Merge branch 'bind_unbind' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / x86 / mm / init.c
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
7
8 #include <asm/set_memory.h>
9 #include <asm/e820/api.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h> /* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20 #include <asm/kaslr.h>
21
22 /*
23 * We need to define the tracepoints somewhere, and tlb.c
24 * is only compied when SMP=y.
25 */
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/tlb.h>
28
29 #include "mm_internal.h"
30
31 /*
32 * Tables translating between page_cache_type_t and pte encoding.
33 *
34 * The default values are defined statically as minimal supported mode;
35 * WC and WT fall back to UC-. pat_init() updates these values to support
36 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
37 * for the details. Note, __early_ioremap() used during early boot-time
38 * takes pgprot_t (pte encoding) and does not use these tables.
39 *
40 * Index into __cachemode2pte_tbl[] is the cachemode.
41 *
42 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
43 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
44 */
45 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
46 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
47 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
48 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
49 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
50 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
51 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
52 };
53 EXPORT_SYMBOL(__cachemode2pte_tbl);
54
55 uint8_t __pte2cachemode_tbl[8] = {
56 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
57 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
58 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
59 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
60 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
61 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
62 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
63 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
64 };
65 EXPORT_SYMBOL(__pte2cachemode_tbl);
66
67 static unsigned long __initdata pgt_buf_start;
68 static unsigned long __initdata pgt_buf_end;
69 static unsigned long __initdata pgt_buf_top;
70
71 static unsigned long min_pfn_mapped;
72
73 static bool __initdata can_use_brk_pgt = true;
74
75 /*
76 * Pages returned are already directly mapped.
77 *
78 * Changing that is likely to break Xen, see commit:
79 *
80 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
81 *
82 * for detailed information.
83 */
84 __ref void *alloc_low_pages(unsigned int num)
85 {
86 unsigned long pfn;
87 int i;
88
89 if (after_bootmem) {
90 unsigned int order;
91
92 order = get_order((unsigned long)num << PAGE_SHIFT);
93 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
94 __GFP_ZERO, order);
95 }
96
97 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
98 unsigned long ret;
99 if (min_pfn_mapped >= max_pfn_mapped)
100 panic("alloc_low_pages: ran out of memory");
101 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
102 max_pfn_mapped << PAGE_SHIFT,
103 PAGE_SIZE * num , PAGE_SIZE);
104 if (!ret)
105 panic("alloc_low_pages: can not alloc memory");
106 memblock_reserve(ret, PAGE_SIZE * num);
107 pfn = ret >> PAGE_SHIFT;
108 } else {
109 pfn = pgt_buf_end;
110 pgt_buf_end += num;
111 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
112 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
113 }
114
115 for (i = 0; i < num; i++) {
116 void *adr;
117
118 adr = __va((pfn + i) << PAGE_SHIFT);
119 clear_page(adr);
120 }
121
122 return __va(pfn << PAGE_SHIFT);
123 }
124
125 /*
126 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
127 * With KASLR memory randomization, depending on the machine e820 memory
128 * and the PUD alignment. We may need twice more pages when KASLR memory
129 * randomization is enabled.
130 */
131 #ifndef CONFIG_RANDOMIZE_MEMORY
132 #define INIT_PGD_PAGE_COUNT 6
133 #else
134 #define INIT_PGD_PAGE_COUNT 12
135 #endif
136 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
137 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
138 void __init early_alloc_pgt_buf(void)
139 {
140 unsigned long tables = INIT_PGT_BUF_SIZE;
141 phys_addr_t base;
142
143 base = __pa(extend_brk(tables, PAGE_SIZE));
144
145 pgt_buf_start = base >> PAGE_SHIFT;
146 pgt_buf_end = pgt_buf_start;
147 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
148 }
149
150 int after_bootmem;
151
152 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
153
154 struct map_range {
155 unsigned long start;
156 unsigned long end;
157 unsigned page_size_mask;
158 };
159
160 static int page_size_mask;
161
162 static void __init probe_page_size_mask(void)
163 {
164 /*
165 * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
166 * use small pages.
