Merge branch 'osc' into release
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / mm / pageattr.c
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
16
17 #include <asm/e820.h>
18 #include <asm/processor.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/uaccess.h>
23 #include <asm/pgalloc.h>
24 #include <asm/proto.h>
25 #include <asm/pat.h>
26
27 /*
28 * The current flushing context - we pass it instead of 5 arguments:
29 */
30 struct cpa_data {
31 unsigned long *vaddr;
32 pgprot_t mask_set;
33 pgprot_t mask_clr;
34 int numpages;
35 int flags;
36 unsigned long pfn;
37 unsigned force_split : 1;
38 int curpage;
39 struct page **pages;
40 };
41
42 /*
43 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
44 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
45 * entries change the page attribute in parallel to some other cpu
46 * splitting a large page entry along with changing the attribute.
47 */
48 static DEFINE_SPINLOCK(cpa_lock);
49
50 #define CPA_FLUSHTLB 1
51 #define CPA_ARRAY 2
52 #define CPA_PAGES_ARRAY 4
53
54 #ifdef CONFIG_PROC_FS
55 static unsigned long direct_pages_count[PG_LEVEL_NUM];
56
57 void update_page_count(int level, unsigned long pages)
58 {
59 unsigned long flags;
60
61 /* Protect against CPA */
62 spin_lock_irqsave(&pgd_lock, flags);
63 direct_pages_count[level] += pages;
64 spin_unlock_irqrestore(&pgd_lock, flags);
65 }
66
67 static void split_page_count(int level)
68 {
69 direct_pages_count[level]--;
70 direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72
73 void arch_report_meminfo(struct seq_file *m)
74 {
75 seq_printf(m, "DirectMap4k: %8lu kB\n",
76 direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78 seq_printf(m, "DirectMap2M: %8lu kB\n",
79 direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81 seq_printf(m, "DirectMap4M: %8lu kB\n",
82 direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 #ifdef CONFIG_X86_64
85 if (direct_gbpages)
86 seq_printf(m, "DirectMap1G: %8lu kB\n",
87 direct_pages_count[PG_LEVEL_1G] << 20);
88 #endif
89 }
90 #else
91 static inline void split_page_count(int level) { }
92 #endif
93
94 #ifdef CONFIG_X86_64
95
96 static inline unsigned long highmap_start_pfn(void)
97 {
98 return __pa(_text) >> PAGE_SHIFT;
99 }
100
101 static inline unsigned long highmap_end_pfn(void)
102 {
103 return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 }
105
106 #endif
107
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
110 #else
111 # define debug_pagealloc 0
112 #endif
113
114 static inline int
115 within(unsigned long addr, unsigned long start, unsigned long end)
116 {
117 return addr >= start && addr < end;
118 }
119
120 /*
121 * Flushing functions
122 */
123
124 /**
125 * clflush_cache_range - flush a cache range with clflush
126 * @addr: virtual start address
127 * @size: number of bytes to flush
128 *
129 * clflush is an unordered instruction which needs fencing with mfence
130 * to avoid ordering issues.
131 */
132 void clflush_cache_range(void *vaddr, unsigned int size)
133 {
134 void *vend = vaddr + size - 1;
135
136 mb();
137
138 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139 clflush(vaddr);
140 /*
141 * Flush any possible final partial cacheline:
142 */
143 clflush(vend);
144
145 mb();
146 }
147 EXPORT_SYMBOL_GPL(clflush_cache_range);
148
149 static void __cpa_flush_all(void *arg)
150 {
151 unsigned long cache = (unsigned long)arg;
152
153 /*
154 * Flush all to work around Errata in early athlons regarding
155 * large page flushing.
156 */
157 __flush_tlb_all();
158
159 if (cache && boot_cpu_data.x86 >= 4)
160 wbinvd();
161 }
162
163 static void cpa_flush_all(unsigned long cache)
164 {
165 BUG_ON(irqs_disabled());
166
167 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
168 }
169
170 static void __cpa_flush_range(void *arg)
171 {
172 /*
173 * We could optimize that further and do individual per page
174 * tlb invalidates for a low number of pages. Caveat: we must
175 * flush the high aliases on 64bit as well.
