Merge branch 'x86/ptrace' into x86/tsc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / mach-voyager / voyager_smp.c
1 /* -*- mode: c; c-basic-offset: 8 -*- */
2
3 /* Copyright (C) 1999,2001
4 *
5 * Author: J.E.J.Bottomley@HansenPartnership.com
6 *
7 * This file provides all the same external entries as smp.c but uses
8 * the voyager hal to provide the functionality
9 */
10 #include <linux/cpu.h>
11 #include <linux/module.h>
12 #include <linux/mm.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/delay.h>
15 #include <linux/mc146818rtc.h>
16 #include <linux/cache.h>
17 #include <linux/interrupt.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/bootmem.h>
21 #include <linux/completion.h>
22 #include <asm/desc.h>
23 #include <asm/voyager.h>
24 #include <asm/vic.h>
25 #include <asm/mtrr.h>
26 #include <asm/pgalloc.h>
27 #include <asm/tlbflush.h>
28 #include <asm/arch_hooks.h>
29 #include <asm/trampoline.h>
30
31 /* TLB state -- visible externally, indexed physically */
32 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0 };
33
34 /* CPU IRQ affinity -- set to all ones initially */
35 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned =
36 {[0 ... NR_CPUS-1] = ~0UL };
37
38 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
39 * indexed physically */
40 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
41 EXPORT_PER_CPU_SYMBOL(cpu_info);
42
43 /* physical ID of the CPU used to boot the system */
44 unsigned char boot_cpu_id;
45
46 /* The memory line addresses for the Quad CPIs */
47 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
48
49 /* The masks for the Extended VIC processors, filled in by cat_init */
50 __u32 voyager_extended_vic_processors = 0;
51
52 /* Masks for the extended Quad processors which cannot be VIC booted */
53 __u32 voyager_allowed_boot_processors = 0;
54
55 /* The mask for the Quad Processors (both extended and non-extended) */
56 __u32 voyager_quad_processors = 0;
57
58 /* Total count of live CPUs, used in process.c to display
59 * the CPU information and in irq.c for the per CPU irq
60 * activity count. Finally exported by i386_ksyms.c */
61 static int voyager_extended_cpus = 1;
62
63 /* Used for the invalidate map that's also checked in the spinlock */
64 static volatile unsigned long smp_invalidate_needed;
65
66 /* Bitmask of currently online CPUs - used by setup.c for
67 /proc/cpuinfo, visible externally but still physical */
68 cpumask_t cpu_online_map = CPU_MASK_NONE;
69 EXPORT_SYMBOL(cpu_online_map);
70
71 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
72 * by scheduler but indexed physically */
73 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
74
75 /* The internal functions */
76 static void send_CPI(__u32 cpuset, __u8 cpi);
77 static void ack_CPI(__u8 cpi);
78 static int ack_QIC_CPI(__u8 cpi);
79 static void ack_special_QIC_CPI(__u8 cpi);
80 static void ack_VIC_CPI(__u8 cpi);
81 static void send_CPI_allbutself(__u8 cpi);
82 static void mask_vic_irq(unsigned int irq);
83 static void unmask_vic_irq(unsigned int irq);
84 static unsigned int startup_vic_irq(unsigned int irq);
85 static void enable_local_vic_irq(unsigned int irq);
86 static void disable_local_vic_irq(unsigned int irq);
87 static void before_handle_vic_irq(unsigned int irq);
88 static void after_handle_vic_irq(unsigned int irq);
89 static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
90 static void ack_vic_irq(unsigned int irq);
91 static void vic_enable_cpi(void);
92 static void do_boot_cpu(__u8 cpuid);
93 static void do_quad_bootstrap(void);
94 static void initialize_secondary(void);
95
96 int hard_smp_processor_id(void);
97 int safe_smp_processor_id(void);
98
99 /* Inline functions */
100 static inline void send_one_QIC_CPI(__u8 cpu, __u8 cpi)
101 {
102 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
103 (smp_processor_id() << 16) + cpi;
104 }
105
106 static inline void send_QIC_CPI(__u32 cpuset, __u8 cpi)
107 {
108 int cpu;
109
110 for_each_online_cpu(cpu) {
111 if (cpuset & (1 << cpu)) {
112 #ifdef VOYAGER_DEBUG
113 if (!cpu_online(cpu))
114 VDEBUG(("CPU%d sending cpi %d to CPU%d not in "
115 "cpu_online_map\n",
116 hard_smp_processor_id(), cpi, cpu));
117 #endif
118 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
119 }
120 }
121 }
122
123 static inline void wrapper_smp_local_timer_interrupt(void)
124 {
125 irq_enter();
126 smp_local_timer_interrupt();
127 irq_exit();
128 }
129
130 static inline void send_one_CPI(__u8 cpu, __u8 cpi)
131 {
132 if (voyager_quad_processors & (1 << cpu))
133 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
134 else
135 send_CPI(1 << cpu, cpi);
136 }
137
138 static inline void send_CPI_allbutself(__u8 cpi)
139 {
140 __u8 cpu = smp_processor_id();
141 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
142 send_CPI(mask, cpi);
143 }
144
145 static inline int is_cpu_quad(void)
146 {
147 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
148 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
149 }
150
151 static inline int is_cpu_extended(void)
152 {
153 __u8 cpu = hard_smp_processor_id();
154
155 return (voyager_extended_vic_processors & (1 << cpu));
156 }
157
158 static inline int is_cpu_vic_boot(void)
159 {
160 __u8 cpu = hard_smp_processor_id();
161
162 return (voyager_extended_vic_processors
163 & voyager_allowed_boot_processors & (1 << cpu));
164 }
165
166 static inline void ack_CPI(__u8 cpi)
167 {
168 switch (cpi) {
169 case VIC_CPU_BOOT_CPI:
170 if (is_cpu_quad() && !is_cpu_vic_boot())
171 ack_QIC_CPI(cpi);
172 else
173 ack_VIC_CPI(cpi);
174 break;
175 case VIC_SYS_INT:
176 case VIC_CMN_INT:
177 /* These are slightly strange. Even on the Quad card,
178 * They are vectored as VIC CPIs */
179 if (is_cpu_quad())
180 ack_special_QIC_CPI(cpi);
181 else
182 ack_VIC_CPI(cpi);
183 break;
184 default:
185 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
186 break;
187 }
188 }
189
190 /* local variables */
191
192 /* The VIC IRQ descriptors -- these look almost identical to the
193 * 8259 IRQs except that masks and things must be kept per processor
194 */
195 static struct irq_chip vic_chip = {
196 .name = "VIC",
197 .startup = startup_vic_irq,
198 .mask = mask_vic_irq,
199 .unmask = unmask_vic_irq,
200 .set_affinity = set_vic_irq_affinity,
201 };
202
203 /* used to count up as CPUs are brought on line (starts at 0) */
204 static int cpucount = 0;
205
206 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
207 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
208 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
209 static DEFINE_PER_CPU(int, prof_counter) = 1;
210
211 /* the map used to check if a CPU has booted */
212 static __u32 cpu_booted_map;
213
214 /* the synchronize flag used to hold all secondary CPUs spinning in
215 * a tight loop until the boot sequence is ready for them */
216 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
217
218 /* This is for the new dynamic CPU boot code */
219 cpumask_t cpu_callin_map = CPU_MASK_NONE;
220 cpumask_t cpu_callout_map = CPU_MASK_NONE;
221 cpumask_t cpu_possible_map = CPU_MASK_NONE;
222 EXPORT_SYMBOL(cpu_possible_map);
223
224 /* The per processor IRQ masks (these are usually kept in sync) */
225 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
226
227 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
228 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
229
230 /* Lock for enable/disable of VIC interrupts */
231 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
232
233 /* The boot processor is correctly set up in PC mode when it
234 * comes up, but the secondaries need their master/slave 8259
235 * pairs initializing correctly */
236
237 /* Interrupt counters (per cpu) and total - used to try to
238 * even up the interrupt handling routines */
