Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/kprobes.h>
24 #include <linux/bootmem.h>
25 #include <linux/module.h>
26 #include <linux/mm.h>
27 #include <linux/page-flags.h>
28 #include <linux/highmem.h>
29 #include <linux/console.h>
30
31 #include <xen/interface/xen.h>
32 #include <xen/interface/version.h>
33 #include <xen/interface/physdev.h>
34 #include <xen/interface/vcpu.h>
35 #include <xen/features.h>
36 #include <xen/page.h>
37 #include <xen/hvc-console.h>
38
39 #include <asm/paravirt.h>
40 #include <asm/apic.h>
41 #include <asm/page.h>
42 #include <asm/xen/hypercall.h>
43 #include <asm/xen/hypervisor.h>
44 #include <asm/fixmap.h>
45 #include <asm/processor.h>
46 #include <asm/proto.h>
47 #include <asm/msr-index.h>
48 #include <asm/traps.h>
49 #include <asm/setup.h>
50 #include <asm/desc.h>
51 #include <asm/pgtable.h>
52 #include <asm/tlbflush.h>
53 #include <asm/reboot.h>
54 #include <asm/stackprotector.h>
55
56 #include "xen-ops.h"
57 #include "mmu.h"
58 #include "multicalls.h"
59
60 EXPORT_SYMBOL_GPL(hypercall_page);
61
62 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
63 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
64
65 enum xen_domain_type xen_domain_type = XEN_NATIVE;
66 EXPORT_SYMBOL_GPL(xen_domain_type);
67
68 struct start_info *xen_start_info;
69 EXPORT_SYMBOL_GPL(xen_start_info);
70
71 struct shared_info xen_dummy_shared_info;
72
73 void *xen_initial_gdt;
74
75 /*
76 * Point at some empty memory to start with. We map the real shared_info
77 * page as soon as fixmap is up and running.
78 */
79 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
80
81 /*
82 * Flag to determine whether vcpu info placement is available on all
83 * VCPUs. We assume it is to start with, and then set it to zero on
84 * the first failure. This is because it can succeed on some VCPUs
85 * and not others, since it can involve hypervisor memory allocation,
86 * or because the guest failed to guarantee all the appropriate
87 * constraints on all VCPUs (ie buffer can't cross a page boundary).
88 *
89 * Note that any particular CPU may be using a placed vcpu structure,
90 * but we can only optimise if the all are.
91 *
92 * 0: not available, 1: available
93 */
94 static int have_vcpu_info_placement = 1;
95
96 static void xen_vcpu_setup(int cpu)
97 {
98 struct vcpu_register_vcpu_info info;
99 int err;
100 struct vcpu_info *vcpup;
101
102 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
103 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
104
105 if (!have_vcpu_info_placement)
106 return; /* already tested, not available */
107
108 vcpup = &per_cpu(xen_vcpu_info, cpu);
109
110 info.mfn = arbitrary_virt_to_mfn(vcpup);
111 info.offset = offset_in_page(vcpup);
112
113 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
114 cpu, vcpup, info.mfn, info.offset);
115
116 /* Check to see if the hypervisor will put the vcpu_info
117 structure where we want it, which allows direct access via
118 a percpu-variable. */
119 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
120
121 if (err) {
122 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
123 have_vcpu_info_placement = 0;
124 } else {
125 /* This cpu is using the registered vcpu info, even if
126 later ones fail to. */
127 per_cpu(xen_vcpu, cpu) = vcpup;
128
129 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
130 cpu, vcpup);
131 }
132 }
133
134 /*
135 * On restore, set the vcpu placement up again.
136 * If it fails, then we're in a bad state, since
137 * we can't back out from using it...
