x86: unify printk strings in fault_32|64.c
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / mm / fault_32.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 */
4
5 #include <linux/signal.h>
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/string.h>
10 #include <linux/types.h>
11 #include <linux/ptrace.h>
12 #include <linux/mman.h>
13 #include <linux/mm.h>
14 #include <linux/smp.h>
15 #include <linux/interrupt.h>
16 #include <linux/init.h>
17 #include <linux/tty.h>
18 #include <linux/vt_kern.h> /* For unblank_screen() */
19 #include <linux/highmem.h>
20 #include <linux/bootmem.h> /* for max_low_pfn */
21 #include <linux/vmalloc.h>
22 #include <linux/module.h>
23 #include <linux/kprobes.h>
24 #include <linux/uaccess.h>
25 #include <linux/kdebug.h>
26
27 #include <asm/system.h>
28 #include <asm/desc.h>
29 #include <asm/segment.h>
30
31 /*
32 * Page fault error code bits
33 * bit 0 == 0 means no page found, 1 means protection fault
34 * bit 1 == 0 means read, 1 means write
35 * bit 2 == 0 means kernel, 1 means user-mode
36 * bit 3 == 1 means use of reserved bit detected
37 * bit 4 == 1 means fault was an instruction fetch
38 */
39 #define PF_PROT (1<<0)
40 #define PF_WRITE (1<<1)
41 #define PF_USER (1<<2)
42 #define PF_RSVD (1<<3)
43 #define PF_INSTR (1<<4)
44
45 static inline int notify_page_fault(struct pt_regs *regs)
46 {
47 #ifdef CONFIG_KPROBES
48 int ret = 0;
49
50 /* kprobe_running() needs smp_processor_id() */
51 if (!user_mode_vm(regs)) {
52 preempt_disable();
53 if (kprobe_running() && kprobe_fault_handler(regs, 14))
54 ret = 1;
55 preempt_enable();
56 }
57
58 return ret;
59 #else
60 return 0;
61 #endif
62 }
63
64 /*
65 * X86_32
66 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
67 * Check that here and ignore it.
68 *
69 * X86_64
70 * Sometimes the CPU reports invalid exceptions on prefetch.
71 * Check that here and ignore it.
72 *
73 * Opcode checker based on code by Richard Brunner
74 */
75 static int is_prefetch(struct pt_regs *regs, unsigned long addr,
76 unsigned long error_code)
77 {
78 unsigned char *instr;
79 int scan_more = 1;
80 int prefetch = 0;
81 unsigned char *max_instr;
82
83 #ifdef CONFIG_X86_32
84 if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
85 boot_cpu_data.x86 >= 6)) {
86 /* Catch an obscure case of prefetch inside an NX page. */
87 if (nx_enabled && (error_code & PF_INSTR))
88 return 0;
89 } else {
90 return 0;
91 }
92 #else
93 /* If it was a exec fault ignore */
94 if (error_code & PF_INSTR)
95 return 0;
96 #endif
97
98 instr = (unsigned char *)convert_ip_to_linear(current, regs);
99 max_instr = instr + 15;
100
101 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
102 return 0;
103
104 while (scan_more && instr < max_instr) {
105 unsigned char opcode;
106 unsigned char instr_hi;
107 unsigned char instr_lo;
108
109 if (probe_kernel_address(instr, opcode))
110 break;
111
112 instr_hi = opcode & 0xf0;
113 instr_lo = opcode & 0x0f;
114 instr++;
115
116 switch (instr_hi) {
117 case 0x20:
118 case 0x30:
119 /*
120 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
121 * In X86_64 long mode, the CPU will signal invalid
122 * opcode if some of these prefixes are present so
123 * X86_64 will never get here anyway
124 */
125 scan_more = ((instr_lo & 7) == 0x6);
126 break;
127 #ifdef CONFIG_X86_64
128 case 0x40:
129 /*
130 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
131 * Need to figure out under what instruction mode the
132 * instruction was issued. Could check the LDT for lm,
133 * but for now it's good enough to assume that long
134 * mode only uses well known segments or kernel.