239 static long vic_intr_total = 0;
240 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
241 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
242
243 /* Since we can only use CPI0, we fake all the other CPIs */
244 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
245
246 /* debugging routine to read the isr of the cpu's pic */
247 static inline __u16 vic_read_isr(void)
248 {
249 __u16 isr;
250
251 outb(0x0b, 0xa0);
252 isr = inb(0xa0) << 8;
253 outb(0x0b, 0x20);
254 isr |= inb(0x20);
255
256 return isr;
257 }
258
259 static __init void qic_setup(void)
260 {
261 if (!is_cpu_quad()) {
262 /* not a quad, no setup */
263 return;
264 }
265 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
266 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
267
268 if (is_cpu_extended()) {
269 /* the QIC duplicate of the VIC base register */
270 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
271 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
272
273 /* FIXME: should set up the QIC timer and memory parity
274 * error vectors here */
275 }
276 }
277
278 static __init void vic_setup_pic(void)
279 {
280 outb(1, VIC_REDIRECT_REGISTER_1);
281 /* clear the claim registers for dynamic routing */
282 outb(0, VIC_CLAIM_REGISTER_0);
283 outb(0, VIC_CLAIM_REGISTER_1);
284
285 outb(0, VIC_PRIORITY_REGISTER);
286 /* Set the Primary and Secondary Microchannel vector
287 * bases to be the same as the ordinary interrupts
288 *
289 * FIXME: This would be more efficient using separate
290 * vectors. */
291 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
292 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
293 /* Now initiallise the master PIC belonging to this CPU by
294 * sending the four ICWs */
295
296 /* ICW1: level triggered, ICW4 needed */
297 outb(0x19, 0x20);
298
299 /* ICW2: vector base */
300 outb(FIRST_EXTERNAL_VECTOR, 0x21);
301
302 /* ICW3: slave at line 2 */
303 outb(0x04, 0x21);
304
305 /* ICW4: 8086 mode */
306 outb(0x01, 0x21);
307
308 /* now the same for the slave PIC */
309
310 /* ICW1: level trigger, ICW4 needed */
311 outb(0x19, 0xA0);
312
313 /* ICW2: slave vector base */
314 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
315
316 /* ICW3: slave ID */
317 outb(0x02, 0xA1);
318
319 /* ICW4: 8086 mode */
320 outb(0x01, 0xA1);
321 }
322
323 static void do_quad_bootstrap(void)
324 {
325 if (is_cpu_quad() && is_cpu_vic_boot()) {
326 int i;
327 unsigned long flags;
328 __u8 cpuid = hard_smp_processor_id();
329
330 local_irq_save(flags);
331
332 for (i = 0; i < 4; i++) {
333 /* FIXME: this would be >>3 &0x7 on the 32 way */
334 if (((cpuid >> 2) & 0x03) == i)
335 /* don't lower our own mask! */
336 continue;
337
338 /* masquerade as local Quad CPU */
339 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
340 /* enable the startup CPI */
341 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
342 /* restore cpu id */
343 outb(0, QIC_PROCESSOR_ID);
344 }
345 local_irq_restore(flags);
346 }
347 }
348
349 void prefill_possible_map(void)
350 {
351 /* This is empty on voyager because we need a much
352 * earlier detection which is done in find_smp_config */
353 }
354
355 /* Set up all the basic stuff: read the SMP config and make all the
356 * SMP information reflect only the boot cpu. All others will be
357 * brought on-line later. */
358 void __init find_smp_config(void)
359 {
360 int i;
361
362 boot_cpu_id = hard_smp_processor_id();
363
364 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
365
366 /* initialize the CPU structures (moved from smp_boot_cpus) */
367 for (i = 0; i < NR_CPUS; i++) {
368 cpu_irq_affinity[i] = ~0;
369 }
370 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
371
372 /* The boot CPU must be extended */
373 voyager_extended_vic_processors = 1 << boot_cpu_id;
374 /* initially, all of the first 8 CPUs can boot */
375 voyager_allowed_boot_processors = 0xff;
376 /* set up everything for just this CPU, we can alter
377 * this as we start the other CPUs later */
378 /* now get the CPU disposition from the extended CMOS */
379 cpus_addr(phys_cpu_present_map)[0] =
380 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
381 cpus_addr(phys_cpu_present_map)[0] |=
382 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
383 cpus_addr(phys_cpu_present_map)[0] |=
384 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
385 2) << 16;
386 cpus_addr(phys_cpu_present_map)[0] |=
387 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
388 3) << 24;
389 cpu_possible_map = phys_cpu_present_map;
390 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n",
391 cpus_addr(phys_cpu_present_map)[0]);
392 /* Here we set up the VIC to enable SMP */
393 /* enable the CPIs by writing the base vector to their register */
394 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
395 outb(1, VIC_REDIRECT_REGISTER_1);
396 /* set the claim registers for static routing --- Boot CPU gets
397 * all interrupts untill all other CPUs started */
398 outb(0xff, VIC_CLAIM_REGISTER_0);
399 outb(0xff, VIC_CLAIM_REGISTER_1);
400 /* Set the Primary and Secondary Microchannel vector
401 * bases to be the same as the ordinary interrupts
402 *
403 * FIXME: This would be more efficient using separate
404 * vectors. */
405 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
406 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
407
408 /* Finally tell the firmware that we're driving */
409 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
410 VOYAGER_SUS_IN_CONTROL_PORT);
411
412 current_thread_info()->cpu = boot_cpu_id;
413 x86_write_percpu(cpu_number, boot_cpu_id);
414 }
415
416 /*
417 * The bootstrap kernel entry code has set these up. Save them
418 * for a given CPU, id is physical */
419 void __init smp_store_cpu_info(int id)
420 {
421 struct cpuinfo_x86 *c = &cpu_data(id);
422
423 *c = boot_cpu_data;
424 c->cpu_index = id;
425
426 identify_secondary_cpu(c);
427 }
428
429 /* Routine initially called when a non-boot CPU is brought online */
430 static void __init start_secondary(void *unused)
431 {
432 __u8 cpuid = hard_smp_processor_id();
433
434 cpu_init();
435
436 /* OK, we're in the routine */
437 ack_CPI(VIC_CPU_BOOT_CPI);
438
439 /* setup the 8259 master slave pair belonging to this CPU ---
440 * we won't actually receive any until the boot CPU
441 * relinquishes it's static routing mask */
442 vic_setup_pic();
443
444 qic_setup();
445
446 if (is_cpu_quad() && !is_cpu_vic_boot()) {
447 /* clear the boot CPI */
448 __u8 dummy;
449
450 dummy =
451 voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
452 printk("read dummy %d\n", dummy);
453 }
454
455 /* lower the mask to receive CPIs */
456 vic_enable_cpi();
457
458 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
459
460 notify_cpu_starting(cpuid);
461
462 /* enable interrupts */
463 local_irq_enable();
464
465 /* get our bogomips */
466 calibrate_delay();
467
468 /* save our processor parameters */
469 smp_store_cpu_info(cpuid);
470
471 /* if we're a quad, we may need to bootstrap other CPUs */
472 do_quad_bootstrap();
473
474 /* FIXME: this is rather a poor hack to prevent the CPU
475 * activating softirqs while it's supposed to be waiting for
476 * permission to proceed. Without this, the new per CPU stuff
477 * in the softirqs will fail */
478 local_irq_disable();
479 cpu_set(cpuid, cpu_callin_map);
480
481 /* signal that we're done */
482 cpu_booted_map = 1;
483
484 while (!cpu_isset(cpuid, smp_commenced_mask))
485 rep_nop();
486 local_irq_enable();
487
488 local_flush_tlb();
489
490 cpu_set(cpuid, cpu_online_map);
491 wmb();
492 cpu_idle();
493 }
494
495 /* Routine to kick start the given CPU and wait for it to report ready
496 * (or timeout in startup). When this routine returns, the requested
497 * CPU is either fully running and configured or known to be dead.
