KVM: allow userspace to adjust kvmclock offset
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
43 #include "trace.h"
44
45 #include <asm/uaccess.h>
46 #include <asm/msr.h>
47 #include <asm/desc.h>
48 #include <asm/mtrr.h>
49 #include <asm/mce.h>
50
51 #define MAX_IO_MSRS 256
52 #define CR0_RESERVED_BITS \
53 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
54 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
55 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
56 #define CR4_RESERVED_BITS \
57 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
58 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
59 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
60 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
61
62 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
63
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
66
67 /* EFER defaults:
68 * - enable syscall per default because its emulated by KVM
69 * - enable LME and LMA per default on 64 bit KVM
70 */
71 #ifdef CONFIG_X86_64
72 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
73 #else
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
75 #endif
76
77 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
78 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
79
80 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
81 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
82 struct kvm_cpuid_entry2 __user *entries);
83
84 struct kvm_x86_ops *kvm_x86_ops;
85 EXPORT_SYMBOL_GPL(kvm_x86_ops);
86
87 int ignore_msrs = 0;
88 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
89
90 struct kvm_stats_debugfs_item debugfs_entries[] = {
91 { "pf_fixed", VCPU_STAT(pf_fixed) },
92 { "pf_guest", VCPU_STAT(pf_guest) },
93 { "tlb_flush", VCPU_STAT(tlb_flush) },
94 { "invlpg", VCPU_STAT(invlpg) },
95 { "exits", VCPU_STAT(exits) },
96 { "io_exits", VCPU_STAT(io_exits) },
97 { "mmio_exits", VCPU_STAT(mmio_exits) },
98 { "signal_exits", VCPU_STAT(signal_exits) },
99 { "irq_window", VCPU_STAT(irq_window_exits) },
100 { "nmi_window", VCPU_STAT(nmi_window_exits) },
101 { "halt_exits", VCPU_STAT(halt_exits) },
102 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
103 { "hypercalls", VCPU_STAT(hypercalls) },
104 { "request_irq", VCPU_STAT(request_irq_exits) },
105 { "irq_exits", VCPU_STAT(irq_exits) },
106 { "host_state_reload", VCPU_STAT(host_state_reload) },
107 { "efer_reload", VCPU_STAT(efer_reload) },
108 { "fpu_reload", VCPU_STAT(fpu_reload) },
109 { "insn_emulation", VCPU_STAT(insn_emulation) },
110 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
111 { "irq_injections", VCPU_STAT(irq_injections) },
112 { "nmi_injections", VCPU_STAT(nmi_injections) },
113 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
114 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
115 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
116 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
117 { "mmu_flooded", VM_STAT(mmu_flooded) },
118 { "mmu_recycled", VM_STAT(mmu_recycled) },
119 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
120 { "mmu_unsync", VM_STAT(mmu_unsync) },
121 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
122 { "largepages", VM_STAT(lpages) },
123 { NULL }
124 };
125
126 unsigned long segment_base(u16 selector)
127 {
128 struct descriptor_table gdt;
129 struct desc_struct *d;
130 unsigned long table_base;
131 unsigned long v;
132
133 if (selector == 0)
134 return 0;
135
136 kvm_get_gdt(&gdt);
137 table_base = gdt.base;
138
139 if (selector & 4) { /* from ldt */
140 u16 ldt_selector = kvm_read_ldt();
141
142 table_base = segment_base(ldt_selector);
143 }
144 d = (struct desc_struct *)(table_base + (selector & ~7));
145 v = get_desc_base(d);
146 #ifdef CONFIG_X86_64
147 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
148 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
149 #endif
150 return v;
151 }
152 EXPORT_SYMBOL_GPL(segment_base);
153
154 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
155 {
156 if (irqchip_in_kernel(vcpu->kvm))
157 return vcpu->arch.apic_base;
158 else
159 return vcpu->arch.apic_base;
160 }
161 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
162
163 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
164 {
165 /* TODO: reserve bits check */
166 if (irqchip_in_kernel(vcpu->kvm))
167 kvm_lapic_set_base(vcpu, data);
168 else
169 vcpu->arch.apic_base = data;
