapper_pg_dir);
81 }
82
83 /*
84 *
85 * The flush IPI assumes that a thread switch happens in this order:
86 * [cpu0: the cpu that switches]
87 * 1) switch_mm() either 1a) or 1b)
88 * 1a) thread switch to a different mm
89 * 1a1) clear_bit(cpu, &old_mm->cpu_vm_mask);
90 * Stop ipi delivery for the old mm. This is not synchronized with
91 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
92 * for the wrong mm, and in the worst case we perform a superfluous
93 * tlb flush.
94 * 1a2) set cpu mmu_state to TLBSTATE_OK
95 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
96 * was in lazy tlb mode.
97 * 1a3) update cpu active_mm
98 * Now cpu0 accepts tlb flushes for the new mm.
99 * 1a4) set_bit(cpu, &new_mm->cpu_vm_mask);
100 * Now the other cpus will send tlb flush ipis.
101 * 1a4) change cr3.
102 * 1b) thread switch without mm change
103 * cpu active_mm is correct, cpu0 already handles
104 * flush ipis.
105 * 1b1) set cpu mmu_state to TLBSTATE_OK
106 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
107 * Atomically set the bit [other cpus will start sending flush ipis],
108 * and test the bit.
109 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
110 * 2) switch %%esp, ie current
111 *
112 * The interrupt must handle 2 special cases:
113 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
114 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
115 * runs in kernel space, the cpu could load tlb entries for user space
116 * pages.
117 *
118 * The good news is that cpu mmu_state is local to each cpu, no
119 * write/read ordering problems.
120 */
121
122 /*
123 * TLB flush IPI:
124 *
125 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
126 * 2) Leave the mm if we are in the lazy tlb mode.
127 *
128 * Interrupts are disabled.
129 */
130
131 asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs)
132 {
133 int cpu;
134 int sender;
135 union smp_flush_state *f;
136
137 cpu = smp_processor_id();
138 /*
139 * orig_rax contains the interrupt vector - 256.
140 * Use that to determine where the sender put the data.
141 */
142 sender = regs->orig_rax + 256 - INVALIDATE_TLB_VECTOR_START;
143 f = &per_cpu(flush_state, sender);
144
145 if (!cpu_isset(cpu, f->flush_cpumask))
146 goto out;
147 /*
148 * This was a BUG() but until someone can quote me the
149 * line from the intel manual that guarantees an IPI to
150 * multiple CPUs is retried _only_ on the erroring CPUs
151 * its staying as a return
152 *
153 * BUG();
154 */
155
156 if (f->flush_mm == read_pda(active_mm)) {
157 if (read_pda(mmu_state) == TLBSTATE_OK) {
158 if (f->flush_va == FLUSH_ALL)
159 local_flush_tlb();
160 else
161 __flush_tlb_one(f->flush_va);
162 } else
163 leave_mm(cpu);
164 }
165 out:
166 ack_APIC_irq();
167 cpu_clear(cpu, f->flush_cpumask);
168 }
169
170 static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
171 unsigned long va)
172 {
173 int sender;
174 union smp_flush_state *f;
175
176 /* Caller has disabled preemption */
177 sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
178 f = &per_cpu(flush_state, sender);
179
180 /* Could avoid this lock when
181 num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
182 probably not worth checking this for a cache-hot lock. */
183 spin_lock(&f->tlbstate_lock);
184
185 f->flush_mm = mm;
186 f->flush_va = va;
187 cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask);
188
189 /*
190 * We have to send the IPI only to
191 * CPUs affected.
