Merge branch 'linus' into xen-64bit
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/page.h>
40 #include <asm/xen/hypercall.h>
41 #include <asm/xen/hypervisor.h>
42 #include <asm/fixmap.h>
43 #include <asm/processor.h>
44 #include <asm/msr-index.h>
45 #include <asm/setup.h>
46 #include <asm/desc.h>
47 #include <asm/pgtable.h>
48 #include <asm/tlbflush.h>
49 #include <asm/reboot.h>
50
51 #include "xen-ops.h"
52 #include "mmu.h"
53 #include "multicalls.h"
54
55 EXPORT_SYMBOL_GPL(hypercall_page);
56
57 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
58 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
59
60 /*
61 * Identity map, in addition to plain kernel map. This needs to be
62 * large enough to allocate page table pages to allocate the rest.
63 * Each page can map 2MB.
64 */
65 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
66
67 #ifdef CONFIG_X86_64
68 /* l3 pud for userspace vsyscall mapping */
69 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
70 #endif /* CONFIG_X86_64 */
71
72 /*
73 * Note about cr3 (pagetable base) values:
74 *
75 * xen_cr3 contains the current logical cr3 value; it contains the
76 * last set cr3. This may not be the current effective cr3, because
77 * its update may be being lazily deferred. However, a vcpu looking
78 * at its own cr3 can use this value knowing that it everything will
79 * be self-consistent.
80 *
81 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
82 * hypercall to set the vcpu cr3 is complete (so it may be a little
83 * out of date, but it will never be set early). If one vcpu is
84 * looking at another vcpu's cr3 value, it should use this variable.
85 */
86 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
87 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
88
89 struct start_info *xen_start_info;
90 EXPORT_SYMBOL_GPL(xen_start_info);
91
92 struct shared_info xen_dummy_shared_info;
93
94 /*
95 * Point at some empty memory to start with. We map the real shared_info
96 * page as soon as fixmap is up and running.
97 */
98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
99
100 /*
101 * Flag to determine whether vcpu info placement is available on all
102 * VCPUs. We assume it is to start with, and then set it to zero on
103 * the first failure. This is because it can succeed on some VCPUs
104 * and not others, since it can involve hypervisor memory allocation,
105 * or because the guest failed to guarantee all the appropriate
106 * constraints on all VCPUs (ie buffer can't cross a page boundary).
107 *
108 * Note that any particular CPU may be using a placed vcpu structure,
109 * but we can only optimise if the all are.
110 *
111 * 0: not available, 1: available
112 */
113 static int have_vcpu_info_placement = 1;
114
115 static void xen_vcpu_setup(int cpu)
116 {
117 struct vcpu_register_vcpu_info info;
118 int err;
119 struct vcpu_info *vcpup;
120
121 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
122 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
123
124 if (!have_vcpu_info_placement)
125 return; /* already tested, not available */
126
127 vcpup = &per_cpu(xen_vcpu_info, cpu);
128
129 info.mfn = virt_to_mfn(vcpup);
130 info.offset = offset_in_page(vcpup);
131
132 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
133 cpu, vcpup, info.mfn, info.offset);
134
135 /* Check to see if the hypervisor will put the vcpu_info
136 structure where we want it, which allows direct access via
137 a percpu-variable. */
138 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
139
140 if (err) {
141 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
142 have_vcpu_info_placement = 0;
143 } else {
144 /* This cpu is using the registered vcpu info, even if
145 later ones fail to. */
146 per_cpu(xen_vcpu, cpu) = vcpup;
147
148 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
149 cpu, vcpup);
150 }
151 }
152
153 /*
154 * On restore, set the vcpu placement up again.
155 * If it fails, then we're in a bad state, since
156 * we can't back out from using it...
157 */
158 void xen_vcpu_restore(void)
159 {
160 if (have_vcpu_info_placement) {
161 int cpu;
162
163 for_each_online_cpu(cpu) {
164 bool other_cpu = (cpu != smp_processor_id());
165
166 if (other_cpu &&
167 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
168 BUG();
169
170 xen_vcpu_setup(cpu);
171
172 if (other_cpu &&
173 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
174 BUG();
175 }
176
177 BUG_ON(!have_vcpu_info_placement);
178 }
179 }
180
181 static void __init xen_banner(void)
182 {
183 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
184 pv_info.name);
185 printk(KERN_INFO "Hypervisor signature: %s%s\n",
186 xen_start_info->magic,
187 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
188 }
189
190 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
191 unsigned int *cx, unsigned int *dx)
192 {
193 unsigned maskedx = ~0;
194
195 /*
196 * Mask out inconvenient features, to try and disable as many
197 * unsupported kernel subsystems as possible.