176 */
177 __flush_tlb_all();
178 }
179
180 static void cpa_flush_range(unsigned long start, int numpages, int cache)
181 {
182 unsigned int i, level;
183 unsigned long addr;
184
185 BUG_ON(irqs_disabled());
186 WARN_ON(PAGE_ALIGN(start) != start);
187
188 on_each_cpu(__cpa_flush_range, NULL, 1);
189
190 if (!cache)
191 return;
192
193 /*
194 * We only need to flush on one CPU,
195 * clflush is a MESI-coherent instruction that
196 * will cause all other CPUs to flush the same
197 * cachelines:
198 */
199 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
200 pte_t *pte = lookup_address(addr, &level);
201
202 /*
203 * Only flush present addresses:
204 */
205 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
206 clflush_cache_range((void *) addr, PAGE_SIZE);
207 }
208 }
209
210 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
211 int in_flags, struct page **pages)
212 {
213 unsigned int i, level;
214 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
215
216 BUG_ON(irqs_disabled());
217
218 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
219
220 if (!cache || do_wbinvd)
221 return;
222
223 /*
224 * We only need to flush on one CPU,
225 * clflush is a MESI-coherent instruction that
226 * will cause all other CPUs to flush the same
227 * cachelines:
228 */
229 for (i = 0; i < numpages; i++) {
230 unsigned long addr;
231 pte_t *pte;
232
233 if (in_flags & CPA_PAGES_ARRAY)
234 addr = (unsigned long)page_address(pages[i]);
235 else
236 addr = start[i];
237
238 pte = lookup_address(addr, &level);
239
240 /*
241 * Only flush present addresses:
242 */
243 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
244 clflush_cache_range((void *)addr, PAGE_SIZE);
245 }
246 }
247
248 /*
249 * Certain areas of memory on x86 require very specific protection flags,
250 * for example the BIOS area or kernel text. Callers don't always get this
251 * right (again, ioremap() on BIOS memory is not uncommon) so this function
252 * checks and fixes these known static required protection bits.
253 */
254 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
255 unsigned long pfn)
256 {
257 pgprot_t forbidden = __pgprot(0);
258
259 /*
260 * The BIOS area between 640k and 1Mb needs to be executable for
261 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
262 */
263 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
264 pgprot_val(forbidden) |= _PAGE_NX;
265
266 /*
267 * The kernel text needs to be executable for obvious reasons
268 * Does not cover __inittext since that is gone later on. On
269 * 64bit we do not enforce !NX on the low mapping
270 */
271 if (within(address, (unsigned long)_text, (unsigned long)_etext))
272 pgprot_val(forbidden) |= _PAGE_NX;
273
274 /*
275 * The .rodata section needs to be read-only. Using the pfn
276 * catches all aliases.
277 */
278 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
279 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
280 pgprot_val(forbidden) |= _PAGE_RW;
281
282 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
283 /*
284 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
285 * kernel text mappings for the large page aligned text, rodata sections
286 * will be always read-only. For the kernel identity mappings covering
287 * the holes caused by this alignment can be anything that user asks.
288 *
289 * This will preserve the large page mappings for kernel text/data
290 * at no extra cost.
291 */
292 if (kernel_set_to_readonly &&
293 within(address, (unsigned long)_text,
294 (unsigned long)__end_rodata_hpage_align))
295 pgprot_val(forbidden) |= _PAGE_RW;
296 #endif
297
298 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
299
300 return prot;
301 }
302
303 /*
304 * Lookup the page table entry for a virtual address. Return a pointer
305 * to the entry and the level of the mapping.
306 *
307 * Note: We return pud and pmd either when the entry is marked large
308 * or when the present bit is not set. Otherwise we would return a
309 * pointer to a nonexisting mapping.
