Merge branch 'drm-core-next' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / mm / init_64.c
1 /*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/nmi.h>
33 #include <linux/gfp.h>
34
35 #include <asm/processor.h>
36 #include <asm/bios_ebda.h>
37 #include <asm/system.h>
38 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/dma.h>
42 #include <asm/fixmap.h>
43 #include <asm/e820.h>
44 #include <asm/apic.h>
45 #include <asm/tlb.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
48 #include <asm/smp.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
51 #include <asm/numa.h>
52 #include <asm/cacheflush.h>
53 #include <asm/init.h>
54 #include <asm/uv/uv.h>
55
56 static int __init parse_direct_gbpages_off(char *arg)
57 {
58 direct_gbpages = 0;
59 return 0;
60 }
61 early_param("nogbpages", parse_direct_gbpages_off);
62
63 static int __init parse_direct_gbpages_on(char *arg)
64 {
65 direct_gbpages = 1;
66 return 0;
67 }
68 early_param("gbpages", parse_direct_gbpages_on);
69
70 /*
71 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
72 * physical space so we can cache the place of the first one and move
73 * around without checking the pgd every time.
74 */
75
76 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
77 EXPORT_SYMBOL_GPL(__supported_pte_mask);
78
79 int force_personality32;
80
81 /*
82 * noexec32=on|off
83 * Control non executable heap for 32bit processes.
84 * To control the stack too use noexec=off
85 *
86 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
87 * off PROT_READ implies PROT_EXEC
88 */
89 static int __init nonx32_setup(char *str)
90 {
91 if (!strcmp(str, "on"))
92 force_personality32 &= ~READ_IMPLIES_EXEC;
93 else if (!strcmp(str, "off"))
94 force_personality32 |= READ_IMPLIES_EXEC;
95 return 1;
96 }
97 __setup("noexec32=", nonx32_setup);
98
99 /*
100 * When memory was added/removed make sure all the processes MM have
101 * suitable PGD entries in the local PGD level page.
102 */
103 void sync_global_pgds(unsigned long start, unsigned long end)
104 {
105 unsigned long address;
106
107 for (address = start; address <= end; address += PGDIR_SIZE) {
108 const pgd_t *pgd_ref = pgd_offset_k(address);
109 struct page *page;
110
111 if (pgd_none(*pgd_ref))
112 continue;
113
114 spin_lock(&pgd_lock);
115 list_for_each_entry(page, &pgd_list, lru) {
116 pgd_t *pgd;
117 spinlock_t *pgt_lock;
118
119 pgd = (pgd_t *)page_address(page) + pgd_index(address);
120 /* the pgt_lock only for Xen */
121 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
122 spin_lock(pgt_lock);
123
124 if (pgd_none(*pgd))
125 set_pgd(pgd, *pgd_ref);
126 else
127 BUG_ON(pgd_page_vaddr(*pgd)
128 != pgd_page_vaddr(*pgd_ref));
129
130 spin_unlock(pgt_lock);
131 }
132 spin_unlock(&pgd_lock);
133 }
134 }
135
136 /*
137 * NOTE: This function is marked __ref because it calls __init function
138 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
139 */
140 static __ref void *spp_getpage(void)
141 {
142 void *ptr;
143
144 if (after_bootmem)
145 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
146 else
147 ptr = alloc_bootmem_pages(PAGE_SIZE);
148
149 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
150 panic("set_pte_phys: cannot allocate page data %s\n",
151 after_bootmem ? "after bootmem" : "");
152 }
153
154 pr_debug("spp_getpage %p\n", ptr);
155
156 return ptr;
157 }
158
159 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
160 {
161 if (pgd_none(*pgd)) {
162 pud_t *pud = (pud_t *)spp_getpage();
163 pgd_populate(&init_mm, pgd, pud);
