Merge branch 'linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / x86 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/kprobes.h>
24 #include <linux/bootmem.h>
25 #include <linux/module.h>
26 #include <linux/mm.h>
27 #include <linux/page-flags.h>
28 #include <linux/highmem.h>
29 #include <linux/console.h>
30 #include <linux/pci.h>
31
32 #include <xen/xen.h>
33 #include <xen/interface/xen.h>
34 #include <xen/interface/version.h>
35 #include <xen/interface/physdev.h>
36 #include <xen/interface/vcpu.h>
37 #include <xen/features.h>
38 #include <xen/page.h>
39 #include <xen/hvc-console.h>
40
41 #include <asm/paravirt.h>
42 #include <asm/apic.h>
43 #include <asm/page.h>
44 #include <asm/xen/hypercall.h>
45 #include <asm/xen/hypervisor.h>
46 #include <asm/fixmap.h>
47 #include <asm/processor.h>
48 #include <asm/proto.h>
49 #include <asm/msr-index.h>
50 #include <asm/traps.h>
51 #include <asm/setup.h>
52 #include <asm/desc.h>
53 #include <asm/pgtable.h>
54 #include <asm/tlbflush.h>
55 #include <asm/reboot.h>
56 #include <asm/stackprotector.h>
57
58 #include "xen-ops.h"
59 #include "mmu.h"
60 #include "multicalls.h"
61
62 EXPORT_SYMBOL_GPL(hypercall_page);
63
64 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
65 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
66
67 enum xen_domain_type xen_domain_type = XEN_NATIVE;
68 EXPORT_SYMBOL_GPL(xen_domain_type);
69
70 struct start_info *xen_start_info;
71 EXPORT_SYMBOL_GPL(xen_start_info);
72
73 struct shared_info xen_dummy_shared_info;
74
75 void *xen_initial_gdt;
76
77 /*
78 * Point at some empty memory to start with. We map the real shared_info
79 * page as soon as fixmap is up and running.
80 */
81 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
82
83 /*
84 * Flag to determine whether vcpu info placement is available on all
85 * VCPUs. We assume it is to start with, and then set it to zero on
86 * the first failure. This is because it can succeed on some VCPUs
87 * and not others, since it can involve hypervisor memory allocation,
88 * or because the guest failed to guarantee all the appropriate
89 * constraints on all VCPUs (ie buffer can't cross a page boundary).
90 *
91 * Note that any particular CPU may be using a placed vcpu structure,
92 * but we can only optimise if the all are.
93 *
94 * 0: not available, 1: available
95 */
96 static int have_vcpu_info_placement = 1;
97
98 static void xen_vcpu_setup(int cpu)
99 {
100 struct vcpu_register_vcpu_info info;
101 int err;
102 struct vcpu_info *vcpup;
103
104 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
105 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
106
107 if (!have_vcpu_info_placement)
108 return; /* already tested, not available */
109
110 vcpup = &per_cpu(xen_vcpu_info, cpu);
111
112 info.mfn = arbitrary_virt_to_mfn(vcpup);
113 info.offset = offset_in_page(vcpup);
114
115 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
116 cpu, vcpup, info.mfn, info.offset);
117
118 /* Check to see if the hypervisor will put the vcpu_info
119 structure where we want it, which allows direct access via
120 a percpu-variable. */
121 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
122
123 if (err) {
124 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
125 have_vcpu_info_placement = 0;
126 } else {
127 /* This cpu is using the registered vcpu info, even if
128 later ones fail to. */
129 per_cpu(xen_vcpu, cpu) = vcpup;
130
131 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
132 cpu, vcpup);
133 }
134 }
135
136 /*
137 * On restore, set the vcpu placement up again.
138 * If it fails, then we're in a bad state, since
139 * we can't back out from using it...