310 */
311 pte_t *lookup_address(unsigned long address, unsigned int *level)
312 {
313 pgd_t *pgd = pgd_offset_k(address);
314 pud_t *pud;
315 pmd_t *pmd;
316
317 *level = PG_LEVEL_NONE;
318
319 if (pgd_none(*pgd))
320 return NULL;
321
322 pud = pud_offset(pgd, address);
323 if (pud_none(*pud))
324 return NULL;
325
326 *level = PG_LEVEL_1G;
327 if (pud_large(*pud) || !pud_present(*pud))
328 return (pte_t *)pud;
329
330 pmd = pmd_offset(pud, address);
331 if (pmd_none(*pmd))
332 return NULL;
333
334 *level = PG_LEVEL_2M;
335 if (pmd_large(*pmd) || !pmd_present(*pmd))
336 return (pte_t *)pmd;
337
338 *level = PG_LEVEL_4K;
339
340 return pte_offset_kernel(pmd, address);
341 }
342 EXPORT_SYMBOL_GPL(lookup_address);
343
344 /*
345 * Set the new pmd in all the pgds we know about:
346 */
347 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
348 {
349 /* change init_mm */
350 set_pte_atomic(kpte, pte);
351 #ifdef CONFIG_X86_32
352 if (!SHARED_KERNEL_PMD) {
353 struct page *page;
354
355 list_for_each_entry(page, &pgd_list, lru) {
356 pgd_t *pgd;
357 pud_t *pud;
358 pmd_t *pmd;
359
360 pgd = (pgd_t *)page_address(page) + pgd_index(address);
361 pud = pud_offset(pgd, address);
362 pmd = pmd_offset(pud, address);
363 set_pte_atomic((pte_t *)pmd, pte);
364 }
365 }
366 #endif
367 }
368
369 static int
370 try_preserve_large_page(pte_t *kpte, unsigned long address,
371 struct cpa_data *cpa)
372 {
373 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
374 pte_t new_pte, old_pte, *tmp;
375 pgprot_t old_prot, new_prot;
376 int i, do_split = 1;
377 unsigned int level;
378
379 if (cpa->force_split)
380 return 1;
381
382 spin_lock_irqsave(&pgd_lock, flags);
383 /*
384 * Check for races, another CPU might have split this page
385 * up already:
386 */
387 tmp = lookup_address(address, &level);
388 if (tmp != kpte)
389 goto out_unlock;
390
391 switch (level) {
392 case PG_LEVEL_2M:
393 psize = PMD_PAGE_SIZE;
394 pmask = PMD_PAGE_MASK;
395 break;
396 #ifdef CONFIG_X86_64
397 case PG_LEVEL_1G:
398 psize = PUD_PAGE_SIZE;
399 pmask = PUD_PAGE_MASK;
400 break;
401 #endif
402 default:
403 do_split = -EINVAL;
404 goto out_unlock;
405 }
406
407 /*
408 * Calculate the number of pages, which fit into this large
409 * page starting at address:
410 */
411 nextpage_addr = (address + psize) & pmask;
412 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
413 if (numpages < cpa->numpages)
414 cpa->numpages = numpages;
415
416 /*
417 * We are safe now. Check whether the new pgprot is the same:
418 */
419 old_pte = *kpte;
420 old_prot = new_prot = pte_pgprot(old_pte);
421
422 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
423 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
424
425 /*
426 * old_pte points to the large page base address. So we need
427 * to add the offset of the virtual address:
428 */
429 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
430 cpa->pfn = pfn;
431
432 new_prot = static_protections(new_prot, address, pfn);
433
434 /*
435 * We need to check the full range, whether
436 * static_protection() requires a different pgprot for one of
437 * the pages in the range we try to preserve:
438 */
439 addr = address + PAGE_SIZE;
440 pfn++;
441 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
442 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
443
444 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
445 goto out_unlock;
446 }
447
448 /*
449 * If there are no changes, return. maxpages has been updated
450 * above:
451 */
452 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
453 do_split = 0;
454 goto out_unlock;
455 }
456
457 /*
458 * We need to change the attributes. Check, whether we can
459 * change the large page in one go. We request a split, when
460 * the address is not aligned and the number of pages is
461 * smaller than the number of pages in the large page. Note
462 * that we limited the number of possible pages already to
463 * the number of pages in the large page.
464 */
465 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
466 /*
467 * The address is aligned and the number of pages
468 * covers the full page.
469 */
470 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
471 __set_pmd_pte(kpte, address, new_pte);
472 cpa->flags |= CPA_FLUSHTLB;
473 do_split = 0;
474 }
475
476 out_unlock:
477 spin_unlock_irqrestore(&pgd_lock, flags);
478
479 return do_split;
480 }
481
482 static int split_large_page(pte_t *kpte, unsigned long address)
483 {
484 unsigned long flags, pfn, pfninc = 1;
485 unsigned int i, level;
486 pte_t *pbase, *tmp;
487 pgprot_t ref_prot;
488 struct page *base;
489
490 if (!debug_pagealloc)
491 spin_unlock(&cpa_lock);
492 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
493 if (!debug_pagealloc)
494 spin_lock(&cpa_lock);
495 if (!base)
496 return -ENOMEM;
497
498 spin_lock_irqsave(&pgd_lock, flags);
499 /*
500 * Check for races, another CPU might have split this page
501 * up for us already:
502 */
503 tmp = lookup_address(address, &level);
504 if (tmp != kpte)
505 goto out_unlock;
506
507 pbase = (pte_t *)page_address(base);
508 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
509 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
510 /*
511 * If we ever want to utilize the PAT bit, we need to
512 * update this function to make sure it's converted from
513 * bit 12 to bit 7 when we cross from the 2MB level to
514 * the 4K level:
515 */
516 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
517
518 #ifdef CONFIG_X86_64
519 if (level == PG_LEVEL_1G) {
520 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
521 pgprot_val(ref_prot) |= _PAGE_PSE;
522 }
523 #endif
524
525 /*
526 * Get the target pfn from the original entry:
527 */
528 pfn = pte_pfn(*kpte);
529 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
530 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
531
532 if (address >= (unsigned long)__va(0) &&
533 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
534 split_page_count(level);
535
536 #ifdef CONFIG_X86_64
537 if (address >= (unsigned long)__va(1UL<<32) &&
538 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
539 split_page_count(level);
540 #endif
541
542 /*
543 * Install the new, split up pagetable.