170 }
171 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
172
173 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
174 {
175 WARN_ON(vcpu->arch.exception.pending);
176 vcpu->arch.exception.pending = true;
177 vcpu->arch.exception.has_error_code = false;
178 vcpu->arch.exception.nr = nr;
179 }
180 EXPORT_SYMBOL_GPL(kvm_queue_exception);
181
182 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
183 u32 error_code)
184 {
185 ++vcpu->stat.pf_guest;
186
187 if (vcpu->arch.exception.pending) {
188 switch(vcpu->arch.exception.nr) {
189 case DF_VECTOR:
190 /* triple fault -> shutdown */
191 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
192 return;
193 case PF_VECTOR:
194 vcpu->arch.exception.nr = DF_VECTOR;
195 vcpu->arch.exception.error_code = 0;
196 return;
197 default:
198 /* replace previous exception with a new one in a hope
199 that instruction re-execution will regenerate lost
200 exception */
201 vcpu->arch.exception.pending = false;
202 break;
203 }
204 }
205 vcpu->arch.cr2 = addr;
206 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
207 }
208
209 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
210 {
211 vcpu->arch.nmi_pending = 1;
212 }
213 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
214
215 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
216 {
217 WARN_ON(vcpu->arch.exception.pending);
218 vcpu->arch.exception.pending = true;
219 vcpu->arch.exception.has_error_code = true;
220 vcpu->arch.exception.nr = nr;
221 vcpu->arch.exception.error_code = error_code;
222 }
223 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
224
225 /*
226 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
227 * a #GP and return false.
228 */
229 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
230 {
231 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
232 return true;
233 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
234 return false;
235 }
236 EXPORT_SYMBOL_GPL(kvm_require_cpl);
237
238 /*
239 * Load the pae pdptrs. Return true is they are all valid.
240 */
241 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
242 {
243 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
244 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
245 int i;
246 int ret;
247 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
248
249 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
250 offset * sizeof(u64), sizeof(pdpte));
251 if (ret < 0) {
252 ret = 0;
253 goto out;
254 }
255 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
256 if (is_present_gpte(pdpte[i]) &&
257 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
258 ret = 0;
259 goto out;
260 }
261 }
262 ret = 1;
263
264 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
265 __set_bit(VCPU_EXREG_PDPTR,
266 (unsigned long *)&vcpu->arch.regs_avail);
267 __set_bit(VCPU_EXREG_PDPTR,
268 (unsigned long *)&vcpu->arch.regs_dirty);
269 out:
270
271 return ret;
272 }
273 EXPORT_SYMBOL_GPL(load_pdptrs);
274
275 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
276 {
277 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
278 bool changed = true;
279 int r;
280
281 if (is_long_mode(vcpu) || !is_pae(vcpu))
282 return false;
283
284 if (!test_bit(VCPU_EXREG_PDPTR,
285 (unsigned long *)&vcpu->arch.regs_avail))
286 return true;
287
288 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
289 if (r < 0)
290 goto out;
291 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
292 out:
293
294 return changed;
295 }
296
297 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
298 {
299 if (cr0 & CR0_RESERVED_BITS) {
300 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
301 cr0, vcpu->arch.cr0);
302 kvm_inject_gp(vcpu, 0);
303 return;
304 }
305
306 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
307 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
308 kvm_inject_gp(vcpu, 0);
309 return;
310 }
311
312 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
313 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
314 "and a clear PE flag\n");
315 kvm_inject_gp(vcpu, 0);
316 return;
317 }
318
319 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
320 #ifdef CONFIG_X86_64
321 if ((vcpu->arch.shadow_efer & EFER_LME)) {
322 int cs_db, cs_l;
323
324 if (!is_pae(vcpu)) {
325 printk(KERN_DEBUG "set_cr0: #GP, start paging "
326 "in long mode while PAE is disabled\n");
327 kvm_inject_gp(vcpu, 0);