140 */
141 void xen_vcpu_restore(void)
142 {
143 int cpu;
144
145 for_each_online_cpu(cpu) {
146 bool other_cpu = (cpu != smp_processor_id());
147
148 if (other_cpu &&
149 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
150 BUG();
151
152 xen_setup_runstate_info(cpu);
153
154 if (have_vcpu_info_placement)
155 xen_vcpu_setup(cpu);
156
157 if (other_cpu &&
158 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
159 BUG();
160 }
161 }
162
163 static void __init xen_banner(void)
164 {
165 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
166 struct xen_extraversion extra;
167 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
168
169 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
170 pv_info.name);
171 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
172 version >> 16, version & 0xffff, extra.extraversion,
173 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
174 }
175
176 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
177 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
178
179 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
180 unsigned int *cx, unsigned int *dx)
181 {
182 unsigned maskebx = ~0;
183 unsigned maskecx = ~0;
184 unsigned maskedx = ~0;
185
186 /*
187 * Mask out inconvenient features, to try and disable as many
188 * unsupported kernel subsystems as possible.
189 */
190 switch (*ax) {
191 case 1:
192 maskecx = cpuid_leaf1_ecx_mask;
193 maskedx = cpuid_leaf1_edx_mask;
194 break;
195
196 case 0xb:
197 /* Suppress extended topology stuff */
198 maskebx = 0;
199 break;
200 }
201
202 asm(XEN_EMULATE_PREFIX "cpuid"
203 : "=a" (*ax),
204 "=b" (*bx),
205 "=c" (*cx),
206 "=d" (*dx)
207 : "0" (*ax), "2" (*cx));
208
209 *bx &= maskebx;
210 *cx &= maskecx;
211 *dx &= maskedx;
212 }
213
214 static __init void xen_init_cpuid_mask(void)
215 {
216 unsigned int ax, bx, cx, dx;
217
218 cpuid_leaf1_edx_mask =
219 ~((1 << X86_FEATURE_MCE) | /* disable MCE */
220 (1 << X86_FEATURE_MCA) | /* disable MCA */
221 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
222
223 if (!xen_initial_domain())
224 cpuid_leaf1_edx_mask &=
225 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
226 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
227
228 ax = 1;
229 cx = 0;
230 xen_cpuid(&ax, &bx, &cx, &dx);
231
232 /* cpuid claims we support xsave; try enabling it to see what happens */
233 if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
234 unsigned long cr4;
235
236 set_in_cr4(X86_CR4_OSXSAVE);
237
238 cr4 = read_cr4();
239
240 if ((cr4 & X86_CR4_OSXSAVE) == 0)
241 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
242
243 clear_in_cr4(X86_CR4_OSXSAVE);
244 }
245 }
246
247 static void xen_set_debugreg(int reg, unsigned long val)
248 {
249 HYPERVISOR_set_debugreg(reg, val);
250 }
251
252 static unsigned long xen_get_debugreg(int reg)
253 {
254 return HYPERVISOR_get_debugreg(reg);
255 }
256
257 static void xen_end_context_switch(struct task_struct *next)
258 {
259 xen_mc_flush();
260 paravirt_end_context_switch(next);
261 }
262
263 static unsigned long xen_store_tr(void)
264 {
265 return 0;
266 }
267
268 /*
269 * Set the page permissions for a particular virtual address. If the
270 * address is a vmalloc mapping (or other non-linear mapping), then
271 * find the linear mapping of the page and also set its protections to
272 * match.
273 */
274 static void set_aliased_prot(void *v, pgprot_t prot)
275 {
276 int level;
277 pte_t *ptep;
278 pte_t pte;
279 unsigned long pfn;
280 struct page *page;
281
282 ptep = lookup_address((unsigned long)v, &level);
283 BUG_ON(ptep == NULL);
284
285 pfn = pte_pfn(*ptep);
286 page = pfn_to_page(pfn);
287
288 pte = pfn_pte(pfn, prot);
289
290 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
291 BUG();
292
293 if (!PageHighMem(page)) {
294 void *av = __va(PFN_PHYS(pfn));
295
296 if (av != v)
297 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
298 BUG();
299 } else
300 kmap_flush_unused();
301 }
302
303 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
304 {
305 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
306 int i;
307
308 for(i = 0; i < entries; i += entries_per_page)
309 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
310 }
311
312 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
313 {
314 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
315 int i;
316
317 for(i = 0; i < entries; i += entries_per_page)
318 set_aliased_prot(ldt + i, PAGE_KERNEL);
319 }
320
321 static void xen_set_ldt(const void *addr, unsigned entries)
322 {
323 struct mmuext_op *op;
324 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
325
326 op = mcs.args;
327 op->cmd = MMUEXT_SET_LDT;
328 op->arg1.linear_addr = (unsigned long)addr;
329 op->arg2.nr_ents = entries;
330
331 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
332
333 xen_mc_issue(PARAVIRT_LAZY_CPU);
334 }
335
336 static void xen_load_gdt(const struct desc_ptr *dtr)
337 {
338 unsigned long va = dtr->address;
339 unsigned int size = dtr->size + 1;
340 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
341 unsigned long frames[pages];
342 int f;
343
344 /*
345 * A GDT can be up to 64k in size, which corresponds to 8192
346 * 8-byte entries, or 16 4k pages..