167 * This will simplify cpa(), which otherwise needs to support splitting
168 * large pages into small in interrupt context, etc.
169 */
170 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled() && !IS_ENABLED(CONFIG_KMEMCHECK))
171 page_size_mask |= 1 << PG_LEVEL_2M;
172 else
173 direct_gbpages = 0;
174
175 /* Enable PSE if available */
176 if (boot_cpu_has(X86_FEATURE_PSE))
177 cr4_set_bits_and_update_boot(X86_CR4_PSE);
178
179 /* Enable PGE if available */
180 if (boot_cpu_has(X86_FEATURE_PGE)) {
181 cr4_set_bits_and_update_boot(X86_CR4_PGE);
182 __supported_pte_mask |= _PAGE_GLOBAL;
183 } else
184 __supported_pte_mask &= ~_PAGE_GLOBAL;
185
186 /* Enable 1 GB linear kernel mappings if available: */
187 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
188 printk(KERN_INFO "Using GB pages for direct mapping\n");
189 page_size_mask |= 1 << PG_LEVEL_1G;
190 } else {
191 direct_gbpages = 0;
192 }
193 }
194
195 #ifdef CONFIG_X86_32
196 #define NR_RANGE_MR 3
197 #else /* CONFIG_X86_64 */
198 #define NR_RANGE_MR 5
199 #endif
200
201 static int __meminit save_mr(struct map_range *mr, int nr_range,
202 unsigned long start_pfn, unsigned long end_pfn,
203 unsigned long page_size_mask)
204 {
205 if (start_pfn < end_pfn) {
206 if (nr_range >= NR_RANGE_MR)
207 panic("run out of range for init_memory_mapping\n");
208 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
209 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
210 mr[nr_range].page_size_mask = page_size_mask;
211 nr_range++;
212 }
213
214 return nr_range;
215 }
216
217 /*
218 * adjust the page_size_mask for small range to go with
219 * big page size instead small one if nearby are ram too.
220 */
221 static void __ref adjust_range_page_size_mask(struct map_range *mr,
222 int nr_range)
223 {
224 int i;
225
226 for (i = 0; i < nr_range; i++) {
227 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
228 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
229 unsigned long start = round_down(mr[i].start, PMD_SIZE);
230 unsigned long end = round_up(mr[i].end, PMD_SIZE);
231
232 #ifdef CONFIG_X86_32
233 if ((end >> PAGE_SHIFT) > max_low_pfn)
234 continue;
235 #endif
236
237 if (memblock_is_region_memory(start, end - start))
238 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
239 }
240 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
241 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
242 unsigned long start = round_down(mr[i].start, PUD_SIZE);
243 unsigned long end = round_up(mr[i].end, PUD_SIZE);
244
245 if (memblock_is_region_memory(start, end - start))
246 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
247 }
248 }
249 }
250
251 static const char *page_size_string(struct map_range *mr)
252 {
253 static const char str_1g[] = "1G";
254 static const char str_2m[] = "2M";
255 static const char str_4m[] = "4M";
256 static const char str_4k[] = "4k";
257
258 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
259 return str_1g;
260 /*
261 * 32-bit without PAE has a 4M large page size.
262 * PG_LEVEL_2M is misnamed, but we can at least
263 * print out the right size in the string.
264 */
265 if (IS_ENABLED(CONFIG_X86_32) &&
266 !IS_ENABLED(CONFIG_X86_PAE) &&
267 mr->page_size_mask & (1<<PG_LEVEL_2M))
268 return str_4m;
269
270 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
271 return str_2m;
272
273 return str_4k;
274 }
275
276 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
277 unsigned long start,
278 unsigned long end)
279 {
280 unsigned long start_pfn, end_pfn, limit_pfn;
281 unsigned long pfn;
282 int i;
283
284 limit_pfn = PFN_DOWN(end);
285
286 /* head if not big page alignment ? */
287 pfn = start_pfn = PFN_DOWN(start);
288 #ifdef CONFIG_X86_32
289 /*
290 * Don't use a large page for the first 2/4MB of memory
291 * because there are often fixed size MTRRs in there
292 * and overlapping MTRRs into large pages can cause
293 * slowdowns.
