Merge 4.14.24 into android-4.14
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / x86 / xen / enlighten_pv.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Core of Xen paravirt_ops implementation.
4 *
5 * This file contains the xen_paravirt_ops structure itself, and the
6 * implementations for:
7 * - privileged instructions
8 * - interrupt flags
9 * - segment operations
10 * - booting and setup
11 *
12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13 */
14
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/bootmem.h>
27 #include <linux/export.h>
28 #include <linux/mm.h>
29 #include <linux/page-flags.h>
30 #include <linux/highmem.h>
31 #include <linux/console.h>
32 #include <linux/pci.h>
33 #include <linux/gfp.h>
34 #include <linux/memblock.h>
35 #include <linux/edd.h>
36 #include <linux/frame.h>
37
38 #include <xen/xen.h>
39 #include <xen/events.h>
40 #include <xen/interface/xen.h>
41 #include <xen/interface/version.h>
42 #include <xen/interface/physdev.h>
43 #include <xen/interface/vcpu.h>
44 #include <xen/interface/memory.h>
45 #include <xen/interface/nmi.h>
46 #include <xen/interface/xen-mca.h>
47 #include <xen/features.h>
48 #include <xen/page.h>
49 #include <xen/hvc-console.h>
50 #include <xen/acpi.h>
51
52 #include <asm/paravirt.h>
53 #include <asm/apic.h>
54 #include <asm/page.h>
55 #include <asm/xen/pci.h>
56 #include <asm/xen/hypercall.h>
57 #include <asm/xen/hypervisor.h>
58 #include <asm/xen/cpuid.h>
59 #include <asm/fixmap.h>
60 #include <asm/processor.h>
61 #include <asm/proto.h>
62 #include <asm/msr-index.h>
63 #include <asm/traps.h>
64 #include <asm/setup.h>
65 #include <asm/desc.h>
66 #include <asm/pgalloc.h>
67 #include <asm/pgtable.h>
68 #include <asm/tlbflush.h>
69 #include <asm/reboot.h>
70 #include <asm/stackprotector.h>
71 #include <asm/hypervisor.h>
72 #include <asm/mach_traps.h>
73 #include <asm/mwait.h>
74 #include <asm/pci_x86.h>
75 #include <asm/cpu.h>
76
77 #ifdef CONFIG_ACPI
78 #include <linux/acpi.h>
79 #include <asm/acpi.h>
80 #include <acpi/pdc_intel.h>
81 #include <acpi/processor.h>
82 #include <xen/interface/platform.h>
83 #endif
84
85 #include "xen-ops.h"
86 #include "mmu.h"
87 #include "smp.h"
88 #include "multicalls.h"
89 #include "pmu.h"
90
91 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
92
93 void *xen_initial_gdt;
94
95 static int xen_cpu_up_prepare_pv(unsigned int cpu);
96 static int xen_cpu_dead_pv(unsigned int cpu);
97
98 struct tls_descs {
99 struct desc_struct desc[3];
100 };
101
102 /*
103 * Updating the 3 TLS descriptors in the GDT on every task switch is
104 * surprisingly expensive so we avoid updating them if they haven't
105 * changed. Since Xen writes different descriptors than the one
106 * passed in the update_descriptor hypercall we keep shadow copies to
107 * compare against.
108 */
109 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
110
111 static void __init xen_banner(void)
112 {
113 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
114 struct xen_extraversion extra;
115 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
116
117 pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
118 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
119 version >> 16, version & 0xffff, extra.extraversion,
120 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
121 }
122 /* Check if running on Xen version (major, minor) or later */
123 bool
124 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
125 {
126 unsigned int version;
127
128 if (!xen_domain())
129 return false;
130
131 version = HYPERVISOR_xen_version(XENVER_version, NULL);
132 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
133 ((version >> 16) > major))
134 return true;
135 return false;
136 }
137
138 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
139 static __read_mostly unsigned int cpuid_leaf5_edx_val;
140
141 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
142 unsigned int *cx, unsigned int *dx)
143 {
144 unsigned maskebx = ~0;
145
146 /*
147 * Mask out inconvenient features, to try and disable as many
148 * unsupported kernel subsystems as possible.
149 */
150 switch (*ax) {
151 case CPUID_MWAIT_LEAF:
152 /* Synthesize the values.. */
153 *ax = 0;
154 *bx = 0;
155 *cx = cpuid_leaf5_ecx_val;
156 *dx = cpuid_leaf5_edx_val;
157 return;
158
159 case 0xb:
160 /* Suppress extended topology stuff */
161 maskebx = 0;
162 break;
163 }
164
165 asm(XEN_EMULATE_PREFIX "cpuid"
166 : "=a" (*ax),
167 "=b" (*bx),
168 "=c" (*cx),
169 "=d" (*dx)
170 : "0" (*ax), "2" (*cx));
171
172 *bx &= maskebx;
173 }
174 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
175
176 static bool __init xen_check_mwait(void)
177 {
178 #ifdef CONFIG_ACPI
179 struct xen_platform_op op = {
180 .cmd = XENPF_set_processor_pminfo,
181 .u.set_pminfo.id = -1,
182 .u.set_pminfo.type = XEN_PM_PDC,
183 };
184 uint32_t buf[3];
185 unsigned int ax, bx, cx, dx;
186 unsigned int mwait_mask;
187
188 /* We need to determine whether it is OK to expose the MWAIT
189 * capability to the kernel to harvest deeper than C3 states from ACPI
190 * _CST using the processor_harvest_xen.c module. For this to work, we
191 * need to gather the MWAIT_LEAF values (which the cstate.c code
192 * checks against). The hypervisor won't expose the MWAIT flag because
193 * it would break backwards compatibility; so we will find out directly
194 * from the hardware and hypercall.