198 */
199 if (*ax == 1)
200 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
201 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
202 (1 << X86_FEATURE_MCE) | /* disable MCE */
203 (1 << X86_FEATURE_MCA) | /* disable MCA */
204 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
205
206 asm(XEN_EMULATE_PREFIX "cpuid"
207 : "=a" (*ax),
208 "=b" (*bx),
209 "=c" (*cx),
210 "=d" (*dx)
211 : "0" (*ax), "2" (*cx));
212 *dx &= maskedx;
213 }
214
215 static void xen_set_debugreg(int reg, unsigned long val)
216 {
217 HYPERVISOR_set_debugreg(reg, val);
218 }
219
220 static unsigned long xen_get_debugreg(int reg)
221 {
222 return HYPERVISOR_get_debugreg(reg);
223 }
224
225 static unsigned long xen_save_fl(void)
226 {
227 struct vcpu_info *vcpu;
228 unsigned long flags;
229
230 vcpu = x86_read_percpu(xen_vcpu);
231
232 /* flag has opposite sense of mask */
233 flags = !vcpu->evtchn_upcall_mask;
234
235 /* convert to IF type flag
236 -0 -> 0x00000000
237 -1 -> 0xffffffff
238 */
239 return (-flags) & X86_EFLAGS_IF;
240 }
241
242 static void xen_restore_fl(unsigned long flags)
243 {
244 struct vcpu_info *vcpu;
245
246 /* convert from IF type flag */
247 flags = !(flags & X86_EFLAGS_IF);
248
249 /* There's a one instruction preempt window here. We need to
250 make sure we're don't switch CPUs between getting the vcpu
251 pointer and updating the mask. */
252 preempt_disable();
253 vcpu = x86_read_percpu(xen_vcpu);
254 vcpu->evtchn_upcall_mask = flags;
255 preempt_enable_no_resched();
256
257 /* Doesn't matter if we get preempted here, because any
258 pending event will get dealt with anyway. */
259
260 if (flags == 0) {
261 preempt_check_resched();
262 barrier(); /* unmask then check (avoid races) */
263 if (unlikely(vcpu->evtchn_upcall_pending))
264 force_evtchn_callback();
265 }
266 }
267
268 static void xen_irq_disable(void)
269 {
270 /* There's a one instruction preempt window here. We need to
271 make sure we're don't switch CPUs between getting the vcpu
272 pointer and updating the mask. */
273 preempt_disable();
274 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
275 preempt_enable_no_resched();
276 }
277
278 static void xen_irq_enable(void)
279 {
280 struct vcpu_info *vcpu;
281
282 /* We don't need to worry about being preempted here, since
283 either a) interrupts are disabled, so no preemption, or b)
284 the caller is confused and is trying to re-enable interrupts
285 on an indeterminate processor. */
286
287 vcpu = x86_read_percpu(xen_vcpu);
288 vcpu->evtchn_upcall_mask = 0;
289
290 /* Doesn't matter if we get preempted here, because any
291 pending event will get dealt with anyway. */
292
293 barrier(); /* unmask then check (avoid races) */
294 if (unlikely(vcpu->evtchn_upcall_pending))
295 force_evtchn_callback();
296 }
297
298 static void xen_safe_halt(void)
299 {
300 /* Blocking includes an implicit local_irq_enable(). */
301 if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
302 BUG();
303 }
304
305 static void xen_halt(void)
306 {
307 if (irqs_disabled())
308 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
309 else
310 xen_safe_halt();
311 }
312
313 static void xen_leave_lazy(void)
314 {
315 paravirt_leave_lazy(paravirt_get_lazy_mode());
316 xen_mc_flush();
317 }
318
319 static unsigned long xen_store_tr(void)
320 {
321 return 0;
322 }
323
324 static void xen_set_ldt(const void *addr, unsigned entries)
325 {
326 struct mmuext_op *op;
327 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
328
329 op = mcs.args;
330 op->cmd = MMUEXT_SET_LDT;
331 op->arg1.linear_addr = (unsigned long)addr;
332 op->arg2.nr_ents = entries;
333
334 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
335
336 xen_mc_issue(PARAVIRT_LAZY_CPU);
337 }
338
339 static void xen_load_gdt(const struct desc_ptr *dtr)
340 {
341 unsigned long *frames;
342 unsigned long va = dtr->address;
343 unsigned int size = dtr->size + 1;
344 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
345 int f;
346 struct multicall_space mcs;
347
348 /* A GDT can be up to 64k in size, which corresponds to 8192
349 8-byte entries, or 16 4k pages.. */
350
351 BUG_ON(size > 65536);
352 BUG_ON(va & ~PAGE_MASK);
353
354 mcs = xen_mc_entry(sizeof(*frames) * pages);
355 frames = mcs.args;
356
357 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
358 frames[f] = virt_to_mfn(va);
359 make_lowmem_page_readonly((void *)va);
360 }
361
362 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
363
364 xen_mc_issue(PARAVIRT_LAZY_CPU);
365 }
366
367 static void load_TLS_descriptor(struct thread_struct *t,
368 unsigned int cpu, unsigned int i)
369 {
370 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
371 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
372 struct multicall_space mc = __xen_mc_entry(0);
373
374 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
375 }
376
377 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
378 {
379 /*
380 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
381 * it means we're in a context switch, and %gs has just been
382 * saved. This means we can zero it out to prevent faults on
383 * exit from the hypervisor if the next process has no %gs.
384 * Either way, it has been saved, and the new value will get
385 * loaded properly. This will go away as soon as Xen has been
386 * modified to not save/restore %gs for normal hypercalls.
387 *
388 * On x86_64, this hack is not used for %gs, because gs points
389 * to KERNEL_GS_BASE (and uses it for PDA references), so we
390 * must not zero %gs on x86_64
391 *
392 * For x86_64, we need to zero %fs, otherwise we may get an
393 * exception between the new %fs descriptor being loaded and
394 * %fs being effectively cleared at __switch_to().
395 */
396 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
397 #ifdef CONFIG_X86_32
398 loadsegment(gs, 0);
