a4695da42d77b39cec3b65083c7b7115b1faa32d
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / x86 / platform / efi / efi_64.c
1 /*
2 * x86_64 specific EFI support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
4 *
5 * Copyright (C) 2005-2008 Intel Co.
6 * Fenghua Yu <fenghua.yu@intel.com>
7 * Bibo Mao <bibo.mao@intel.com>
8 * Chandramouli Narayanan <mouli@linux.intel.com>
9 * Huang Ying <ying.huang@intel.com>
10 *
11 * Code to convert EFI to E820 map has been implemented in elilo bootloader
12 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
13 * is setup appropriately for EFI runtime code.
14 * - mouli 06/14/2007.
15 *
16 */
17
18 #define pr_fmt(fmt) "efi: " fmt
19
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/mm.h>
23 #include <linux/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/bootmem.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/uaccess.h>
31 #include <linux/io.h>
32 #include <linux/reboot.h>
33 #include <linux/slab.h>
34 #include <linux/ucs2_string.h>
35
36 #include <asm/setup.h>
37 #include <asm/page.h>
38 #include <asm/e820.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/proto.h>
42 #include <asm/efi.h>
43 #include <asm/cacheflush.h>
44 #include <asm/fixmap.h>
45 #include <asm/realmode.h>
46 #include <asm/time.h>
47 #include <asm/pgalloc.h>
48
49 /*
50 * We allocate runtime services regions bottom-up, starting from -4G, i.e.
51 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
52 */
53 static u64 efi_va = EFI_VA_START;
54
55 struct efi_scratch efi_scratch;
56
57 static void __init early_code_mapping_set_exec(int executable)
58 {
59 efi_memory_desc_t *md;
60
61 if (!(__supported_pte_mask & _PAGE_NX))
62 return;
63
64 /* Make EFI service code area executable */
65 for_each_efi_memory_desc(md) {
66 if (md->type == EFI_RUNTIME_SERVICES_CODE ||
67 md->type == EFI_BOOT_SERVICES_CODE)
68 efi_set_executable(md, executable);
69 }
70 }
71
72 pgd_t * __init efi_call_phys_prolog(void)
73 {
74 unsigned long vaddress;
75 pgd_t *save_pgd;
76
77 int pgd;
78 int n_pgds;
79
80 if (!efi_enabled(EFI_OLD_MEMMAP)) {
81 save_pgd = (pgd_t *)read_cr3();
82 write_cr3((unsigned long)efi_scratch.efi_pgt);
83 goto out;
84 }
85
86 early_code_mapping_set_exec(1);
87
88 n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
89 save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
90
91 for (pgd = 0; pgd < n_pgds; pgd++) {
92 save_pgd[pgd] = *pgd_offset_k(pgd * PGDIR_SIZE);
93 vaddress = (unsigned long)__va(pgd * PGDIR_SIZE);
94 set_pgd(pgd_offset_k(pgd * PGDIR_SIZE), *pgd_offset_k(vaddress));
95 }
96 out:
97 __flush_tlb_all();
98
99 return save_pgd;
100 }
101
102 void __init efi_call_phys_epilog(pgd_t *save_pgd)
103 {
104 /*
105 * After the lock is released, the original page table is restored.
106 */
107 int pgd_idx;
108 int nr_pgds;
109
110 if (!efi_enabled(EFI_OLD_MEMMAP)) {
111 write_cr3((unsigned long)save_pgd);
112 __flush_tlb_all();
113 return;
114 }
115
116 nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
117
118 for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++)
119 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
120
121 kfree(save_pgd);
122
123 __flush_tlb_all();
124 early_code_mapping_set_exec(0);
125 }
126
127 static pgd_t *efi_pgd;
128
129 /*
130 * We need our own copy of the higher levels of the page tables
131 * because we want to avoid inserting EFI region mappings (EFI_VA_END
132 * to EFI_VA_START) into the standard kernel page tables. Everything
133 * else can be shared, see efi_sync_low_kernel_mappings().