195 */
196 if (!xen_initial_domain())
197 return false;
198
199 /*
200 * When running under platform earlier than Xen4.2, do not expose
201 * mwait, to avoid the risk of loading native acpi pad driver
202 */
203 if (!xen_running_on_version_or_later(4, 2))
204 return false;
205
206 ax = 1;
207 cx = 0;
208
209 native_cpuid(&ax, &bx, &cx, &dx);
210
211 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
212 (1 << (X86_FEATURE_MWAIT % 32));
213
214 if ((cx & mwait_mask) != mwait_mask)
215 return false;
216
217 /* We need to emulate the MWAIT_LEAF and for that we need both
218 * ecx and edx. The hypercall provides only partial information.
219 */
220
221 ax = CPUID_MWAIT_LEAF;
222 bx = 0;
223 cx = 0;
224 dx = 0;
225
226 native_cpuid(&ax, &bx, &cx, &dx);
227
228 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
229 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
230 */
231 buf[0] = ACPI_PDC_REVISION_ID;
232 buf[1] = 1;
233 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
234
235 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
236
237 if ((HYPERVISOR_platform_op(&op) == 0) &&
238 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
239 cpuid_leaf5_ecx_val = cx;
240 cpuid_leaf5_edx_val = dx;
241 }
242 return true;
243 #else
244 return false;
245 #endif
246 }
247
248 static bool __init xen_check_xsave(void)
249 {
250 unsigned int cx, xsave_mask;
251
252 cx = cpuid_ecx(1);
253
254 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
255 (1 << (X86_FEATURE_OSXSAVE % 32));
256
257 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
258 return (cx & xsave_mask) == xsave_mask;
259 }
260
261 static void __init xen_init_capabilities(void)
262 {
263 setup_force_cpu_cap(X86_FEATURE_XENPV);
264 setup_clear_cpu_cap(X86_FEATURE_DCA);
265 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
266 setup_clear_cpu_cap(X86_FEATURE_MTRR);
267 setup_clear_cpu_cap(X86_FEATURE_ACC);
268 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
269 setup_clear_cpu_cap(X86_FEATURE_SME);
270
271 /*
272 * Xen PV would need some work to support PCID: CR3 handling as well
273 * as xen_flush_tlb_others() would need updating.
274 */
275 setup_clear_cpu_cap(X86_FEATURE_PCID);
276
277 if (!xen_initial_domain())
278 setup_clear_cpu_cap(X86_FEATURE_ACPI);
279
280 if (xen_check_mwait())
281 setup_force_cpu_cap(X86_FEATURE_MWAIT);
282 else
283 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
284
285 if (!xen_check_xsave()) {
286 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
287 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
288 }
289 }
290
291 static void xen_set_debugreg(int reg, unsigned long val)
292 {
293 HYPERVISOR_set_debugreg(reg, val);
294 }
295
296 static unsigned long xen_get_debugreg(int reg)
297 {
298 return HYPERVISOR_get_debugreg(reg);
299 }
300
301 static void xen_end_context_switch(struct task_struct *next)
302 {
303 xen_mc_flush();
304 paravirt_end_context_switch(next);
305 }
306
307 static unsigned long xen_store_tr(void)
308 {
309 return 0;
310 }
311
312 /*
313 * Set the page permissions for a particular virtual address. If the
314 * address is a vmalloc mapping (or other non-linear mapping), then
315 * find the linear mapping of the page and also set its protections to
316 * match.
317 */
318 static void set_aliased_prot(void *v, pgprot_t prot)
319 {
320 int level;
321 pte_t *ptep;
322 pte_t pte;
323 unsigned long pfn;
324 struct page *page;
325 unsigned char dummy;
326
327 ptep = lookup_address((unsigned long)v, &level);
328 BUG_ON(ptep == NULL);
329
330 pfn = pte_pfn(*ptep);
331 page = pfn_to_page(pfn);
332
333 pte = pfn_pte(pfn, prot);
334
335 /*
336 * Careful: update_va_mapping() will fail if the virtual address
337 * we're poking isn't populated in the page tables. We don't
338 * need to worry about the direct map (that's always in the page
339 * tables), but we need to be careful about vmap space. In
340 * particular, the top level page table can lazily propagate
341 * entries between processes, so if we've switched mms since we
342 * vmapped the target in the first place, we might not have the
343 * top-level page table entry populated.
344 *
345 * We disable preemption because we want the same mm active when
346 * we probe the target and when we issue the hypercall. We'll
347 * have the same nominal mm, but if we're a kernel thread, lazy
348 * mm dropping could change our pgd.
349 *
350 * Out of an abundance of caution, this uses __get_user() to fault
351 * in the target address just in case there's some obscure case
352 * in which the target address isn't readable.