347 */
348
349 BUG_ON(size > 65536);
350 BUG_ON(va & ~PAGE_MASK);
351
352 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
353 int level;
354 pte_t *ptep;
355 unsigned long pfn, mfn;
356 void *virt;
357
358 /*
359 * The GDT is per-cpu and is in the percpu data area.
360 * That can be virtually mapped, so we need to do a
361 * page-walk to get the underlying MFN for the
362 * hypercall. The page can also be in the kernel's
363 * linear range, so we need to RO that mapping too.
364 */
365 ptep = lookup_address(va, &level);
366 BUG_ON(ptep == NULL);
367
368 pfn = pte_pfn(*ptep);
369 mfn = pfn_to_mfn(pfn);
370 virt = __va(PFN_PHYS(pfn));
371
372 frames[f] = mfn;
373
374 make_lowmem_page_readonly((void *)va);
375 make_lowmem_page_readonly(virt);
376 }
377
378 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
379 BUG();
380 }
381
382 /*
383 * load_gdt for early boot, when the gdt is only mapped once
384 */
385 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
386 {
387 unsigned long va = dtr->address;
388 unsigned int size = dtr->size + 1;
389 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
390 unsigned long frames[pages];
391 int f;
392
393 /*
394 * A GDT can be up to 64k in size, which corresponds to 8192
395 * 8-byte entries, or 16 4k pages..
396 */
397
398 BUG_ON(size > 65536);
399 BUG_ON(va & ~PAGE_MASK);
400
401 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
402 pte_t pte;
403 unsigned long pfn, mfn;
404
405 pfn = virt_to_pfn(va);
406 mfn = pfn_to_mfn(pfn);
407
408 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
409
410 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
411 BUG();
412
413 frames[f] = mfn;
414 }
415
416 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
417 BUG();
418 }
419
420 static void load_TLS_descriptor(struct thread_struct *t,
421 unsigned int cpu, unsigned int i)
422 {
423 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
424 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
425 struct multicall_space mc = __xen_mc_entry(0);
426
427 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
428 }
429
430 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
431 {
432 /*
433 * XXX sleazy hack: If we're being called in a lazy-cpu zone
434 * and lazy gs handling is enabled, it means we're in a
435 * context switch, and %gs has just been saved. This means we
436 * can zero it out to prevent faults on exit from the
437 * hypervisor if the next process has no %gs. Either way, it
438 * has been saved, and the new value will get loaded properly.
439 * This will go away as soon as Xen has been modified to not
440 * save/restore %gs for normal hypercalls.
441 *
442 * On x86_64, this hack is not used for %gs, because gs points
443 * to KERNEL_GS_BASE (and uses it for PDA references), so we
444 * must not zero %gs on x86_64
445 *
446 * For x86_64, we need to zero %fs, otherwise we may get an
447 * exception between the new %fs descriptor being loaded and
448 * %fs being effectively cleared at __switch_to().