544 *
545 * We use the standard kernel pagetable protections for the new
546 * pagetable protections, the actual ptes set above control the
547 * primary protection behavior:
548 */
549 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
550
551 /*
552 * Intel Atom errata AAH41 workaround.
553 *
554 * The real fix should be in hw or in a microcode update, but
555 * we also probabilistically try to reduce the window of having
556 * a large TLB mixed with 4K TLBs while instruction fetches are
557 * going on.
558 */
559 __flush_tlb_all();
560
561 base = NULL;
562
563 out_unlock:
564 /*
565 * If we dropped out via the lookup_address check under
566 * pgd_lock then stick the page back into the pool:
567 */
568 if (base)
569 __free_page(base);
570 spin_unlock_irqrestore(&pgd_lock, flags);
571
572 return 0;
573 }
574
575 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
576 int primary)
577 {
578 /*
579 * Ignore all non primary paths.
580 */
581 if (!primary)
582 return 0;
583
584 /*
585 * Ignore the NULL PTE for kernel identity mapping, as it is expected
586 * to have holes.
587 * Also set numpages to '1' indicating that we processed cpa req for
588 * one virtual address page and its pfn. TBD: numpages can be set based
589 * on the initial value and the level returned by lookup_address().
590 */
591 if (within(vaddr, PAGE_OFFSET,
592 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
593 cpa->numpages = 1;
594 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
595 return 0;
596 } else {
597 WARN(1, KERN_WARNING "CPA: called for zero pte. "
598 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
599 *cpa->vaddr);
600
601 return -EFAULT;
602 }
603 }
604
605 static int __change_page_attr(struct cpa_data *cpa, int primary)
606 {
607 unsigned long address;
608 int do_split, err;
609 unsigned int level;
610 pte_t *kpte, old_pte;
611
612 if (cpa->flags & CPA_PAGES_ARRAY) {
613 struct page *page = cpa->pages[cpa->curpage];
614 if (unlikely(PageHighMem(page)))
615 return 0;
616 address = (unsigned long)page_address(page);
617 } else if (cpa->flags & CPA_ARRAY)
618 address = cpa->vaddr[cpa->curpage];
619 else
620 address = *cpa->vaddr;
621 repeat:
622 kpte = lookup_address(address, &level);
623 if (!kpte)
624 return __cpa_process_fault(cpa, address, primary);
625
626 old_pte = *kpte;
627 if (!pte_val(old_pte))
628 return __cpa_process_fault(cpa, address, primary);
629
630 if (level == PG_LEVEL_4K) {
631 pte_t new_pte;
632 pgprot_t new_prot = pte_pgprot(old_pte);
633 unsigned long pfn = pte_pfn(old_pte);
634
635 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
636 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
637
638 new_prot = static_protections(new_prot, address, pfn);
639
640 /*
641 * We need to keep the pfn from the existing PTE,
642 * after all we're only going to change it's attributes
643 * not the memory it points to
644 */
645 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
646 cpa->pfn = pfn;
647 /*
648 * Do we really change anything ?
649 */
650 if (pte_val(old_pte) != pte_val(new_pte)) {
651 set_pte_atomic(kpte, new_pte);
652 cpa->flags |= CPA_FLUSHTLB;
653 }
654 cpa->numpages = 1;
655 return 0;
656 }
657
658 /*
659 * Check, whether we can keep the large page intact
660 * and just change the pte:
661 */
662 do_split = try_preserve_large_page(kpte, address, cpa);
663 /*
664 * When the range fits into the existing large page,
665 * return. cp->numpages and cpa->tlbflush have been updated in
666 * try_large_page:
667 */
668 if (do_split <= 0)
669 return do_split;
670
671 /*
672 * We have to split the large page:
673 */
674 err = split_large_page(kpte, address);
675 if (!err) {
676 /*
677 * Do a global flush tlb after splitting the large page
678 * and before we do the actual change page attribute in the PTE.