138 */
139 void xen_vcpu_restore(void)
140 {
141 if (have_vcpu_info_placement) {
142 int cpu;
143
144 for_each_online_cpu(cpu) {
145 bool other_cpu = (cpu != smp_processor_id());
146
147 if (other_cpu &&
148 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
149 BUG();
150
151 xen_vcpu_setup(cpu);
152
153 if (other_cpu &&
154 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
155 BUG();
156 }
157
158 BUG_ON(!have_vcpu_info_placement);
159 }
160 }
161
162 static void __init xen_banner(void)
163 {
164 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
165 struct xen_extraversion extra;
166 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
167
168 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
169 pv_info.name);
170 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
171 version >> 16, version & 0xffff, extra.extraversion,
172 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
173 }
174
175 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
176 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
177
178 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
179 unsigned int *cx, unsigned int *dx)
180 {
181 unsigned maskecx = ~0;
182 unsigned maskedx = ~0;
183
184 /*
185 * Mask out inconvenient features, to try and disable as many
186 * unsupported kernel subsystems as possible.
187 */
188 if (*ax == 1) {
189 maskecx = cpuid_leaf1_ecx_mask;
190 maskedx = cpuid_leaf1_edx_mask;
191 }
192
193 asm(XEN_EMULATE_PREFIX "cpuid"
194 : "=a" (*ax),
195 "=b" (*bx),
196 "=c" (*cx),
197 "=d" (*dx)
198 : "0" (*ax), "2" (*cx));
199
200 *cx &= maskecx;
201 *dx &= maskedx;
202 }
203
204 static __init void xen_init_cpuid_mask(void)
205 {
206 unsigned int ax, bx, cx, dx;
207
208 cpuid_leaf1_edx_mask =
209 ~((1 << X86_FEATURE_MCE) | /* disable MCE */
210 (1 << X86_FEATURE_MCA) | /* disable MCA */
211 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
212
213 if (!xen_initial_domain())
214 cpuid_leaf1_edx_mask &=
215 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
216 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
217
218 ax = 1;
219 cx = 0;
220 xen_cpuid(&ax, &bx, &cx, &dx);
221
222 /* cpuid claims we support xsave; try enabling it to see what happens */
223 if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
224 unsigned long cr4;
225
226 set_in_cr4(X86_CR4_OSXSAVE);
227
228 cr4 = read_cr4();
229
230 if ((cr4 & X86_CR4_OSXSAVE) == 0)
231 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
232
233 clear_in_cr4(X86_CR4_OSXSAVE);
234 }
235 }
236
237 static void xen_set_debugreg(int reg, unsigned long val)
238 {
239 HYPERVISOR_set_debugreg(reg, val);
240 }
241
242 static unsigned long xen_get_debugreg(int reg)
243 {
244 return HYPERVISOR_get_debugreg(reg);
245 }
246
247 static void xen_end_context_switch(struct task_struct *next)
248 {
249 xen_mc_flush();
250 paravirt_end_context_switch(next);
251 }
252
253 static unsigned long xen_store_tr(void)
254 {
255 return 0;
256 }
257
258 /*
259 * Set the page permissions for a particular virtual address. If the
260 * address is a vmalloc mapping (or other non-linear mapping), then
261 * find the linear mapping of the page and also set its protections to
262 * match.
263 */
264 static void set_aliased_prot(void *v, pgprot_t prot)
265 {
266 int level;
267 pte_t *ptep;
268 pte_t pte;
269 unsigned long pfn;
270 struct page *page;
271
272 ptep = lookup_address((unsigned long)v, &level);
273 BUG_ON(ptep == NULL);
274
275 pfn = pte_pfn(*ptep);
276 page = pfn_to_page(pfn);
277
278 pte = pfn_pte(pfn, prot);
279
280 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
281 BUG();
282
283 if (!PageHighMem(page)) {
284 void *av = __va(PFN_PHYS(pfn));
285
286 if (av != v)
287 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
288 BUG();
289 } else
290 kmap_flush_unused();
291 }
292
293 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
294 {
295 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
296 int i;
297
298 for(i = 0; i < entries; i += entries_per_page)
299 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
300 }
301
302 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
303 {
304 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
305 int i;
306
307 for(i = 0; i < entries; i += entries_per_page)
308 set_aliased_prot(ldt + i, PAGE_KERNEL);
309 }
310
311 static void xen_set_ldt(const void *addr, unsigned entries)
312 {
313 struct mmuext_op *op;
314 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
315
316 op = mcs.args;
317 op->cmd = MMUEXT_SET_LDT;
318 op->arg1.linear_addr = (unsigned long)addr;
319 op->arg2.nr_ents = entries;
320
321 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
322
323 xen_mc_issue(PARAVIRT_LAZY_CPU);
324 }
325
326 static void xen_load_gdt(const struct desc_ptr *dtr)
327 {
328 unsigned long va = dtr->address;
329 unsigned int size = dtr->size + 1;
330 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
331 unsigned long frames[pages];
332 int f;
333
334 /*
335 * A GDT can be up to 64k in size, which corresponds to 8192
336 * 8-byte entries, or 16 4k pages..