449 */
450 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
451 #ifdef CONFIG_X86_32
452 lazy_load_gs(0);
453 #else
454 loadsegment(fs, 0);
455 #endif
456 }
457
458 xen_mc_batch();
459
460 load_TLS_descriptor(t, cpu, 0);
461 load_TLS_descriptor(t, cpu, 1);
462 load_TLS_descriptor(t, cpu, 2);
463
464 xen_mc_issue(PARAVIRT_LAZY_CPU);
465 }
466
467 #ifdef CONFIG_X86_64
468 static void xen_load_gs_index(unsigned int idx)
469 {
470 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
471 BUG();
472 }
473 #endif
474
475 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
476 const void *ptr)
477 {
478 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
479 u64 entry = *(u64 *)ptr;
480
481 preempt_disable();
482
483 xen_mc_flush();
484 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
485 BUG();
486
487 preempt_enable();
488 }
489
490 static int cvt_gate_to_trap(int vector, const gate_desc *val,
491 struct trap_info *info)
492 {
493 unsigned long addr;
494
495 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
496 return 0;
497
498 info->vector = vector;
499
500 addr = gate_offset(*val);
501 #ifdef CONFIG_X86_64
502 /*
503 * Look for known traps using IST, and substitute them
504 * appropriately. The debugger ones are the only ones we care
505 * about. Xen will handle faults like double_fault and
506 * machine_check, so we should never see them. Warn if
507 * there's an unexpected IST-using fault handler.
508 */
509 if (addr == (unsigned long)debug)
510 addr = (unsigned long)xen_debug;
511 else if (addr == (unsigned long)int3)
512 addr = (unsigned long)xen_int3;
513 else if (addr == (unsigned long)stack_segment)
514 addr = (unsigned long)xen_stack_segment;
515 else if (addr == (unsigned long)double_fault ||
516 addr == (unsigned long)nmi) {
517 /* Don't need to handle these */
518 return 0;
519 #ifdef CONFIG_X86_MCE
520 } else if (addr == (unsigned long)machine_check) {
521 return 0;
522 #endif
523 } else {
524 /* Some other trap using IST? */
525 if (WARN_ON(val->ist != 0))
526 return 0;
527 }
528 #endif /* CONFIG_X86_64 */
529 info->address = addr;
530
531 info->cs = gate_segment(*val);
532 info->flags = val->dpl;
533 /* interrupt gates clear IF */
534 if (val->type == GATE_INTERRUPT)
535 info->flags |= 1 << 2;
536
537 return 1;
538 }
539
540 /* Locations of each CPU's IDT */
541 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
542
543 /* Set an IDT entry. If the entry is part of the current IDT, then
544 also update Xen. */
545 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
546 {
547 unsigned long p = (unsigned long)&dt[entrynum];
548 unsigned long start, end;
549
550 preempt_disable();
551
552 start = __get_cpu_var(idt_desc).address;
553 end = start + __get_cpu_var(idt_desc).size + 1;
554
555 xen_mc_flush();
556
557 native_write_idt_entry(dt, entrynum, g);
558
559 if (p >= start && (p + 8) <= end) {
560 struct trap_info info[2];
561
562 info[1].address = 0;
563
564 if (cvt_gate_to_trap(entrynum, g, &info[0]))
565 if (HYPERVISOR_set_trap_table(info))
566 BUG();
567 }
568
569 preempt_enable();
570 }
571
572 static void xen_convert_trap_info(const struct desc_ptr *desc,
573 struct trap_info *traps)
574 {
575 unsigned in, out, count;
576
577 count = (desc->size+1) / sizeof(gate_desc);
578 BUG_ON(count > 256);
579
580 for (in = out = 0; in < count; in++) {
581 gate_desc *entry = (gate_desc*)(desc->address) + in;
582
583 if (cvt_gate_to_trap(in, entry, &traps[out]))
584 out++;
585 }
586 traps[out].address = 0;
587 }
588
589 void xen_copy_trap_info(struct trap_info *traps)
590 {
591 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
592
593 xen_convert_trap_info(desc, traps);
594 }
595
596 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
597 hold a spinlock to protect the static traps[] array (static because
598 it avoids allocation, and saves stack space). */
599 static void xen_load_idt(const struct desc_ptr *desc)
600 {
601 static DEFINE_SPINLOCK(lock);
602 static struct trap_info traps[257];
603
604 spin_lock(&lock);
605
606 __get_cpu_var(idt_desc) = *desc;
607
608 xen_convert_trap_info(desc, traps);
609
610 xen_mc_flush();
611 if (HYPERVISOR_set_trap_table(traps))
612 BUG();
613
614 spin_unlock(&lock);
615 }
616
617 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
618 they're handled differently. */
619 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
620 const void *desc, int type)
621 {
622 preempt_disable();
623
624 switch (type) {
625 case DESC_LDT:
626 case DESC_TSS:
627 /* ignore */
628 break;
629
630 default: {
631 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
632
633 xen_mc_flush();
634 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
635 BUG();
636 }
637
638 }
639
640 preempt_enable();
641 }
642
643 /*
644 * Version of write_gdt_entry for use at early boot-time needed to
645 * update an entry as simply as possible.