353 */
354
355 preempt_disable();
356
357 probe_kernel_read(&dummy, v, 1);
358
359 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
360 BUG();
361
362 if (!PageHighMem(page)) {
363 void *av = __va(PFN_PHYS(pfn));
364
365 if (av != v)
366 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
367 BUG();
368 } else
369 kmap_flush_unused();
370
371 preempt_enable();
372 }
373
374 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
375 {
376 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
377 int i;
378
379 /*
380 * We need to mark the all aliases of the LDT pages RO. We
381 * don't need to call vm_flush_aliases(), though, since that's
382 * only responsible for flushing aliases out the TLBs, not the
383 * page tables, and Xen will flush the TLB for us if needed.
384 *
385 * To avoid confusing future readers: none of this is necessary
386 * to load the LDT. The hypervisor only checks this when the
387 * LDT is faulted in due to subsequent descriptor access.
388 */
389
390 for (i = 0; i < entries; i += entries_per_page)
391 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
392 }
393
394 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
395 {
396 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
397 int i;
398
399 for (i = 0; i < entries; i += entries_per_page)
400 set_aliased_prot(ldt + i, PAGE_KERNEL);
401 }
402
403 static void xen_set_ldt(const void *addr, unsigned entries)
404 {
405 struct mmuext_op *op;
406 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
407
408 trace_xen_cpu_set_ldt(addr, entries);
409
410 op = mcs.args;
411 op->cmd = MMUEXT_SET_LDT;
412 op->arg1.linear_addr = (unsigned long)addr;
413 op->arg2.nr_ents = entries;
414
415 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
416
417 xen_mc_issue(PARAVIRT_LAZY_CPU);
418 }
419
420 static void xen_load_gdt(const struct desc_ptr *dtr)
421 {
422 unsigned long va = dtr->address;
423 unsigned int size = dtr->size + 1;
424 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
425 unsigned long frames[pages];
426 int f;
427
428 /*
429 * A GDT can be up to 64k in size, which corresponds to 8192
430 * 8-byte entries, or 16 4k pages..
431 */
432
433 BUG_ON(size > 65536);
434 BUG_ON(va & ~PAGE_MASK);
435
436 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
437 int level;
438 pte_t *ptep;
439 unsigned long pfn, mfn;
440 void *virt;
441
442 /*
443 * The GDT is per-cpu and is in the percpu data area.
444 * That can be virtually mapped, so we need to do a
445 * page-walk to get the underlying MFN for the
446 * hypercall. The page can also be in the kernel's
447 * linear range, so we need to RO that mapping too.
448 */
449 ptep = lookup_address(va, &level);
450 BUG_ON(ptep == NULL);
451
452 pfn = pte_pfn(*ptep);
453 mfn = pfn_to_mfn(pfn);
454 virt = __va(PFN_PHYS(pfn));
455
456 frames[f] = mfn;
457
458 make_lowmem_page_readonly((void *)va);
459 make_lowmem_page_readonly(virt);
460 }
461
462 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
463 BUG();
464 }
465
466 /*
467 * load_gdt for early boot, when the gdt is only mapped once
468 */
469 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
470 {
471 unsigned long va = dtr->address;
472 unsigned int size = dtr->size + 1;
473 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
474 unsigned long frames[pages];
475 int f;
476
477 /*
478 * A GDT can be up to 64k in size, which corresponds to 8192
479 * 8-byte entries, or 16 4k pages..
480 */
481
482 BUG_ON(size > 65536);
483 BUG_ON(va & ~PAGE_MASK);
484
485 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
486 pte_t pte;
487 unsigned long pfn, mfn;
488
489 pfn = virt_to_pfn(va);
490 mfn = pfn_to_mfn(pfn);
491
492 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
493
494 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
495 BUG();
496
497 frames[f] = mfn;
498 }
499
500 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
501 BUG();
502 }
503
504 static inline bool desc_equal(const struct desc_struct *d1,
505 const struct desc_struct *d2)
506 {
507 return !memcmp(d1, d2, sizeof(*d1));
508 }
509
510 static void load_TLS_descriptor(struct thread_struct *t,
511 unsigned int cpu, unsigned int i)
512 {
513 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
514 struct desc_struct *gdt;
515 xmaddr_t maddr;
516 struct multicall_space mc;
517
518 if (desc_equal(shadow, &t->tls_array[i]))
519 return;
520
521 *shadow = t->tls_array[i];
522
523 gdt = get_cpu_gdt_rw(cpu);
524 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
525 mc = __xen_mc_entry(0);
526
527 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
528 }
529
530 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
531 {
532 /*
533 * XXX sleazy hack: If we're being called in a lazy-cpu zone
534 * and lazy gs handling is enabled, it means we're in a
535 * context switch, and %gs has just been saved. This means we
536 * can zero it out to prevent faults on exit from the
537 * hypervisor if the next process has no %gs. Either way, it
538 * has been saved, and the new value will get loaded properly.
539 * This will go away as soon as Xen has been modified to not
540 * save/restore %gs for normal hypercalls.
541 *
542 * On x86_64, this hack is not used for %gs, because gs points
543 * to KERNEL_GS_BASE (and uses it for PDA references), so we
544 * must not zero %gs on x86_64
545 *
546 * For x86_64, we need to zero %fs, otherwise we may get an
547 * exception between the new %fs descriptor being loaded and
548 * %fs being effectively cleared at __switch_to().