337 */
338
339 BUG_ON(size > 65536);
340 BUG_ON(va & ~PAGE_MASK);
341
342 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
343 int level;
344 pte_t *ptep;
345 unsigned long pfn, mfn;
346 void *virt;
347
348 /*
349 * The GDT is per-cpu and is in the percpu data area.
350 * That can be virtually mapped, so we need to do a
351 * page-walk to get the underlying MFN for the
352 * hypercall. The page can also be in the kernel's
353 * linear range, so we need to RO that mapping too.
354 */
355 ptep = lookup_address(va, &level);
356 BUG_ON(ptep == NULL);
357
358 pfn = pte_pfn(*ptep);
359 mfn = pfn_to_mfn(pfn);
360 virt = __va(PFN_PHYS(pfn));
361
362 frames[f] = mfn;
363
364 make_lowmem_page_readonly((void *)va);
365 make_lowmem_page_readonly(virt);
366 }
367
368 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
369 BUG();
370 }
371
372 /*
373 * load_gdt for early boot, when the gdt is only mapped once
374 */
375 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
376 {
377 unsigned long va = dtr->address;
378 unsigned int size = dtr->size + 1;
379 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
380 unsigned long frames[pages];
381 int f;
382
383 /*
384 * A GDT can be up to 64k in size, which corresponds to 8192
385 * 8-byte entries, or 16 4k pages..
386 */
387
388 BUG_ON(size > 65536);
389 BUG_ON(va & ~PAGE_MASK);
390
391 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
392 pte_t pte;
393 unsigned long pfn, mfn;
394
395 pfn = virt_to_pfn(va);
396 mfn = pfn_to_mfn(pfn);
397
398 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
399
400 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
401 BUG();
402
403 frames[f] = mfn;
404 }
405
406 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
407 BUG();
408 }
409
410 static void load_TLS_descriptor(struct thread_struct *t,
411 unsigned int cpu, unsigned int i)
412 {
413 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
414 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
415 struct multicall_space mc = __xen_mc_entry(0);
416
417 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
418 }
419
420 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
421 {
422 /*
423 * XXX sleazy hack: If we're being called in a lazy-cpu zone
424 * and lazy gs handling is enabled, it means we're in a
425 * context switch, and %gs has just been saved. This means we
426 * can zero it out to prevent faults on exit from the
427 * hypervisor if the next process has no %gs. Either way, it
428 * has been saved, and the new value will get loaded properly.
429 * This will go away as soon as Xen has been modified to not
430 * save/restore %gs for normal hypercalls.
431 *
432 * On x86_64, this hack is not used for %gs, because gs points
433 * to KERNEL_GS_BASE (and uses it for PDA references), so we
434 * must not zero %gs on x86_64
435 *
436 * For x86_64, we need to zero %fs, otherwise we may get an
437 * exception between the new %fs descriptor being loaded and
438 * %fs being effectively cleared at __switch_to().