399 #else
400 loadsegment(fs, 0);
401 #endif
402 }
403
404 xen_mc_batch();
405
406 load_TLS_descriptor(t, cpu, 0);
407 load_TLS_descriptor(t, cpu, 1);
408 load_TLS_descriptor(t, cpu, 2);
409
410 xen_mc_issue(PARAVIRT_LAZY_CPU);
411 }
412
413 #ifdef CONFIG_X86_64
414 static void xen_load_gs_index(unsigned int idx)
415 {
416 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
417 BUG();
418 }
419 #endif
420
421 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
422 const void *ptr)
423 {
424 unsigned long lp = (unsigned long)&dt[entrynum];
425 xmaddr_t mach_lp = virt_to_machine(lp);
426 u64 entry = *(u64 *)ptr;
427
428 preempt_disable();
429
430 xen_mc_flush();
431 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
432 BUG();
433
434 preempt_enable();
435 }
436
437 static int cvt_gate_to_trap(int vector, const gate_desc *val,
438 struct trap_info *info)
439 {
440 if (val->type != 0xf && val->type != 0xe)
441 return 0;
442
443 info->vector = vector;
444 info->address = gate_offset(*val);
445 info->cs = gate_segment(*val);
446 info->flags = val->dpl;
447 /* interrupt gates clear IF */
448 if (val->type == 0xe)
449 info->flags |= 4;
450
451 return 1;
452 }
453
454 /* Locations of each CPU's IDT */
455 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
456
457 /* Set an IDT entry. If the entry is part of the current IDT, then
458 also update Xen. */
459 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
460 {
461 unsigned long p = (unsigned long)&dt[entrynum];
462 unsigned long start, end;
463
464 preempt_disable();
465
466 start = __get_cpu_var(idt_desc).address;
467 end = start + __get_cpu_var(idt_desc).size + 1;
468
469 xen_mc_flush();
470
471 native_write_idt_entry(dt, entrynum, g);
472
473 if (p >= start && (p + 8) <= end) {
474 struct trap_info info[2];
475
476 info[1].address = 0;
477
478 if (cvt_gate_to_trap(entrynum, g, &info[0]))
479 if (HYPERVISOR_set_trap_table(info))
480 BUG();
481 }
482
483 preempt_enable();
484 }
485
486 static void xen_convert_trap_info(const struct desc_ptr *desc,
487 struct trap_info *traps)
488 {
489 unsigned in, out, count;
490
491 count = (desc->size+1) / sizeof(gate_desc);
492 BUG_ON(count > 256);
493
494 for (in = out = 0; in < count; in++) {
495 gate_desc *entry = (gate_desc*)(desc->address) + in;
496
497 if (cvt_gate_to_trap(in, entry, &traps[out]))
498 out++;
499 }
500 traps[out].address = 0;
501 }
502
503 void xen_copy_trap_info(struct trap_info *traps)
504 {
505 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
506
507 xen_convert_trap_info(desc, traps);
508 }
509
510 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
511 hold a spinlock to protect the static traps[] array (static because
512 it avoids allocation, and saves stack space). */
513 static void xen_load_idt(const struct desc_ptr *desc)
514 {
515 static DEFINE_SPINLOCK(lock);
516 static struct trap_info traps[257];
517
518 spin_lock(&lock);
519
520 __get_cpu_var(idt_desc) = *desc;
521
522 xen_convert_trap_info(desc, traps);
523
524 xen_mc_flush();
525 if (HYPERVISOR_set_trap_table(traps))
526 BUG();
527
528 spin_unlock(&lock);
529 }
530
531 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
532 they're handled differently. */
533 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
534 const void *desc, int type)
535 {
536 preempt_disable();
537
538 switch (type) {
539 case DESC_LDT:
540 case DESC_TSS:
541 /* ignore */
542 break;
543
544 default: {
545 xmaddr_t maddr = virt_to_machine(&dt[entry]);
546
547 xen_mc_flush();
548 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
549 BUG();
550 }
551
552 }
553
554 preempt_enable();
555 }
556
557 static void xen_load_sp0(struct tss_struct *tss,
558 struct thread_struct *thread)
559 {
560 struct multicall_space mcs = xen_mc_entry(0);
561 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
562 xen_mc_issue(PARAVIRT_LAZY_CPU);
563 }
564
565 static void xen_set_iopl_mask(unsigned mask)
566 {
567 struct physdev_set_iopl set_iopl;
568
569 /* Force the change at ring 0. */
570 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
571 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
572 }
573
574 static void xen_io_delay(void)
575 {
576 }
577
578 #ifdef CONFIG_X86_LOCAL_APIC
579 static u32 xen_apic_read(unsigned long reg)
580 {
581 return 0;
582 }
583
584 static void xen_apic_write(unsigned long reg, u32 val)
585 {
586 /* Warn to see if there's any stray references */
587 WARN_ON(1);
588 }
589 #endif
590
591 static void xen_flush_tlb(void)
592 {
593 struct mmuext_op *op;
594 struct multicall_space mcs;
595
596 preempt_disable();
597
598 mcs = xen_mc_entry(sizeof(*op));
599
600 op = mcs.args;
601 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
602 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
603
604 xen_mc_issue(PARAVIRT_LAZY_MMU);
605
606 preempt_enable();
607 }
608
609 static void xen_flush_tlb_single(unsigned long addr)
610 {
611 struct mmuext_op *op;
612 struct multicall_space mcs;
613
614 preempt_disable();
615
616 mcs = xen_mc_entry(sizeof(*op));
617 op = mcs.args;
618 op->cmd = MMUEXT_INVLPG_LOCAL;
619 op->arg1.linear_addr = addr & PAGE_MASK;
620 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
621
622 xen_mc_issue(PARAVIRT_LAZY_MMU);
623
624 preempt_enable();
625 }
626
627 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
628 unsigned long va)
629 {
630 struct {
631 struct mmuext_op op;
632 cpumask_t mask;
633 } *args;
634 cpumask_t cpumask = *cpus;
635 struct multicall_space mcs;
636
637 /*
638 * A couple of (to be removed) sanity checks:
639 *
640 * - current CPU must not be in mask
641 * - mask must exist :)
642 */
643 BUG_ON(cpus_empty(cpumask));
644 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
645 BUG_ON(!mm);
646
647 /* If a CPU which we ran on has gone down, OK. */
648 cpus_and(cpumask, cpumask, cpu_online_map);