498 *
499 * We call this routine sequentially 1 CPU at a time, so no need for
500 * locking */
501
502 static void __init do_boot_cpu(__u8 cpu)
503 {
504 struct task_struct *idle;
505 int timeout;
506 unsigned long flags;
507 int quad_boot = (1 << cpu) & voyager_quad_processors
508 & ~(voyager_extended_vic_processors
509 & voyager_allowed_boot_processors);
510
511 /* This is the format of the CPI IDT gate (in real mode) which
512 * we're hijacking to boot the CPU */
513 union IDTFormat {
514 struct seg {
515 __u16 Offset;
516 __u16 Segment;
517 } idt;
518 __u32 val;
519 } hijack_source;
520
521 __u32 *hijack_vector;
522 __u32 start_phys_address = setup_trampoline();
523
524 /* There's a clever trick to this: The linux trampoline is
525 * compiled to begin at absolute location zero, so make the
526 * address zero but have the data segment selector compensate
527 * for the actual address */
528 hijack_source.idt.Offset = start_phys_address & 0x000F;
529 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
530
531 cpucount++;
532 alternatives_smp_switch(1);
533
534 idle = fork_idle(cpu);
535 if (IS_ERR(idle))
536 panic("failed fork for CPU%d", cpu);
537 idle->thread.ip = (unsigned long)start_secondary;
538 /* init_tasks (in sched.c) is indexed logically */
539 stack_start.sp = (void *)idle->thread.sp;
540
541 init_gdt(cpu);
542 per_cpu(current_task, cpu) = idle;
543 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
544 irq_ctx_init(cpu);
545
546 /* Note: Don't modify initial ss override */
547 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
548 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
549 hijack_source.idt.Offset, stack_start.sp));
550
551 /* init lowmem identity mapping */
552 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY,
553 min_t(unsigned long, KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
554 flush_tlb_all();
555
556 if (quad_boot) {
557 printk("CPU %d: non extended Quad boot\n", cpu);
558 hijack_vector =
559 (__u32 *)
560 phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE) * 4);
561 *hijack_vector = hijack_source.val;
562 } else {
563 printk("CPU%d: extended VIC boot\n", cpu);
564 hijack_vector =
565 (__u32 *)
566 phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE) * 4);
567 *hijack_vector = hijack_source.val;
568 /* VIC errata, may also receive interrupt at this address */
569 hijack_vector =
570 (__u32 *)
571 phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI +
572 VIC_DEFAULT_CPI_BASE) * 4);
573 *hijack_vector = hijack_source.val;
574 }
575 /* All non-boot CPUs start with interrupts fully masked. Need
576 * to lower the mask of the CPI we're about to send. We do
577 * this in the VIC by masquerading as the processor we're
578 * about to boot and lowering its interrupt mask */
579 local_irq_save(flags);
580 if (quad_boot) {
581 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
582 } else {
583 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
584 /* here we're altering registers belonging to `cpu' */
585
586 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
587 /* now go back to our original identity */
588 outb(boot_cpu_id, VIC_PROCESSOR_ID);
589
590 /* and boot the CPU */
591
592 send_CPI((1 << cpu), VIC_CPU_BOOT_CPI);
593 }
594 cpu_booted_map = 0;
595 local_irq_restore(flags);
596
597 /* now wait for it to become ready (or timeout) */
598 for (timeout = 0; timeout < 50000; timeout++) {
599 if (cpu_booted_map)
600 break;
601 udelay(100);
602 }
603 /* reset the page table */
604 zap_low_mappings();
605
606 if (cpu_booted_map) {
607 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
608 cpu, smp_processor_id()));
609
610 printk("CPU%d: ", cpu);
611 print_cpu_info(&cpu_data(cpu));
612 wmb();
613 cpu_set(cpu, cpu_callout_map);
614 cpu_set(cpu, cpu_present_map);
615 } else {
616 printk("CPU%d FAILED TO BOOT: ", cpu);
617 if (*
618 ((volatile unsigned char *)phys_to_virt(start_phys_address))
619 == 0xA5)
620 printk("Stuck.\n");
621 else
622 printk("Not responding.\n");
623
624 cpucount--;
625 }
626 }
627
628 void __init smp_boot_cpus(void)
629 {
630 int i;
631
632 /* CAT BUS initialisation must be done after the memory */
633 /* FIXME: The L4 has a catbus too, it just needs to be
634 * accessed in a totally different way */
635 if (voyager_level == 5) {
636 voyager_cat_init();
637
638 /* now that the cat has probed the Voyager System Bus, sanity
639 * check the cpu map */
640 if (((voyager_quad_processors | voyager_extended_vic_processors)
641 & cpus_addr(phys_cpu_present_map)[0]) !=
642 cpus_addr(phys_cpu_present_map)[0]) {
643 /* should panic */
644 printk("\n\n***WARNING*** "
645 "Sanity check of CPU present map FAILED\n");
646 }
647 } else if (voyager_level == 4)
648 voyager_extended_vic_processors =
649 cpus_addr(phys_cpu_present_map)[0];
650
651 /* this sets up the idle task to run on the current cpu */
652 voyager_extended_cpus = 1;
653 /* Remove the global_irq_holder setting, it triggers a BUG() on
654 * schedule at the moment */
655 //global_irq_holder = boot_cpu_id;
656
657 /* FIXME: Need to do something about this but currently only works
658 * on CPUs with a tsc which none of mine have.
659 smp_tune_scheduling();
660 */
661 smp_store_cpu_info(boot_cpu_id);
662 /* setup the jump vector */
663 initial_code = (unsigned long)initialize_secondary;
664 printk("CPU%d: ", boot_cpu_id);
665 print_cpu_info(&cpu_data(boot_cpu_id));
666
667 if (is_cpu_quad()) {
668 /* booting on a Quad CPU */
669 printk("VOYAGER SMP: Boot CPU is Quad\n");
670 qic_setup();
671 do_quad_bootstrap();
672 }
673
674 /* enable our own CPIs */
675 vic_enable_cpi();
676
677 cpu_set(boot_cpu_id, cpu_online_map);
678 cpu_set(boot_cpu_id, cpu_callout_map);
679
680 /* loop over all the extended VIC CPUs and boot them. The
681 * Quad CPUs must be bootstrapped by their extended VIC cpu */
682 for (i = 0; i < NR_CPUS; i++) {
683 if (i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
684 continue;
685 do_boot_cpu(i);
686 /* This udelay seems to be needed for the Quad boots
687 * don't remove unless you know what you're doing */
688 udelay(1000);
689 }
690 /* we could compute the total bogomips here, but why bother?,
691 * Code added from smpboot.c */
692 {
693 unsigned long bogosum = 0;
694
695 for_each_online_cpu(i)
696 bogosum += cpu_data(i).loops_per_jiffy;
697 printk(KERN_INFO "Total of %d processors activated "
698 "(%lu.%02lu BogoMIPS).\n",
699 cpucount + 1, bogosum / (500000 / HZ),
700 (bogosum / (5000 / HZ)) % 100);
701 }
702 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
703 printk("VOYAGER: Extended (interrupt handling CPUs): "
704 "%d, non-extended: %d\n", voyager_extended_cpus,
705 num_booting_cpus() - voyager_extended_cpus);
706 /* that's it, switch to symmetric mode */
707 outb(0, VIC_PRIORITY_REGISTER);
708 outb(0, VIC_CLAIM_REGISTER_0);
709 outb(0, VIC_CLAIM_REGISTER_1);
710
711 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
712 }
713
714 /* Reload the secondary CPUs task structure (this function does not
715 * return ) */
716 static void __init initialize_secondary(void)
717 {
718 #if 0
719 // AC kernels only
720 set_current(hard_get_current());
721 #endif
722
723 /*
724 * We don't actually need to load the full TSS,
725 * basically just the stack pointer and the eip.