328 return;
329 }
330 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
331 if (cs_l) {
332 printk(KERN_DEBUG "set_cr0: #GP, start paging "
333 "in long mode while CS.L == 1\n");
334 kvm_inject_gp(vcpu, 0);
335 return;
336
337 }
338 } else
339 #endif
340 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
341 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
342 "reserved bits\n");
343 kvm_inject_gp(vcpu, 0);
344 return;
345 }
346
347 }
348
349 kvm_x86_ops->set_cr0(vcpu, cr0);
350 vcpu->arch.cr0 = cr0;
351
352 kvm_mmu_reset_context(vcpu);
353 return;
354 }
355 EXPORT_SYMBOL_GPL(kvm_set_cr0);
356
357 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
358 {
359 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
360 }
361 EXPORT_SYMBOL_GPL(kvm_lmsw);
362
363 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
364 {
365 unsigned long old_cr4 = vcpu->arch.cr4;
366 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
367
368 if (cr4 & CR4_RESERVED_BITS) {
369 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
370 kvm_inject_gp(vcpu, 0);
371 return;
372 }
373
374 if (is_long_mode(vcpu)) {
375 if (!(cr4 & X86_CR4_PAE)) {
376 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
377 "in long mode\n");
378 kvm_inject_gp(vcpu, 0);
379 return;
380 }
381 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
382 && ((cr4 ^ old_cr4) & pdptr_bits)
383 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
384 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
385 kvm_inject_gp(vcpu, 0);
386 return;
387 }
388
389 if (cr4 & X86_CR4_VMXE) {
390 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
391 kvm_inject_gp(vcpu, 0);
392 return;
393 }
394 kvm_x86_ops->set_cr4(vcpu, cr4);
395 vcpu->arch.cr4 = cr4;
396 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
397 kvm_mmu_reset_context(vcpu);
398 }
399 EXPORT_SYMBOL_GPL(kvm_set_cr4);
400
401 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
402 {
403 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
404 kvm_mmu_sync_roots(vcpu);
405 kvm_mmu_flush_tlb(vcpu);
406 return;
407 }
408
409 if (is_long_mode(vcpu)) {
410 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
411 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
412 kvm_inject_gp(vcpu, 0);
413 return;
414 }
415 } else {
416 if (is_pae(vcpu)) {
417 if (cr3 & CR3_PAE_RESERVED_BITS) {
418 printk(KERN_DEBUG
419 "set_cr3: #GP, reserved bits\n");
420 kvm_inject_gp(vcpu, 0);
421 return;
422 }
423 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
424 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
425 "reserved bits\n");
426 kvm_inject_gp(vcpu, 0);
427 return;
428 }
429 }
430 /*
431 * We don't check reserved bits in nonpae mode, because
432 * this isn't enforced, and VMware depends on this.
433 */
434 }
435
436 /*
437 * Does the new cr3 value map to physical memory? (Note, we
438 * catch an invalid cr3 even in real-mode, because it would
439 * cause trouble later on when we turn on paging anyway.)
440 *
441 * A real CPU would silently accept an invalid cr3 and would
442 * attempt to use it - with largely undefined (and often hard
443 * to debug) behavior on the guest side.
444 */
445 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
446 kvm_inject_gp(vcpu, 0);
447 else {
448 vcpu->arch.cr3 = cr3;
449 vcpu->arch.mmu.new_cr3(vcpu);
450 }
451 }
452 EXPORT_SYMBOL_GPL(kvm_set_cr3);
453
454 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
455 {
456 if (cr8 & CR8_RESERVED_BITS) {
457 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
458 kvm_inject_gp(vcpu, 0);
459 return;
460 }
461 if (irqchip_in_kernel(vcpu->kvm))
462 kvm_lapic_set_tpr(vcpu, cr8);
463 else
464 vcpu->arch.cr8 = cr8;
465 }
466 EXPORT_SYMBOL_GPL(kvm_set_cr8);
467
468 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
469 {
470 if (irqchip_in_kernel(vcpu->kvm))
471 return kvm_lapic_get_cr8(vcpu);
472 else
473 return vcpu->arch.cr8;
474 }
475 EXPORT_SYMBOL_GPL(kvm_get_cr8);
476
477 static inline u32 bit(int bitno)
478 {
479 return 1 << (bitno & 31);
480 }
481
482 /*
483 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
484 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
485 *
486 * This list is modified at module load time to reflect the
487 * capabilities of the host cpu. This capabilities test skips MSRs that are
488 * kvm-specific. Those are put in the beginning of the list.