294 */
295 if (pfn == 0)
296 end_pfn = PFN_DOWN(PMD_SIZE);
297 else
298 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
299 #else /* CONFIG_X86_64 */
300 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
301 #endif
302 if (end_pfn > limit_pfn)
303 end_pfn = limit_pfn;
304 if (start_pfn < end_pfn) {
305 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
306 pfn = end_pfn;
307 }
308
309 /* big page (2M) range */
310 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
311 #ifdef CONFIG_X86_32
312 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
313 #else /* CONFIG_X86_64 */
314 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
315 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
316 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
317 #endif
318
319 if (start_pfn < end_pfn) {
320 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
321 page_size_mask & (1<<PG_LEVEL_2M));
322 pfn = end_pfn;
323 }
324
325 #ifdef CONFIG_X86_64
326 /* big page (1G) range */
327 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
328 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
329 if (start_pfn < end_pfn) {
330 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
331 page_size_mask &
332 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
333 pfn = end_pfn;
334 }
335
336 /* tail is not big page (1G) alignment */
337 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
338 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
339 if (start_pfn < end_pfn) {
340 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
341 page_size_mask & (1<<PG_LEVEL_2M));
342 pfn = end_pfn;
343 }
344 #endif
345
346 /* tail is not big page (2M) alignment */
347 start_pfn = pfn;
348 end_pfn = limit_pfn;
349 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
350
351 if (!after_bootmem)
352 adjust_range_page_size_mask(mr, nr_range);
353
354 /* try to merge same page size and continuous */
355 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
356 unsigned long old_start;
357 if (mr[i].end != mr[i+1].start ||
358 mr[i].page_size_mask != mr[i+1].page_size_mask)
359 continue;
360 /* move it */
361 old_start = mr[i].start;
362 memmove(&mr[i], &mr[i+1],
363 (nr_range - 1 - i) * sizeof(struct map_range));
364 mr[i--].start = old_start;
365 nr_range--;
366 }
367
368 for (i = 0; i < nr_range; i++)
369 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
370 mr[i].start, mr[i].end - 1,
371 page_size_string(&mr[i]));
372
373 return nr_range;
374 }
375
376 struct range pfn_mapped[E820_MAX_ENTRIES];
377 int nr_pfn_mapped;
378
379 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
380 {
381 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
382 nr_pfn_mapped, start_pfn, end_pfn);
383 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
384
385 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
386
387 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
388 max_low_pfn_mapped = max(max_low_pfn_mapped,
389 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
390 }
391
392 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
393 {
394 int i;
395
396 for (i = 0; i < nr_pfn_mapped; i++)
397 if ((start_pfn >= pfn_mapped[i].start) &&
398 (end_pfn <= pfn_mapped[i].end))
399 return true;
400
401 return false;
402 }
403
404 /*
405 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
406 * This runs before bootmem is initialized and gets pages directly from
407 * the physical memory. To access them they are temporarily mapped.
408 */
409 unsigned long __ref init_memory_mapping(unsigned long start,
410 unsigned long end)
411 {
412 struct map_range mr[NR_RANGE_MR];
413 unsigned long ret = 0;
414 int nr_range, i;
415
416 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
417 start, end - 1);
418
419 memset(mr, 0, sizeof(mr));
420 nr_range = split_mem_range(mr, 0, start, end);
421
422 for (i = 0; i < nr_range; i++)
423 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
424 mr[i].page_size_mask);
425
426 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
427
428 return ret >> PAGE_SHIFT;
429 }
430
431 /*
432 * We need to iterate through the E820 memory map and create direct mappings
433 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
434 * create direct mappings for all pfns from [0 to max_low_pfn) and
435 * [4GB to max_pfn) because of possible memory holes in high addresses
436 * that cannot be marked as UC by fixed/variable range MTRRs.