135 */
136 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
137 break;
138 #endif
139 case 0x60:
140 /* 0x64 thru 0x67 are valid prefixes in all modes. */
141 scan_more = (instr_lo & 0xC) == 0x4;
142 break;
143 case 0xF0:
144 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
145 scan_more = !instr_lo || (instr_lo>>1) == 1;
146 break;
147 case 0x00:
148 /* Prefetch instruction is 0x0F0D or 0x0F18 */
149 scan_more = 0;
150
151 if (probe_kernel_address(instr, opcode))
152 break;
153 prefetch = (instr_lo == 0xF) &&
154 (opcode == 0x0D || opcode == 0x18);
155 break;
156 default:
157 scan_more = 0;
158 break;
159 }
160 }
161 return prefetch;
162 }
163
164 static void force_sig_info_fault(int si_signo, int si_code,
165 unsigned long address, struct task_struct *tsk)
166 {
167 siginfo_t info;
168
169 info.si_signo = si_signo;
170 info.si_errno = 0;
171 info.si_code = si_code;
172 info.si_addr = (void __user *)address;
173 force_sig_info(si_signo, &info, tsk);
174 }
175
176 void do_invalid_op(struct pt_regs *, unsigned long);
177
178 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
179 {
180 unsigned index = pgd_index(address);
181 pgd_t *pgd_k;
182 pud_t *pud, *pud_k;
183 pmd_t *pmd, *pmd_k;
184
185 pgd += index;
186 pgd_k = init_mm.pgd + index;
187
188 if (!pgd_present(*pgd_k))
189 return NULL;
190
191 /*
192 * set_pgd(pgd, *pgd_k); here would be useless on PAE
193 * and redundant with the set_pmd() on non-PAE. As would
194 * set_pud.
195 */
196
197 pud = pud_offset(pgd, address);
198 pud_k = pud_offset(pgd_k, address);
199 if (!pud_present(*pud_k))
200 return NULL;
201
202 pmd = pmd_offset(pud, address);
203 pmd_k = pmd_offset(pud_k, address);
204 if (!pmd_present(*pmd_k))
205 return NULL;
206 if (!pmd_present(*pmd)) {
207 set_pmd(pmd, *pmd_k);
208 arch_flush_lazy_mmu_mode();
209 } else
210 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
211 return pmd_k;
212 }
213
214 #ifdef CONFIG_X86_64
215 static const char errata93_warning[] =
216 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
217 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
218 KERN_ERR "******* Please consider a BIOS update.\n"
219 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
220 #endif
221
222 /* Workaround for K8 erratum #93 & buggy BIOS.
223 BIOS SMM functions are required to use a specific workaround
224 to avoid corruption of the 64bit RIP register on C stepping K8.
225 A lot of BIOS that didn't get tested properly miss this.
226 The OS sees this as a page fault with the upper 32bits of RIP cleared.
227 Try to work around it here.
228 Note we only handle faults in kernel here.
229 Does nothing for X86_32
230 */
231 static int is_errata93(struct pt_regs *regs, unsigned long address)
232 {
233 #ifdef CONFIG_X86_64
234 static int warned;
235 if (address != regs->ip)
236 return 0;
237 if ((address >> 32) != 0)
238 return 0;
239 address |= 0xffffffffUL << 32;
240 if ((address >= (u64)_stext && address <= (u64)_etext) ||
241 (address >= MODULES_VADDR && address <= MODULES_END)) {
242 if (!warned) {
243 printk(errata93_warning);
244 warned = 1;
245 }
246 regs->ip = address;
247 return 1;
248 }
249 #endif
250 return 0;
251 }
252
253
254 /*
255 * Handle a fault on the vmalloc or module mapping area
256 *
257 * This assumes no large pages in there.
258 */
259 static inline int vmalloc_fault(unsigned long address)
260 {
261 #ifdef CONFIG_X86_32
262 unsigned long pgd_paddr;
263 pmd_t *pmd_k;
264 pte_t *pte_k;
265 /*
266 * Synchronize this task's top level page-table
267 * with the 'reference' page table.
268 *
269 * Do _not_ use "current" here. We might be inside
270 * an interrupt in the middle of a task switch..