549 */
550 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
551 #ifdef CONFIG_X86_32
552 lazy_load_gs(0);
553 #else
554 loadsegment(fs, 0);
555 #endif
556 }
557
558 xen_mc_batch();
559
560 load_TLS_descriptor(t, cpu, 0);
561 load_TLS_descriptor(t, cpu, 1);
562 load_TLS_descriptor(t, cpu, 2);
563
564 xen_mc_issue(PARAVIRT_LAZY_CPU);
565 }
566
567 #ifdef CONFIG_X86_64
568 static void xen_load_gs_index(unsigned int idx)
569 {
570 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
571 BUG();
572 }
573 #endif
574
575 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
576 const void *ptr)
577 {
578 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
579 u64 entry = *(u64 *)ptr;
580
581 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
582
583 preempt_disable();
584
585 xen_mc_flush();
586 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
587 BUG();
588
589 preempt_enable();
590 }
591
592 #ifdef CONFIG_X86_64
593 struct trap_array_entry {
594 void (*orig)(void);
595 void (*xen)(void);
596 bool ist_okay;
597 };
598
599 static struct trap_array_entry trap_array[] = {
600 { debug, xen_xendebug, true },
601 { int3, xen_xenint3, true },
602 { double_fault, xen_double_fault, true },
603 #ifdef CONFIG_X86_MCE
604 { machine_check, xen_machine_check, true },
605 #endif
606 { nmi, xen_xennmi, true },
607 { overflow, xen_overflow, false },
608 #ifdef CONFIG_IA32_EMULATION
609 { entry_INT80_compat, xen_entry_INT80_compat, false },
610 #endif
611 { page_fault, xen_page_fault, false },
612 { divide_error, xen_divide_error, false },
613 { bounds, xen_bounds, false },
614 { invalid_op, xen_invalid_op, false },
615 { device_not_available, xen_device_not_available, false },
616 { coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false },
617 { invalid_TSS, xen_invalid_TSS, false },
618 { segment_not_present, xen_segment_not_present, false },
619 { stack_segment, xen_stack_segment, false },
620 { general_protection, xen_general_protection, false },
621 { spurious_interrupt_bug, xen_spurious_interrupt_bug, false },
622 { coprocessor_error, xen_coprocessor_error, false },
623 { alignment_check, xen_alignment_check, false },
624 { simd_coprocessor_error, xen_simd_coprocessor_error, false },
625 };
626
627 static bool __ref get_trap_addr(void **addr, unsigned int ist)
628 {
629 unsigned int nr;
630 bool ist_okay = false;
631
632 /*
633 * Replace trap handler addresses by Xen specific ones.
634 * Check for known traps using IST and whitelist them.
635 * The debugger ones are the only ones we care about.
636 * Xen will handle faults like double_fault, * so we should never see
637 * them. Warn if there's an unexpected IST-using fault handler.
638 */
639 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
640 struct trap_array_entry *entry = trap_array + nr;
641
642 if (*addr == entry->orig) {
643 *addr = entry->xen;
644 ist_okay = entry->ist_okay;
645 break;
646 }
647 }
648
649 if (nr == ARRAY_SIZE(trap_array) &&
650 *addr >= (void *)early_idt_handler_array[0] &&
651 *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
652 nr = (*addr - (void *)early_idt_handler_array[0]) /
653 EARLY_IDT_HANDLER_SIZE;
654 *addr = (void *)xen_early_idt_handler_array[nr];
655 }
656
657 if (WARN_ON(ist != 0 && !ist_okay))
658 return false;
659
660 return true;
661 }
662 #endif
663
664 static int cvt_gate_to_trap(int vector, const gate_desc *val,
665 struct trap_info *info)
666 {
667 unsigned long addr;
668
669 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
670 return 0;
671
672 info->vector = vector;
673
674 addr = gate_offset(val);
675 #ifdef CONFIG_X86_64
676 if (!get_trap_addr((void **)&addr, val->bits.ist))
677 return 0;
678 #endif /* CONFIG_X86_64 */
679 info->address = addr;
680
681 info->cs = gate_segment(val);
682 info->flags = val->bits.dpl;
683 /* interrupt gates clear IF */
684 if (val->bits.type == GATE_INTERRUPT)
685 info->flags |= 1 << 2;
686
687 return 1;
688 }
689
690 /* Locations of each CPU's IDT */
691 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
692
693 /* Set an IDT entry. If the entry is part of the current IDT, then
694 also update Xen. */
695 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
696 {
697 unsigned long p = (unsigned long)&dt[entrynum];
698 unsigned long start, end;
699
700 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
701
702 preempt_disable();
703
704 start = __this_cpu_read(idt_desc.address);
705 end = start + __this_cpu_read(idt_desc.size) + 1;
706
707 xen_mc_flush();
708
709 native_write_idt_entry(dt, entrynum, g);
710
711 if (p >= start && (p + 8) <= end) {
712 struct trap_info info[2];
713
714 info[1].address = 0;
715
716 if (cvt_gate_to_trap(entrynum, g, &info[0]))
717 if (HYPERVISOR_set_trap_table(info))
718 BUG();
719 }
720
721 preempt_enable();
722 }
723
724 static void xen_convert_trap_info(const struct desc_ptr *desc,
725 struct trap_info *traps)
726 {
727 unsigned in, out, count;
728
729 count = (desc->size+1) / sizeof(gate_desc);
730 BUG_ON(count > 256);
731
732 for (in = out = 0; in < count; in++) {
733 gate_desc *entry = (gate_desc *)(desc->address) + in;
734
735 if (cvt_gate_to_trap(in, entry, &traps[out]))
736 out++;
737 }
738 traps[out].address = 0;
739 }
740
741 void xen_copy_trap_info(struct trap_info *traps)
742 {
743 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
744
745 xen_convert_trap_info(desc, traps);
746 }
747
748 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
749 hold a spinlock to protect the static traps[] array (static because
750 it avoids allocation, and saves stack space). */
751 static void xen_load_idt(const struct desc_ptr *desc)
752 {
753 static DEFINE_SPINLOCK(lock);
754 static struct trap_info traps[257];
755
756 trace_xen_cpu_load_idt(desc);
757
758 spin_lock(&lock);
759
760 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
761
762 xen_convert_trap_info(desc, traps);
763
764 xen_mc_flush();
765 if (HYPERVISOR_set_trap_table(traps))
766 BUG();
767
768 spin_unlock(&lock);
769 }
770
771 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
772 they're handled differently. */
773 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
774 const void *desc, int type)
775 {
776 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
777
778 preempt_disable();
779
780 switch (type) {
781 case DESC_LDT:
782 case DESC_TSS:
783 /* ignore */
784 break;
785
786 default: {
787 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
788
789 xen_mc_flush();
790 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
791 BUG();
792 }
793
794 }
795
796 preempt_enable();
797 }
798
799 /*
800 * Version of write_gdt_entry for use at early boot-time needed to
801 * update an entry as simply as possible.