437 * Depending on the alignment of E820 ranges, this may possibly result
438 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
439 *
440 * init_mem_mapping() calls init_range_memory_mapping() with big range.
441 * That range would have hole in the middle or ends, and only ram parts
442 * will be mapped in init_range_memory_mapping().
443 */
444 static unsigned long __init init_range_memory_mapping(
445 unsigned long r_start,
446 unsigned long r_end)
447 {
448 unsigned long start_pfn, end_pfn;
449 unsigned long mapped_ram_size = 0;
450 int i;
451
452 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
453 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
454 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
455 if (start >= end)
456 continue;
457
458 /*
459 * if it is overlapping with brk pgt, we need to
460 * alloc pgt buf from memblock instead.
461 */
462 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
463 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
464 init_memory_mapping(start, end);
465 mapped_ram_size += end - start;
466 can_use_brk_pgt = true;
467 }
468
469 return mapped_ram_size;
470 }
471
472 static unsigned long __init get_new_step_size(unsigned long step_size)
473 {
474 /*
475 * Initial mapped size is PMD_SIZE (2M).
476 * We can not set step_size to be PUD_SIZE (1G) yet.
477 * In worse case, when we cross the 1G boundary, and
478 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
479 * to map 1G range with PTE. Hence we use one less than the
480 * difference of page table level shifts.
481 *
482 * Don't need to worry about overflow in the top-down case, on 32bit,
483 * when step_size is 0, round_down() returns 0 for start, and that
484 * turns it into 0x100000000ULL.
485 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
486 * needs to be taken into consideration by the code below.
487 */
488 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
489 }
490
491 /**
492 * memory_map_top_down - Map [map_start, map_end) top down
493 * @map_start: start address of the target memory range
494 * @map_end: end address of the target memory range
495 *
496 * This function will setup direct mapping for memory range
497 * [map_start, map_end) in top-down. That said, the page tables
498 * will be allocated at the end of the memory, and we map the
499 * memory in top-down.
500 */
501 static void __init memory_map_top_down(unsigned long map_start,
502 unsigned long map_end)
503 {
504 unsigned long real_end, start, last_start;
505 unsigned long step_size;
506 unsigned long addr;
507 unsigned long mapped_ram_size = 0;
508
509 /* xen has big range in reserved near end of ram, skip it at first.*/
510 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
511 real_end = addr + PMD_SIZE;
512
513 /* step_size need to be small so pgt_buf from BRK could cover it */
514 step_size = PMD_SIZE;
515 max_pfn_mapped = 0; /* will get exact value next */
516 min_pfn_mapped = real_end >> PAGE_SHIFT;
517 last_start = start = real_end;
518
519 /*
520 * We start from the top (end of memory) and go to the bottom.
521 * The memblock_find_in_range() gets us a block of RAM from the
522 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
523 * for page table.
524 */
525 while (last_start > map_start) {
526 if (last_start > step_size) {
527 start = round_down(last_start - 1, step_size);
528 if (start < map_start)
529 start = map_start;
530 } else
531 start = map_start;
532 mapped_ram_size += init_range_memory_mapping(start,
533 last_start);
534 last_start = start;
535 min_pfn_mapped = last_start >> PAGE_SHIFT;
536 if (mapped_ram_size >= step_size)
537 step_size = get_new_step_size(step_size);
538 }
539
540 if (real_end < map_end)
541 init_range_memory_mapping(real_end, map_end);
542 }
543
544 /**
545 * memory_map_bottom_up - Map [map_start, map_end) bottom up
546 * @map_start: start address of the target memory range
547 * @map_end: end address of the target memory range
548 *
549 * This function will setup direct mapping for memory range
550 * [map_start, map_end) in bottom-up. Since we have limited the
551 * bottom-up allocation above the kernel, the page tables will
552 * be allocated just above the kernel and we map the memory
553 * in [map_start, map_end) in bottom-up.