649 if (cpus_empty(cpumask))
650 return;
651
652 mcs = xen_mc_entry(sizeof(*args));
653 args = mcs.args;
654 args->mask = cpumask;
655 args->op.arg2.vcpumask = &args->mask;
656
657 if (va == TLB_FLUSH_ALL) {
658 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
659 } else {
660 args->op.cmd = MMUEXT_INVLPG_MULTI;
661 args->op.arg1.linear_addr = va;
662 }
663
664 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
665
666 xen_mc_issue(PARAVIRT_LAZY_MMU);
667 }
668
669 static void xen_clts(void)
670 {
671 struct multicall_space mcs;
672
673 mcs = xen_mc_entry(0);
674
675 MULTI_fpu_taskswitch(mcs.mc, 0);
676
677 xen_mc_issue(PARAVIRT_LAZY_CPU);
678 }
679
680 static void xen_write_cr0(unsigned long cr0)
681 {
682 struct multicall_space mcs;
683
684 /* Only pay attention to cr0.TS; everything else is
685 ignored. */
686 mcs = xen_mc_entry(0);
687
688 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
689
690 xen_mc_issue(PARAVIRT_LAZY_CPU);
691 }
692
693 static void xen_write_cr2(unsigned long cr2)
694 {
695 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
696 }
697
698 static unsigned long xen_read_cr2(void)
699 {
700 return x86_read_percpu(xen_vcpu)->arch.cr2;
701 }
702
703 static unsigned long xen_read_cr2_direct(void)
704 {
705 return x86_read_percpu(xen_vcpu_info.arch.cr2);
706 }
707
708 static void xen_write_cr4(unsigned long cr4)
709 {
710 cr4 &= ~X86_CR4_PGE;
711 cr4 &= ~X86_CR4_PSE;
712
713 native_write_cr4(cr4);
714 }
715
716 static unsigned long xen_read_cr3(void)
717 {
718 return x86_read_percpu(xen_cr3);
719 }
720
721 static void set_current_cr3(void *v)
722 {
723 x86_write_percpu(xen_current_cr3, (unsigned long)v);
724 }
725
726 static void __xen_write_cr3(bool kernel, unsigned long cr3)
727 {
728 struct mmuext_op *op;
729 struct multicall_space mcs;
730 unsigned long mfn;
731
732 if (cr3)
733 mfn = pfn_to_mfn(PFN_DOWN(cr3));
734 else
735 mfn = 0;
736
737 WARN_ON(mfn == 0 && kernel);
738
739 mcs = __xen_mc_entry(sizeof(*op));
740
741 op = mcs.args;
742 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
743 op->arg1.mfn = mfn;
744
745 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
746
747 if (kernel) {
748 x86_write_percpu(xen_cr3, cr3);
749
750 /* Update xen_current_cr3 once the batch has actually
751 been submitted. */
752 xen_mc_callback(set_current_cr3, (void *)cr3);
753 }
754 }
755
756 static void xen_write_cr3(unsigned long cr3)
757 {
758 BUG_ON(preemptible());
759
760 xen_mc_batch(); /* disables interrupts */
761
762 /* Update while interrupts are disabled, so its atomic with
763 respect to ipis */
764 x86_write_percpu(xen_cr3, cr3);
765
766 __xen_write_cr3(true, cr3);
767
768 #ifdef CONFIG_X86_64
769 {
770 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
771 if (user_pgd)
772 __xen_write_cr3(false, __pa(user_pgd));
773 else
774 __xen_write_cr3(false, 0);
775 }
776 #endif
777
778 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
779 }
780
781 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
782 {
783 int ret;
784
785 ret = 0;
786
787 switch(msr) {
788 #ifdef CONFIG_X86_64
789 unsigned which;
790 u64 base;
791
792 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
793 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
794 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
795
796 set:
797 base = ((u64)high << 32) | low;
798 if (HYPERVISOR_set_segment_base(which, base) != 0)
799 ret = -EFAULT;
800 break;
801 #endif
802 default:
803 ret = native_write_msr_safe(msr, low, high);
804 }
805
806 return ret;
807 }
808
809 /* Early in boot, while setting up the initial pagetable, assume
810 everything is pinned. */
811 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
812 {
813 #ifdef CONFIG_FLATMEM
814 BUG_ON(mem_map); /* should only be used early */
815 #endif
816 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
817 }
818
819 /* Early release_pte assumes that all pts are pinned, since there's
820 only init_mm and anything attached to that is pinned. */
821 static void xen_release_pte_init(u32 pfn)
822 {
823 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
824 }
825
826 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
827 {
828 struct mmuext_op op;
829 op.cmd = cmd;
830 op.arg1.mfn = pfn_to_mfn(pfn);
831 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
832 BUG();
833 }
834
835 /* This needs to make sure the new pte page is pinned iff its being
836 attached to a pinned pagetable. */
837 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
838 {
839 struct page *page = pfn_to_page(pfn);
840
841 if (PagePinned(virt_to_page(mm->pgd))) {
842 SetPagePinned(page);
843
844 if (!PageHighMem(page)) {
845 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
846 if (level == PT_PTE)
847 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
848 } else
849 /* make sure there are no stray mappings of
850 this page */
851 kmap_flush_unused();
852 }
853 }
854
855 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
856 {
857 xen_alloc_ptpage(mm, pfn, PT_PTE);
858 }
859
860 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
861 {
862 xen_alloc_ptpage(mm, pfn, PT_PMD);
863 }
864
865 static int xen_pgd_alloc(struct mm_struct *mm)
866 {
867 pgd_t *pgd = mm->pgd;
868 int ret = 0;
869
870 BUG_ON(PagePinned(virt_to_page(pgd)));
871
872 #ifdef CONFIG_X86_64
873 {
874 struct page *page = virt_to_page(pgd);
875 pgd_t *user_pgd;
876
877 BUG_ON(page->private != 0);
878
879 ret = -ENOMEM;
880
881 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
882 page->private = (unsigned long)user_pgd;
883
884 if (user_pgd != NULL) {
885 user_pgd[pgd_index(VSYSCALL_START)] =
886 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
887 ret = 0;
888 }
889
890 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
891 }
892 #endif
893
894 return ret;
895 }