646 */
647 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
648 const void *desc, int type)
649 {
650 switch (type) {
651 case DESC_LDT:
652 case DESC_TSS:
653 /* ignore */
654 break;
655
656 default: {
657 xmaddr_t maddr = virt_to_machine(&dt[entry]);
658
659 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
660 dt[entry] = *(struct desc_struct *)desc;
661 }
662
663 }
664 }
665
666 static void xen_load_sp0(struct tss_struct *tss,
667 struct thread_struct *thread)
668 {
669 struct multicall_space mcs = xen_mc_entry(0);
670 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
671 xen_mc_issue(PARAVIRT_LAZY_CPU);
672 }
673
674 static void xen_set_iopl_mask(unsigned mask)
675 {
676 struct physdev_set_iopl set_iopl;
677
678 /* Force the change at ring 0. */
679 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
680 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
681 }
682
683 static void xen_io_delay(void)
684 {
685 }
686
687 #ifdef CONFIG_X86_LOCAL_APIC
688 static u32 xen_apic_read(u32 reg)
689 {
690 return 0;
691 }
692
693 static void xen_apic_write(u32 reg, u32 val)
694 {
695 /* Warn to see if there's any stray references */
696 WARN_ON(1);
697 }
698
699 static u64 xen_apic_icr_read(void)
700 {
701 return 0;
702 }
703
704 static void xen_apic_icr_write(u32 low, u32 id)
705 {
706 /* Warn to see if there's any stray references */
707 WARN_ON(1);
708 }
709
710 static void xen_apic_wait_icr_idle(void)
711 {
712 return;
713 }
714
715 static u32 xen_safe_apic_wait_icr_idle(void)
716 {
717 return 0;
718 }
719
720 static void set_xen_basic_apic_ops(void)
721 {
722 apic->read = xen_apic_read;
723 apic->write = xen_apic_write;
724 apic->icr_read = xen_apic_icr_read;
725 apic->icr_write = xen_apic_icr_write;
726 apic->wait_icr_idle = xen_apic_wait_icr_idle;
727 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
728 }
729
730 #endif
731
732
733 static void xen_clts(void)
734 {
735 struct multicall_space mcs;
736
737 mcs = xen_mc_entry(0);
738
739 MULTI_fpu_taskswitch(mcs.mc, 0);
740
741 xen_mc_issue(PARAVIRT_LAZY_CPU);
742 }
743
744 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
745
746 static unsigned long xen_read_cr0(void)
747 {
748 unsigned long cr0 = percpu_read(xen_cr0_value);
749
750 if (unlikely(cr0 == 0)) {
751 cr0 = native_read_cr0();
752 percpu_write(xen_cr0_value, cr0);
753 }
754
755 return cr0;
756 }
757
758 static void xen_write_cr0(unsigned long cr0)
759 {
760 struct multicall_space mcs;
761
762 percpu_write(xen_cr0_value, cr0);
763
764 /* Only pay attention to cr0.TS; everything else is
765 ignored. */
766 mcs = xen_mc_entry(0);
767
768 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
769
770 xen_mc_issue(PARAVIRT_LAZY_CPU);
771 }
772
773 static void xen_write_cr4(unsigned long cr4)
774 {
775 cr4 &= ~X86_CR4_PGE;
776 cr4 &= ~X86_CR4_PSE;
777
778 native_write_cr4(cr4);
779 }
780
781 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
782 {
783 int ret;
784
785 ret = 0;
786
787 switch (msr) {
788 #ifdef CONFIG_X86_64
789 unsigned which;
790 u64 base;
791
792 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
793 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
794 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