164 if (pud != pud_offset(pgd, 0))
165 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
166 pud, pud_offset(pgd, 0));
167 }
168 return pud_offset(pgd, vaddr);
169 }
170
171 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
172 {
173 if (pud_none(*pud)) {
174 pmd_t *pmd = (pmd_t *) spp_getpage();
175 pud_populate(&init_mm, pud, pmd);
176 if (pmd != pmd_offset(pud, 0))
177 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
178 pmd, pmd_offset(pud, 0));
179 }
180 return pmd_offset(pud, vaddr);
181 }
182
183 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
184 {
185 if (pmd_none(*pmd)) {
186 pte_t *pte = (pte_t *) spp_getpage();
187 pmd_populate_kernel(&init_mm, pmd, pte);
188 if (pte != pte_offset_kernel(pmd, 0))
189 printk(KERN_ERR "PAGETABLE BUG #02!\n");
190 }
191 return pte_offset_kernel(pmd, vaddr);
192 }
193
194 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
195 {
196 pud_t *pud;
197 pmd_t *pmd;
198 pte_t *pte;
199
200 pud = pud_page + pud_index(vaddr);
201 pmd = fill_pmd(pud, vaddr);
202 pte = fill_pte(pmd, vaddr);
203
204 set_pte(pte, new_pte);
205
206 /*
207 * It's enough to flush this one mapping.
208 * (PGE mappings get flushed as well)
209 */
210 __flush_tlb_one(vaddr);
211 }
212
213 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
214 {
215 pgd_t *pgd;
216 pud_t *pud_page;
217
218 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
219
220 pgd = pgd_offset_k(vaddr);
221 if (pgd_none(*pgd)) {
222 printk(KERN_ERR
223 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
224 return;
225 }
226 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
227 set_pte_vaddr_pud(pud_page, vaddr, pteval);
228 }
229
230 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
231 {
232 pgd_t *pgd;
233 pud_t *pud;
234
235 pgd = pgd_offset_k(vaddr);
236 pud = fill_pud(pgd, vaddr);
237 return fill_pmd(pud, vaddr);
238 }
239
240 pte_t * __init populate_extra_pte(unsigned long vaddr)
241 {
242 pmd_t *pmd;
243
244 pmd = populate_extra_pmd(vaddr);
245 return fill_pte(pmd, vaddr);
246 }
247
248 /*
249 * Create large page table mappings for a range of physical addresses.
250 */
251 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
252 pgprot_t prot)
253 {
254 pgd_t *pgd;
255 pud_t *pud;
256 pmd_t *pmd;
257
258 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
259 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
260 pgd = pgd_offset_k((unsigned long)__va(phys));
261 if (pgd_none(*pgd)) {
262 pud = (pud_t *) spp_getpage();
263 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
264 _PAGE_USER));
265 }
266 pud = pud_offset(pgd, (unsigned long)__va(phys));
267 if (pud_none(*pud)) {
268 pmd = (pmd_t *) spp_getpage();
269 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
270 _PAGE_USER));
271 }
272 pmd = pmd_offset(pud, phys);
273 BUG_ON(!pmd_none(*pmd));
274 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
275 }
276 }
277
278 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
279 {
280 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
281 }
282
283 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
284 {
285 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
286 }
287
288 /*
289 * The head.S code sets up the kernel high mapping:
290 *
291 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
292 *
293 * phys_addr holds the negative offset to the kernel, which is added
294 * to the compile time generated pmds. This results in invalid pmds up
295 * to the point where we hit the physaddr 0 mapping.