802 */
803 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
804 const void *desc, int type)
805 {
806 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
807
808 switch (type) {
809 case DESC_LDT:
810 case DESC_TSS:
811 /* ignore */
812 break;
813
814 default: {
815 xmaddr_t maddr = virt_to_machine(&dt[entry]);
816
817 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
818 dt[entry] = *(struct desc_struct *)desc;
819 }
820
821 }
822 }
823
824 static void xen_load_sp0(unsigned long sp0)
825 {
826 struct multicall_space mcs;
827
828 mcs = xen_mc_entry(0);
829 MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
830 xen_mc_issue(PARAVIRT_LAZY_CPU);
831 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
832 }
833
834 void xen_set_iopl_mask(unsigned mask)
835 {
836 struct physdev_set_iopl set_iopl;
837
838 /* Force the change at ring 0. */
839 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
840 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
841 }
842
843 static void xen_io_delay(void)
844 {
845 }
846
847 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
848
849 static unsigned long xen_read_cr0(void)
850 {
851 unsigned long cr0 = this_cpu_read(xen_cr0_value);
852
853 if (unlikely(cr0 == 0)) {
854 cr0 = native_read_cr0();
855 this_cpu_write(xen_cr0_value, cr0);
856 }
857
858 return cr0;
859 }
860
861 static void xen_write_cr0(unsigned long cr0)
862 {
863 struct multicall_space mcs;
864
865 this_cpu_write(xen_cr0_value, cr0);
866
867 /* Only pay attention to cr0.TS; everything else is
868 ignored. */
869 mcs = xen_mc_entry(0);
870
871 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
872
873 xen_mc_issue(PARAVIRT_LAZY_CPU);
874 }
875
876 static void xen_write_cr4(unsigned long cr4)
877 {
878 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
879
880 native_write_cr4(cr4);
881 }
882 #ifdef CONFIG_X86_64
883 static inline unsigned long xen_read_cr8(void)
884 {
885 return 0;
886 }
887 static inline void xen_write_cr8(unsigned long val)
888 {
889 BUG_ON(val);
890 }
891 #endif
892
893 static u64 xen_read_msr_safe(unsigned int msr, int *err)
894 {
895 u64 val;
896
897 if (pmu_msr_read(msr, &val, err))
898 return val;
899
900 val = native_read_msr_safe(msr, err);
901 switch (msr) {
902 case MSR_IA32_APICBASE:
903 #ifdef CONFIG_X86_X2APIC
904 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
905 #endif
906 val &= ~X2APIC_ENABLE;
907 break;
908 }
909 return val;
910 }
911
912 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
913 {
914 int ret;
915
916 ret = 0;
917
918 switch (msr) {
919 #ifdef CONFIG_X86_64
920 unsigned which;
921 u64 base;
922
923 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
924 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
925 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
926
927 set:
928 base = ((u64)high << 32) | low;
929 if (HYPERVISOR_set_segment_base(which, base) != 0)
930 ret = -EIO;
931 break;
932 #endif
933
934 case MSR_STAR:
935 case MSR_CSTAR:
936 case MSR_LSTAR:
937 case MSR_SYSCALL_MASK:
938 case MSR_IA32_SYSENTER_CS:
939 case MSR_IA32_SYSENTER_ESP:
940 case MSR_IA32_SYSENTER_EIP:
941 /* Fast syscall setup is all done in hypercalls, so
942 these are all ignored. Stub them out here to stop
943 Xen console noise. */
944 break;
945
946 default:
947 if (!pmu_msr_write(msr, low, high, &ret))
948 ret = native_write_msr_safe(msr, low, high);
949 }
950
951 return ret;
952 }
953
954 static u64 xen_read_msr(unsigned int msr)
955 {
956 /*
957 * This will silently swallow a #GP from RDMSR. It may be worth
958 * changing that.
959 */
960 int err;
961
962 return xen_read_msr_safe(msr, &err);
963 }
964
965 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
966 {
967 /*
968 * This will silently swallow a #GP from WRMSR. It may be worth
969 * changing that.