134 */
135 int __init efi_alloc_page_tables(void)
136 {
137 pgd_t *pgd;
138 pud_t *pud;
139 gfp_t gfp_mask;
140
141 if (efi_enabled(EFI_OLD_MEMMAP))
142 return 0;
143
144 gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
145 efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
146 if (!efi_pgd)
147 return -ENOMEM;
148
149 pgd = efi_pgd + pgd_index(EFI_VA_END);
150
151 pud = pud_alloc_one(NULL, 0);
152 if (!pud) {
153 free_page((unsigned long)efi_pgd);
154 return -ENOMEM;
155 }
156
157 pgd_populate(NULL, pgd, pud);
158
159 return 0;
160 }
161
162 /*
163 * Add low kernel mappings for passing arguments to EFI functions.
164 */
165 void efi_sync_low_kernel_mappings(void)
166 {
167 unsigned num_entries;
168 pgd_t *pgd_k, *pgd_efi;
169 pud_t *pud_k, *pud_efi;
170
171 if (efi_enabled(EFI_OLD_MEMMAP))
172 return;
173
174 /*
175 * We can share all PGD entries apart from the one entry that
176 * covers the EFI runtime mapping space.
177 *
178 * Make sure the EFI runtime region mappings are guaranteed to
179 * only span a single PGD entry and that the entry also maps
180 * other important kernel regions.
181 */
182 BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
183 BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
184 (EFI_VA_END & PGDIR_MASK));
185
186 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
187 pgd_k = pgd_offset_k(PAGE_OFFSET);
188
189 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
190 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
191
192 /*
193 * We share all the PUD entries apart from those that map the
194 * EFI regions. Copy around them.
195 */
196 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
197 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
198
199 pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
200 pud_efi = pud_offset(pgd_efi, 0);
201
202 pgd_k = pgd_offset_k(EFI_VA_END);
203 pud_k = pud_offset(pgd_k, 0);
204
205 num_entries = pud_index(EFI_VA_END);
206 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
207
208 pud_efi = pud_offset(pgd_efi, EFI_VA_START);
209 pud_k = pud_offset(pgd_k, EFI_VA_START);
210
211 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
212 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
213 }
214
215 /*
216 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
217 */
218 static inline phys_addr_t
219 virt_to_phys_or_null_size(void *va, unsigned long size)
220 {
221 bool bad_size;
222
223 if (!va)
224 return 0;
225
226 if (virt_addr_valid(va))
227 return virt_to_phys(va);
228
229 /*
230 * A fully aligned variable on the stack is guaranteed not to
231 * cross a page bounary. Try to catch strings on the stack by
232 * checking that 'size' is a power of two.
233 */
234 bad_size = size > PAGE_SIZE || !is_power_of_2(size);
235
236 WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
237
238 return slow_virt_to_phys(va);
239 }
240
241 #define virt_to_phys_or_null(addr) \
242 virt_to_phys_or_null_size((addr), sizeof(*(addr)))
243
244 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
245 {
246 unsigned long pfn, text;
247 struct page *page;
248 unsigned npages;
249 pgd_t *pgd;
250
251 if (efi_enabled(EFI_OLD_MEMMAP))
252 return 0;
253
254 efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd);
255 pgd = efi_pgd;
256
257 /*
258 * It can happen that the physical address of new_memmap lands in memory
259 * which is not mapped in the EFI page table. Therefore we need to go
260 * and ident-map those pages containing the map before calling
261 * phys_efi_set_virtual_address_map().
262 */
263 pfn = pa_memmap >> PAGE_SHIFT;
264 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX | _PAGE_RW)) {
265 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
266 return 1;
267 }
268
269 efi_scratch.use_pgd = true;
270
271 /*
272 * Certain firmware versions are way too sentimential and still believe
273 * they are exclusive and unquestionable owners of the first physical page,
274 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
275 * (but then write-access it later during SetVirtualAddressMap()).