296 *
297 * We limit the mappings to the region from _text to _end. _end is
298 * rounded up to the 2MB boundary. This catches the invalid pmds as
299 * well, as they are located before _text:
300 */
301 void __init cleanup_highmap(void)
302 {
303 unsigned long vaddr = __START_KERNEL_map;
304 unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
305 pmd_t *pmd = level2_kernel_pgt;
306 pmd_t *last_pmd = pmd + PTRS_PER_PMD;
307
308 for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
309 if (pmd_none(*pmd))
310 continue;
311 if (vaddr < (unsigned long) _text || vaddr > end)
312 set_pmd(pmd, __pmd(0));
313 }
314 }
315
316 static __ref void *alloc_low_page(unsigned long *phys)
317 {
318 unsigned long pfn = pgt_buf_end++;
319 void *adr;
320
321 if (after_bootmem) {
322 adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
323 *phys = __pa(adr);
324
325 return adr;
326 }
327
328 if (pfn >= pgt_buf_top)
329 panic("alloc_low_page: ran out of memory");
330
331 adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
332 clear_page(adr);
333 *phys = pfn * PAGE_SIZE;
334 return adr;
335 }
336
337 static __ref void *map_low_page(void *virt)
338 {
339 void *adr;
340 unsigned long phys, left;
341
342 if (after_bootmem)
343 return virt;
344
345 phys = __pa(virt);
346 left = phys & (PAGE_SIZE - 1);
347 adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
348 adr = (void *)(((unsigned long)adr) | left);
349
350 return adr;
351 }
352
353 static __ref void unmap_low_page(void *adr)
354 {
355 if (after_bootmem)
356 return;
357
358 early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
359 }
360
361 static unsigned long __meminit
362 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
363 pgprot_t prot)
364 {
365 unsigned pages = 0;
366 unsigned long last_map_addr = end;
367 int i;
368
369 pte_t *pte = pte_page + pte_index(addr);
370
371 for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
372
373 if (addr >= end) {
374 if (!after_bootmem) {
375 for(; i < PTRS_PER_PTE; i++, pte++)
376 set_pte(pte, __pte(0));
377 }
378 break;
379 }
380
381 /*
382 * We will re-use the existing mapping.
383 * Xen for example has some special requirements, like mapping
384 * pagetable pages as RO. So assume someone who pre-setup
385 * these mappings are more intelligent.
386 */
387 if (pte_val(*pte)) {
388 pages++;
389 continue;
390 }
391
392 if (0)
393 printk(" pte=%p addr=%lx pte=%016lx\n",
394 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
395 pages++;
396 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
397 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
398 }
399
400 update_page_count(PG_LEVEL_4K, pages);
401
402 return last_map_addr;
403 }
404
405 static unsigned long __meminit
406 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
407 unsigned long page_size_mask, pgprot_t prot)
408 {
409 unsigned long pages = 0;
410 unsigned long last_map_addr = end;
411
412 int i = pmd_index(address);
413
414 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
415 unsigned long pte_phys;
416 pmd_t *pmd = pmd_page + pmd_index(address);
417 pte_t *pte;
418 pgprot_t new_prot = prot;
419
420 if (address >= end) {
421 if (!after_bootmem) {
422 for (; i < PTRS_PER_PMD; i++, pmd++)
423 set_pmd(pmd, __pmd(0));
424 }
425 break;
426 }
427
428 if (pmd_val(*pmd)) {
429 if (!pmd_large(*pmd)) {
430 spin_lock(&init_mm.page_table_lock);
431 pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
432 last_map_addr = phys_pte_init(pte, address,
433 end, prot);
434 unmap_low_page(pte);
435 spin_unlock(&init_mm.page_table_lock);
436 continue;
437 }
438 /*
439 * If we are ok with PG_LEVEL_2M mapping, then we will
440 * use the existing mapping,
441 *
442 * Otherwise, we will split the large page mapping but
443 * use the same existing protection bits except for
444 * large page, so that we don't violate Intel's TLB
445 * Application note (317080) which says, while changing
446 * the page sizes, new and old translations should
447 * not differ with respect to page frame and
448 * attributes.