896
897 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
898 {
899 #ifdef CONFIG_X86_64
900 pgd_t *user_pgd = xen_get_user_pgd(pgd);
901
902 if (user_pgd)
903 free_page((unsigned long)user_pgd);
904 #endif
905 }
906
907 /* This should never happen until we're OK to use struct page */
908 static void xen_release_ptpage(u32 pfn, unsigned level)
909 {
910 struct page *page = pfn_to_page(pfn);
911
912 if (PagePinned(page)) {
913 if (!PageHighMem(page)) {
914 if (level == PT_PTE)
915 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
916 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
917 }
918 ClearPagePinned(page);
919 }
920 }
921
922 static void xen_release_pte(u32 pfn)
923 {
924 xen_release_ptpage(pfn, PT_PTE);
925 }
926
927 static void xen_release_pmd(u32 pfn)
928 {
929 xen_release_ptpage(pfn, PT_PMD);
930 }
931
932 #if PAGETABLE_LEVELS == 4
933 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
934 {
935 xen_alloc_ptpage(mm, pfn, PT_PUD);
936 }
937
938 static void xen_release_pud(u32 pfn)
939 {
940 xen_release_ptpage(pfn, PT_PUD);
941 }
942 #endif
943
944 #ifdef CONFIG_HIGHPTE
945 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
946 {
947 pgprot_t prot = PAGE_KERNEL;
948
949 if (PagePinned(page))
950 prot = PAGE_KERNEL_RO;
951
952 if (0 && PageHighMem(page))
953 printk("mapping highpte %lx type %d prot %s\n",
954 page_to_pfn(page), type,
955 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
956
957 return kmap_atomic_prot(page, type, prot);
958 }
959 #endif
960
961 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
962 {
963 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
964 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
965 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
966 pte_val_ma(pte));
967
968 return pte;
969 }
970
971 /* Init-time set_pte while constructing initial pagetables, which
972 doesn't allow RO pagetable pages to be remapped RW */
973 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
974 {
975 pte = mask_rw_pte(ptep, pte);
976
977 xen_set_pte(ptep, pte);
978 }
979
980 static __init void xen_pagetable_setup_start(pgd_t *base)
981 {
982 }
983
984 void xen_setup_shared_info(void)
985 {
986 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
987 set_fixmap(FIX_PARAVIRT_BOOTMAP,
988 xen_start_info->shared_info);
989
990 HYPERVISOR_shared_info =
991 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
992 } else
993 HYPERVISOR_shared_info =
994 (struct shared_info *)__va(xen_start_info->shared_info);
995
996 #ifndef CONFIG_SMP
997 /* In UP this is as good a place as any to set up shared info */
998 xen_setup_vcpu_info_placement();
999 #endif
1000
1001 xen_setup_mfn_list_list();
1002 }
1003
1004 static __init void xen_pagetable_setup_done(pgd_t *base)
1005 {
1006 xen_setup_shared_info();
1007 }
1008
1009 static __init void xen_post_allocator_init(void)
1010 {
1011 pv_mmu_ops.set_pte = xen_set_pte;
1012 pv_mmu_ops.set_pmd = xen_set_pmd;
1013 pv_mmu_ops.set_pud = xen_set_pud;
1014 #if PAGETABLE_LEVELS == 4
1015 pv_mmu_ops.set_pgd = xen_set_pgd;
1016 #endif
1017
1018 /* This will work as long as patching hasn't happened yet
1019 (which it hasn't) */
1020 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1021 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1022 pv_mmu_ops.release_pte = xen_release_pte;
1023 pv_mmu_ops.release_pmd = xen_release_pmd;
1024 #if PAGETABLE_LEVELS == 4
1025 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1026 pv_mmu_ops.release_pud = xen_release_pud;
1027 #endif
1028
1029 #ifdef CONFIG_X86_64
1030 SetPagePinned(virt_to_page(level3_user_vsyscall));
1031 #endif
1032 xen_mark_init_mm_pinned();
1033 }
1034
1035 /* This is called once we have the cpu_possible_map */
1036 void xen_setup_vcpu_info_placement(void)
1037 {
1038 int cpu;
1039
1040 for_each_possible_cpu(cpu)
1041 xen_vcpu_setup(cpu);
1042
1043 /* xen_vcpu_setup managed to place the vcpu_info within the
1044 percpu area for all cpus, so make use of it */
1045 #ifdef CONFIG_X86_32
1046 if (have_vcpu_info_placement) {
1047 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1048
1049 pv_irq_ops.save_fl = xen_save_fl_direct;
1050 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1051 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1052 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1053 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1054 }
1055 #endif
1056 }
1057
1058 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1059 unsigned long addr, unsigned len)
1060 {
1061 char *start, *end, *reloc;
1062 unsigned ret;
1063
1064 start = end = reloc = NULL;
1065
1066 #define SITE(op, x) \
1067 case PARAVIRT_PATCH(op.x): \
1068 if (have_vcpu_info_placement) { \
1069 start = (char *)xen_##x##_direct; \
1070 end = xen_##x##_direct_end; \
1071 reloc = xen_##x##_direct_reloc; \
1072 } \
1073 goto patch_site
1074
1075 switch (type) {
1076 #ifdef CONFIG_X86_32
1077 SITE(pv_irq_ops, irq_enable);
1078 SITE(pv_irq_ops, irq_disable);
1079 SITE(pv_irq_ops, save_fl);
1080 SITE(pv_irq_ops, restore_fl);
1081 #endif /* CONFIG_X86_32 */
1082 #undef SITE
1083
1084 patch_site:
1085 if (start == NULL || (end-start) > len)
1086 goto default_patch;
1087
1088 ret = paravirt_patch_insns(insnbuf, len, start, end);
1089
1090 /* Note: because reloc is assigned from something that
1091 appears to be an array, gcc assumes it's non-null,
1092 but doesn't know its relationship with start and
1093 end. */
1094 if (reloc > start && reloc < end) {
1095 int reloc_off = reloc - start;
1096 long *relocp = (long *)(insnbuf + reloc_off);
1097 long delta = start - (char *)addr;
1098
1099 *relocp += delta;
1100 }
1101 break;
1102
1103 default_patch:
1104 default:
1105 ret = paravirt_patch_default(type, clobbers, insnbuf,
1106 addr, len);
1107 break;
1108 }
1109
1110 return ret;
1111 }