679 *
680 * With out this, we violate the TLB application note, that says
681 * "The TLBs may contain both ordinary and large-page
682 * translations for a 4-KByte range of linear addresses. This
683 * may occur if software modifies the paging structures so that
684 * the page size used for the address range changes. If the two
685 * translations differ with respect to page frame or attributes
686 * (e.g., permissions), processor behavior is undefined and may
687 * be implementation-specific."
688 *
689 * We do this global tlb flush inside the cpa_lock, so that we
690 * don't allow any other cpu, with stale tlb entries change the
691 * page attribute in parallel, that also falls into the
692 * just split large page entry.
693 */
694 flush_tlb_all();
695 goto repeat;
696 }
697
698 return err;
699 }
700
701 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
702
703 static int cpa_process_alias(struct cpa_data *cpa)
704 {
705 struct cpa_data alias_cpa;
706 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
707 unsigned long vaddr;
708 int ret;
709
710 if (cpa->pfn >= max_pfn_mapped)
711 return 0;
712
713 #ifdef CONFIG_X86_64
714 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
715 return 0;
716 #endif
717 /*
718 * No need to redo, when the primary call touched the direct
719 * mapping already:
720 */
721 if (cpa->flags & CPA_PAGES_ARRAY) {
722 struct page *page = cpa->pages[cpa->curpage];
723 if (unlikely(PageHighMem(page)))
724 return 0;
725 vaddr = (unsigned long)page_address(page);
726 } else if (cpa->flags & CPA_ARRAY)
727 vaddr = cpa->vaddr[cpa->curpage];
728 else
729 vaddr = *cpa->vaddr;
730
731 if (!(within(vaddr, PAGE_OFFSET,
732 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
733
734 alias_cpa = *cpa;
735 alias_cpa.vaddr = &laddr;
736 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
737
738 ret = __change_page_attr_set_clr(&alias_cpa, 0);
739 if (ret)
740 return ret;
741 }
742
743 #ifdef CONFIG_X86_64
744 /*
745 * If the primary call didn't touch the high mapping already
746 * and the physical address is inside the kernel map, we need
747 * to touch the high mapped kernel as well:
748 */
749 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
750 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
751 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
752 __START_KERNEL_map - phys_base;
753 alias_cpa = *cpa;
754 alias_cpa.vaddr = &temp_cpa_vaddr;
755 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
756
757 /*
758 * The high mapping range is imprecise, so ignore the
759 * return value.
760 */
761 __change_page_attr_set_clr(&alias_cpa, 0);
762 }
763 #endif
764
765 return 0;
766 }
767
768 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
769 {
770 int ret, numpages = cpa->numpages;
771
772 while (numpages) {
773 /*
774 * Store the remaining nr of pages for the large page
775 * preservation check.
776 */
777 cpa->numpages = numpages;
778 /* for array changes, we can't use large page */
779 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
780 cpa->numpages = 1;
781
782 if (!debug_pagealloc)
783 spin_lock(&cpa_lock);
784 ret = __change_page_attr(cpa, checkalias);
785 if (!debug_pagealloc)
786 spin_unlock(&cpa_lock);
787 if (ret)
788 return ret;
789
790 if (checkalias) {
791 ret = cpa_process_alias(cpa);
792 if (ret)
793 return ret;
794 }
795
796 /*
797 * Adjust the number of pages with the result of the
798 * CPA operation. Either a large page has been
799 * preserved or a single page update happened.
800 */
801 BUG_ON(cpa->numpages > numpages);
802 numpages -= cpa->numpages;
803 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
804 cpa->curpage++;
805 else
806 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
807
808 }
809 return 0;
810 }
811
812 static inline int cache_attr(pgprot_t attr)
813 {
814 return pgprot_val(attr) &
815 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
816 }
817
818 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
819 pgprot_t mask_set, pgprot_t mask_clr,
820 int force_split, int in_flag,
821 struct page **pages)
822 {
823 struct cpa_data cpa;
824 int ret, cache, checkalias;
825 unsigned long baddr = 0;
826
827 /*
828 * Check, if we are requested to change a not supported
829 * feature:
830 */
831 mask_set = canon_pgprot(mask_set);
832 mask_clr = canon_pgprot(mask_clr);
833 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
834 return 0;
835
836 /* Ensure we are PAGE_SIZE aligned */
837 if (in_flag & CPA_ARRAY) {
838 int i;
839 for (i = 0; i < numpages; i++) {
840 if (addr[i] & ~PAGE_MASK) {
841 addr[i] &= PAGE_MASK;
842 WARN_ON_ONCE(1);
843 }
844 }
845 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
846 /*
847 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
848 * No need to cehck in that case
849 */
850 if (*addr & ~PAGE_MASK) {
851 *addr &= PAGE_MASK;
852 /*
853 * People should not be passing in unaligned addresses:
854 */
855 WARN_ON_ONCE(1);
856 }
857 /*
858 * Save address for cache flush. *addr is modified in the call
859 * to __change_page_attr_set_clr() below.