726 */
727
728 asm volatile ("movl %0,%%esp\n\t"
729 "jmp *%1"::"r" (current->thread.sp),
730 "r"(current->thread.ip));
731 }
732
733 /* handle a Voyager SYS_INT -- If we don't, the base board will
734 * panic the system.
735 *
736 * System interrupts occur because some problem was detected on the
737 * various busses. To find out what you have to probe all the
738 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
739 void smp_vic_sys_interrupt(struct pt_regs *regs)
740 {
741 ack_CPI(VIC_SYS_INT);
742 printk("Voyager SYSTEM INTERRUPT\n");
743 }
744
745 /* Handle a voyager CMN_INT; These interrupts occur either because of
746 * a system status change or because a single bit memory error
747 * occurred. FIXME: At the moment, ignore all this. */
748 void smp_vic_cmn_interrupt(struct pt_regs *regs)
749 {
750 static __u8 in_cmn_int = 0;
751 static DEFINE_SPINLOCK(cmn_int_lock);
752
753 /* common ints are broadcast, so make sure we only do this once */
754 _raw_spin_lock(&cmn_int_lock);
755 if (in_cmn_int)
756 goto unlock_end;
757
758 in_cmn_int++;
759 _raw_spin_unlock(&cmn_int_lock);
760
761 VDEBUG(("Voyager COMMON INTERRUPT\n"));
762
763 if (voyager_level == 5)
764 voyager_cat_do_common_interrupt();
765
766 _raw_spin_lock(&cmn_int_lock);
767 in_cmn_int = 0;
768 unlock_end:
769 _raw_spin_unlock(&cmn_int_lock);
770 ack_CPI(VIC_CMN_INT);
771 }
772
773 /*
774 * Reschedule call back. Nothing to do, all the work is done
775 * automatically when we return from the interrupt. */
776 static void smp_reschedule_interrupt(void)
777 {
778 /* do nothing */
779 }
780
781 static struct mm_struct *flush_mm;
782 static unsigned long flush_va;
783 static DEFINE_SPINLOCK(tlbstate_lock);
784
785 /*
786 * We cannot call mmdrop() because we are in interrupt context,
787 * instead update mm->cpu_vm_mask.
788 *
789 * We need to reload %cr3 since the page tables may be going
790 * away from under us..
791 */
792 static inline void voyager_leave_mm(unsigned long cpu)
793 {
794 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
795 BUG();
796 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
797 load_cr3(swapper_pg_dir);
798 }
799
800 /*
801 * Invalidate call-back
802 */
803 static void smp_invalidate_interrupt(void)
804 {
805 __u8 cpu = smp_processor_id();
806
807 if (!test_bit(cpu, &smp_invalidate_needed))
808 return;
809 /* This will flood messages. Don't uncomment unless you see
810 * Problems with cross cpu invalidation
811 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
812 smp_processor_id()));
813 */
814
815 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
816 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
817 if (flush_va == TLB_FLUSH_ALL)
818 local_flush_tlb();
819 else
820 __flush_tlb_one(flush_va);
821 } else
822 voyager_leave_mm(cpu);
823 }
824 smp_mb__before_clear_bit();
825 clear_bit(cpu, &smp_invalidate_needed);
826 smp_mb__after_clear_bit();
827 }
828
829 /* All the new flush operations for 2.4 */
830
831 /* This routine is called with a physical cpu mask */
832 static void
833 voyager_flush_tlb_others(unsigned long cpumask, struct mm_struct *mm,
834 unsigned long va)
835 {
836 int stuck = 50000;
837
838 if (!cpumask)
839 BUG();
840 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
841 BUG();
842 if (cpumask & (1 << smp_processor_id()))
843 BUG();
844 if (!mm)
845 BUG();
846
847 spin_lock(&tlbstate_lock);
848
849 flush_mm = mm;
850 flush_va = va;
851 atomic_set_mask(cpumask, &smp_invalidate_needed);
852 /*
853 * We have to send the CPI only to
854 * CPUs affected.
855 */
856 send_CPI(cpumask, VIC_INVALIDATE_CPI);
857
858 while (smp_invalidate_needed) {
859 mb();
860 if (--stuck == 0) {
861 printk("***WARNING*** Stuck doing invalidate CPI "
862 "(CPU%d)\n", smp_processor_id());
863 break;
864 }
865 }
866
867 /* Uncomment only to debug invalidation problems
868 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
869 */
870
871 flush_mm = NULL;
872 flush_va = 0;
873 spin_unlock(&tlbstate_lock);
874 }
875
876 void flush_tlb_current_task(void)
877 {
878 struct mm_struct *mm = current->mm;
879 unsigned long cpu_mask;
880
881 preempt_disable();
882
883 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
884 local_flush_tlb();
885 if (cpu_mask)
886 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
887
888 preempt_enable();
889 }
890
891 void flush_tlb_mm(struct mm_struct *mm)
892 {
893 unsigned long cpu_mask;
894
895 preempt_disable();
896
897 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
898
899 if (current->active_mm == mm) {
900 if (current->mm)
901 local_flush_tlb();
902 else
903 voyager_leave_mm(smp_processor_id());
904 }
905 if (cpu_mask)
906 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
907
908 preempt_enable();
909 }
910
911 void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
912 {
913 struct mm_struct *mm = vma->vm_mm;
914 unsigned long cpu_mask;
915
916 preempt_disable();
917
918 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
919 if (current->active_mm == mm) {
920 if (current->mm)
921 __flush_tlb_one(va);
922 else
923 voyager_leave_mm(smp_processor_id());
924 }
925
926 if (cpu_mask)
927 voyager_flush_tlb_others(cpu_mask, mm, va);
928
929 preempt_enable();
930 }
931
932 EXPORT_SYMBOL(flush_tlb_page);
933
934 /* enable the requested IRQs */
935 static void smp_enable_irq_interrupt(void)
936 {
937 __u8 irq;
938 __u8 cpu = get_cpu();
939
940 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
941 vic_irq_enable_mask[cpu]));
942
943 spin_lock(&vic_irq_lock);
944 for (irq = 0; irq < 16; irq++) {
945 if (vic_irq_enable_mask[cpu] & (1 << irq))
946 enable_local_vic_irq(irq);
947 }
948 vic_irq_enable_mask[cpu] = 0;
949 spin_unlock(&vic_irq_lock);
950
951 put_cpu_no_resched();
952 }
953
954 /*
955 * CPU halt call-back
956 */
957 static void smp_stop_cpu_function(void *dummy)
958 {
959 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
960 cpu_clear(smp_processor_id(), cpu_online_map);
961 local_irq_disable();
962 for (;;)
963 halt();
964 }
965
966 /* execute a thread on a new CPU. The function to be called must be
967 * previously set up. This is used to schedule a function for
968 * execution on all CPUs - set up the function then broadcast a
969 * function_interrupt CPI to come here on each CPU */
970 static void smp_call_function_interrupt(void)
971 {
972 irq_enter();
973 generic_smp_call_function_interrupt();
974 __get_cpu_var(irq_stat).irq_call_count++;
975 irq_exit();
976 }
977