1112
1113 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1114 {
1115 pte_t pte;
1116
1117 phys >>= PAGE_SHIFT;
1118
1119 switch (idx) {
1120 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1121 #ifdef CONFIG_X86_F00F_BUG
1122 case FIX_F00F_IDT:
1123 #endif
1124 #ifdef CONFIG_X86_32
1125 case FIX_WP_TEST:
1126 case FIX_VDSO:
1127 # ifdef CONFIG_HIGHMEM
1128 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1129 # endif
1130 #else
1131 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1132 #endif
1133 #ifdef CONFIG_X86_LOCAL_APIC
1134 case FIX_APIC_BASE: /* maps dummy local APIC */
1135 #endif
1136 pte = pfn_pte(phys, prot);
1137 break;
1138
1139 default:
1140 pte = mfn_pte(phys, prot);
1141 break;
1142 }
1143
1144 __native_set_fixmap(idx, pte);
1145
1146 #ifdef CONFIG_X86_64
1147 /* Replicate changes to map the vsyscall page into the user
1148 pagetable vsyscall mapping. */
1149 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1150 unsigned long vaddr = __fix_to_virt(idx);
1151 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1152 }
1153 #endif
1154 }
1155
1156 static const struct pv_info xen_info __initdata = {
1157 .paravirt_enabled = 1,
1158 .shared_kernel_pmd = 0,
1159
1160 .name = "Xen",
1161 };
1162
1163 static const struct pv_init_ops xen_init_ops __initdata = {
1164 .patch = xen_patch,
1165
1166 .banner = xen_banner,
1167 .memory_setup = xen_memory_setup,
1168 .arch_setup = xen_arch_setup,
1169 .post_allocator_init = xen_post_allocator_init,
1170 };
1171
1172 static const struct pv_time_ops xen_time_ops __initdata = {
1173 .time_init = xen_time_init,
1174
1175 .set_wallclock = xen_set_wallclock,
1176 .get_wallclock = xen_get_wallclock,
1177 .get_tsc_khz = xen_tsc_khz,
1178 .sched_clock = xen_sched_clock,
1179 };
1180
1181 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1182 .cpuid = xen_cpuid,
1183
1184 .set_debugreg = xen_set_debugreg,
1185 .get_debugreg = xen_get_debugreg,
1186
1187 .clts = xen_clts,
1188
1189 .read_cr0 = native_read_cr0,
1190 .write_cr0 = xen_write_cr0,
1191
1192 .read_cr4 = native_read_cr4,
1193 .read_cr4_safe = native_read_cr4_safe,
1194 .write_cr4 = xen_write_cr4,
1195
1196 .wbinvd = native_wbinvd,
1197
1198 .read_msr = native_read_msr_safe,
1199 .write_msr = xen_write_msr_safe,
1200 .read_tsc = native_read_tsc,
1201 .read_pmc = native_read_pmc,
1202
1203 .iret = xen_iret,
1204 .irq_enable_sysexit = xen_sysexit,
1205 #ifdef CONFIG_X86_64
1206 .usergs_sysret32 = xen_sysret32,
1207 .usergs_sysret64 = xen_sysret64,
1208 #endif
1209
1210 .load_tr_desc = paravirt_nop,
1211 .set_ldt = xen_set_ldt,
1212 .load_gdt = xen_load_gdt,
1213 .load_idt = xen_load_idt,
1214 .load_tls = xen_load_tls,
1215 #ifdef CONFIG_X86_64
1216 .load_gs_index = xen_load_gs_index,
1217 #endif
1218
1219 .store_gdt = native_store_gdt,
1220 .store_idt = native_store_idt,
1221 .store_tr = xen_store_tr,
1222
1223 .write_ldt_entry = xen_write_ldt_entry,
1224 .write_gdt_entry = xen_write_gdt_entry,
1225 .write_idt_entry = xen_write_idt_entry,
1226 .load_sp0 = xen_load_sp0,
1227
1228 .set_iopl_mask = xen_set_iopl_mask,
1229 .io_delay = xen_io_delay,
1230
1231 /* Xen takes care of %gs when switching to usermode for us */
1232 .swapgs = paravirt_nop,
1233
1234 .lazy_mode = {
1235 .enter = paravirt_enter_lazy_cpu,
1236 .leave = xen_leave_lazy,
1237 },
1238 };
1239
1240 static void __init __xen_init_IRQ(void)
1241 {
1242 #ifdef CONFIG_X86_64
1243 int i;
1244
1245 /* Create identity vector->irq map */
1246 for(i = 0; i < NR_VECTORS; i++) {
1247 int cpu;
1248
1249 for_each_possible_cpu(cpu)
1250 per_cpu(vector_irq, cpu)[i] = i;
1251 }
1252 #endif /* CONFIG_X86_64 */
1253
1254 xen_init_IRQ();
1255 }
1256
1257 static const struct pv_irq_ops xen_irq_ops __initdata = {
1258 .init_IRQ = __xen_init_IRQ,
1259 .save_fl = xen_save_fl,
1260 .restore_fl = xen_restore_fl,
1261 .irq_disable = xen_irq_disable,
1262 .irq_enable = xen_irq_enable,
1263 .safe_halt = xen_safe_halt,
1264 .halt = xen_halt,
1265 #ifdef CONFIG_X86_64
1266 .adjust_exception_frame = xen_adjust_exception_frame,
1267 #endif
1268 };
1269
1270 static const struct pv_apic_ops xen_apic_ops __initdata = {
1271 #ifdef CONFIG_X86_LOCAL_APIC
1272 .apic_write = xen_apic_write,
1273 .apic_write_atomic = xen_apic_write,
1274 .apic_read = xen_apic_read,
1275 .setup_boot_clock = paravirt_nop,
1276 .setup_secondary_clock = paravirt_nop,
1277 .startup_ipi_hook = paravirt_nop,
1278 #endif
1279 };
1280
1281 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1282 .pagetable_setup_start = xen_pagetable_setup_start,
1283 .pagetable_setup_done = xen_pagetable_setup_done,
1284
1285 .read_cr2 = xen_read_cr2,
1286 .write_cr2 = xen_write_cr2,
1287
1288 .read_cr3 = xen_read_cr3,
1289 .write_cr3 = xen_write_cr3,
1290
1291 .flush_tlb_user = xen_flush_tlb,
1292 .flush_tlb_kernel = xen_flush_tlb,
1293 .flush_tlb_single = xen_flush_tlb_single,
1294 .flush_tlb_others = xen_flush_tlb_others,
1295
1296 .pte_update = paravirt_nop,
1297 .pte_update_defer = paravirt_nop,
1298
1299 .pgd_alloc = xen_pgd_alloc,
1300 .pgd_free = xen_pgd_free,
1301
1302 .alloc_pte = xen_alloc_pte_init,
1303 .release_pte = xen_release_pte_init,
1304 .alloc_pmd = xen_alloc_pte_init,
1305 .alloc_pmd_clone = paravirt_nop,
1306 .release_pmd = xen_release_pte_init,
1307
1308 #ifdef CONFIG_HIGHPTE
1309 .kmap_atomic_pte = xen_kmap_atomic_pte,
1310 #endif
1311
1312 #ifdef CONFIG_X86_64
1313 .set_pte = xen_set_pte,
1314 #else
1315 .set_pte = xen_set_pte_init,
1316 #endif
1317 .set_pte_at = xen_set_pte_at,
1318 .set_pmd = xen_set_pmd_hyper,
1319
1320 .ptep_modify_prot_start = __ptep_modify_prot_start,
1321 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1322
1323 .pte_val = xen_pte_val,
1324 .pte_flags = native_pte_val,
1325 .pgd_val = xen_pgd_val,
1326
1327 .make_pte = xen_make_pte,
1328 .make_pgd = xen_make_pgd,