276 *
277 * Create a 1:1 mapping for this page, to avoid triple faults during early
278 * boot with such firmware. We are free to hand this page to the BIOS,
279 * as trim_bios_range() will reserve the first page and isolate it away
280 * from memory allocators anyway.
281 */
282 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, _PAGE_RW)) {
283 pr_err("Failed to create 1:1 mapping for the first page!\n");
284 return 1;
285 }
286
287 /*
288 * When making calls to the firmware everything needs to be 1:1
289 * mapped and addressable with 32-bit pointers. Map the kernel
290 * text and allocate a new stack because we can't rely on the
291 * stack pointer being < 4GB.
292 */
293 if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
294 return 0;
295
296 page = alloc_page(GFP_KERNEL|__GFP_DMA32);
297 if (!page)
298 panic("Unable to allocate EFI runtime stack < 4GB\n");
299
300 efi_scratch.phys_stack = virt_to_phys(page_address(page));
301 efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
302
303 npages = (_etext - _text) >> PAGE_SHIFT;
304 text = __pa(_text);
305 pfn = text >> PAGE_SHIFT;
306
307 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, _PAGE_RW)) {
308 pr_err("Failed to map kernel text 1:1\n");
309 return 1;
310 }
311
312 return 0;
313 }
314
315 static void __init __map_region(efi_memory_desc_t *md, u64 va)
316 {
317 unsigned long flags = _PAGE_RW;
318 unsigned long pfn;
319 pgd_t *pgd = efi_pgd;
320
321 if (!(md->attribute & EFI_MEMORY_WB))
322 flags |= _PAGE_PCD;
323
324 pfn = md->phys_addr >> PAGE_SHIFT;
325 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
326 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
327 md->phys_addr, va);
328 }
329
330 void __init efi_map_region(efi_memory_desc_t *md)
331 {
332 unsigned long size = md->num_pages << PAGE_SHIFT;
333 u64 pa = md->phys_addr;
334
335 if (efi_enabled(EFI_OLD_MEMMAP))
336 return old_map_region(md);
337
338 /*
339 * Make sure the 1:1 mappings are present as a catch-all for b0rked
340 * firmware which doesn't update all internal pointers after switching
341 * to virtual mode and would otherwise crap on us.
342 */
343 __map_region(md, md->phys_addr);
344
345 /*
346 * Enforce the 1:1 mapping as the default virtual address when
347 * booting in EFI mixed mode, because even though we may be
348 * running a 64-bit kernel, the firmware may only be 32-bit.
349 */
350 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
351 md->virt_addr = md->phys_addr;
352 return;
353 }
354
355 efi_va -= size;
356
357 /* Is PA 2M-aligned? */
358 if (!(pa & (PMD_SIZE - 1))) {
359 efi_va &= PMD_MASK;
360 } else {
361 u64 pa_offset = pa & (PMD_SIZE - 1);
362 u64 prev_va = efi_va;
363
364 /* get us the same offset within this 2M page */
365 efi_va = (efi_va & PMD_MASK) + pa_offset;
366
367 if (efi_va > prev_va)
368 efi_va -= PMD_SIZE;
369 }
370
371 if (efi_va < EFI_VA_END) {
372 pr_warn(FW_WARN "VA address range overflow!\n");
373 return;
374 }
375
376 /* Do the VA map */
377 __map_region(md, efi_va);
378 md->virt_addr = efi_va;
379 }
380
381 /*
382 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
383 * md->virt_addr is the original virtual address which had been mapped in kexec
384 * 1st kernel.