978 static void smp_call_function_single_interrupt(void)
979 {
980 irq_enter();
981 generic_smp_call_function_single_interrupt();
982 __get_cpu_var(irq_stat).irq_call_count++;
983 irq_exit();
984 }
985
986 /* Sorry about the name. In an APIC based system, the APICs
987 * themselves are programmed to send a timer interrupt. This is used
988 * by linux to reschedule the processor. Voyager doesn't have this,
989 * so we use the system clock to interrupt one processor, which in
990 * turn, broadcasts a timer CPI to all the others --- we receive that
991 * CPI here. We don't use this actually for counting so losing
992 * ticks doesn't matter
993 *
994 * FIXME: For those CPUs which actually have a local APIC, we could
995 * try to use it to trigger this interrupt instead of having to
996 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
997 * no local APIC, so I can't do this
998 *
999 * This function is currently a placeholder and is unused in the code */
1000 void smp_apic_timer_interrupt(struct pt_regs *regs)
1001 {
1002 struct pt_regs *old_regs = set_irq_regs(regs);
1003 wrapper_smp_local_timer_interrupt();
1004 set_irq_regs(old_regs);
1005 }
1006
1007 /* All of the QUAD interrupt GATES */
1008 void smp_qic_timer_interrupt(struct pt_regs *regs)
1009 {
1010 struct pt_regs *old_regs = set_irq_regs(regs);
1011 ack_QIC_CPI(QIC_TIMER_CPI);
1012 wrapper_smp_local_timer_interrupt();
1013 set_irq_regs(old_regs);
1014 }
1015
1016 void smp_qic_invalidate_interrupt(struct pt_regs *regs)
1017 {
1018 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1019 smp_invalidate_interrupt();
1020 }
1021
1022 void smp_qic_reschedule_interrupt(struct pt_regs *regs)
1023 {
1024 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1025 smp_reschedule_interrupt();
1026 }
1027
1028 void smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1029 {
1030 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1031 smp_enable_irq_interrupt();
1032 }
1033
1034 void smp_qic_call_function_interrupt(struct pt_regs *regs)
1035 {
1036 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1037 smp_call_function_interrupt();
1038 }
1039
1040 void smp_qic_call_function_single_interrupt(struct pt_regs *regs)
1041 {
1042 ack_QIC_CPI(QIC_CALL_FUNCTION_SINGLE_CPI);
1043 smp_call_function_single_interrupt();
1044 }
1045
1046 void smp_vic_cpi_interrupt(struct pt_regs *regs)
1047 {
1048 struct pt_regs *old_regs = set_irq_regs(regs);
1049 __u8 cpu = smp_processor_id();
1050
1051 if (is_cpu_quad())
1052 ack_QIC_CPI(VIC_CPI_LEVEL0);
1053 else
1054 ack_VIC_CPI(VIC_CPI_LEVEL0);
1055
1056 if (test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1057 wrapper_smp_local_timer_interrupt();
1058 if (test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1059 smp_invalidate_interrupt();
1060 if (test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1061 smp_reschedule_interrupt();
1062 if (test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1063 smp_enable_irq_interrupt();
1064 if (test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1065 smp_call_function_interrupt();
1066 if (test_and_clear_bit(VIC_CALL_FUNCTION_SINGLE_CPI, &vic_cpi_mailbox[cpu]))
1067 smp_call_function_single_interrupt();
1068 set_irq_regs(old_regs);
1069 }
1070
1071 static void do_flush_tlb_all(void *info)
1072 {
1073 unsigned long cpu = smp_processor_id();
1074
1075 __flush_tlb_all();
1076 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1077 voyager_leave_mm(cpu);
1078 }
1079
1080 /* flush the TLB of every active CPU in the system */
1081 void flush_tlb_all(void)
1082 {
1083 on_each_cpu(do_flush_tlb_all, 0, 1);
1084 }
1085
1086 /* send a reschedule CPI to one CPU by physical CPU number*/
1087 static void voyager_smp_send_reschedule(int cpu)
1088 {
1089 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1090 }
1091
1092 int hard_smp_processor_id(void)
1093 {
1094 __u8 i;
1095 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1096 if ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1097 return cpumask & 0x1F;
1098
1099 for (i = 0; i < 8; i++) {
1100 if (cpumask & (1 << i))
1101 return i;
1102 }
1103 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1104 return 0;
1105 }
1106
1107 int safe_smp_processor_id(void)
1108 {
1109 return hard_smp_processor_id();
1110 }
1111
1112 /* broadcast a halt to all other CPUs */
1113 static void voyager_smp_send_stop(void)
1114 {
1115 smp_call_function(smp_stop_cpu_function, NULL, 1);
1116 }
1117
1118 /* this function is triggered in time.c when a clock tick fires
1119 * we need to re-broadcast the tick to all CPUs */
1120 void smp_vic_timer_interrupt(void)
1121 {
1122 send_CPI_allbutself(VIC_TIMER_CPI);
1123 smp_local_timer_interrupt();
1124 }
1125
1126 /* local (per CPU) timer interrupt. It does both profiling and
1127 * process statistics/rescheduling.
1128 *
1129 * We do profiling in every local tick, statistics/rescheduling
1130 * happen only every 'profiling multiplier' ticks. The default
1131 * multiplier is 1 and it can be changed by writing the new multiplier
1132 * value into /proc/profile.
1133 */
1134 void smp_local_timer_interrupt(void)
1135 {
1136 int cpu = smp_processor_id();
1137 long weight;
1138
1139 profile_tick(CPU_PROFILING);
1140 if (--per_cpu(prof_counter, cpu) <= 0) {
1141 /*
1142 * The multiplier may have changed since the last time we got
1143 * to this point as a result of the user writing to
1144 * /proc/profile. In this case we need to adjust the APIC
1145 * timer accordingly.
1146 *
1147 * Interrupts are already masked off at this point.
1148 */
1149 per_cpu(prof_counter, cpu) = per_cpu(prof_multiplier, cpu);
1150 if (per_cpu(prof_counter, cpu) !=
1151 per_cpu(prof_old_multiplier, cpu)) {
1152 /* FIXME: need to update the vic timer tick here */
1153 per_cpu(prof_old_multiplier, cpu) =
1154 per_cpu(prof_counter, cpu);
1155 }
1156
1157 update_process_times(user_mode_vm(get_irq_regs()));
1158 }
1159
1160 if (((1 << cpu) & voyager_extended_vic_processors) == 0)
1161 /* only extended VIC processors participate in
1162 * interrupt distribution */
1163 return;
1164
1165 /*
1166 * We take the 'long' return path, and there every subsystem
1167 * grabs the appropriate locks (kernel lock/ irq lock).
1168 *
1169 * we might want to decouple profiling from the 'long path',
1170 * and do the profiling totally in assembly.
1171 *
1172 * Currently this isn't too much of an issue (performance wise),
1173 * we can take more than 100K local irqs per second on a 100 MHz P5.