1329
1330 #ifdef CONFIG_X86_PAE
1331 .set_pte_atomic = xen_set_pte_atomic,
1332 .set_pte_present = xen_set_pte_at,
1333 .pte_clear = xen_pte_clear,
1334 .pmd_clear = xen_pmd_clear,
1335 #endif /* CONFIG_X86_PAE */
1336 .set_pud = xen_set_pud_hyper,
1337
1338 .make_pmd = xen_make_pmd,
1339 .pmd_val = xen_pmd_val,
1340
1341 #if PAGETABLE_LEVELS == 4
1342 .pud_val = xen_pud_val,
1343 .make_pud = xen_make_pud,
1344 .set_pgd = xen_set_pgd_hyper,
1345
1346 .alloc_pud = xen_alloc_pte_init,
1347 .release_pud = xen_release_pte_init,
1348 #endif /* PAGETABLE_LEVELS == 4 */
1349
1350 .activate_mm = xen_activate_mm,
1351 .dup_mmap = xen_dup_mmap,
1352 .exit_mmap = xen_exit_mmap,
1353
1354 .lazy_mode = {
1355 .enter = paravirt_enter_lazy_mmu,
1356 .leave = xen_leave_lazy,
1357 },
1358
1359 .set_fixmap = xen_set_fixmap,
1360 };
1361
1362 static void xen_reboot(int reason)
1363 {
1364 struct sched_shutdown r = { .reason = reason };
1365
1366 #ifdef CONFIG_SMP
1367 smp_send_stop();
1368 #endif
1369
1370 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1371 BUG();
1372 }
1373
1374 static void xen_restart(char *msg)
1375 {
1376 xen_reboot(SHUTDOWN_reboot);
1377 }
1378
1379 static void xen_emergency_restart(void)
1380 {
1381 xen_reboot(SHUTDOWN_reboot);
1382 }
1383
1384 static void xen_machine_halt(void)
1385 {
1386 xen_reboot(SHUTDOWN_poweroff);
1387 }
1388
1389 static void xen_crash_shutdown(struct pt_regs *regs)
1390 {
1391 xen_reboot(SHUTDOWN_crash);
1392 }
1393
1394 static const struct machine_ops __initdata xen_machine_ops = {
1395 .restart = xen_restart,
1396 .halt = xen_machine_halt,
1397 .power_off = xen_machine_halt,
1398 .shutdown = xen_machine_halt,
1399 .crash_shutdown = xen_crash_shutdown,
1400 .emergency_restart = xen_emergency_restart,
1401 };
1402
1403
1404 static void __init xen_reserve_top(void)
1405 {
1406 #ifdef CONFIG_X86_32
1407 unsigned long top = HYPERVISOR_VIRT_START;
1408 struct xen_platform_parameters pp;
1409
1410 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1411 top = pp.virt_start;
1412
1413 reserve_top_address(-top + 2 * PAGE_SIZE);
1414 #endif /* CONFIG_X86_32 */
1415 }
1416
1417 /*
1418 * Like __va(), but returns address in the kernel mapping (which is
1419 * all we have until the physical memory mapping has been set up.
1420 */
1421 static void *__ka(phys_addr_t paddr)
1422 {
1423 #ifdef CONFIG_X86_64
1424 return (void *)(paddr + __START_KERNEL_map);
1425 #else
1426 return __va(paddr);
1427 #endif
1428 }
1429
1430 /* Convert a machine address to physical address */
1431 static unsigned long m2p(phys_addr_t maddr)
1432 {
1433 phys_addr_t paddr;
1434
1435 maddr &= PTE_MASK;
1436 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1437
1438 return paddr;
1439 }
1440
1441 /* Convert a machine address to kernel virtual */
1442 static void *m2v(phys_addr_t maddr)
1443 {
1444 return __ka(m2p(maddr));
1445 }
1446
1447 #ifdef CONFIG_X86_64
1448 static void walk(pgd_t *pgd, unsigned long addr)
1449 {
1450 unsigned l4idx = pgd_index(addr);
1451 unsigned l3idx = pud_index(addr);
1452 unsigned l2idx = pmd_index(addr);
1453 unsigned l1idx = pte_index(addr);
1454 pgd_t l4;
1455 pud_t l3;
1456 pmd_t l2;
1457 pte_t l1;
1458
1459 xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1460 pgd, addr, l4idx, l3idx, l2idx, l1idx);
1461
1462 l4 = pgd[l4idx];
1463 xen_raw_printk(" l4: %016lx\n", l4.pgd);
1464 xen_raw_printk(" %016lx\n", pgd_val(l4));
1465
1466 l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1467 xen_raw_printk(" l3: %016lx\n", l3.pud);
1468 xen_raw_printk(" %016lx\n", pud_val(l3));
1469
1470 l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1471 xen_raw_printk(" l2: %016lx\n", l2.pmd);
1472 xen_raw_printk(" %016lx\n", pmd_val(l2));
1473
1474 l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1475 xen_raw_printk(" l1: %016lx\n", l1.pte);
1476 xen_raw_printk(" %016lx\n", pte_val(l1));
1477 }
1478 #endif
1479
1480 static void set_page_prot(void *addr, pgprot_t prot)
1481 {
1482 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1483 pte_t pte = pfn_pte(pfn, prot);
1484
1485 xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1486 addr, pfn, get_phys_to_machine(pfn),
1487 pgprot_val(prot), pte.pte);
1488
1489 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1490 BUG();
1491 }
1492
1493 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1494 {
1495 unsigned pmdidx, pteidx;
1496 unsigned ident_pte;
1497 unsigned long pfn;
1498
1499 ident_pte = 0;
1500 pfn = 0;
1501 for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1502 pte_t *pte_page;
1503
1504 /* Reuse or allocate a page of ptes */
1505 if (pmd_present(pmd[pmdidx]))
1506 pte_page = m2v(pmd[pmdidx].pmd);
1507 else {
1508 /* Check for free pte pages */
1509 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1510 break;
1511
1512 pte_page = &level1_ident_pgt[ident_pte];
1513 ident_pte += PTRS_PER_PTE;
1514
1515 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1516 }
1517
1518 /* Install mappings */
1519 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1520 pte_t pte;
1521
1522 if (pfn > max_pfn_mapped)
1523 max_pfn_mapped = pfn;
1524
1525 if (!pte_none(pte_page[pteidx]))
1526 continue;
1527
1528 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1529 pte_page[pteidx] = pte;
1530 }
1531 }
1532
1533 for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1534 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1535
1536 set_page_prot(pmd, PAGE_KERNEL_RO);
1537 }
1538
1539 #ifdef CONFIG_X86_64
1540 static void convert_pfn_mfn(void *v)
1541 {
1542 pte_t *pte = v;
1543 int i;
1544
1545 /* All levels are converted the same way, so just treat them
1546 as ptes. */
1547 for(i = 0; i < PTRS_PER_PTE; i++)
1548 pte[i] = xen_make_pte(pte[i].pte);
1549 }
1550
1551 /*
1552 * Set up the inital kernel pagetable.