271 */
272 pgd_paddr = read_cr3();
273 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
274 if (!pmd_k)
275 return -1;
276 pte_k = pte_offset_kernel(pmd_k, address);
277 if (!pte_present(*pte_k))
278 return -1;
279 return 0;
280 #else
281 pgd_t *pgd, *pgd_ref;
282 pud_t *pud, *pud_ref;
283 pmd_t *pmd, *pmd_ref;
284 pte_t *pte, *pte_ref;
285
286 /* Copy kernel mappings over when needed. This can also
287 happen within a race in page table update. In the later
288 case just flush. */
289
290 pgd = pgd_offset(current->mm ?: &init_mm, address);
291 pgd_ref = pgd_offset_k(address);
292 if (pgd_none(*pgd_ref))
293 return -1;
294 if (pgd_none(*pgd))
295 set_pgd(pgd, *pgd_ref);
296 else
297 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
298
299 /* Below here mismatches are bugs because these lower tables
300 are shared */
301
302 pud = pud_offset(pgd, address);
303 pud_ref = pud_offset(pgd_ref, address);
304 if (pud_none(*pud_ref))
305 return -1;
306 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
307 BUG();
308 pmd = pmd_offset(pud, address);
309 pmd_ref = pmd_offset(pud_ref, address);
310 if (pmd_none(*pmd_ref))
311 return -1;
312 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
313 BUG();
314 pte_ref = pte_offset_kernel(pmd_ref, address);
315 if (!pte_present(*pte_ref))
316 return -1;
317 pte = pte_offset_kernel(pmd, address);
318 /* Don't use pte_page here, because the mappings can point
319 outside mem_map, and the NUMA hash lookup cannot handle
320 that. */
321 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
322 BUG();
323 return 0;
324 #endif
325 }
326
327 int show_unhandled_signals = 1;
328
329 /*
330 * This routine handles page faults. It determines the address,
331 * and the problem, and then passes it off to one of the appropriate
332 * routines.
333 */
334 void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
335 {
336 struct task_struct *tsk;
337 struct mm_struct *mm;
338 struct vm_area_struct *vma;
339 unsigned long address;
340 int write, si_code;
341 int fault;
342
343 /*
344 * We can fault from pretty much anywhere, with unknown IRQ state.
345 */
346 trace_hardirqs_fixup();
347
348 tsk = current;
349 mm = tsk->mm;
350 prefetchw(&mm->mmap_sem);
351
352 /* get the address */
353 address = read_cr2();
354
355 si_code = SEGV_MAPERR;
356
357 if (notify_page_fault(regs))
358 return;
359
360 /*
361 * We fault-in kernel-space virtual memory on-demand. The
362 * 'reference' page table is init_mm.pgd.
363 *
364 * NOTE! We MUST NOT take any locks for this case. We may
365 * be in an interrupt or a critical region, and should
366 * only copy the information from the master page table,
367 * nothing more.
368 *
369 * This verifies that the fault happens in kernel space
370 * (error_code & 4) == 0, and that the fault was not a
371 * protection error (error_code & 9) == 0.
372 */
373 if (unlikely(address >= TASK_SIZE)) {
374 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
375 vmalloc_fault(address) >= 0)
376 return;
377 /*
378 * Don't take the mm semaphore here. If we fixup a prefetch
379 * fault we could otherwise deadlock.
380 */
381 goto bad_area_nosemaphore;
382 }
383
384 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
385 fault has been handled. */
386 if (regs->flags & (X86_EFLAGS_IF|VM_MASK))
387 local_irq_enable();
388
389 /*
390 * If we're in an interrupt, have no user context or are running in an
391 * atomic region then we must not take the fault.
392 */
393 if (in_atomic() || !mm)
394 goto bad_area_nosemaphore;
395
396 /* When running in the kernel we expect faults to occur only to
397 * addresses in user space. All other faults represent errors in the
398 * kernel and should generate an OOPS. Unfortunately, in the case of an
399 * erroneous fault occurring in a code path which already holds mmap_sem
400 * we will deadlock attempting to validate the fault against the
401 * address space. Luckily the kernel only validly references user
402 * space from well defined areas of code, which are listed in the
403 * exceptions table.
404 *
405 * As the vast majority of faults will be valid we will only perform
406 * the source reference check when there is a possibility of a deadlock.
407 * Attempt to lock the address space, if we cannot we then validate the
408 * source. If this is invalid we can skip the address space check,
409 * thus avoiding the deadlock.