385 */
386 void __init efi_map_region_fixed(efi_memory_desc_t *md)
387 {
388 __map_region(md, md->phys_addr);
389 __map_region(md, md->virt_addr);
390 }
391
392 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
393 u32 type, u64 attribute)
394 {
395 unsigned long last_map_pfn;
396
397 if (type == EFI_MEMORY_MAPPED_IO)
398 return ioremap(phys_addr, size);
399
400 last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
401 if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
402 unsigned long top = last_map_pfn << PAGE_SHIFT;
403 efi_ioremap(top, size - (top - phys_addr), type, attribute);
404 }
405
406 if (!(attribute & EFI_MEMORY_WB))
407 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
408
409 return (void __iomem *)__va(phys_addr);
410 }
411
412 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
413 {
414 efi_setup = phys_addr + sizeof(struct setup_data);
415 }
416
417 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
418 {
419 unsigned long pfn;
420 pgd_t *pgd = efi_pgd;
421 int err1, err2;
422
423 /* Update the 1:1 mapping */
424 pfn = md->phys_addr >> PAGE_SHIFT;
425 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
426 if (err1) {
427 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
428 md->phys_addr, md->virt_addr);
429 }
430
431 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
432 if (err2) {
433 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
434 md->phys_addr, md->virt_addr);
435 }
436
437 return err1 || err2;
438 }
439
440 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
441 {
442 unsigned long pf = 0;
443
444 if (md->attribute & EFI_MEMORY_XP)
445 pf |= _PAGE_NX;
446
447 if (!(md->attribute & EFI_MEMORY_RO))
448 pf |= _PAGE_RW;
449
450 return efi_update_mappings(md, pf);
451 }
452
453 void __init efi_runtime_update_mappings(void)
454 {
455 efi_memory_desc_t *md;
456
457 if (efi_enabled(EFI_OLD_MEMMAP)) {
458 if (__supported_pte_mask & _PAGE_NX)
459 runtime_code_page_mkexec();
460 return;
461 }
462
463 /*
464 * Use the EFI Memory Attribute Table for mapping permissions if it
465 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
466 */
467 if (efi_enabled(EFI_MEM_ATTR)) {
468 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
469 return;
470 }
471
472 /*
473 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
474 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
475 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
476 * published by the firmware. Even if we find a buggy implementation of
477 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
478 * EFI_PROPERTIES_TABLE, because of the same reason.
479 */
480
481 if (!efi_enabled(EFI_NX_PE_DATA))
482 return;
483
484 for_each_efi_memory_desc(md) {
485 unsigned long pf = 0;
486
487 if (!(md->attribute & EFI_MEMORY_RUNTIME))
488 continue;
489
490 if (!(md->attribute & EFI_MEMORY_WB))
491 pf |= _PAGE_PCD;
492
493 if ((md->attribute & EFI_MEMORY_XP) ||
494 (md->type == EFI_RUNTIME_SERVICES_DATA))
495 pf |= _PAGE_NX;
496
497 if (!(md->attribute & EFI_MEMORY_RO) &&
498 (md->type != EFI_RUNTIME_SERVICES_CODE))
499 pf |= _PAGE_RW;
500
501 efi_update_mappings(md, pf);
502 }
503 }
504
505 void __init efi_dump_pagetable(void)
506 {
507 #ifdef CONFIG_EFI_PGT_DUMP
508 ptdump_walk_pgd_level(NULL, efi_pgd);
509 #endif
510 }
511
512 #ifdef CONFIG_EFI_MIXED
513 extern efi_status_t efi64_thunk(u32, ...);
514
515 #define runtime_service32(func) \
516 ({ \
517 u32 table = (u32)(unsigned long)efi.systab; \
518 u32 *rt, *___f; \
519 \
520 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \
521 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
522 *___f; \
523 })
524
525 /*
526 * Switch to the EFI page tables early so that we can access the 1:1
527 * runtime services mappings which are not mapped in any other page
528 * tables. This function must be called before runtime_service32().
529 *
530 * Also, disable interrupts because the IDT points to 64-bit handlers,
531 * which aren't going to function correctly when we switch to 32-bit.