489 */
490
491 #define KVM_SAVE_MSRS_BEGIN 2
492 static u32 msrs_to_save[] = {
493 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
494 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
495 MSR_K6_STAR,
496 #ifdef CONFIG_X86_64
497 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
498 #endif
499 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
500 };
501
502 static unsigned num_msrs_to_save;
503
504 static u32 emulated_msrs[] = {
505 MSR_IA32_MISC_ENABLE,
506 };
507
508 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
509 {
510 if (efer & efer_reserved_bits) {
511 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
512 efer);
513 kvm_inject_gp(vcpu, 0);
514 return;
515 }
516
517 if (is_paging(vcpu)
518 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
519 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
520 kvm_inject_gp(vcpu, 0);
521 return;
522 }
523
524 if (efer & EFER_FFXSR) {
525 struct kvm_cpuid_entry2 *feat;
526
527 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
528 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
529 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
530 kvm_inject_gp(vcpu, 0);
531 return;
532 }
533 }
534
535 if (efer & EFER_SVME) {
536 struct kvm_cpuid_entry2 *feat;
537
538 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
539 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
540 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
541 kvm_inject_gp(vcpu, 0);
542 return;
543 }
544 }
545
546 kvm_x86_ops->set_efer(vcpu, efer);
547
548 efer &= ~EFER_LMA;
549 efer |= vcpu->arch.shadow_efer & EFER_LMA;
550
551 vcpu->arch.shadow_efer = efer;
552
553 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
554 kvm_mmu_reset_context(vcpu);
555 }
556
557 void kvm_enable_efer_bits(u64 mask)
558 {
559 efer_reserved_bits &= ~mask;
560 }
561 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
562
563
564 /*
565 * Writes msr value into into the appropriate "register".
566 * Returns 0 on success, non-0 otherwise.
567 * Assumes vcpu_load() was already called.
568 */
569 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
570 {
571 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
572 }
573
574 /*
575 * Adapt set_msr() to msr_io()'s calling convention
576 */
577 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
578 {
579 return kvm_set_msr(vcpu, index, *data);
580 }
581
582 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
583 {
584 static int version;
585 struct pvclock_wall_clock wc;
586 struct timespec now, sys, boot;
587
588 if (!wall_clock)
589 return;
590
591 version++;
592
593 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
594
595 /*
596 * The guest calculates current wall clock time by adding
597 * system time (updated by kvm_write_guest_time below) to the
598 * wall clock specified here. guest system time equals host
599 * system time for us, thus we must fill in host boot time here.