410 */
411 if (!down_read_trylock(&mm->mmap_sem)) {
412 if ((error_code & PF_USER) == 0 &&
413 !search_exception_tables(regs->ip))
414 goto bad_area_nosemaphore;
415 down_read(&mm->mmap_sem);
416 }
417
418 vma = find_vma(mm, address);
419 if (!vma)
420 goto bad_area;
421 if (vma->vm_start <= address)
422 goto good_area;
423 if (!(vma->vm_flags & VM_GROWSDOWN))
424 goto bad_area;
425 if (error_code & PF_USER) {
426 /*
427 * Accessing the stack below %sp is always a bug.
428 * The large cushion allows instructions like enter
429 * and pusha to work. ("enter $65535,$31" pushes
430 * 32 pointers and then decrements %sp by 65535.)
431 */
432 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
433 goto bad_area;
434 }
435 if (expand_stack(vma, address))
436 goto bad_area;
437 /*
438 * Ok, we have a good vm_area for this memory access, so
439 * we can handle it..
440 */
441 good_area:
442 si_code = SEGV_ACCERR;
443 write = 0;
444 switch (error_code & (PF_PROT|PF_WRITE)) {
445 default: /* 3: write, present */
446 /* fall through */
447 case PF_WRITE: /* write, not present */
448 if (!(vma->vm_flags & VM_WRITE))
449 goto bad_area;
450 write++;
451 break;
452 case PF_PROT: /* read, present */
453 goto bad_area;
454 case 0: /* read, not present */
455 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
456 goto bad_area;
457 }
458
459 survive:
460 /*
461 * If for any reason at all we couldn't handle the fault,
462 * make sure we exit gracefully rather than endlessly redo
463 * the fault.
464 */
465 fault = handle_mm_fault(mm, vma, address, write);
466 if (unlikely(fault & VM_FAULT_ERROR)) {
467 if (fault & VM_FAULT_OOM)
468 goto out_of_memory;
469 else if (fault & VM_FAULT_SIGBUS)
470 goto do_sigbus;
471 BUG();
472 }
473 if (fault & VM_FAULT_MAJOR)
474 tsk->maj_flt++;
475 else
476 tsk->min_flt++;
477
478 /*
479 * Did it hit the DOS screen memory VA from vm86 mode?
480 */
481 if (regs->flags & VM_MASK) {
482 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
483 if (bit < 32)
484 tsk->thread.screen_bitmap |= 1 << bit;
485 }
486 up_read(&mm->mmap_sem);
487 return;
488
489 /*
490 * Something tried to access memory that isn't in our memory map..
491 * Fix it, but check if it's kernel or user first..
492 */
493 bad_area:
494 up_read(&mm->mmap_sem);
495
496 bad_area_nosemaphore:
497 /* User mode accesses just cause a SIGSEGV */
498 if (error_code & PF_USER) {
499 /*
500 * It's possible to have interrupts off here.
501 */
502 local_irq_enable();
503
504 /*
505 * Valid to do another page fault here because this one came
506 * from user space.
507 */
508 if (is_prefetch(regs, address, error_code))
509 return;
510
511 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
512 printk_ratelimit()) {
513 printk(
514 #ifdef CONFIG_X86_32
515 "%s%s[%d]: segfault at %lx ip %08lx sp %08lx error %lx",
516 #else
517 "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx\n",
518 #endif
519 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
520 tsk->comm, task_pid_nr(tsk), address, regs->ip,
521 regs->sp, error_code);
522 }
523 tsk->thread.cr2 = address;
524 /* Kernel addresses are always protection faults */
525 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
526 tsk->thread.trap_no = 14;
527 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
528 return;
529 }
530
531 #ifdef CONFIG_X86_F00F_BUG
532 /*
533 * Pentium F0 0F C7 C8 bug workaround.
534 */
535 if (boot_cpu_data.f00f_bug) {
536 unsigned long nr;
537
538 nr = (address - idt_descr.address) >> 3;
539
540 if (nr == 6) {
541 do_invalid_op(regs, 0);
542 return;
543 }
544 }
545 #endif
546
547 no_context:
548 /* Are we prepared to handle this kernel fault? */
549 if (fixup_exception(regs))
550 return;
551
552 /*
553 * Valid to do another page fault here, because if this fault
554 * had been triggered by is_prefetch fixup_exception would have
555 * handled it.
556 */
557 if (is_prefetch(regs, address, error_code))
558 return;
559
560 if (is_errata93(regs, address))
561 return;
562
563 /*
564 * Oops. The kernel tried to access some bad page. We'll have to
565 * terminate things with extreme prejudice.