449 */
450 if (page_size_mask & (1 << PG_LEVEL_2M)) {
451 pages++;
452 continue;
453 }
454 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
455 }
456
457 if (page_size_mask & (1<<PG_LEVEL_2M)) {
458 pages++;
459 spin_lock(&init_mm.page_table_lock);
460 set_pte((pte_t *)pmd,
461 pfn_pte(address >> PAGE_SHIFT,
462 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
463 spin_unlock(&init_mm.page_table_lock);
464 last_map_addr = (address & PMD_MASK) + PMD_SIZE;
465 continue;
466 }
467
468 pte = alloc_low_page(&pte_phys);
469 last_map_addr = phys_pte_init(pte, address, end, new_prot);
470 unmap_low_page(pte);
471
472 spin_lock(&init_mm.page_table_lock);
473 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
474 spin_unlock(&init_mm.page_table_lock);
475 }
476 update_page_count(PG_LEVEL_2M, pages);
477 return last_map_addr;
478 }
479
480 static unsigned long __meminit
481 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
482 unsigned long page_size_mask)
483 {
484 unsigned long pages = 0;
485 unsigned long last_map_addr = end;
486 int i = pud_index(addr);
487
488 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
489 unsigned long pmd_phys;
490 pud_t *pud = pud_page + pud_index(addr);
491 pmd_t *pmd;
492 pgprot_t prot = PAGE_KERNEL;
493
494 if (addr >= end)
495 break;
496
497 if (!after_bootmem &&
498 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
499 set_pud(pud, __pud(0));
500 continue;
501 }
502
503 if (pud_val(*pud)) {
504 if (!pud_large(*pud)) {
505 pmd = map_low_page(pmd_offset(pud, 0));
506 last_map_addr = phys_pmd_init(pmd, addr, end,
507 page_size_mask, prot);
508 unmap_low_page(pmd);
509 __flush_tlb_all();
510 continue;
511 }
512 /*
513 * If we are ok with PG_LEVEL_1G mapping, then we will
514 * use the existing mapping.
515 *
516 * Otherwise, we will split the gbpage mapping but use
517 * the same existing protection bits except for large
518 * page, so that we don't violate Intel's TLB
519 * Application note (317080) which says, while changing
520 * the page sizes, new and old translations should
521 * not differ with respect to page frame and
522 * attributes.
523 */
524 if (page_size_mask & (1 << PG_LEVEL_1G)) {
525 pages++;
526 continue;
527 }
528 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
529 }
530
531 if (page_size_mask & (1<<PG_LEVEL_1G)) {
532 pages++;
533 spin_lock(&init_mm.page_table_lock);
534 set_pte((pte_t *)pud,
535 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
536 spin_unlock(&init_mm.page_table_lock);
537 last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
538 continue;
539 }
540
541 pmd = alloc_low_page(&pmd_phys);
542 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
543 prot);
544 unmap_low_page(pmd);
545
546 spin_lock(&init_mm.page_table_lock);
547 pud_populate(&init_mm, pud, __va(pmd_phys));
548 spin_unlock(&init_mm.page_table_lock);
549 }
550 __flush_tlb_all();
551
552 update_page_count(PG_LEVEL_1G, pages);
553
554 return last_map_addr;
555 }
556
557 unsigned long __meminit
558 kernel_physical_mapping_init(unsigned long start,
559 unsigned long end,
560 unsigned long page_size_mask)
561 {
562 bool pgd_changed = false;
563 unsigned long next, last_map_addr = end;
564 unsigned long addr;
565
566 start = (unsigned long)__va(start);
567 end = (unsigned long)__va(end);
568 addr = start;
569
570 for (; start < end; start = next) {
571 pgd_t *pgd = pgd_offset_k(start);
572 unsigned long pud_phys;
573 pud_t *pud;
574
575 next = (start + PGDIR_SIZE) & PGDIR_MASK;
576 if (next > end)
577 next = end;
578
579 if (pgd_val(*pgd)) {
580 pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
581 last_map_addr = phys_pud_init(pud, __pa(start),
582 __pa(end), page_size_mask);
583 unmap_low_page(pud);
584 continue;
585 }
586
587 pud = alloc_low_page(&pud_phys);
588 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
589 page_size_mask);
590 unmap_low_page(pud);
591
592 spin_lock(&init_mm.page_table_lock);
593 pgd_populate(&init_mm, pgd, __va(pud_phys));
594 spin_unlock(&init_mm.page_table_lock);
595 pgd_changed = true;
596 }
597
598 if (pgd_changed)
599 sync_global_pgds(addr, end);
600
601 __flush_tlb_all();
602
603 return last_map_addr;
604 }
605
606 #ifndef CONFIG_NUMA
607 void __init initmem_init(void)
608 {
609 memblock_x86_register_active_regions(0, 0, max_pfn);
610 }
611 #endif
612
613 void __init paging_init(void)
614 {
615 unsigned long max_zone_pfns[MAX_NR_ZONES];
616
617 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
618 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
619 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
620 max_zone_pfns[ZONE_NORMAL] = max_pfn;
621
622 sparse_memory_present_with_active_regions(MAX_NUMNODES);
623 sparse_init();
624
625 /*
626 * clear the default setting with node 0
627 * note: don't use nodes_clear here, that is really clearing when
628 * numa support is not compiled in, and later node_set_state
629 * will not set it back.