554 */
555 static void __init memory_map_bottom_up(unsigned long map_start,
556 unsigned long map_end)
557 {
558 unsigned long next, start;
559 unsigned long mapped_ram_size = 0;
560 /* step_size need to be small so pgt_buf from BRK could cover it */
561 unsigned long step_size = PMD_SIZE;
562
563 start = map_start;
564 min_pfn_mapped = start >> PAGE_SHIFT;
565
566 /*
567 * We start from the bottom (@map_start) and go to the top (@map_end).
568 * The memblock_find_in_range() gets us a block of RAM from the
569 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
570 * for page table.
571 */
572 while (start < map_end) {
573 if (step_size && map_end - start > step_size) {
574 next = round_up(start + 1, step_size);
575 if (next > map_end)
576 next = map_end;
577 } else {
578 next = map_end;
579 }
580
581 mapped_ram_size += init_range_memory_mapping(start, next);
582 start = next;
583
584 if (mapped_ram_size >= step_size)
585 step_size = get_new_step_size(step_size);
586 }
587 }
588
589 void __init init_mem_mapping(void)
590 {
591 unsigned long end;
592
593 probe_page_size_mask();
594
595 #ifdef CONFIG_X86_64
596 end = max_pfn << PAGE_SHIFT;
597 #else
598 end = max_low_pfn << PAGE_SHIFT;
599 #endif
600
601 /* the ISA range is always mapped regardless of memory holes */
602 init_memory_mapping(0, ISA_END_ADDRESS);
603
604 /* Init the trampoline, possibly with KASLR memory offset */
605 init_trampoline();
606
607 /*
608 * If the allocation is in bottom-up direction, we setup direct mapping
609 * in bottom-up, otherwise we setup direct mapping in top-down.
610 */
611 if (memblock_bottom_up()) {
612 unsigned long kernel_end = __pa_symbol(_end);
613
614 /*
615 * we need two separate calls here. This is because we want to
616 * allocate page tables above the kernel. So we first map
617 * [kernel_end, end) to make memory above the kernel be mapped
618 * as soon as possible. And then use page tables allocated above
619 * the kernel to map [ISA_END_ADDRESS, kernel_end).
620 */
621 memory_map_bottom_up(kernel_end, end);
622 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
623 } else {
624 memory_map_top_down(ISA_END_ADDRESS, end);
625 }
626
627 #ifdef CONFIG_X86_64
628 if (max_pfn > max_low_pfn) {
629 /* can we preseve max_low_pfn ?*/
630 max_low_pfn = max_pfn;
631 }
632 #else
633 early_ioremap_page_table_range_init();
634 #endif
635
636 load_cr3(swapper_pg_dir);
637 __flush_tlb_all();
638
639 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
640 }
641
642 /*
643 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
644 * is valid. The argument is a physical page number.
645 *
646 * On x86, access has to be given to the first megabyte of RAM because that
647 * area traditionally contains BIOS code and data regions used by X, dosemu,
648 * and similar apps. Since they map the entire memory range, the whole range
649 * must be allowed (for mapping), but any areas that would otherwise be
650 * disallowed are flagged as being "zero filled" instead of rejected.
651 * Access has to be given to non-kernel-ram areas as well, these contain the
652 * PCI mmio resources as well as potential bios/acpi data regions.
653 */
654 int devmem_is_allowed(unsigned long pagenr)
655 {
656 if (page_is_ram(pagenr)) {
657 /*
658 * For disallowed memory regions in the low 1MB range,
659 * request that the page be shown as all zeros.
660 */
661 if (pagenr < 256)
662 return 2;
663
664 return 0;
665 }
666
667 /*
668 * This must follow RAM test, since System RAM is considered a
669 * restricted resource under CONFIG_STRICT_IOMEM.