439 */
440 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
441 #ifdef CONFIG_X86_32
442 lazy_load_gs(0);
443 #else
444 loadsegment(fs, 0);
445 #endif
446 }
447
448 xen_mc_batch();
449
450 load_TLS_descriptor(t, cpu, 0);
451 load_TLS_descriptor(t, cpu, 1);
452 load_TLS_descriptor(t, cpu, 2);
453
454 xen_mc_issue(PARAVIRT_LAZY_CPU);
455 }
456
457 #ifdef CONFIG_X86_64
458 static void xen_load_gs_index(unsigned int idx)
459 {
460 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
461 BUG();
462 }
463 #endif
464
465 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
466 const void *ptr)
467 {
468 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
469 u64 entry = *(u64 *)ptr;
470
471 preempt_disable();
472
473 xen_mc_flush();
474 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
475 BUG();
476
477 preempt_enable();
478 }
479
480 static int cvt_gate_to_trap(int vector, const gate_desc *val,
481 struct trap_info *info)
482 {
483 unsigned long addr;
484
485 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
486 return 0;
487
488 info->vector = vector;
489
490 addr = gate_offset(*val);
491 #ifdef CONFIG_X86_64
492 /*
493 * Look for known traps using IST, and substitute them
494 * appropriately. The debugger ones are the only ones we care
495 * about. Xen will handle faults like double_fault and
496 * machine_check, so we should never see them. Warn if
497 * there's an unexpected IST-using fault handler.
498 */
499 if (addr == (unsigned long)debug)
500 addr = (unsigned long)xen_debug;
501 else if (addr == (unsigned long)int3)
502 addr = (unsigned long)xen_int3;
503 else if (addr == (unsigned long)stack_segment)
504 addr = (unsigned long)xen_stack_segment;
505 else if (addr == (unsigned long)double_fault ||
506 addr == (unsigned long)nmi) {
507 /* Don't need to handle these */
508 return 0;
509 #ifdef CONFIG_X86_MCE
510 } else if (addr == (unsigned long)machine_check) {
511 return 0;
512 #endif
513 } else {
514 /* Some other trap using IST? */
515 if (WARN_ON(val->ist != 0))
516 return 0;
517 }
518 #endif /* CONFIG_X86_64 */
519 info->address = addr;
520
521 info->cs = gate_segment(*val);
522 info->flags = val->dpl;
523 /* interrupt gates clear IF */
524 if (val->type == GATE_INTERRUPT)
525 info->flags |= 1 << 2;
526
527 return 1;
528 }
529
530 /* Locations of each CPU's IDT */
531 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
532
533 /* Set an IDT entry. If the entry is part of the current IDT, then
534 also update Xen. */
535 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
536 {
537 unsigned long p = (unsigned long)&dt[entrynum];
538 unsigned long start, end;
539
540 preempt_disable();
541
542 start = __get_cpu_var(idt_desc).address;
543 end = start + __get_cpu_var(idt_desc).size + 1;
544
545 xen_mc_flush();
546
547 native_write_idt_entry(dt, entrynum, g);
548
549 if (p >= start && (p + 8) <= end) {
550 struct trap_info info[2];
551
552 info[1].address = 0;
553
554 if (cvt_gate_to_trap(entrynum, g, &info[0]))
555 if (HYPERVISOR_set_trap_table(info))
556 BUG();
557 }
558
559 preempt_enable();
560 }
561
562 static void xen_convert_trap_info(const struct desc_ptr *desc,
563 struct trap_info *traps)
564 {
565 unsigned in, out, count;
566
567 count = (desc->size+1) / sizeof(gate_desc);
568 BUG_ON(count > 256);
569
570 for (in = out = 0; in < count; in++) {
571 gate_desc *entry = (gate_desc*)(desc->address) + in;
572
573 if (cvt_gate_to_trap(in, entry, &traps[out]))
574 out++;
575 }
576 traps[out].address = 0;
577 }
578
579 void xen_copy_trap_info(struct trap_info *traps)
580 {
581 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
582
583 xen_convert_trap_info(desc, traps);
584 }
585
586 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
587 hold a spinlock to protect the static traps[] array (static because
588 it avoids allocation, and saves stack space). */
589 static void xen_load_idt(const struct desc_ptr *desc)
590 {
591 static DEFINE_SPINLOCK(lock);
592 static struct trap_info traps[257];
593
594 spin_lock(&lock);
595
596 __get_cpu_var(idt_desc) = *desc;
597
598 xen_convert_trap_info(desc, traps);
599
600 xen_mc_flush();
601 if (HYPERVISOR_set_trap_table(traps))
602 BUG();
603
604 spin_unlock(&lock);
605 }
606
607 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
608 they're handled differently. */
609 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
610 const void *desc, int type)
611 {
612 preempt_disable();
613
614 switch (type) {
615 case DESC_LDT:
616 case DESC_TSS:
617 /* ignore */
618 break;
619
620 default: {
621 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
622
623 xen_mc_flush();
624 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
625 BUG();
626 }
627
628 }
629
630 preempt_enable();
631 }
632
633 /*
634 * Version of write_gdt_entry for use at early boot-time needed to
635 * update an entry as simply as possible.