630 */
631 node_clear_state(0, N_NORMAL_MEMORY);
632
633 free_area_init_nodes(max_zone_pfns);
634 }
635
636 /*
637 * Memory hotplug specific functions
638 */
639 #ifdef CONFIG_MEMORY_HOTPLUG
640 /*
641 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
642 * updating.
643 */
644 static void update_end_of_memory_vars(u64 start, u64 size)
645 {
646 unsigned long end_pfn = PFN_UP(start + size);
647
648 if (end_pfn > max_pfn) {
649 max_pfn = end_pfn;
650 max_low_pfn = end_pfn;
651 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
652 }
653 }
654
655 /*
656 * Memory is added always to NORMAL zone. This means you will never get
657 * additional DMA/DMA32 memory.
658 */
659 int arch_add_memory(int nid, u64 start, u64 size)
660 {
661 struct pglist_data *pgdat = NODE_DATA(nid);
662 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
663 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
664 unsigned long nr_pages = size >> PAGE_SHIFT;
665 int ret;
666
667 last_mapped_pfn = init_memory_mapping(start, start + size);
668 if (last_mapped_pfn > max_pfn_mapped)
669 max_pfn_mapped = last_mapped_pfn;
670
671 ret = __add_pages(nid, zone, start_pfn, nr_pages);
672 WARN_ON_ONCE(ret);
673
674 /* update max_pfn, max_low_pfn and high_memory */
675 update_end_of_memory_vars(start, size);
676
677 return ret;
678 }
679 EXPORT_SYMBOL_GPL(arch_add_memory);
680
681 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
682 int memory_add_physaddr_to_nid(u64 start)
683 {
684 return 0;
685 }
686 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
687 #endif
688
689 #endif /* CONFIG_MEMORY_HOTPLUG */
690
691 static struct kcore_list kcore_vsyscall;
692
693 void __init mem_init(void)
694 {
695 long codesize, reservedpages, datasize, initsize;
696 unsigned long absent_pages;
697
698 pci_iommu_alloc();
699
700 /* clear_bss() already clear the empty_zero_page */
701
702 reservedpages = 0;
703
704 /* this will put all low memory onto the freelists */
705 #ifdef CONFIG_NUMA
706 totalram_pages = numa_free_all_bootmem();
707 #else
708 totalram_pages = free_all_bootmem();
709 #endif
710
711 absent_pages = absent_pages_in_range(0, max_pfn);
712 reservedpages = max_pfn - totalram_pages - absent_pages;
713 after_bootmem = 1;
714
715 codesize = (unsigned long) &_etext - (unsigned long) &_text;
716 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
717 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
718
719 /* Register memory areas for /proc/kcore */
720 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
721 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
722
723 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
724 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
725 nr_free_pages() << (PAGE_SHIFT-10),
726 max_pfn << (PAGE_SHIFT-10),
727 codesize >> 10,
728 absent_pages << (PAGE_SHIFT-10),
729 reservedpages << (PAGE_SHIFT-10),
730 datasize >> 10,
731 initsize >> 10);
732 }
733
734 #ifdef CONFIG_DEBUG_RODATA
735 const int rodata_test_data = 0xC3;
736 EXPORT_SYMBOL_GPL(rodata_test_data);
737
738 int kernel_set_to_readonly;
739
740 void set_kernel_text_rw(void)
741 {
742 unsigned long start = PFN_ALIGN(_text);
743 unsigned long end = PFN_ALIGN(__stop___ex_table);
744
745 if (!kernel_set_to_readonly)
746 return;
747
748 pr_debug("Set kernel text: %lx - %lx for read write\n",