670 */
671 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
672 /* Low 1MB bypasses iomem restrictions. */
673 if (pagenr < 256)
674 return 1;
675
676 return 0;
677 }
678
679 return 1;
680 }
681
682 void free_init_pages(char *what, unsigned long begin, unsigned long end)
683 {
684 unsigned long begin_aligned, end_aligned;
685
686 /* Make sure boundaries are page aligned */
687 begin_aligned = PAGE_ALIGN(begin);
688 end_aligned = end & PAGE_MASK;
689
690 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
691 begin = begin_aligned;
692 end = end_aligned;
693 }
694
695 if (begin >= end)
696 return;
697
698 /*
699 * If debugging page accesses then do not free this memory but
700 * mark them not present - any buggy init-section access will
701 * create a kernel page fault:
702 */
703 if (debug_pagealloc_enabled()) {
704 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
705 begin, end - 1);
706 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
707 } else {
708 /*
709 * We just marked the kernel text read only above, now that
710 * we are going to free part of that, we need to make that
711 * writeable and non-executable first.
712 */
713 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
714 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
715
716 free_reserved_area((void *)begin, (void *)end,
717 POISON_FREE_INITMEM, what);
718 }
719 }
720
721 void __ref free_initmem(void)
722 {
723 e820__reallocate_tables();
724
725 free_init_pages("unused kernel",
726 (unsigned long)(&__init_begin),
727 (unsigned long)(&__init_end));
728 }
729
730 #ifdef CONFIG_BLK_DEV_INITRD
731 void __init free_initrd_mem(unsigned long start, unsigned long end)
732 {
733 /*
734 * end could be not aligned, and We can not align that,
735 * decompresser could be confused by aligned initrd_end
736 * We already reserve the end partial page before in
737 * - i386_start_kernel()
738 * - x86_64_start_kernel()
739 * - relocate_initrd()
740 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
741 */
742 free_init_pages("initrd", start, PAGE_ALIGN(end));
743 }
744 #endif
745
746 /*
747 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
748 * and pass it to the MM layer - to help it set zone watermarks more
749 * accurately.
750 *
751 * Done on 64-bit systems only for the time being, although 32-bit systems
752 * might benefit from this as well.
753 */
754 void __init memblock_find_dma_reserve(void)
755 {
756 #ifdef CONFIG_X86_64
757 u64 nr_pages = 0, nr_free_pages = 0;
758 unsigned long start_pfn, end_pfn;
759 phys_addr_t start_addr, end_addr;
760 int i;
761 u64 u;
762
763 /*
764 * Iterate over all memory ranges (free and reserved ones alike),
765 * to calculate the total number of pages in the first 16 MB of RAM:
766 */
767 nr_pages = 0;
768 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
769 start_pfn = min(start_pfn, MAX_DMA_PFN);
770 end_pfn = min(end_pfn, MAX_DMA_PFN);
771
772 nr_pages += end_pfn - start_pfn;
773 }
774
775 /*
776 * Iterate over free memory ranges to calculate the number of free
777 * pages in the DMA zone, while not counting potential partial
778 * pages at the beginning or the end of the range:
779 */
780 nr_free_pages = 0;
781 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
782 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
783 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
784
785 if (start_pfn < end_pfn)
786 nr_free_pages += end_pfn - start_pfn;
787 }
788
789 set_dma_reserve(nr_pages - nr_free_pages);
790 #endif
791 }
792
793 void __init zone_sizes_init(void)
794 {
795 unsigned long max_zone_pfns[MAX_NR_ZONES];
796
797 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
798
799 #ifdef CONFIG_ZONE_DMA
800 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
801 #endif
802 #ifdef CONFIG_ZONE_DMA32
803 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
804 #endif
805 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
806 #ifdef CONFIG_HIGHMEM
807 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
808 #endif
809
810 free_area_init_nodes(max_zone_pfns);
811 }
812
813 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
814 #ifdef CONFIG_SMP
815 .active_mm = &init_mm,
816 .state = 0,
817 #endif
818 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
819 };
820 EXPORT_SYMBOL_GPL(cpu_tlbstate);
821
822 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
823 {
824 /* entry 0 MUST be WB (hardwired to speed up translations) */
825 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
826
827 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
828 __pte2cachemode_tbl[entry] = cache;
829 }