532 */
533 #define efi_thunk(f, ...) \
534 ({ \
535 efi_status_t __s; \
536 unsigned long __flags; \
537 u32 __func; \
538 \
539 local_irq_save(__flags); \
540 arch_efi_call_virt_setup(); \
541 \
542 __func = runtime_service32(f); \
543 __s = efi64_thunk(__func, __VA_ARGS__); \
544 \
545 arch_efi_call_virt_teardown(); \
546 local_irq_restore(__flags); \
547 \
548 __s; \
549 })
550
551 efi_status_t efi_thunk_set_virtual_address_map(
552 void *phys_set_virtual_address_map,
553 unsigned long memory_map_size,
554 unsigned long descriptor_size,
555 u32 descriptor_version,
556 efi_memory_desc_t *virtual_map)
557 {
558 efi_status_t status;
559 unsigned long flags;
560 u32 func;
561
562 efi_sync_low_kernel_mappings();
563 local_irq_save(flags);
564
565 efi_scratch.prev_cr3 = read_cr3();
566 write_cr3((unsigned long)efi_scratch.efi_pgt);
567 __flush_tlb_all();
568
569 func = (u32)(unsigned long)phys_set_virtual_address_map;
570 status = efi64_thunk(func, memory_map_size, descriptor_size,
571 descriptor_version, virtual_map);
572
573 write_cr3(efi_scratch.prev_cr3);
574 __flush_tlb_all();
575 local_irq_restore(flags);
576
577 return status;
578 }
579
580 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
581 {
582 efi_status_t status;
583 u32 phys_tm, phys_tc;
584
585 spin_lock(&rtc_lock);
586
587 phys_tm = virt_to_phys_or_null(tm);
588 phys_tc = virt_to_phys_or_null(tc);
589
590 status = efi_thunk(get_time, phys_tm, phys_tc);
591
592 spin_unlock(&rtc_lock);
593
594 return status;
595 }
596
597 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
598 {
599 efi_status_t status;
600 u32 phys_tm;
601
602 spin_lock(&rtc_lock);
603
604 phys_tm = virt_to_phys_or_null(tm);
605
606 status = efi_thunk(set_time, phys_tm);
607
608 spin_unlock(&rtc_lock);
609
610 return status;
611 }
612
613 static efi_status_t
614 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
615 efi_time_t *tm)
616 {
617 efi_status_t status;
618 u32 phys_enabled, phys_pending, phys_tm;
619
620 spin_lock(&rtc_lock);
621
622 phys_enabled = virt_to_phys_or_null(enabled);
623 phys_pending = virt_to_phys_or_null(pending);
624 phys_tm = virt_to_phys_or_null(tm);
625
626 status = efi_thunk(get_wakeup_time, phys_enabled,
627 phys_pending, phys_tm);
628
629 spin_unlock(&rtc_lock);
630
631 return status;
632 }
633
634 static efi_status_t
635 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
636 {
637 efi_status_t status;
638 u32 phys_tm;
639
640 spin_lock(&rtc_lock);
641
642 phys_tm = virt_to_phys_or_null(tm);
643
644 status = efi_thunk(set_wakeup_time, enabled, phys_tm);
645
646 spin_unlock(&rtc_lock);
647
648 return status;
649 }
650
651 static unsigned long efi_name_size(efi_char16_t *name)
652 {
653 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
654 }
655
656 static efi_status_t
657 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
658 u32 *attr, unsigned long *data_size, void *data)
659 {
660 efi_status_t status;
661 u32 phys_name, phys_vendor, phys_attr;
662 u32 phys_data_size, phys_data;
663
664 phys_data_size = virt_to_phys_or_null(data_size);
665 phys_vendor = virt_to_phys_or_null(vendor);
666 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
667 phys_attr = virt_to_phys_or_null(attr);
668 phys_data = virt_to_phys_or_null_size(data, *data_size);
669
670 status = efi_thunk(get_variable, phys_name, phys_vendor,
671 phys_attr, phys_data_size, phys_data);
672
673 return status;
674 }
675
676 static efi_status_t
677 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