636 */
637 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
638 const void *desc, int type)
639 {
640 switch (type) {
641 case DESC_LDT:
642 case DESC_TSS:
643 /* ignore */
644 break;
645
646 default: {
647 xmaddr_t maddr = virt_to_machine(&dt[entry]);
648
649 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
650 dt[entry] = *(struct desc_struct *)desc;
651 }
652
653 }
654 }
655
656 static void xen_load_sp0(struct tss_struct *tss,
657 struct thread_struct *thread)
658 {
659 struct multicall_space mcs = xen_mc_entry(0);
660 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
661 xen_mc_issue(PARAVIRT_LAZY_CPU);
662 }
663
664 static void xen_set_iopl_mask(unsigned mask)
665 {
666 struct physdev_set_iopl set_iopl;
667
668 /* Force the change at ring 0. */
669 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
670 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
671 }
672
673 static void xen_io_delay(void)
674 {
675 }
676
677 #ifdef CONFIG_X86_LOCAL_APIC
678 static u32 xen_apic_read(u32 reg)
679 {
680 return 0;
681 }
682
683 static void xen_apic_write(u32 reg, u32 val)
684 {
685 /* Warn to see if there's any stray references */
686 WARN_ON(1);
687 }
688
689 static u64 xen_apic_icr_read(void)
690 {
691 return 0;
692 }
693
694 static void xen_apic_icr_write(u32 low, u32 id)
695 {
696 /* Warn to see if there's any stray references */
697 WARN_ON(1);
698 }
699
700 static void xen_apic_wait_icr_idle(void)
701 {
702 return;
703 }
704
705 static u32 xen_safe_apic_wait_icr_idle(void)
706 {
707 return 0;
708 }
709
710 static void set_xen_basic_apic_ops(void)
711 {
712 apic->read = xen_apic_read;
713 apic->write = xen_apic_write;
714 apic->icr_read = xen_apic_icr_read;
715 apic->icr_write = xen_apic_icr_write;
716 apic->wait_icr_idle = xen_apic_wait_icr_idle;
717 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
718 }
719
720 #endif
721
722
723 static void xen_clts(void)
724 {
725 struct multicall_space mcs;
726
727 mcs = xen_mc_entry(0);
728
729 MULTI_fpu_taskswitch(mcs.mc, 0);
730
731 xen_mc_issue(PARAVIRT_LAZY_CPU);
732 }
733
734 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
735
736 static unsigned long xen_read_cr0(void)
737 {
738 unsigned long cr0 = percpu_read(xen_cr0_value);
739
740 if (unlikely(cr0 == 0)) {
741 cr0 = native_read_cr0();
742 percpu_write(xen_cr0_value, cr0);
743 }
744
745 return cr0;
746 }
747
748 static void xen_write_cr0(unsigned long cr0)
749 {
750 struct multicall_space mcs;
751
752 percpu_write(xen_cr0_value, cr0);
753
754 /* Only pay attention to cr0.TS; everything else is
755 ignored. */
756 mcs = xen_mc_entry(0);
757
758 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
759
760 xen_mc_issue(PARAVIRT_LAZY_CPU);
761 }
762
763 static void xen_write_cr4(unsigned long cr4)
764 {
765 cr4 &= ~X86_CR4_PGE;
766 cr4 &= ~X86_CR4_PSE;
767
768 native_write_cr4(cr4);
769 }
770
771 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
772 {
773 int ret;
774
775 ret = 0;
776
777 switch (msr) {
778 #ifdef CONFIG_X86_64
779 unsigned which;
780 u64 base;
781
782 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
783 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
784 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