860 */
861 baddr = *addr;
862 }
863
864 /* Must avoid aliasing mappings in the highmem code */
865 kmap_flush_unused();
866
867 vm_unmap_aliases();
868
869 cpa.vaddr = addr;
870 cpa.pages = pages;
871 cpa.numpages = numpages;
872 cpa.mask_set = mask_set;
873 cpa.mask_clr = mask_clr;
874 cpa.flags = 0;
875 cpa.curpage = 0;
876 cpa.force_split = force_split;
877
878 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
879 cpa.flags |= in_flag;
880
881 /* No alias checking for _NX bit modifications */
882 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
883
884 ret = __change_page_attr_set_clr(&cpa, checkalias);
885
886 /*
887 * Check whether we really changed something:
888 */
889 if (!(cpa.flags & CPA_FLUSHTLB))
890 goto out;
891
892 /*
893 * No need to flush, when we did not set any of the caching
894 * attributes:
895 */
896 cache = cache_attr(mask_set);
897
898 /*
899 * On success we use clflush, when the CPU supports it to
900 * avoid the wbindv. If the CPU does not support it and in the
901 * error case we fall back to cpa_flush_all (which uses
902 * wbindv):
903 */
904 if (!ret && cpu_has_clflush) {
905 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
906 cpa_flush_array(addr, numpages, cache,
907 cpa.flags, pages);
908 } else
909 cpa_flush_range(baddr, numpages, cache);
910 } else
911 cpa_flush_all(cache);
912
913 out:
914 return ret;
915 }
916
917 static inline int change_page_attr_set(unsigned long *addr, int numpages,
918 pgprot_t mask, int array)
919 {
920 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
921 (array ? CPA_ARRAY : 0), NULL);
922 }
923
924 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
925 pgprot_t mask, int array)
926 {
927 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
928 (array ? CPA_ARRAY : 0), NULL);
929 }
930
931 static inline int cpa_set_pages_array(struct page **pages, int numpages,
932 pgprot_t mask)
933 {
934 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
935 CPA_PAGES_ARRAY, pages);
936 }
937
938 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
939 pgprot_t mask)
940 {
941 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
942 CPA_PAGES_ARRAY, pages);
943 }
944
945 int _set_memory_uc(unsigned long addr, int numpages)
946 {
947 /*
948 * for now UC MINUS. see comments in ioremap_nocache()
949 */
950 return change_page_attr_set(&addr, numpages,
951 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
952 }
953
954 int set_memory_uc(unsigned long addr, int numpages)
955 {
956 int ret;
957
958 /*
959 * for now UC MINUS. see comments in ioremap_nocache()
960 */
961 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
962 _PAGE_CACHE_UC_MINUS, NULL);
963 if (ret)
964 goto out_err;
965
966 ret = _set_memory_uc(addr, numpages);
967 if (ret)
968 goto out_free;
969
970 return 0;
971
972 out_free:
973 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
974 out_err:
975 return ret;
976 }
977 EXPORT_SYMBOL(set_memory_uc);
978
979 int set_memory_array_uc(unsigned long *addr, int addrinarray)
980 {
981 int i, j;
982 int ret;
983
984 /*
985 * for now UC MINUS. see comments in ioremap_nocache()
986 */
987 for (i = 0; i < addrinarray; i++) {
988 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
989 _PAGE_CACHE_UC_MINUS, NULL);
990 if (ret)
991 goto out_free;
992 }
993
994 ret = change_page_attr_set(addr, addrinarray,
995 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
996 if (ret)
997 goto out_free;
998
999 return 0;
1000
1001 out_free:
1002 for (j = 0; j < i; j++)
1003 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1004
1005 return ret;
1006 }
1007 EXPORT_SYMBOL(set_memory_array_uc);
1008
1009 int _set_memory_wc(unsigned long addr, int numpages)
1010 {
1011 int ret;
1012 unsigned long addr_copy = addr;
1013
1014 ret = change_page_attr_set(&addr, numpages,
1015 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1016 if (!ret) {
1017 ret = change_page_attr_set_clr(&addr_copy, numpages,
1018 __pgprot(_PAGE_CACHE_WC),
1019 __pgprot(_PAGE_CACHE_MASK),
1020 0, 0, NULL);
1021 }