1174 */
1175
1176 if ((++vic_tick[cpu] & 0x7) != 0)
1177 return;
1178 /* get here every 16 ticks (about every 1/6 of a second) */
1179
1180 /* Change our priority to give someone else a chance at getting
1181 * the IRQ. The algorithm goes like this:
1182 *
1183 * In the VIC, the dynamically routed interrupt is always
1184 * handled by the lowest priority eligible (i.e. receiving
1185 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1186 * lowest processor number gets it.
1187 *
1188 * The priority of a CPU is controlled by a special per-CPU
1189 * VIC priority register which is 3 bits wide 0 being lowest
1190 * and 7 highest priority..
1191 *
1192 * Therefore we subtract the average number of interrupts from
1193 * the number we've fielded. If this number is negative, we
1194 * lower the activity count and if it is positive, we raise
1195 * it.
1196 *
1197 * I'm afraid this still leads to odd looking interrupt counts:
1198 * the totals are all roughly equal, but the individual ones
1199 * look rather skewed.
1200 *
1201 * FIXME: This algorithm is total crap when mixed with SMP
1202 * affinity code since we now try to even up the interrupt
1203 * counts when an affinity binding is keeping them on a
1204 * particular CPU*/
1205 weight = (vic_intr_count[cpu] * voyager_extended_cpus
1206 - vic_intr_total) >> 4;
1207 weight += 4;
1208 if (weight > 7)
1209 weight = 7;
1210 if (weight < 0)
1211 weight = 0;
1212
1213 outb((__u8) weight, VIC_PRIORITY_REGISTER);
1214
1215 #ifdef VOYAGER_DEBUG
1216 if ((vic_tick[cpu] & 0xFFF) == 0) {
1217 /* print this message roughly every 25 secs */
1218 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1219 cpu, vic_tick[cpu], weight);
1220 }
1221 #endif
1222 }
1223
1224 /* setup the profiling timer */
1225 int setup_profiling_timer(unsigned int multiplier)
1226 {
1227 int i;
1228
1229 if ((!multiplier))
1230 return -EINVAL;
1231
1232 /*
1233 * Set the new multiplier for each CPU. CPUs don't start using the
1234 * new values until the next timer interrupt in which they do process
1235 * accounting.
1236 */
1237 for (i = 0; i < NR_CPUS; ++i)
1238 per_cpu(prof_multiplier, i) = multiplier;
1239
1240 return 0;
1241 }
1242
1243 /* This is a bit of a mess, but forced on us by the genirq changes
1244 * there's no genirq handler that really does what voyager wants
1245 * so hack it up with the simple IRQ handler */
1246 static void handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1247 {
1248 before_handle_vic_irq(irq);
1249 handle_simple_irq(irq, desc);
1250 after_handle_vic_irq(irq);
1251 }
1252
1253 /* The CPIs are handled in the per cpu 8259s, so they must be
1254 * enabled to be received: FIX: enabling the CPIs in the early
1255 * boot sequence interferes with bug checking; enable them later
1256 * on in smp_init */
1257 #define VIC_SET_GATE(cpi, vector) \
1258 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1259 #define QIC_SET_GATE(cpi, vector) \
1260 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1261
1262 void __init voyager_smp_intr_init(void)
1263 {
1264 int i;
1265
1266 /* initialize the per cpu irq mask to all disabled */
1267 for (i = 0; i < NR_CPUS; i++)
1268 vic_irq_mask[i] = 0xFFFF;
1269
1270 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1271
1272 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1273 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1274
1275 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1276 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1277 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1278 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1279 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1280
1281 /* now put the VIC descriptor into the first 48 IRQs
1282 *
1283 * This is for later: first 16 correspond to PC IRQs; next 16
1284 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1285 for (i = 0; i < 48; i++)
1286 set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1287 }
1288
1289 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1290 * processor to receive CPI */
1291 static void send_CPI(__u32 cpuset, __u8 cpi)
1292 {
1293 int cpu;
1294 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1295
1296 if (cpi < VIC_START_FAKE_CPI) {
1297 /* fake CPI are only used for booting, so send to the
1298 * extended quads as well---Quads must be VIC booted */
1299 outb((__u8) (cpuset), VIC_CPI_Registers[cpi]);
1300 return;
1301 }
1302 if (quad_cpuset)
1303 send_QIC_CPI(quad_cpuset, cpi);
1304 cpuset &= ~quad_cpuset;
1305 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1306 if (cpuset == 0)
1307 return;
1308 for_each_online_cpu(cpu) {
1309 if (cpuset & (1 << cpu))
1310 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1311 }
1312 if (cpuset)
1313 outb((__u8) cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1314 }
1315
1316 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1317 * set the cache line to shared by reading it.
1318 *
1319 * DON'T make this inline otherwise the cache line read will be
1320 * optimised away
1321 * */
1322 static int ack_QIC_CPI(__u8 cpi)
1323 {
1324 __u8 cpu = hard_smp_processor_id();
1325
1326 cpi &= 7;
1327
1328 outb(1 << cpi, QIC_INTERRUPT_CLEAR1);
1329 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1330 }
1331
1332 static void ack_special_QIC_CPI(__u8 cpi)
1333 {
1334 switch (cpi) {
1335 case VIC_CMN_INT:
1336 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1337 break;
1338 case VIC_SYS_INT:
1339 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1340 break;
1341 }
1342 /* also clear at the VIC, just in case (nop for non-extended proc) */
1343 ack_VIC_CPI(cpi);
1344 }
1345
1346 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1347 static void ack_VIC_CPI(__u8 cpi)
1348 {
1349 #ifdef VOYAGER_DEBUG
1350 unsigned long flags;
1351 __u16 isr;
1352 __u8 cpu = smp_processor_id();
1353
1354 local_irq_save(flags);
1355 isr = vic_read_isr();
1356 if ((isr & (1 << (cpi & 7))) == 0) {
1357 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1358 }
1359 #endif
1360 /* send specific EOI; the two system interrupts have
1361 * bit 4 set for a separate vector but behave as the
1362 * corresponding 3 bit intr */
1363 outb_p(0x60 | (cpi & 7), 0x20);
1364
1365 #ifdef VOYAGER_DEBUG
1366 if ((vic_read_isr() & (1 << (cpi & 7))) != 0) {
1367 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1368 }
1369 local_irq_restore(flags);
1370 #endif
1371 }
1372
1373 /* cribbed with thanks from irq.c */
1374 #define __byte(x,y) (((unsigned char *)&(y))[x])
1375 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1376 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1377
1378 static unsigned int startup_vic_irq(unsigned int irq)
1379 {
1380 unmask_vic_irq(irq);
1381
1382 return 0;
1383 }
1384
1385 /* The enable and disable routines. This is where we run into
1386 * conflicting architectural philosophy. Fundamentally, the voyager
1387 * architecture does not expect to have to disable interrupts globally
1388 * (the IRQ controllers belong to each CPU). The processor masquerade
1389 * which is used to start the system shouldn't be used in a running OS
1390 * since it will cause great confusion if two separate CPUs drive to
1391 * the same IRQ controller (I know, I've tried it).
1392 *
1393 * The solution is a variant on the NCR lazy SPL design:
1394 *
1395 * 1) To disable an interrupt, do nothing (other than set the
1396 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1397 *
1398 * 2) If the interrupt dares to come in, raise the local mask against
1399 * it (this will result in all the CPU masks being raised
1400 * eventually).