785
786 set:
787 base = ((u64)high << 32) | low;
788 if (HYPERVISOR_set_segment_base(which, base) != 0)
789 ret = -EIO;
790 break;
791 #endif
792
793 case MSR_STAR:
794 case MSR_CSTAR:
795 case MSR_LSTAR:
796 case MSR_SYSCALL_MASK:
797 case MSR_IA32_SYSENTER_CS:
798 case MSR_IA32_SYSENTER_ESP:
799 case MSR_IA32_SYSENTER_EIP:
800 /* Fast syscall setup is all done in hypercalls, so
801 these are all ignored. Stub them out here to stop
802 Xen console noise. */
803 break;
804
805 default:
806 ret = native_write_msr_safe(msr, low, high);
807 }
808
809 return ret;
810 }
811
812 void xen_setup_shared_info(void)
813 {
814 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
815 set_fixmap(FIX_PARAVIRT_BOOTMAP,
816 xen_start_info->shared_info);
817
818 HYPERVISOR_shared_info =
819 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
820 } else
821 HYPERVISOR_shared_info =
822 (struct shared_info *)__va(xen_start_info->shared_info);
823
824 #ifndef CONFIG_SMP
825 /* In UP this is as good a place as any to set up shared info */
826 xen_setup_vcpu_info_placement();
827 #endif
828
829 xen_setup_mfn_list_list();
830 }
831
832 /* This is called once we have the cpu_possible_map */
833 void xen_setup_vcpu_info_placement(void)
834 {
835 int cpu;
836
837 for_each_possible_cpu(cpu)
838 xen_vcpu_setup(cpu);
839
840 /* xen_vcpu_setup managed to place the vcpu_info within the
841 percpu area for all cpus, so make use of it */
842 if (have_vcpu_info_placement) {
843 printk(KERN_INFO "Xen: using vcpu_info placement\n");
844
845 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
846 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
847 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
848 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
849 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
850 }
851 }
852
853 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
854 unsigned long addr, unsigned len)
855 {
856 char *start, *end, *reloc;
857 unsigned ret;
858
859 start = end = reloc = NULL;
860
861 #define SITE(op, x) \
862 case PARAVIRT_PATCH(op.x): \
863 if (have_vcpu_info_placement) { \
864 start = (char *)xen_##x##_direct; \
865 end = xen_##x##_direct_end; \
866 reloc = xen_##x##_direct_reloc; \
867 } \
868 goto patch_site
869
870 switch (type) {
871 SITE(pv_irq_ops, irq_enable);
872 SITE(pv_irq_ops, irq_disable);
873 SITE(pv_irq_ops, save_fl);
874 SITE(pv_irq_ops, restore_fl);
875 #undef SITE
876
877 patch_site:
878 if (start == NULL || (end-start) > len)
879 goto default_patch;
880
881 ret = paravirt_patch_insns(insnbuf, len, start, end);
882
883 /* Note: because reloc is assigned from something that
884 appears to be an array, gcc assumes it's non-null,
885 but doesn't know its relationship with start and
886 end. */
887 if (reloc > start && reloc < end) {
888 int reloc_off = reloc - start;
889 long *relocp = (long *)(insnbuf + reloc_off);
890 long delta = start - (char *)addr;
891
892 *relocp += delta;
893 }
894 break;
895
896 default_patch:
897 default:
898 ret = paravirt_patch_default(type, clobbers, insnbuf,
899 addr, len);
900 break;
901 }
902
903 return ret;
904 }
905
906 static const struct pv_info xen_info __initdata = {