1022 return ret;
1023 }
1024
1025 int set_memory_wc(unsigned long addr, int numpages)
1026 {
1027 int ret;
1028
1029 if (!pat_enabled)
1030 return set_memory_uc(addr, numpages);
1031
1032 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1033 _PAGE_CACHE_WC, NULL);
1034 if (ret)
1035 goto out_err;
1036
1037 ret = _set_memory_wc(addr, numpages);
1038 if (ret)
1039 goto out_free;
1040
1041 return 0;
1042
1043 out_free:
1044 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1045 out_err:
1046 return ret;
1047 }
1048 EXPORT_SYMBOL(set_memory_wc);
1049
1050 int _set_memory_wb(unsigned long addr, int numpages)
1051 {
1052 return change_page_attr_clear(&addr, numpages,
1053 __pgprot(_PAGE_CACHE_MASK), 0);
1054 }
1055
1056 int set_memory_wb(unsigned long addr, int numpages)
1057 {
1058 int ret;
1059
1060 ret = _set_memory_wb(addr, numpages);
1061 if (ret)
1062 return ret;
1063
1064 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1065 return 0;
1066 }
1067 EXPORT_SYMBOL(set_memory_wb);
1068
1069 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1070 {
1071 int i;
1072 int ret;
1073
1074 ret = change_page_attr_clear(addr, addrinarray,
1075 __pgprot(_PAGE_CACHE_MASK), 1);
1076 if (ret)
1077 return ret;
1078
1079 for (i = 0; i < addrinarray; i++)
1080 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1081
1082 return 0;
1083 }
1084 EXPORT_SYMBOL(set_memory_array_wb);
1085
1086 int set_memory_x(unsigned long addr, int numpages)
1087 {
1088 if (!(__supported_pte_mask & _PAGE_NX))
1089 return 0;
1090
1091 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1092 }
1093 EXPORT_SYMBOL(set_memory_x);
1094
1095 int set_memory_nx(unsigned long addr, int numpages)
1096 {
1097 if (!(__supported_pte_mask & _PAGE_NX))
1098 return 0;
1099
1100 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1101 }
1102 EXPORT_SYMBOL(set_memory_nx);
1103
1104 int set_memory_ro(unsigned long addr, int numpages)
1105 {
1106 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1107 }
1108 EXPORT_SYMBOL_GPL(set_memory_ro);
1109
1110 int set_memory_rw(unsigned long addr, int numpages)
1111 {
1112 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1113 }
1114 EXPORT_SYMBOL_GPL(set_memory_rw);
1115
1116 int set_memory_np(unsigned long addr, int numpages)
1117 {
1118 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1119 }
1120
1121 int set_memory_4k(unsigned long addr, int numpages)
1122 {
1123 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1124 __pgprot(0), 1, 0, NULL);
1125 }
1126
1127 int set_pages_uc(struct page *page, int numpages)
1128 {
1129 unsigned long addr = (unsigned long)page_address(page);
1130
1131 return set_memory_uc(addr, numpages);
1132 }
1133 EXPORT_SYMBOL(set_pages_uc);
1134
1135 int set_pages_array_uc(struct page **pages, int addrinarray)
1136 {
1137 unsigned long start;
1138 unsigned long end;
1139 int i;
1140 int free_idx;
1141
1142 for (i = 0; i < addrinarray; i++) {
1143 if (PageHighMem(pages[i]))
1144 continue;
1145 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1146 end = start + PAGE_SIZE;
1147 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
1148 goto err_out;
1149 }
1150
1151 if (cpa_set_pages_array(pages, addrinarray,
1152 __pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
1153 return 0; /* Success */
1154 }
1155 err_out:
1156 free_idx = i;
1157 for (i = 0; i < free_idx; i++) {
1158 if (PageHighMem(pages[i]))
1159 continue;
1160 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1161 end = start + PAGE_SIZE;
1162 free_memtype(start, end);
1163 }
1164 return -EINVAL;
1165 }
1166 EXPORT_SYMBOL(set_pages_array_uc);
1167
1168 int set_pages_wb(struct page *page, int numpages)
1169 {
1170 unsigned long addr = (unsigned long)page_address(page);
1171
1172 return set_memory_wb(addr, numpages);
1173 }
1174 EXPORT_SYMBOL(set_pages_wb);
1175
1176 int set_pages_array_wb(struct page **pages, int addrinarray)
1177 {
1178 int retval;
1179 unsigned long start;
1180 unsigned long end;
1181 int i;
1182
1183 retval = cpa_clear_pages_array(pages, addrinarray,