678 u32 attr, unsigned long data_size, void *data)
679 {
680 u32 phys_name, phys_vendor, phys_data;
681 efi_status_t status;
682
683 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
684 phys_vendor = virt_to_phys_or_null(vendor);
685 phys_data = virt_to_phys_or_null_size(data, data_size);
686
687 /* If data_size is > sizeof(u32) we've got problems */
688 status = efi_thunk(set_variable, phys_name, phys_vendor,
689 attr, data_size, phys_data);
690
691 return status;
692 }
693
694 static efi_status_t
695 efi_thunk_get_next_variable(unsigned long *name_size,
696 efi_char16_t *name,
697 efi_guid_t *vendor)
698 {
699 efi_status_t status;
700 u32 phys_name_size, phys_name, phys_vendor;
701
702 phys_name_size = virt_to_phys_or_null(name_size);
703 phys_vendor = virt_to_phys_or_null(vendor);
704 phys_name = virt_to_phys_or_null_size(name, *name_size);
705
706 status = efi_thunk(get_next_variable, phys_name_size,
707 phys_name, phys_vendor);
708
709 return status;
710 }
711
712 static efi_status_t
713 efi_thunk_get_next_high_mono_count(u32 *count)
714 {
715 efi_status_t status;
716 u32 phys_count;
717
718 phys_count = virt_to_phys_or_null(count);
719 status = efi_thunk(get_next_high_mono_count, phys_count);
720
721 return status;
722 }
723
724 static void
725 efi_thunk_reset_system(int reset_type, efi_status_t status,
726 unsigned long data_size, efi_char16_t *data)
727 {
728 u32 phys_data;
729
730 phys_data = virt_to_phys_or_null_size(data, data_size);
731
732 efi_thunk(reset_system, reset_type, status, data_size, phys_data);
733 }
734
735 static efi_status_t
736 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
737 unsigned long count, unsigned long sg_list)
738 {
739 /*
740 * To properly support this function we would need to repackage
741 * 'capsules' because the firmware doesn't understand 64-bit
742 * pointers.
743 */
744 return EFI_UNSUPPORTED;
745 }
746
747 static efi_status_t
748 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
749 u64 *remaining_space,
750 u64 *max_variable_size)
751 {
752 efi_status_t status;
753 u32 phys_storage, phys_remaining, phys_max;
754
755 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
756 return EFI_UNSUPPORTED;
757
758 phys_storage = virt_to_phys_or_null(storage_space);
759 phys_remaining = virt_to_phys_or_null(remaining_space);
760 phys_max = virt_to_phys_or_null(max_variable_size);
761
762 status = efi_thunk(query_variable_info, attr, phys_storage,
763 phys_remaining, phys_max);
764
765 return status;
766 }
767
768 static efi_status_t
769 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
770 unsigned long count, u64 *max_size,
771 int *reset_type)
772 {
773 /*
774 * To properly support this function we would need to repackage
775 * 'capsules' because the firmware doesn't understand 64-bit
776 * pointers.
777 */
778 return EFI_UNSUPPORTED;
779 }
780
781 void efi_thunk_runtime_setup(void)
782 {
783 efi.get_time = efi_thunk_get_time;
784 efi.set_time = efi_thunk_set_time;
785 efi.get_wakeup_time = efi_thunk_get_wakeup_time;
786 efi.set_wakeup_time = efi_thunk_set_wakeup_time;
787 efi.get_variable = efi_thunk_get_variable;
788 efi.get_next_variable = efi_thunk_get_next_variable;
789 efi.set_variable = efi_thunk_set_variable;
790 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
791 efi.reset_system = efi_thunk_reset_system;
792 efi.query_variable_info = efi_thunk_query_variable_info;
793 efi.update_capsule = efi_thunk_update_capsule;
794 efi.query_capsule_caps = efi_thunk_query_capsule_caps;
795 }
796 #endif /* CONFIG_EFI_MIXED */