1401 *
1402 * 3) To enable the interrupt, lower the mask on the local CPU and
1403 * broadcast an Interrupt enable CPI which causes all other CPUs to
1404 * adjust their masks accordingly. */
1405
1406 static void unmask_vic_irq(unsigned int irq)
1407 {
1408 /* linux doesn't to processor-irq affinity, so enable on
1409 * all CPUs we know about */
1410 int cpu = smp_processor_id(), real_cpu;
1411 __u16 mask = (1 << irq);
1412 __u32 processorList = 0;
1413 unsigned long flags;
1414
1415 VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1416 irq, cpu, cpu_irq_affinity[cpu]));
1417 spin_lock_irqsave(&vic_irq_lock, flags);
1418 for_each_online_cpu(real_cpu) {
1419 if (!(voyager_extended_vic_processors & (1 << real_cpu)))
1420 continue;
1421 if (!(cpu_irq_affinity[real_cpu] & mask)) {
1422 /* irq has no affinity for this CPU, ignore */
1423 continue;
1424 }
1425 if (real_cpu == cpu) {
1426 enable_local_vic_irq(irq);
1427 } else if (vic_irq_mask[real_cpu] & mask) {
1428 vic_irq_enable_mask[real_cpu] |= mask;
1429 processorList |= (1 << real_cpu);
1430 }
1431 }
1432 spin_unlock_irqrestore(&vic_irq_lock, flags);
1433 if (processorList)
1434 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1435 }
1436
1437 static void mask_vic_irq(unsigned int irq)
1438 {
1439 /* lazy disable, do nothing */
1440 }
1441
1442 static void enable_local_vic_irq(unsigned int irq)
1443 {
1444 __u8 cpu = smp_processor_id();
1445 __u16 mask = ~(1 << irq);
1446 __u16 old_mask = vic_irq_mask[cpu];
1447
1448 vic_irq_mask[cpu] &= mask;
1449 if (vic_irq_mask[cpu] == old_mask)
1450 return;
1451
1452 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1453 irq, cpu));
1454
1455 if (irq & 8) {
1456 outb_p(cached_A1(cpu), 0xA1);
1457 (void)inb_p(0xA1);
1458 } else {
1459 outb_p(cached_21(cpu), 0x21);
1460 (void)inb_p(0x21);
1461 }
1462 }
1463
1464 static void disable_local_vic_irq(unsigned int irq)
1465 {
1466 __u8 cpu = smp_processor_id();
1467 __u16 mask = (1 << irq);
1468 __u16 old_mask = vic_irq_mask[cpu];
1469
1470 if (irq == 7)
1471 return;
1472
1473 vic_irq_mask[cpu] |= mask;
1474 if (old_mask == vic_irq_mask[cpu])
1475 return;
1476
1477 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1478 irq, cpu));
1479
1480 if (irq & 8) {
1481 outb_p(cached_A1(cpu), 0xA1);
1482 (void)inb_p(0xA1);
1483 } else {
1484 outb_p(cached_21(cpu), 0x21);
1485 (void)inb_p(0x21);
1486 }
1487 }
1488
1489 /* The VIC is level triggered, so the ack can only be issued after the
1490 * interrupt completes. However, we do Voyager lazy interrupt
1491 * handling here: It is an extremely expensive operation to mask an
1492 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1493 * this interrupt actually comes in, then we mask and ack here to push
1494 * the interrupt off to another CPU */
1495 static void before_handle_vic_irq(unsigned int irq)
1496 {
1497 irq_desc_t *desc = irq_to_desc(irq);
1498 __u8 cpu = smp_processor_id();
1499
1500 _raw_spin_lock(&vic_irq_lock);
1501 vic_intr_total++;
1502 vic_intr_count[cpu]++;
1503
1504 if (!(cpu_irq_affinity[cpu] & (1 << irq))) {
1505 /* The irq is not in our affinity mask, push it off
1506 * onto another CPU */
1507 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d "
1508 "on cpu %d\n", irq, cpu));
1509 disable_local_vic_irq(irq);
1510 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1511 * actually calling the interrupt routine */
1512 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1513 } else if (desc->status & IRQ_DISABLED) {
1514 /* Damn, the interrupt actually arrived, do the lazy
1515 * disable thing. The interrupt routine in irq.c will
1516 * not handle a IRQ_DISABLED interrupt, so nothing more
1517 * need be done here */
1518 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1519 irq, cpu));
1520 disable_local_vic_irq(irq);
1521 desc->status |= IRQ_REPLAY;
1522 } else {
1523 desc->status &= ~IRQ_REPLAY;
1524 }
1525
1526 _raw_spin_unlock(&vic_irq_lock);
1527 }
1528
1529 /* Finish the VIC interrupt: basically mask */
1530 static void after_handle_vic_irq(unsigned int irq)
1531 {
1532 irq_desc_t *desc = irq_to_desc(irq);
1533
1534 _raw_spin_lock(&vic_irq_lock);
1535 {
1536 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1537 #ifdef VOYAGER_DEBUG
1538 __u16 isr;
1539 #endif
1540
1541 desc->status = status;
1542 if ((status & IRQ_DISABLED))
1543 disable_local_vic_irq(irq);
1544 #ifdef VOYAGER_DEBUG
1545 /* DEBUG: before we ack, check what's in progress */
1546 isr = vic_read_isr();
1547 if ((isr & (1 << irq) && !(status & IRQ_REPLAY)) == 0) {
1548 int i;
1549 __u8 cpu = smp_processor_id();
1550 __u8 real_cpu;
1551 int mask; /* Um... initialize me??? --RR */
1552
1553 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1554 cpu, irq);
1555 for_each_possible_cpu(real_cpu, mask) {
1556
1557 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1558 VIC_PROCESSOR_ID);
1559 isr = vic_read_isr();
1560 if (isr & (1 << irq)) {
1561 printk
1562 ("VOYAGER SMP: CPU%d ack irq %d\n",
1563 real_cpu, irq);
1564 ack_vic_irq(irq);
1565 }
1566 outb(cpu, VIC_PROCESSOR_ID);
1567 }
1568 }
1569 #endif /* VOYAGER_DEBUG */
1570 /* as soon as we ack, the interrupt is eligible for
1571 * receipt by another CPU so everything must be in
1572 * order here */
1573 ack_vic_irq(irq);
1574 if (status & IRQ_REPLAY) {
1575 /* replay is set if we disable the interrupt
1576 * in the before_handle_vic_irq() routine, so
1577 * clear the in progress bit here to allow the
1578 * next CPU to handle this correctly */
1579 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1580 }
1581 #ifdef VOYAGER_DEBUG
1582 isr = vic_read_isr();
1583 if ((isr & (1 << irq)) != 0)
1584 printk("VOYAGER SMP: after_handle_vic_irq() after "
1585 "ack irq=%d, isr=0x%x\n", irq, isr);
1586 #endif /* VOYAGER_DEBUG */
1587 }
1588 _raw_spin_unlock(&vic_irq_lock);
1589
1590 /* All code after this point is out of the main path - the IRQ
1591 * may be intercepted by another CPU if reasserted */
1592 }
1593
1594 /* Linux processor - interrupt affinity manipulations.
1595 *
1596 * For each processor, we maintain a 32 bit irq affinity mask.
1597 * Initially it is set to all 1's so every processor accepts every
1598 * interrupt. In this call, we change the processor's affinity mask:
1599 *
1600 * Change from enable to disable:
1601 *
1602 * If the interrupt ever comes in to the processor, we will disable it
1603 * and ack it to push it off to another CPU, so just accept the mask here.