970 */
971 xen_write_msr_safe(msr, low, high);
972 }
973
974 void xen_setup_shared_info(void)
975 {
976 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
977
978 HYPERVISOR_shared_info =
979 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
980
981 xen_setup_mfn_list_list();
982
983 if (system_state == SYSTEM_BOOTING) {
984 #ifndef CONFIG_SMP
985 /*
986 * In UP this is as good a place as any to set up shared info.
987 * Limit this to boot only, at restore vcpu setup is done via
988 * xen_vcpu_restore().
989 */
990 xen_setup_vcpu_info_placement();
991 #endif
992 /*
993 * Now that shared info is set up we can start using routines
994 * that point to pvclock area.
995 */
996 xen_init_time_ops();
997 }
998 }
999
1000 /* This is called once we have the cpu_possible_mask */
1001 void __ref xen_setup_vcpu_info_placement(void)
1002 {
1003 int cpu;
1004
1005 for_each_possible_cpu(cpu) {
1006 /* Set up direct vCPU id mapping for PV guests. */
1007 per_cpu(xen_vcpu_id, cpu) = cpu;
1008
1009 /*
1010 * xen_vcpu_setup(cpu) can fail -- in which case it
1011 * falls back to the shared_info version for cpus
1012 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
1013 *
1014 * xen_cpu_up_prepare_pv() handles the rest by failing
1015 * them in hotplug.
1016 */
1017 (void) xen_vcpu_setup(cpu);
1018 }
1019
1020 /*
1021 * xen_vcpu_setup managed to place the vcpu_info within the
1022 * percpu area for all cpus, so make use of it.
1023 */
1024 if (xen_have_vcpu_info_placement) {
1025 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1026 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1027 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1028 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1029 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1030 }
1031 }
1032
1033 static const struct pv_info xen_info __initconst = {
1034 .shared_kernel_pmd = 0,
1035
1036 #ifdef CONFIG_X86_64
1037 .extra_user_64bit_cs = FLAT_USER_CS64,
1038 #endif
1039 .name = "Xen",
1040 };
1041
1042 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1043 .cpuid = xen_cpuid,
1044
1045 .set_debugreg = xen_set_debugreg,
1046 .get_debugreg = xen_get_debugreg,
1047
1048 .read_cr0 = xen_read_cr0,
1049 .write_cr0 = xen_write_cr0,
1050
1051 .write_cr4 = xen_write_cr4,
1052
1053 #ifdef CONFIG_X86_64
1054 .read_cr8 = xen_read_cr8,
1055 .write_cr8 = xen_write_cr8,
1056 #endif
1057
1058 .wbinvd = native_wbinvd,
1059
1060 .read_msr = xen_read_msr,
1061 .write_msr = xen_write_msr,
1062
1063 .read_msr_safe = xen_read_msr_safe,
1064 .write_msr_safe = xen_write_msr_safe,
1065
1066 .read_pmc = xen_read_pmc,
1067
1068 .iret = xen_iret,
1069 #ifdef CONFIG_X86_64
1070 .usergs_sysret64 = xen_sysret64,
1071 #endif
1072
1073 .load_tr_desc = paravirt_nop,
1074 .set_ldt = xen_set_ldt,
1075 .load_gdt = xen_load_gdt,
1076 .load_idt = xen_load_idt,
1077 .load_tls = xen_load_tls,
1078 #ifdef CONFIG_X86_64
1079 .load_gs_index = xen_load_gs_index,
1080 #endif
1081
1082 .alloc_ldt = xen_alloc_ldt,
1083 .free_ldt = xen_free_ldt,
1084
1085 .store_tr = xen_store_tr,
1086
1087 .write_ldt_entry = xen_write_ldt_entry,
1088 .write_gdt_entry = xen_write_gdt_entry,
1089 .write_idt_entry = xen_write_idt_entry,
1090 .load_sp0 = xen_load_sp0,
1091
1092 .set_iopl_mask = xen_set_iopl_mask,
1093 .io_delay = xen_io_delay,
1094
1095 /* Xen takes care of %gs when switching to usermode for us */
1096 .swapgs = paravirt_nop,
1097
1098 .start_context_switch = paravirt_start_context_switch,
1099 .end_context_switch = xen_end_context_switch,
1100 };
1101
1102 static void xen_restart(char *msg)
1103 {
1104 xen_reboot(SHUTDOWN_reboot);
1105 }
1106
1107 static void xen_machine_halt(void)
1108 {
1109 xen_reboot(SHUTDOWN_poweroff);
1110 }
1111
1112 static void xen_machine_power_off(void)
1113 {
1114 if (pm_power_off)
1115 pm_power_off();
1116 xen_reboot(SHUTDOWN_poweroff);
1117 }
1118
1119 static void xen_crash_shutdown(struct pt_regs *regs)
1120 {
1121 xen_reboot(SHUTDOWN_crash);
1122 }
1123
1124 static const struct machine_ops xen_machine_ops __initconst = {
1125 .restart = xen_restart,
1126 .halt = xen_machine_halt,
1127 .power_off = xen_machine_power_off,
1128 .shutdown = xen_machine_halt,
1129 .crash_shutdown = xen_crash_shutdown,
1130 .emergency_restart = xen_emergency_restart,
1131 };
1132
1133 static unsigned char xen_get_nmi_reason(void)
1134 {
1135 unsigned char reason = 0;
1136