795
796 set:
797 base = ((u64)high << 32) | low;
798 if (HYPERVISOR_set_segment_base(which, base) != 0)
799 ret = -EIO;
800 break;
801 #endif
802
803 case MSR_STAR:
804 case MSR_CSTAR:
805 case MSR_LSTAR:
806 case MSR_SYSCALL_MASK:
807 case MSR_IA32_SYSENTER_CS:
808 case MSR_IA32_SYSENTER_ESP:
809 case MSR_IA32_SYSENTER_EIP:
810 /* Fast syscall setup is all done in hypercalls, so
811 these are all ignored. Stub them out here to stop
812 Xen console noise. */
813 break;
814
815 default:
816 ret = native_write_msr_safe(msr, low, high);
817 }
818
819 return ret;
820 }
821
822 void xen_setup_shared_info(void)
823 {
824 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
825 set_fixmap(FIX_PARAVIRT_BOOTMAP,
826 xen_start_info->shared_info);
827
828 HYPERVISOR_shared_info =
829 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
830 } else
831 HYPERVISOR_shared_info =
832 (struct shared_info *)__va(xen_start_info->shared_info);
833
834 #ifndef CONFIG_SMP
835 /* In UP this is as good a place as any to set up shared info */
836 xen_setup_vcpu_info_placement();
837 #endif
838
839 xen_setup_mfn_list_list();
840 }
841
842 /* This is called once we have the cpu_possible_map */
843 void xen_setup_vcpu_info_placement(void)
844 {
845 int cpu;
846
847 for_each_possible_cpu(cpu)
848 xen_vcpu_setup(cpu);
849
850 /* xen_vcpu_setup managed to place the vcpu_info within the
851 percpu area for all cpus, so make use of it */
852 if (have_vcpu_info_placement) {
853 printk(KERN_INFO "Xen: using vcpu_info placement\n");
854
855 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
856 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
857 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
858 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
859 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
860 }
861 }
862
863 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
864 unsigned long addr, unsigned len)
865 {
866 char *start, *end, *reloc;
867 unsigned ret;
868
869 start = end = reloc = NULL;
870
871 #define SITE(op, x) \
872 case PARAVIRT_PATCH(op.x): \
873 if (have_vcpu_info_placement) { \
874 start = (char *)xen_##x##_direct; \
875 end = xen_##x##_direct_end; \
876 reloc = xen_##x##_direct_reloc; \
877 } \
878 goto patch_site
879
880 switch (type) {
881 SITE(pv_irq_ops, irq_enable);
882 SITE(pv_irq_ops, irq_disable);
883 SITE(pv_irq_ops, save_fl);
884 SITE(pv_irq_ops, restore_fl);
885 #undef SITE
886
887 patch_site:
888 if (start == NULL || (end-start) > len)
889 goto default_patch;
890
891 ret = paravirt_patch_insns(insnbuf, len, start, end);
892
893 /* Note: because reloc is assigned from something that
894 appears to be an array, gcc assumes it's non-null,
895 but doesn't know its relationship with start and
896 end. */
897 if (reloc > start && reloc < end) {
898 int reloc_off = reloc - start;
899 long *relocp = (long *)(insnbuf + reloc_off);
900 long delta = start - (char *)addr;
901
902 *relocp += delta;
903 }
904 break;
905
906 default_patch:
907 default:
908 ret = paravirt_patch_default(type, clobbers, insnbuf,
909 addr, len);
910 break;
911 }
912
913 return ret;
914 }
915
916 static const struct pv_info xen_info __initdata = {