1604 *
1605 * Change from disable to enable:
1606 *
1607 * change the mask and then do an interrupt enable CPI to re-enable on
1608 * the selected processors */
1609
1610 void set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1611 {
1612 /* Only extended processors handle interrupts */
1613 unsigned long real_mask;
1614 unsigned long irq_mask = 1 << irq;
1615 int cpu;
1616
1617 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1618
1619 if (cpus_addr(mask)[0] == 0)
1620 /* can't have no CPUs to accept the interrupt -- extremely
1621 * bad things will happen */
1622 return;
1623
1624 if (irq == 0)
1625 /* can't change the affinity of the timer IRQ. This
1626 * is due to the constraint in the voyager
1627 * architecture that the CPI also comes in on and IRQ
1628 * line and we have chosen IRQ0 for this. If you
1629 * raise the mask on this interrupt, the processor
1630 * will no-longer be able to accept VIC CPIs */
1631 return;
1632
1633 if (irq >= 32)
1634 /* You can only have 32 interrupts in a voyager system
1635 * (and 32 only if you have a secondary microchannel
1636 * bus) */
1637 return;
1638
1639 for_each_online_cpu(cpu) {
1640 unsigned long cpu_mask = 1 << cpu;
1641
1642 if (cpu_mask & real_mask) {
1643 /* enable the interrupt for this cpu */
1644 cpu_irq_affinity[cpu] |= irq_mask;
1645 } else {
1646 /* disable the interrupt for this cpu */
1647 cpu_irq_affinity[cpu] &= ~irq_mask;
1648 }
1649 }
1650 /* this is magic, we now have the correct affinity maps, so
1651 * enable the interrupt. This will send an enable CPI to
1652 * those CPUs who need to enable it in their local masks,
1653 * causing them to correct for the new affinity . If the
1654 * interrupt is currently globally disabled, it will simply be
1655 * disabled again as it comes in (voyager lazy disable). If
1656 * the affinity map is tightened to disable the interrupt on a
1657 * cpu, it will be pushed off when it comes in */
1658 unmask_vic_irq(irq);
1659 }
1660
1661 static void ack_vic_irq(unsigned int irq)
1662 {
1663 if (irq & 8) {
1664 outb(0x62, 0x20); /* Specific EOI to cascade */
1665 outb(0x60 | (irq & 7), 0xA0);
1666 } else {
1667 outb(0x60 | (irq & 7), 0x20);
1668 }
1669 }
1670
1671 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1672 * but are not vectored by it. This means that the 8259 mask must be
1673 * lowered to receive them */
1674 static __init void vic_enable_cpi(void)
1675 {
1676 __u8 cpu = smp_processor_id();
1677
1678 /* just take a copy of the current mask (nop for boot cpu) */
1679 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1680
1681 enable_local_vic_irq(VIC_CPI_LEVEL0);
1682 enable_local_vic_irq(VIC_CPI_LEVEL1);
1683 /* for sys int and cmn int */
1684 enable_local_vic_irq(7);
1685
1686 if (is_cpu_quad()) {
1687 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1688 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1689 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1690 cpu, QIC_CPI_ENABLE));
1691 }
1692
1693 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1694 cpu, vic_irq_mask[cpu]));
1695 }
1696
1697 void voyager_smp_dump()
1698 {
1699 int old_cpu = smp_processor_id(), cpu;
1700
1701 /* dump the interrupt masks of each processor */
1702 for_each_online_cpu(cpu) {
1703 __u16 imr, isr, irr;
1704 unsigned long flags;
1705
1706 local_irq_save(flags);
1707 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1708 imr = (inb(0xa1) << 8) | inb(0x21);
1709 outb(0x0a, 0xa0);
1710 irr = inb(0xa0) << 8;
1711 outb(0x0a, 0x20);
1712 irr |= inb(0x20);
1713 outb(0x0b, 0xa0);
1714 isr = inb(0xa0) << 8;
1715 outb(0x0b, 0x20);
1716 isr |= inb(0x20);
1717 outb(old_cpu, VIC_PROCESSOR_ID);
1718 local_irq_restore(flags);
1719 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1720 cpu, vic_irq_mask[cpu], imr, irr, isr);
1721 #if 0
1722 /* These lines are put in to try to unstick an un ack'd irq */
1723 if (isr != 0) {
1724 int irq;
1725 for (irq = 0; irq < 16; irq++) {
1726 if (isr & (1 << irq)) {
1727 printk("\tCPU%d: ack irq %d\n",
1728 cpu, irq);
1729 local_irq_save(flags);
1730 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1731 VIC_PROCESSOR_ID);
1732 ack_vic_irq(irq);
1733 outb(old_cpu, VIC_PROCESSOR_ID);
1734 local_irq_restore(flags);
1735 }
1736 }
1737 }
1738 #endif
1739 }
1740 }
1741
1742 void smp_voyager_power_off(void *dummy)
1743 {
1744 if (smp_processor_id() == boot_cpu_id)
1745 voyager_power_off();
1746 else
1747 smp_stop_cpu_function(NULL);
1748 }
1749
1750 static void __init voyager_smp_prepare_cpus(unsigned int max_cpus)
1751 {
1752 /* FIXME: ignore max_cpus for now */
1753 smp_boot_cpus();
1754 }
1755
1756 static void __cpuinit voyager_smp_prepare_boot_cpu(void)
1757 {
1758 init_gdt(smp_processor_id());
1759 switch_to_new_gdt();
1760
1761 cpu_set(smp_processor_id(), cpu_online_map);
1762 cpu_set(smp_processor_id(), cpu_callout_map);
1763 cpu_set(smp_processor_id(), cpu_possible_map);
1764 cpu_set(smp_processor_id(), cpu_present_map);
1765 }
1766
1767 static int __cpuinit voyager_cpu_up(unsigned int cpu)
1768 {
1769 /* This only works at boot for x86. See "rewrite" above. */
1770 if (cpu_isset(cpu, smp_commenced_mask))
1771 return -ENOSYS;
1772
1773 /* In case one didn't come up */
1774 if (!cpu_isset(cpu, cpu_callin_map))
1775 return -EIO;
1776 /* Unleash the CPU! */
1777 cpu_set(cpu, smp_commenced_mask);
1778 while (!cpu_online(cpu))
1779 mb();
1780 return 0;
1781 }
1782
1783 static void __init voyager_smp_cpus_done(unsigned int max_cpus)
1784 {
1785 zap_low_mappings();
1786 }
1787
1788 void __init smp_setup_processor_id(void)
1789 {
1790 current_thread_info()->cpu = hard_smp_processor_id();
1791 x86_write_percpu(cpu_number, hard_smp_processor_id());
1792 }
1793
1794 static void voyager_send_call_func(cpumask_t callmask)
1795 {
1796 __u32 mask = cpus_addr(callmask)[0] & ~(1 << smp_processor_id());
1797 send_CPI(mask, VIC_CALL_FUNCTION_CPI);
1798 }
1799
1800 static void voyager_send_call_func_single(int cpu)
1801 {
1802 send_CPI(1 << cpu, VIC_CALL_FUNCTION_SINGLE_CPI);
1803 }
1804
1805 struct smp_ops smp_ops = {
1806 .smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu,
1807 .smp_prepare_cpus = voyager_smp_prepare_cpus,
1808 .cpu_up = voyager_cpu_up,
1809 .smp_cpus_done = voyager_smp_cpus_done,
1810
1811 .smp_send_stop = voyager_smp_send_stop,
1812 .smp_send_reschedule = voyager_smp_send_reschedule,
1813
1814 .send_call_func_ipi = voyager_send_call_func,
1815 .send_call_func_single_ipi = voyager_send_call_func_single,
1816 };