1137 /* Construct a value which looks like it came from port 0x61. */
1138 if (test_bit(_XEN_NMIREASON_io_error,
1139 &HYPERVISOR_shared_info->arch.nmi_reason))
1140 reason |= NMI_REASON_IOCHK;
1141 if (test_bit(_XEN_NMIREASON_pci_serr,
1142 &HYPERVISOR_shared_info->arch.nmi_reason))
1143 reason |= NMI_REASON_SERR;
1144
1145 return reason;
1146 }
1147
1148 static void __init xen_boot_params_init_edd(void)
1149 {
1150 #if IS_ENABLED(CONFIG_EDD)
1151 struct xen_platform_op op;
1152 struct edd_info *edd_info;
1153 u32 *mbr_signature;
1154 unsigned nr;
1155 int ret;
1156
1157 edd_info = boot_params.eddbuf;
1158 mbr_signature = boot_params.edd_mbr_sig_buffer;
1159
1160 op.cmd = XENPF_firmware_info;
1161
1162 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1163 for (nr = 0; nr < EDDMAXNR; nr++) {
1164 struct edd_info *info = edd_info + nr;
1165
1166 op.u.firmware_info.index = nr;
1167 info->params.length = sizeof(info->params);
1168 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1169 &info->params);
1170 ret = HYPERVISOR_platform_op(&op);
1171 if (ret)
1172 break;
1173
1174 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1175 C(device);
1176 C(version);
1177 C(interface_support);
1178 C(legacy_max_cylinder);
1179 C(legacy_max_head);
1180 C(legacy_sectors_per_track);
1181 #undef C
1182 }
1183 boot_params.eddbuf_entries = nr;
1184
1185 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1186 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1187 op.u.firmware_info.index = nr;
1188 ret = HYPERVISOR_platform_op(&op);
1189 if (ret)
1190 break;
1191 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1192 }
1193 boot_params.edd_mbr_sig_buf_entries = nr;
1194 #endif
1195 }
1196
1197 /*
1198 * Set up the GDT and segment registers for -fstack-protector. Until
1199 * we do this, we have to be careful not to call any stack-protected
1200 * function, which is most of the kernel.
1201 */
1202 static void xen_setup_gdt(int cpu)
1203 {
1204 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1205 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1206
1207 setup_stack_canary_segment(0);
1208 switch_to_new_gdt(0);
1209
1210 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1211 pv_cpu_ops.load_gdt = xen_load_gdt;
1212 }
1213
1214 static void __init xen_dom0_set_legacy_features(void)
1215 {
1216 x86_platform.legacy.rtc = 1;
1217 }
1218
1219 /* First C function to be called on Xen boot */
1220 asmlinkage __visible void __init xen_start_kernel(void)
1221 {
1222 struct physdev_set_iopl set_iopl;
1223 unsigned long initrd_start = 0;
1224 int rc;
1225
1226 if (!xen_start_info)
1227 return;
1228
1229 xen_domain_type = XEN_PV_DOMAIN;
1230
1231 xen_setup_features();
1232
1233 xen_setup_machphys_mapping();
1234
1235 /* Install Xen paravirt ops */
1236 pv_info = xen_info;
1237 pv_init_ops.patch = paravirt_patch_default;
1238 pv_cpu_ops = xen_cpu_ops;
1239
1240 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1241
1242 x86_init.resources.memory_setup = xen_memory_setup;
1243 x86_init.oem.arch_setup = xen_arch_setup;
1244 x86_init.oem.banner = xen_banner;
1245
1246 /*
1247 * Set up some pagetable state before starting to set any ptes.
1248 */
1249
1250 xen_init_mmu_ops();
1251
1252 /* Prevent unwanted bits from being set in PTEs. */
1253 __supported_pte_mask &= ~_PAGE_GLOBAL;
1254
1255 /*
1256 * Prevent page tables from being allocated in highmem, even
1257 * if CONFIG_HIGHPTE is enabled.
1258 */
1259 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1260
1261 /* Work out if we support NX */
1262 get_cpu_cap(&boot_cpu_data);
1263 x86_configure_nx();
1264
1265 /* Get mfn list */
1266 xen_build_dynamic_phys_to_machine();
1267
1268 /*
1269 * Set up kernel GDT and segment registers, mainly so that
1270 * -fstack-protector code can be executed.
1271 */
1272 xen_setup_gdt(0);
1273
1274 xen_init_irq_ops();
1275
1276 /* Let's presume PV guests always boot on vCPU with id 0. */
1277 per_cpu(xen_vcpu_id, 0) = 0;
1278
1279 /*
1280 * Setup xen_vcpu early because idt_setup_early_handler needs it for
1281 * local_irq_disable(), irqs_disabled().
1282 *
1283 * Don't do the full vcpu_info placement stuff until we have
1284 * the cpu_possible_mask and a non-dummy shared_info.
1285 */
1286 xen_vcpu_info_reset(0);
1287
1288 idt_setup_early_handler();
1289
1290 xen_init_capabilities();
1291
1292 #ifdef CONFIG_X86_LOCAL_APIC
1293 /*
1294 * set up the basic apic ops.