917 .paravirt_enabled = 1,
918 .shared_kernel_pmd = 0,
919
920 .name = "Xen",
921 };
922
923 static const struct pv_init_ops xen_init_ops __initdata = {
924 .patch = xen_patch,
925 };
926
927 static const struct pv_time_ops xen_time_ops __initdata = {
928 .sched_clock = xen_sched_clock,
929 };
930
931 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
932 .cpuid = xen_cpuid,
933
934 .set_debugreg = xen_set_debugreg,
935 .get_debugreg = xen_get_debugreg,
936
937 .clts = xen_clts,
938
939 .read_cr0 = xen_read_cr0,
940 .write_cr0 = xen_write_cr0,
941
942 .read_cr4 = native_read_cr4,
943 .read_cr4_safe = native_read_cr4_safe,
944 .write_cr4 = xen_write_cr4,
945
946 .wbinvd = native_wbinvd,
947
948 .read_msr = native_read_msr_safe,
949 .write_msr = xen_write_msr_safe,
950 .read_tsc = native_read_tsc,
951 .read_pmc = native_read_pmc,
952
953 .iret = xen_iret,
954 .irq_enable_sysexit = xen_sysexit,
955 #ifdef CONFIG_X86_64
956 .usergs_sysret32 = xen_sysret32,
957 .usergs_sysret64 = xen_sysret64,
958 #endif
959
960 .load_tr_desc = paravirt_nop,
961 .set_ldt = xen_set_ldt,
962 .load_gdt = xen_load_gdt,
963 .load_idt = xen_load_idt,
964 .load_tls = xen_load_tls,
965 #ifdef CONFIG_X86_64
966 .load_gs_index = xen_load_gs_index,
967 #endif
968
969 .alloc_ldt = xen_alloc_ldt,
970 .free_ldt = xen_free_ldt,
971
972 .store_gdt = native_store_gdt,
973 .store_idt = native_store_idt,
974 .store_tr = xen_store_tr,
975
976 .write_ldt_entry = xen_write_ldt_entry,
977 .write_gdt_entry = xen_write_gdt_entry,
978 .write_idt_entry = xen_write_idt_entry,
979 .load_sp0 = xen_load_sp0,
980
981 .set_iopl_mask = xen_set_iopl_mask,
982 .io_delay = xen_io_delay,
983
984 /* Xen takes care of %gs when switching to usermode for us */
985 .swapgs = paravirt_nop,
986
987 .start_context_switch = paravirt_start_context_switch,
988 .end_context_switch = xen_end_context_switch,
989 };
990
991 static const struct pv_apic_ops xen_apic_ops __initdata = {
992 #ifdef CONFIG_X86_LOCAL_APIC
993 .startup_ipi_hook = paravirt_nop,
994 #endif
995 };
996
997 static void xen_reboot(int reason)
998 {
999 struct sched_shutdown r = { .reason = reason };
1000
1001 #ifdef CONFIG_SMP
1002 smp_send_stop();
1003 #endif
1004
1005 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1006 BUG();
1007 }
1008
1009 static void xen_restart(char *msg)
1010 {
1011 xen_reboot(SHUTDOWN_reboot);
1012 }
1013
1014 static void xen_emergency_restart(void)
1015 {
1016 xen_reboot(SHUTDOWN_reboot);
1017 }
1018
1019 static void xen_machine_halt(void)
1020 {
1021 xen_reboot(SHUTDOWN_poweroff);
1022 }
1023
1024 static void xen_crash_shutdown(struct pt_regs *regs)
1025 {
1026 xen_reboot(SHUTDOWN_crash);
1027 }
1028
1029 static const struct machine_ops __initdata xen_machine_ops = {
1030 .restart = xen_restart,
1031 .halt = xen_machine_halt,
1032 .power_off = xen_machine_halt,
1033 .shutdown = xen_machine_halt,
1034 .crash_shutdown = xen_crash_shutdown,
1035 .emergency_restart = xen_emergency_restart,
1036 };
1037
1038 /*
1039 * Set up the GDT and segment registers for -fstack-protector. Until
1040 * we do this, we have to be careful not to call any stack-protected
1041 * function, which is most of the kernel.