192 */
193 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR_START + sender);
194
195 while (!cpus_empty(f->flush_cpumask))
196 cpu_relax();
197
198 f->flush_mm = NULL;
199 f->flush_va = 0;
200 spin_unlock(&f->tlbstate_lock);
201 }
202
203 int __cpuinit init_smp_flush(void)
204 {
205 int i;
206 for_each_cpu_mask(i, cpu_possible_map) {
207 spin_lock_init(&per_cpu(flush_state.tlbstate_lock, i));
208 }
209 return 0;
210 }
211
212 core_initcall(init_smp_flush);
213
214 void flush_tlb_current_task(void)
215 {
216 struct mm_struct *mm = current->mm;
217 cpumask_t cpu_mask;
218
219 preempt_disable();
220 cpu_mask = mm->cpu_vm_mask;
221 cpu_clear(smp_processor_id(), cpu_mask);
222
223 local_flush_tlb();
224 if (!cpus_empty(cpu_mask))
225 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
226 preempt_enable();
227 }
228
229 void flush_tlb_mm (struct mm_struct * mm)
230 {
231 cpumask_t cpu_mask;
232
233 preempt_disable();
234 cpu_mask = mm->cpu_vm_mask;
235 cpu_clear(smp_processor_id(), cpu_mask);
236
237 if (current->active_mm == mm) {
238 if (current->mm)
239 local_flush_tlb();
240 else
241 leave_mm(smp_processor_id());
242 }
243 if (!cpus_empty(cpu_mask))
244 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
245
246 preempt_enable();
247 }
248
249 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
250 {
251 struct mm_struct *mm = vma->vm_mm;
252 cpumask_t cpu_mask;
253
254 preempt_disable();
255 cpu_mask = mm->cpu_vm_mask;
256 cpu_clear(smp_processor_id(), cpu_mask);
257
258 if (current->active_mm == mm) {
259 if(current->mm)
260 __flush_tlb_one(va);
261 else
262 leave_mm(smp_processor_id());
263 }
264
265 if (!cpus_empty(cpu_mask))
266 flush_tlb_others(cpu_mask, mm, va);
267
268 preempt_enable();
269 }
270
271 static void do_flush_tlb_all(void* info)
272 {
273 unsigned long cpu = smp_processor_id();
274
275 __flush_tlb_all();
276 if (read_pda(mmu_state) == TLBSTATE_LAZY)
277 leave_mm(cpu);
278 }
279
280 void flush_tlb_all(void)
281 {
282 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
283 }
284
285 void smp_kdb_stop(void)
286 {
287 send_IPI_allbutself(KDB_VECTOR);
288 }
289
290 /*
291 * this function sends a 'reschedule' IPI to another CPU.
292 * it goes straight through and wastes no time serializing
293 * anything. Worst case is that we lose a reschedule ...
294 */
295
296 void smp_send_reschedule(int cpu)
297 {
298 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
299 }
300
301 /*
302 * Structure and data for smp_call_function(). This is designed to minimise
303 * static memory requirements. It also looks cleaner.
304 */
305 static DEFINE_SPINLOCK(call_lock);
306
307 struct call_data_struct {
308 void (*func) (void *info);
309 void *info;
310 atomic_t started;
311 atomic_t finished;
312 int wait;
313 };
314
315 static struct call_data_struct * call_data;
316
317 void lock_ipi_call_lock(void)
318 {
319 spin_lock_irq(&call_lock);
320 }
321
322 void unlock_ipi_call_lock(void)
323 {
324 spin_unlock_irq(&call_lock);
325 }
326
327 /*
328 * this function sends a 'generic call function' IPI to one other CPU
329 * in the system.
330 *
331 * cpu is a standard Linux logical CPU number.
332 */
333 static void
334 __smp_call_function_single(int cpu, void (*func) (void *info), void *info,
335 int nonatomic, int wait)
336 {
337 struct call_data_struct data;
338 int cpus = 1;
339
340 data.func = func;
341 data.info = info;
342 atomic_set(&data.started, 0);
343 data.wait = wait;
344 if (wait)
345 atomic_set(&data.finished, 0);
346
347 call_data = &data;
348 wmb();
349 /* Send a message to all other CPUs and wait for them to respond */
350 send_IPI_mask(cpumask_of_cpu(cpu), CALL_FUNCTION_VECTOR);
351
352 /* Wait for response */
353 while (atomic_read(&data.started) != cpus)
354 cpu_relax();
355
356 if (!wait)
357 return;
358
359 while (atomic_read(&data.finished) != cpus)
360 cpu_relax();
361 }
362
363 /*
364 * smp_call_function_single - Run a function on another CPU
365 * @func: The function to run. This must be fast and non-blocking.
366 * @info: An arbitrary pointer to pass to the function.
367 * @nonatomic: Currently unused.
368 * @wait: If true, wait until function has completed on other CPUs.
369 *
370 * Retrurns 0 on success, else a negative status code.
371 *
372 * Does not return until the remote CPU is nearly ready to execute <func>
373 * or is or has executed.
374 */
375
376 int smp_call_function_single (int cpu, void (*func) (void *info), void *info,
377 int nonatomic, int wait)
378 {
379 /* prevent preemption and reschedule on another processor */
380 int me = get_cpu();
381 if (cpu == me) {
382 WARN_ON(1);
383 put_cpu();
384 return -EBUSY;
385 }
386 spin_lock_bh(&call_lock);
387 __smp_call_function_single(cpu, func, info, nonatomic, wait);
388 spin_unlock_bh(&call_lock);
389 put_cpu();
390 return 0;
391 }
392
393 /*
394 * this function sends a 'generic call function' IPI to all other CPUs
395 * in the system.