1553 *
1554 * We can construct this by grafting the Xen provided pagetable into
1555 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1556 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1557 * means that only the kernel has a physical mapping to start with -
1558 * but that's enough to get __va working. We need to fill in the rest
1559 * of the physical mapping once some sort of allocator has been set
1560 * up.
1561 */
1562 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1563 {
1564 pud_t *l3;
1565 pmd_t *l2;
1566
1567 /* Zap identity mapping */
1568 init_level4_pgt[0] = __pgd(0);
1569
1570 /* Pre-constructed entries are in pfn, so convert to mfn */
1571 convert_pfn_mfn(init_level4_pgt);
1572 convert_pfn_mfn(level3_ident_pgt);
1573 convert_pfn_mfn(level3_kernel_pgt);
1574
1575 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1576 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1577
1578 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1579 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1580
1581 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1582 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1583 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1584
1585 /* Set up identity map */
1586 xen_map_identity_early(level2_ident_pgt, max_pfn);
1587
1588 /* Make pagetable pieces RO */
1589 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1590 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1591 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1592 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1593 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1594 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1595
1596 /* Pin down new L4 */
1597 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1598 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1599
1600 /* Unpin Xen-provided one */
1601 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1602
1603 /* Switch over */
1604 pgd = init_level4_pgt;
1605
1606 /*
1607 * At this stage there can be no user pgd, and no page
1608 * structure to attach it to, so make sure we just set kernel
1609 * pgd.
1610 */
1611 xen_mc_batch();
1612 __xen_write_cr3(true, __pa(pgd));
1613 xen_mc_issue(PARAVIRT_LAZY_CPU);
1614
1615 reserve_early(__pa(xen_start_info->pt_base),
1616 __pa(xen_start_info->pt_base +
1617 xen_start_info->nr_pt_frames * PAGE_SIZE),
1618 "XEN PAGETABLES");
1619
1620 return pgd;
1621 }
1622 #else /* !CONFIG_X86_64 */
1623 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1624
1625 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1626 {
1627 pmd_t *kernel_pmd;
1628
1629 init_pg_tables_start = __pa(pgd);
1630 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1631 max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1632
1633 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1634 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1635
1636 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1637
1638 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1639 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1640 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1641
1642 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1643 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1644 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1645
1646 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1647
1648 xen_write_cr3(__pa(swapper_pg_dir));
1649
1650 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1651
1652 return swapper_pg_dir;
1653 }
1654 #endif /* CONFIG_X86_64 */
1655
1656 /* First C function to be called on Xen boot */
1657 asmlinkage void __init xen_start_kernel(void)
1658 {
1659 pgd_t *pgd;
1660
1661 if (!xen_start_info)
1662 return;
1663
1664 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1665
1666 xen_setup_features();
1667
1668 /* Install Xen paravirt ops */
1669 pv_info = xen_info;
1670 pv_init_ops = xen_init_ops;
1671 pv_time_ops = xen_time_ops;
1672 pv_cpu_ops = xen_cpu_ops;
1673 pv_irq_ops = xen_irq_ops;
1674 pv_apic_ops = xen_apic_ops;
1675 pv_mmu_ops = xen_mmu_ops;
1676
1677 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1678 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1679 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1680 }
1681
1682 machine_ops = xen_machine_ops;
1683
1684 #ifdef CONFIG_X86_64
1685 /* Disable until direct per-cpu data access. */
1686 have_vcpu_info_placement = 0;
1687 x86_64_init_pda();
1688 #endif
1689
1690 xen_smp_init();
1691
1692 /* Get mfn list */
1693 if (!xen_feature(XENFEAT_auto_translated_physmap))
1694 xen_build_dynamic_phys_to_machine();
1695
1696 pgd = (pgd_t *)xen_start_info->pt_base;
1697
1698 /* Prevent unwanted bits from being set in PTEs. */
1699 __supported_pte_mask &= ~_PAGE_GLOBAL;
1700 if (!is_initial_xendomain())
1701 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1702
1703 /* Don't do the full vcpu_info placement stuff until we have a
1704 possible map and a non-dummy shared_info. */
1705 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1706
1707 xen_raw_console_write("mapping kernel into physical memory\n");
1708 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1709
1710 init_mm.pgd = pgd;
1711
1712 /* keep using Xen gdt for now; no urgent need to change it */
1713
1714 pv_info.kernel_rpl = 1;
1715 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1716 pv_info.kernel_rpl = 0;
1717
1718 /* set the limit of our address space */
1719 xen_reserve_top();
1720
1721 #ifdef CONFIG_X86_32
1722 /* set up basic CPUID stuff */
1723 cpu_detect(&new_cpu_data);
1724 new_cpu_data.hard_math = 1;
1725 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1726 #endif
1727
1728 /* Poke various useful things into boot_params */
1729 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1730 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1731 ? __pa(xen_start_info->mod_start) : 0;
1732 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1733 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1734
1735 if (!is_initial_xendomain()) {
1736 add_preferred_console("xenboot", 0, NULL);
1737 add_preferred_console("tty", 0, NULL);
1738 add_preferred_console("hvc", 0, NULL);
1739 }
1740
1741 xen_raw_console_write("about to get started...\n");
1742
1743 #if 0
1744 xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1745 &boot_params, __pa_symbol(&boot_params),
1746 __va(__pa_symbol(&boot_params)));
1747
1748 walk(pgd, &boot_params);
1749 walk(pgd, __va(__pa(&boot_params)));
1750 #endif
1751
1752 /* Start the world */
1753 #ifdef CONFIG_X86_32
1754 i386_start_kernel();
1755 #else
1756 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1757 #endif
1758 }