566 */
567
568 bust_spinlocks(1);
569
570 if (oops_may_print()) {
571 __typeof__(pte_val(__pte(0))) page;
572
573 #ifdef CONFIG_X86_PAE
574 if (error_code & PF_INSTR) {
575 pte_t *pte = lookup_address(address);
576
577 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
578 printk(KERN_CRIT "kernel tried to execute "
579 "NX-protected page - exploit attempt? "
580 "(uid: %d)\n", current->uid);
581 }
582 #endif
583 if (address < PAGE_SIZE)
584 printk(KERN_ALERT "BUG: unable to handle kernel NULL "
585 "pointer dereference");
586 else
587 printk(KERN_ALERT "BUG: unable to handle kernel paging"
588 " request");
589 printk(" at virtual address %08lx\n", address);
590 printk(KERN_ALERT "printing ip: %08lx ", regs->ip);
591
592 page = read_cr3();
593 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
594 #ifdef CONFIG_X86_PAE
595 printk("*pdpt = %016Lx ", page);
596 if ((page >> PAGE_SHIFT) < max_low_pfn
597 && page & _PAGE_PRESENT) {
598 page &= PAGE_MASK;
599 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
600 & (PTRS_PER_PMD - 1)];
601 printk(KERN_CONT "*pde = %016Lx ", page);
602 page &= ~_PAGE_NX;
603 }
604 #else
605 printk("*pde = %08lx ", page);
606 #endif
607
608 /*
609 * We must not directly access the pte in the highpte
610 * case if the page table is located in highmem.
611 * And let's rather not kmap-atomic the pte, just in case
612 * it's allocated already.
613 */
614 if ((page >> PAGE_SHIFT) < max_low_pfn
615 && (page & _PAGE_PRESENT)
616 && !(page & _PAGE_PSE)) {
617 page &= PAGE_MASK;
618 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
619 & (PTRS_PER_PTE - 1)];
620 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
621 }
622
623 printk("\n");
624 }
625
626 tsk->thread.cr2 = address;
627 tsk->thread.trap_no = 14;
628 tsk->thread.error_code = error_code;
629 die("Oops", regs, error_code);
630 bust_spinlocks(0);
631 do_exit(SIGKILL);
632
633 /*
634 * We ran out of memory, or some other thing happened to us that made
635 * us unable to handle the page fault gracefully.
636 */
637 out_of_memory:
638 up_read(&mm->mmap_sem);
639 if (is_global_init(tsk)) {
640 yield();
641 down_read(&mm->mmap_sem);
642 goto survive;
643 }
644 printk("VM: killing process %s\n", tsk->comm);
645 if (error_code & PF_USER)
646 do_group_exit(SIGKILL);
647 goto no_context;
648
649 do_sigbus:
650 up_read(&mm->mmap_sem);
651
652 /* Kernel mode? Handle exceptions or die */
653 if (!(error_code & PF_USER))
654 goto no_context;
655
656 /* User space => ok to do another page fault */
657 if (is_prefetch(regs, address, error_code))
658 return;
659
660 tsk->thread.cr2 = address;
661 tsk->thread.error_code = error_code;
662 tsk->thread.trap_no = 14;
663 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
664 }
665
666 void vmalloc_sync_all(void)
667 {
668 /*
669 * Note that races in the updates of insync and start aren't
670 * problematic: insync can only get set bits added, and updates to
671 * start are only improving performance (without affecting correctness
672 * if undone).
673 */
674 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
675 static unsigned long start = TASK_SIZE;
676 unsigned long address;
677
678 if (SHARED_KERNEL_PMD)
679 return;
680
681 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
682 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
683 if (!test_bit(pgd_index(address), insync)) {
684 unsigned long flags;
685 struct page *page;
686
687 spin_lock_irqsave(&pgd_lock, flags);
688 for (page = pgd_list; page; page =
689 (struct page *)page->index)
690 if (!vmalloc_sync_one(page_address(page),
691 address)) {
692 BUG_ON(page != pgd_list);
693 break;
694 }
695 spin_unlock_irqrestore(&pgd_lock, flags);
696 if (!page)
697 set_bit(pgd_index(address), insync);
698 }
699 if (address == start && test_bit(pgd_index(address), insync))
700 start = address + PGDIR_SIZE;
701 }
702 }