396 */
397 static void __smp_call_function (void (*func) (void *info), void *info,
398 int nonatomic, int wait)
399 {
400 struct call_data_struct data;
401 int cpus = num_online_cpus()-1;
402
403 if (!cpus)
404 return;
405
406 data.func = func;
407 data.info = info;
408 atomic_set(&data.started, 0);
409 data.wait = wait;
410 if (wait)
411 atomic_set(&data.finished, 0);
412
413 call_data = &data;
414 wmb();
415 /* Send a message to all other CPUs and wait for them to respond */
416 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
417
418 /* Wait for response */
419 while (atomic_read(&data.started) != cpus)
420 cpu_relax();
421
422 if (!wait)
423 return;
424
425 while (atomic_read(&data.finished) != cpus)
426 cpu_relax();
427 }
428
429 /*
430 * smp_call_function - run a function on all other CPUs.
431 * @func: The function to run. This must be fast and non-blocking.
432 * @info: An arbitrary pointer to pass to the function.
433 * @nonatomic: currently unused.
434 * @wait: If true, wait (atomically) until function has completed on other
435 * CPUs.
436 *
437 * Returns 0 on success, else a negative status code. Does not return until
438 * remote CPUs are nearly ready to execute func or are or have executed.
439 *
440 * You must not call this function with disabled interrupts or from a
441 * hardware interrupt handler or from a bottom half handler.
442 * Actually there are a few legal cases, like panic.
443 */
444 int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
445 int wait)
446 {
447 spin_lock(&call_lock);
448 __smp_call_function(func,info,nonatomic,wait);
449 spin_unlock(&call_lock);
450 return 0;
451 }
452
453 void smp_stop_cpu(void)
454 {
455 /*
456 * Remove this CPU:
457 */
458 cpu_clear(smp_processor_id(), cpu_online_map);
459 local_irq_disable();
460 disable_local_APIC();
461 local_irq_enable();
462 }
463
464 static void smp_really_stop_cpu(void *dummy)
465 {
466 smp_stop_cpu();
467 for (;;)
468 asm("hlt");
469 }
470
471 void smp_send_stop(void)
472 {
473 int nolock = 0;
474 if (reboot_force)
475 return;
476 /* Don't deadlock on the call lock in panic */
477 if (!spin_trylock(&call_lock)) {
478 /* ignore locking because we have paniced anyways */
479 nolock = 1;
480 }
481 __smp_call_function(smp_really_stop_cpu, NULL, 0, 0);
482 if (!nolock)
483 spin_unlock(&call_lock);
484
485 local_irq_disable();
486 disable_local_APIC();
487 local_irq_enable();
488 }
489
490 /*
491 * Reschedule call back. Nothing to do,
492 * all the work is done automatically when
493 * we return from the interrupt.
494 */
495 asmlinkage void smp_reschedule_interrupt(void)
496 {
497 ack_APIC_irq();
498 }
499
500 asmlinkage void smp_call_function_interrupt(void)
501 {
502 void (*func) (void *info) = call_data->func;
503 void *info = call_data->info;
504 int wait = call_data->wait;
505
506 ack_APIC_irq();
507 /*
508 * Notify initiating CPU that I've grabbed the data and am
509 * about to execute the function
510 */
511 mb();
512 atomic_inc(&call_data->started);
513 /*
514 * At this point the info structure may be out of scope unless wait==1
515 */
516 irq_enter();
517 (*func)(info);
518 irq_exit();
519 if (wait) {
520 mb();
521 atomic_inc(&call_data->finished);
522 }
523 }
524
525 int safe_smp_processor_id(void)
526 {
527 int apicid, i;
528
529 if (disable_apic)
530 return 0;
531
532 apicid = hard_smp_processor_id();
533 if (x86_cpu_to_apicid[apicid] == apicid)
534 return apicid;
535
536 for (i = 0; i < NR_CPUS; ++i) {
537 if (x86_cpu_to_apicid[i] == apicid)
538 return i;
539 }
540
541 /* No entries in x86_cpu_to_apicid? Either no MPS|ACPI,
542 * or called too early. Either way, we must be CPU 0. */
543 if (x86_cpu_to_apicid[0] == BAD_APICID)
544 return 0;
545
546 return 0; /* Should not happen */
547 }