1042 */
1043 static void __init xen_setup_stackprotector(void)
1044 {
1045 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1046 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1047
1048 setup_stack_canary_segment(0);
1049 switch_to_new_gdt(0);
1050
1051 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1052 pv_cpu_ops.load_gdt = xen_load_gdt;
1053 }
1054
1055 /* First C function to be called on Xen boot */
1056 asmlinkage void __init xen_start_kernel(void)
1057 {
1058 pgd_t *pgd;
1059
1060 if (!xen_start_info)
1061 return;
1062
1063 xen_domain_type = XEN_PV_DOMAIN;
1064
1065 /* Install Xen paravirt ops */
1066 pv_info = xen_info;
1067 pv_init_ops = xen_init_ops;
1068 pv_time_ops = xen_time_ops;
1069 pv_cpu_ops = xen_cpu_ops;
1070 pv_apic_ops = xen_apic_ops;
1071
1072 x86_init.resources.memory_setup = xen_memory_setup;
1073 x86_init.oem.arch_setup = xen_arch_setup;
1074 x86_init.oem.banner = xen_banner;
1075
1076 x86_init.timers.timer_init = xen_time_init;
1077 x86_init.timers.setup_percpu_clockev = x86_init_noop;
1078 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
1079
1080 x86_platform.calibrate_tsc = xen_tsc_khz;
1081 x86_platform.get_wallclock = xen_get_wallclock;
1082 x86_platform.set_wallclock = xen_set_wallclock;
1083
1084 /*
1085 * Set up some pagetable state before starting to set any ptes.
1086 */
1087
1088 xen_init_mmu_ops();
1089
1090 /* Prevent unwanted bits from being set in PTEs. */
1091 __supported_pte_mask &= ~_PAGE_GLOBAL;
1092 if (!xen_initial_domain())
1093 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1094
1095 __supported_pte_mask |= _PAGE_IOMAP;
1096
1097 /* Work out if we support NX */
1098 x86_configure_nx();
1099
1100 xen_setup_features();
1101
1102 /* Get mfn list */
1103 if (!xen_feature(XENFEAT_auto_translated_physmap))
1104 xen_build_dynamic_phys_to_machine();
1105
1106 /*
1107 * Set up kernel GDT and segment registers, mainly so that
1108 * -fstack-protector code can be executed.
1109 */
1110 xen_setup_stackprotector();
1111
1112 xen_init_irq_ops();
1113 xen_init_cpuid_mask();
1114
1115 #ifdef CONFIG_X86_LOCAL_APIC
1116 /*
1117 * set up the basic apic ops.
1118 */
1119 set_xen_basic_apic_ops();
1120 #endif
1121
1122 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1123 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1124 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1125 }
1126
1127 machine_ops = xen_machine_ops;
1128
1129 /*
1130 * The only reliable way to retain the initial address of the
1131 * percpu gdt_page is to remember it here, so we can go and
1132 * mark it RW later, when the initial percpu area is freed.
1133 */
1134 xen_initial_gdt = &per_cpu(gdt_page, 0);
1135
1136 xen_smp_init();
1137
1138 pgd = (pgd_t *)xen_start_info->pt_base;
1139
1140 /* Don't do the full vcpu_info placement stuff until we have a
1141 possible map and a non-dummy shared_info. */
1142 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1143
1144 local_irq_disable();
1145 early_boot_irqs_off();
1146
1147 xen_raw_console_write("mapping kernel into physical memory\n");
1148 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1149
1150 init_mm.pgd = pgd;
1151
1152 /* keep using Xen gdt for now; no urgent need to change it */
1153
1154 pv_info.kernel_rpl = 1;
1155 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1156 pv_info.kernel_rpl = 0;
1157
1158 /* set the limit of our address space */
1159 xen_reserve_top();
1160
1161 #ifdef CONFIG_X86_32
1162 /* set up basic CPUID stuff */
1163 cpu_detect(&new_cpu_data);
1164 new_cpu_data.hard_math = 1;
1165 new_cpu_data.wp_works_ok = 1;
1166 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1167 #endif
1168
1169 /* Poke various useful things into boot_params */
1170 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1171 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1172 ? __pa(xen_start_info->mod_start) : 0;
1173 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1174 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1175
1176 if (!xen_initial_domain()) {
1177 add_preferred_console("xenboot", 0, NULL);
1178 add_preferred_console("tty", 0, NULL);
1179 add_preferred_console("hvc", 0, NULL);
1180 } else {
1181 /* Make sure ACS will be enabled */
1182 pci_request_acs();
1183 }
1184
1185
1186 xen_raw_console_write("about to get started...\n");
1187
1188 xen_setup_runstate_info(0);
1189
1190 /* Start the world */
1191 #ifdef CONFIG_X86_32
1192 i386_start_kernel();
1193 #else
1194 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1195 #endif
1196 }