907 .paravirt_enabled = 1,
908 .shared_kernel_pmd = 0,
909
910 .name = "Xen",
911 };
912
913 static const struct pv_init_ops xen_init_ops __initdata = {
914 .patch = xen_patch,
915 };
916
917 static const struct pv_time_ops xen_time_ops __initdata = {
918 .sched_clock = xen_sched_clock,
919 };
920
921 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
922 .cpuid = xen_cpuid,
923
924 .set_debugreg = xen_set_debugreg,
925 .get_debugreg = xen_get_debugreg,
926
927 .clts = xen_clts,
928
929 .read_cr0 = xen_read_cr0,
930 .write_cr0 = xen_write_cr0,
931
932 .read_cr4 = native_read_cr4,
933 .read_cr4_safe = native_read_cr4_safe,
934 .write_cr4 = xen_write_cr4,
935
936 .wbinvd = native_wbinvd,
937
938 .read_msr = native_read_msr_safe,
939 .write_msr = xen_write_msr_safe,
940 .read_tsc = native_read_tsc,
941 .read_pmc = native_read_pmc,
942
943 .iret = xen_iret,
944 .irq_enable_sysexit = xen_sysexit,
945 #ifdef CONFIG_X86_64
946 .usergs_sysret32 = xen_sysret32,
947 .usergs_sysret64 = xen_sysret64,
948 #endif
949
950 .load_tr_desc = paravirt_nop,
951 .set_ldt = xen_set_ldt,
952 .load_gdt = xen_load_gdt,
953 .load_idt = xen_load_idt,
954 .load_tls = xen_load_tls,
955 #ifdef CONFIG_X86_64
956 .load_gs_index = xen_load_gs_index,
957 #endif
958
959 .alloc_ldt = xen_alloc_ldt,
960 .free_ldt = xen_free_ldt,
961
962 .store_gdt = native_store_gdt,
963 .store_idt = native_store_idt,
964 .store_tr = xen_store_tr,
965
966 .write_ldt_entry = xen_write_ldt_entry,
967 .write_gdt_entry = xen_write_gdt_entry,
968 .write_idt_entry = xen_write_idt_entry,
969 .load_sp0 = xen_load_sp0,
970
971 .set_iopl_mask = xen_set_iopl_mask,
972 .io_delay = xen_io_delay,
973
974 /* Xen takes care of %gs when switching to usermode for us */
975 .swapgs = paravirt_nop,
976
977 .start_context_switch = paravirt_start_context_switch,
978 .end_context_switch = xen_end_context_switch,
979 };
980
981 static const struct pv_apic_ops xen_apic_ops __initdata = {
982 #ifdef CONFIG_X86_LOCAL_APIC
983 .startup_ipi_hook = paravirt_nop,
984 #endif
985 };
986
987 static void xen_reboot(int reason)
988 {
989 struct sched_shutdown r = { .reason = reason };
990
991 #ifdef CONFIG_SMP
992 smp_send_stop();
993 #endif
994
995 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
996 BUG();
997 }
998
999 static void xen_restart(char *msg)
1000 {
1001 xen_reboot(SHUTDOWN_reboot);
1002 }
1003
1004 static void xen_emergency_restart(void)
1005 {
1006 xen_reboot(SHUTDOWN_reboot);
1007 }
1008
1009 static void xen_machine_halt(void)
1010 {
1011 xen_reboot(SHUTDOWN_poweroff);
1012 }
1013
1014 static void xen_crash_shutdown(struct pt_regs *regs)
1015 {
1016 xen_reboot(SHUTDOWN_crash);
1017 }
1018
1019 static const struct machine_ops __initdata xen_machine_ops = {
1020 .restart = xen_restart,
1021 .halt = xen_machine_halt,
1022 .power_off = xen_machine_halt,
1023 .shutdown = xen_machine_halt,
1024 .crash_shutdown = xen_crash_shutdown,
1025 .emergency_restart = xen_emergency_restart,
1026 };
1027
1028 /*
1029 * Set up the GDT and segment registers for -fstack-protector. Until
1030 * we do this, we have to be careful not to call any stack-protected
1031 * function, which is most of the kernel.