1184 __pgprot(_PAGE_CACHE_MASK));
1185 if (retval)
1186 return retval;
1187
1188 for (i = 0; i < addrinarray; i++) {
1189 if (PageHighMem(pages[i]))
1190 continue;
1191 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1192 end = start + PAGE_SIZE;
1193 free_memtype(start, end);
1194 }
1195
1196 return 0;
1197 }
1198 EXPORT_SYMBOL(set_pages_array_wb);
1199
1200 int set_pages_x(struct page *page, int numpages)
1201 {
1202 unsigned long addr = (unsigned long)page_address(page);
1203
1204 return set_memory_x(addr, numpages);
1205 }
1206 EXPORT_SYMBOL(set_pages_x);
1207
1208 int set_pages_nx(struct page *page, int numpages)
1209 {
1210 unsigned long addr = (unsigned long)page_address(page);
1211
1212 return set_memory_nx(addr, numpages);
1213 }
1214 EXPORT_SYMBOL(set_pages_nx);
1215
1216 int set_pages_ro(struct page *page, int numpages)
1217 {
1218 unsigned long addr = (unsigned long)page_address(page);
1219
1220 return set_memory_ro(addr, numpages);
1221 }
1222
1223 int set_pages_rw(struct page *page, int numpages)
1224 {
1225 unsigned long addr = (unsigned long)page_address(page);
1226
1227 return set_memory_rw(addr, numpages);
1228 }
1229
1230 #ifdef CONFIG_DEBUG_PAGEALLOC
1231
1232 static int __set_pages_p(struct page *page, int numpages)
1233 {
1234 unsigned long tempaddr = (unsigned long) page_address(page);
1235 struct cpa_data cpa = { .vaddr = &tempaddr,
1236 .numpages = numpages,
1237 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1238 .mask_clr = __pgprot(0),
1239 .flags = 0};
1240
1241 /*
1242 * No alias checking needed for setting present flag. otherwise,
1243 * we may need to break large pages for 64-bit kernel text
1244 * mappings (this adds to complexity if we want to do this from
1245 * atomic context especially). Let's keep it simple!
1246 */
1247 return __change_page_attr_set_clr(&cpa, 0);
1248 }
1249
1250 static int __set_pages_np(struct page *page, int numpages)
1251 {
1252 unsigned long tempaddr = (unsigned long) page_address(page);
1253 struct cpa_data cpa = { .vaddr = &tempaddr,
1254 .numpages = numpages,
1255 .mask_set = __pgprot(0),
1256 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1257 .flags = 0};
1258
1259 /*
1260 * No alias checking needed for setting not present flag. otherwise,
1261 * we may need to break large pages for 64-bit kernel text
1262 * mappings (this adds to complexity if we want to do this from
1263 * atomic context especially). Let's keep it simple!
1264 */
1265 return __change_page_attr_set_clr(&cpa, 0);
1266 }
1267
1268 void kernel_map_pages(struct page *page, int numpages, int enable)
1269 {
1270 if (PageHighMem(page))
1271 return;
1272 if (!enable) {
1273 debug_check_no_locks_freed(page_address(page),
1274 numpages * PAGE_SIZE);
1275 }
1276
1277 /*
1278 * If page allocator is not up yet then do not call c_p_a():
1279 */
1280 if (!debug_pagealloc_enabled)
1281 return;
1282
1283 /*
1284 * The return value is ignored as the calls cannot fail.
1285 * Large pages for identity mappings are not used at boot time
1286 * and hence no memory allocations during large page split.
1287 */
1288 if (enable)
1289 __set_pages_p(page, numpages);
1290 else
1291 __set_pages_np(page, numpages);
1292
1293 /*
1294 * We should perform an IPI and flush all tlbs,
1295 * but that can deadlock->flush only current cpu:
1296 */
1297 __flush_tlb_all();
1298 }
1299
1300 #ifdef CONFIG_HIBERNATION
1301
1302 bool kernel_page_present(struct page *page)
1303 {
1304 unsigned int level;
1305 pte_t *pte;
1306
1307 if (PageHighMem(page))
1308 return false;
1309
1310 pte = lookup_address((unsigned long)page_address(page), &level);
1311 return (pte_val(*pte) & _PAGE_PRESENT);
1312 }
1313
1314 #endif /* CONFIG_HIBERNATION */
1315
1316 #endif /* CONFIG_DEBUG_PAGEALLOC */
1317
1318 /*
1319 * The testcases use internal knowledge of the implementation that shouldn't
1320 * be exposed to the rest of the kernel. Include these directly here.
1321 */
1322 #ifdef CONFIG_CPA_DEBUG
1323 #include "pageattr-test.c"
1324 #endif