749 start, end);
750
751 /*
752 * Make the kernel identity mapping for text RW. Kernel text
753 * mapping will always be RO. Refer to the comment in
754 * static_protections() in pageattr.c
755 */
756 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
757 }
758
759 void set_kernel_text_ro(void)
760 {
761 unsigned long start = PFN_ALIGN(_text);
762 unsigned long end = PFN_ALIGN(__stop___ex_table);
763
764 if (!kernel_set_to_readonly)
765 return;
766
767 pr_debug("Set kernel text: %lx - %lx for read only\n",
768 start, end);
769
770 /*
771 * Set the kernel identity mapping for text RO.
772 */
773 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
774 }
775
776 void mark_rodata_ro(void)
777 {
778 unsigned long start = PFN_ALIGN(_text);
779 unsigned long rodata_start =
780 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
781 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
782 unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
783 unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
784 unsigned long data_start = (unsigned long) &_sdata;
785
786 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
787 (end - start) >> 10);
788 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
789
790 kernel_set_to_readonly = 1;
791
792 /*
793 * The rodata section (but not the kernel text!) should also be
794 * not-executable.
795 */
796 set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
797
798 rodata_test();
799
800 #ifdef CONFIG_CPA_DEBUG
801 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
802 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
803
804 printk(KERN_INFO "Testing CPA: again\n");
805 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
806 #endif
807
808 free_init_pages("unused kernel memory",
809 (unsigned long) page_address(virt_to_page(text_end)),
810 (unsigned long)
811 page_address(virt_to_page(rodata_start)));
812 free_init_pages("unused kernel memory",
813 (unsigned long) page_address(virt_to_page(rodata_end)),
814 (unsigned long) page_address(virt_to_page(data_start)));
815 }
816
817 #endif
818
819 int kern_addr_valid(unsigned long addr)
820 {
821 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
822 pgd_t *pgd;
823 pud_t *pud;
824 pmd_t *pmd;
825 pte_t *pte;
826
827 if (above != 0 && above != -1UL)
828 return 0;
829
830 pgd = pgd_offset_k(addr);
831 if (pgd_none(*pgd))
832 return 0;
833
834 pud = pud_offset(pgd, addr);
835 if (pud_none(*pud))
836 return 0;
837
838 pmd = pmd_offset(pud, addr);
839 if (pmd_none(*pmd))
840 return 0;
841
842 if (pmd_large(*pmd))
843 return pfn_valid(pmd_pfn(*pmd));
844
845 pte = pte_offset_kernel(pmd, addr);
846 if (pte_none(*pte))
847 return 0;
848
849 return pfn_valid(pte_pfn(*pte));
850 }
851
852 /*
853 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
854 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
855 * not need special handling anymore:
856 */
857 static struct vm_area_struct gate_vma = {
858 .vm_start = VSYSCALL_START,
859 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
860 .vm_page_prot = PAGE_READONLY_EXEC,
861 .vm_flags = VM_READ | VM_EXEC
862 };
863
864 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
865 {
866 #ifdef CONFIG_IA32_EMULATION
867 if (test_tsk_thread_flag(tsk, TIF_IA32))
868 return NULL;
869 #endif
870 return &gate_vma;