1295 */
1296 xen_init_apic();
1297 #endif
1298
1299 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1300 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1301 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1302 }
1303
1304 machine_ops = xen_machine_ops;
1305
1306 /*
1307 * The only reliable way to retain the initial address of the
1308 * percpu gdt_page is to remember it here, so we can go and
1309 * mark it RW later, when the initial percpu area is freed.
1310 */
1311 xen_initial_gdt = &per_cpu(gdt_page, 0);
1312
1313 xen_smp_init();
1314
1315 #ifdef CONFIG_ACPI_NUMA
1316 /*
1317 * The pages we from Xen are not related to machine pages, so
1318 * any NUMA information the kernel tries to get from ACPI will
1319 * be meaningless. Prevent it from trying.
1320 */
1321 acpi_numa = -1;
1322 #endif
1323 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1324
1325 local_irq_disable();
1326 early_boot_irqs_disabled = true;
1327
1328 xen_raw_console_write("mapping kernel into physical memory\n");
1329 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1330 xen_start_info->nr_pages);
1331 xen_reserve_special_pages();
1332
1333 /* keep using Xen gdt for now; no urgent need to change it */
1334
1335 #ifdef CONFIG_X86_32
1336 pv_info.kernel_rpl = 1;
1337 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1338 pv_info.kernel_rpl = 0;
1339 #else
1340 pv_info.kernel_rpl = 0;
1341 #endif
1342 /* set the limit of our address space */
1343 xen_reserve_top();
1344
1345 /*
1346 * We used to do this in xen_arch_setup, but that is too late
1347 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1348 * early_amd_init which pokes 0xcf8 port.
1349 */
1350 set_iopl.iopl = 1;
1351 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1352 if (rc != 0)
1353 xen_raw_printk("physdev_op failed %d\n", rc);
1354
1355 #ifdef CONFIG_X86_32
1356 /* set up basic CPUID stuff */
1357 cpu_detect(&new_cpu_data);
1358 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1359 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1360 #endif
1361
1362 if (xen_start_info->mod_start) {
1363 if (xen_start_info->flags & SIF_MOD_START_PFN)
1364 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1365 else
1366 initrd_start = __pa(xen_start_info->mod_start);
1367 }
1368
1369 /* Poke various useful things into boot_params */
1370 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1371 boot_params.hdr.ramdisk_image = initrd_start;
1372 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1373 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1374 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1375
1376 if (!xen_initial_domain()) {
1377 add_preferred_console("xenboot", 0, NULL);
1378 add_preferred_console("tty", 0, NULL);
1379 add_preferred_console("hvc", 0, NULL);
1380 if (pci_xen)
1381 x86_init.pci.arch_init = pci_xen_init;
1382 } else {
1383 const struct dom0_vga_console_info *info =
1384 (void *)((char *)xen_start_info +
1385 xen_start_info->console.dom0.info_off);
1386 struct xen_platform_op op = {
1387 .cmd = XENPF_firmware_info,
1388 .interface_version = XENPF_INTERFACE_VERSION,
1389 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1390 };
1391
1392 x86_platform.set_legacy_features =
1393 xen_dom0_set_legacy_features;
1394 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1395 xen_start_info->console.domU.mfn = 0;
1396 xen_start_info->console.domU.evtchn = 0;
1397
1398 if (HYPERVISOR_platform_op(&op) == 0)
1399 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1400
1401 /* Make sure ACS will be enabled */
1402 pci_request_acs();
1403
1404 xen_acpi_sleep_register();
1405
1406 /* Avoid searching for BIOS MP tables */
1407 x86_init.mpparse.find_smp_config = x86_init_noop;
1408 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1409
1410 xen_boot_params_init_edd();
1411 }
1412 #ifdef CONFIG_PCI
1413 /* PCI BIOS service won't work from a PV guest. */
1414 pci_probe &= ~PCI_PROBE_BIOS;
1415 #endif
1416 xen_raw_console_write("about to get started...\n");
1417
1418 /* We need this for printk timestamps */
1419 xen_setup_runstate_info(0);
1420
1421 xen_efi_init();
1422
1423 /* Start the world */
1424 #ifdef CONFIG_X86_32
1425 i386_start_kernel();
1426 #else
1427 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1428 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1429 #endif
1430 }
1431
1432 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1433 {
1434 int rc;
1435
1436 if (per_cpu(xen_vcpu, cpu) == NULL)
1437 return -ENODEV;
1438
1439 xen_setup_timer(cpu);
1440
1441 rc = xen_smp_intr_init(cpu);
1442 if (rc) {
1443 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1444 cpu, rc);
1445 return rc;
1446 }
1447
1448 rc = xen_smp_intr_init_pv(cpu);
1449 if (rc) {
1450 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1451 cpu, rc);
1452 return rc;
1453 }
1454
1455 return 0;
1456 }
1457
1458 static int xen_cpu_dead_pv(unsigned int cpu)
1459 {
1460 xen_smp_intr_free(cpu);
1461 xen_smp_intr_free_pv(cpu);
1462
1463 xen_teardown_timer(cpu);
1464
1465 return 0;
1466 }
1467
1468 static uint32_t __init xen_platform_pv(void)
1469 {
1470 if (xen_pv_domain())
1471 return xen_cpuid_base();
1472
1473 return 0;
1474 }
1475
1476 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1477 .name = "Xen PV",
1478 .detect = xen_platform_pv,
1479 .type = X86_HYPER_XEN_PV,
1480 .runtime.pin_vcpu = xen_pin_vcpu,
1481 };