1032 */
1033 static void __init xen_setup_stackprotector(void)
1034 {
1035 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1036 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1037
1038 setup_stack_canary_segment(0);
1039 switch_to_new_gdt(0);
1040
1041 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1042 pv_cpu_ops.load_gdt = xen_load_gdt;
1043 }
1044
1045 /* First C function to be called on Xen boot */
1046 asmlinkage void __init xen_start_kernel(void)
1047 {
1048 pgd_t *pgd;
1049
1050 if (!xen_start_info)
1051 return;
1052
1053 xen_domain_type = XEN_PV_DOMAIN;
1054
1055 /* Install Xen paravirt ops */
1056 pv_info = xen_info;
1057 pv_init_ops = xen_init_ops;
1058 pv_time_ops = xen_time_ops;
1059 pv_cpu_ops = xen_cpu_ops;
1060 pv_apic_ops = xen_apic_ops;
1061
1062 x86_init.resources.memory_setup = xen_memory_setup;
1063 x86_init.oem.arch_setup = xen_arch_setup;
1064 x86_init.oem.banner = xen_banner;
1065
1066 x86_init.timers.timer_init = xen_time_init;
1067 x86_init.timers.setup_percpu_clockev = x86_init_noop;
1068 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
1069
1070 x86_platform.calibrate_tsc = xen_tsc_khz;
1071 x86_platform.get_wallclock = xen_get_wallclock;
1072 x86_platform.set_wallclock = xen_set_wallclock;
1073
1074 /*
1075 * Set up some pagetable state before starting to set any ptes.
1076 */
1077
1078 /* Prevent unwanted bits from being set in PTEs. */
1079 __supported_pte_mask &= ~_PAGE_GLOBAL;
1080 if (!xen_initial_domain())
1081 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1082
1083 __supported_pte_mask |= _PAGE_IOMAP;
1084
1085 #ifdef CONFIG_X86_64
1086 /* Work out if we support NX */
1087 check_efer();
1088 #endif
1089
1090 xen_setup_features();
1091
1092 /* Get mfn list */
1093 if (!xen_feature(XENFEAT_auto_translated_physmap))
1094 xen_build_dynamic_phys_to_machine();
1095
1096 /*
1097 * Set up kernel GDT and segment registers, mainly so that
1098 * -fstack-protector code can be executed.
1099 */
1100 xen_setup_stackprotector();
1101
1102 xen_init_mmu_ops();
1103 xen_init_irq_ops();
1104 xen_init_cpuid_mask();
1105
1106 #ifdef CONFIG_X86_LOCAL_APIC
1107 /*
1108 * set up the basic apic ops.
1109 */
1110 set_xen_basic_apic_ops();
1111 #endif
1112
1113 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1114 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1115 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1116 }
1117
1118 machine_ops = xen_machine_ops;
1119
1120 /*
1121 * The only reliable way to retain the initial address of the
1122 * percpu gdt_page is to remember it here, so we can go and
1123 * mark it RW later, when the initial percpu area is freed.
1124 */
1125 xen_initial_gdt = &per_cpu(gdt_page, 0);
1126
1127 xen_smp_init();
1128
1129 pgd = (pgd_t *)xen_start_info->pt_base;
1130
1131 /* Don't do the full vcpu_info placement stuff until we have a
1132 possible map and a non-dummy shared_info. */
1133 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1134
1135 local_irq_disable();
1136 early_boot_irqs_off();
1137
1138 xen_raw_console_write("mapping kernel into physical memory\n");
1139 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1140
1141 init_mm.pgd = pgd;
1142
1143 /* keep using Xen gdt for now; no urgent need to change it */
1144
1145 pv_info.kernel_rpl = 1;
1146 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1147 pv_info.kernel_rpl = 0;
1148
1149 /* set the limit of our address space */
1150 xen_reserve_top();
1151
1152 #ifdef CONFIG_X86_32
1153 /* set up basic CPUID stuff */
1154 cpu_detect(&new_cpu_data);
1155 new_cpu_data.hard_math = 1;
1156 new_cpu_data.wp_works_ok = 1;
1157 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1158 #endif
1159
1160 /* Poke various useful things into boot_params */
1161 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1162 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1163 ? __pa(xen_start_info->mod_start) : 0;
1164 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1165 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1166
1167 if (!xen_initial_domain()) {
1168 add_preferred_console("xenboot", 0, NULL);
1169 add_preferred_console("tty", 0, NULL);
1170 add_preferred_console("hvc", 0, NULL);
1171 }
1172
1173 xen_raw_console_write("about to get started...\n");
1174
1175 /* Start the world */
1176 #ifdef CONFIG_X86_32
1177 i386_start_kernel();
1178 #else
1179 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1180 #endif
1181 }