871 }
872
873 int in_gate_area(struct task_struct *task, unsigned long addr)
874 {
875 struct vm_area_struct *vma = get_gate_vma(task);
876
877 if (!vma)
878 return 0;
879
880 return (addr >= vma->vm_start) && (addr < vma->vm_end);
881 }
882
883 /*
884 * Use this when you have no reliable task/vma, typically from interrupt
885 * context. It is less reliable than using the task's vma and may give
886 * false positives:
887 */
888 int in_gate_area_no_task(unsigned long addr)
889 {
890 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
891 }
892
893 const char *arch_vma_name(struct vm_area_struct *vma)
894 {
895 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
896 return "[vdso]";
897 if (vma == &gate_vma)
898 return "[vsyscall]";
899 return NULL;
900 }
901
902 #ifdef CONFIG_X86_UV
903 #define MIN_MEMORY_BLOCK_SIZE (1 << SECTION_SIZE_BITS)
904
905 unsigned long memory_block_size_bytes(void)
906 {
907 if (is_uv_system()) {
908 printk(KERN_INFO "UV: memory block size 2GB\n");
909 return 2UL * 1024 * 1024 * 1024;
910 }
911 return MIN_MEMORY_BLOCK_SIZE;
912 }
913 #endif
914
915 #ifdef CONFIG_SPARSEMEM_VMEMMAP
916 /*
917 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
918 */
919 static long __meminitdata addr_start, addr_end;
920 static void __meminitdata *p_start, *p_end;
921 static int __meminitdata node_start;
922
923 int __meminit
924 vmemmap_populate(struct page *start_page, unsigned long size, int node)
925 {
926 unsigned long addr = (unsigned long)start_page;
927 unsigned long end = (unsigned long)(start_page + size);
928 unsigned long next;
929 pgd_t *pgd;
930 pud_t *pud;
931 pmd_t *pmd;
932
933 for (; addr < end; addr = next) {
934 void *p = NULL;
935
936 pgd = vmemmap_pgd_populate(addr, node);
937 if (!pgd)
938 return -ENOMEM;
939
940 pud = vmemmap_pud_populate(pgd, addr, node);
941 if (!pud)
942 return -ENOMEM;
943
944 if (!cpu_has_pse) {
945 next = (addr + PAGE_SIZE) & PAGE_MASK;
946 pmd = vmemmap_pmd_populate(pud, addr, node);
947
948 if (!pmd)
949 return -ENOMEM;
950
951 p = vmemmap_pte_populate(pmd, addr, node);
952
953 if (!p)
954 return -ENOMEM;
955
956 addr_end = addr + PAGE_SIZE;
957 p_end = p + PAGE_SIZE;
958 } else {
959 next = pmd_addr_end(addr, end);
960
961 pmd = pmd_offset(pud, addr);
962 if (pmd_none(*pmd)) {
963 pte_t entry;
964
965 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
966 if (!p)
967 return -ENOMEM;
968
969 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
970 PAGE_KERNEL_LARGE);
971 set_pmd(pmd, __pmd(pte_val(entry)));
972
973 /* check to see if we have contiguous blocks */
974 if (p_end != p || node_start != node) {
975 if (p_start)
976 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
977 addr_start, addr_end-1, p_start, p_end-1, node_start);
978 addr_start = addr;
979 node_start = node;
980 p_start = p;
981 }
982
983 addr_end = addr + PMD_SIZE;
984 p_end = p + PMD_SIZE;
985 } else
986 vmemmap_verify((pte_t *)pmd, node, addr, next);
987 }
988
989 }
990 sync_global_pgds((unsigned long)start_page, end);
991 return 0;
992 }
993
994 void __meminit vmemmap_populate_print_last(void)
995 {
996 if (p_start) {
997 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
998 addr_start, addr_end-1, p_start, p_end-1, node_start);
999 p_start = NULL;
1000 p_end = NULL;
1001 node_start = 0;
1002 }
1003 }
1004 #endif