600 */
601 now = current_kernel_time();
602 ktime_get_ts(&sys);
603 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
604
605 wc.sec = boot.tv_sec;
606 wc.nsec = boot.tv_nsec;
607 wc.version = version;
608
609 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
610
611 version++;
612 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
613 }
614
615 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
616 {
617 uint32_t quotient, remainder;
618
619 /* Don't try to replace with do_div(), this one calculates
620 * "(dividend << 32) / divisor" */
621 __asm__ ( "divl %4"
622 : "=a" (quotient), "=d" (remainder)
623 : "0" (0), "1" (dividend), "r" (divisor) );
624 return quotient;
625 }
626
627 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
628 {
629 uint64_t nsecs = 1000000000LL;
630 int32_t shift = 0;
631 uint64_t tps64;
632 uint32_t tps32;
633
634 tps64 = tsc_khz * 1000LL;
635 while (tps64 > nsecs*2) {
636 tps64 >>= 1;
637 shift--;
638 }
639
640 tps32 = (uint32_t)tps64;
641 while (tps32 <= (uint32_t)nsecs) {
642 tps32 <<= 1;
643 shift++;
644 }
645
646 hv_clock->tsc_shift = shift;
647 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
648
649 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
650 __func__, tsc_khz, hv_clock->tsc_shift,
651 hv_clock->tsc_to_system_mul);
652 }
653
654 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
655
656 static void kvm_write_guest_time(struct kvm_vcpu *v)
657 {
658 struct timespec ts;
659 unsigned long flags;
660 struct kvm_vcpu_arch *vcpu = &v->arch;
661 void *shared_kaddr;
662 unsigned long this_tsc_khz;
663
664 if ((!vcpu->time_page))
665 return;
666
667 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
668 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
669 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
670 vcpu->hv_clock_tsc_khz = this_tsc_khz;
671 }
672 put_cpu_var(cpu_tsc_khz);
673
674 /* Keep irq disabled to prevent changes to the clock */
675 local_irq_save(flags);
676 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
677 ktime_get_ts(&ts);
678 local_irq_restore(flags);
679
680 /* With all the info we got, fill in the values */
681
682 vcpu->hv_clock.system_time = ts.tv_nsec +
683 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
684
685 /*
686 * The interface expects us to write an even number signaling that the
687 * update is finished. Since the guest won't see the intermediate
688 * state, we just increase by 2 at the end.
689 */
690 vcpu->hv_clock.version += 2;
691
692 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
693
694 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
695 sizeof(vcpu->hv_clock));
696
697 kunmap_atomic(shared_kaddr, KM_USER0);
698
699 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
700 }
701
702 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
703 {
704 struct kvm_vcpu_arch *vcpu = &v->arch;
705
706 if (!vcpu->time_page)
707 return 0;
708 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
709 return 1;
710 }
711
712 static bool msr_mtrr_valid(unsigned msr)
713 {
714 switch (msr) {
715 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
716 case MSR_MTRRfix64K_00000:
717 case MSR_MTRRfix16K_80000:
718 case MSR_MTRRfix16K_A0000:
719 case MSR_MTRRfix4K_C0000:
720 case MSR_MTRRfix4K_C8000:
721 case MSR_MTRRfix4K_D0000:
722 case MSR_MTRRfix4K_D8000:
723 case MSR_MTRRfix4K_E0000:
724 case MSR_MTRRfix4K_E8000:
725 case MSR_MTRRfix4K_F0000:
726 case MSR_MTRRfix4K_F8000:
727 case MSR_MTRRdefType:
728 case MSR_IA32_CR_PAT:
729 return true;
730 case 0x2f8:
731 return true;
732 }
733 return false;
734 }
735
736 static bool valid_pat_type(unsigned t)
737 {
738 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
739 }
740
741 static bool valid_mtrr_type(unsigned t)
742 {
743 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
744 }
745
746 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
747 {
748 int i;
749
750 if (!msr_mtrr_valid(msr))
751 return false;
752
753 if (msr == MSR_IA32_CR_PAT) {
754 for (i = 0; i < 8; i++)
755 if (!valid_pat_type((data >> (i * 8)) & 0xff))
756 return false;
757 return true;
758 } else if (msr == MSR_MTRRdefType) {
759 if (data & ~0xcff)
760 return false;
761 return valid_mtrr_type(data & 0xff);
762 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
763 for (i = 0; i < 8 ; i++)
764 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
765 return false;
766 return true;
767 }
768
769 /* variable MTRRs */
770 return valid_mtrr_type(data & 0xff);
771 }
772
773 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
774 {
775 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
776
777 if (!mtrr_valid(vcpu, msr, data))
778 return 1;
779
780 if (msr == MSR_MTRRdefType) {
781 vcpu->arch.mtrr_state.def_type = data;
782 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
783 } else if (msr == MSR_MTRRfix64K_00000)
784 p[0] = data;
785 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
786 p[1 + msr - MSR_MTRRfix16K_80000] = data;
787 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
788 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
789 else if (msr == MSR_IA32_CR_PAT)
790 vcpu->arch.pat = data;
791 else { /* Variable MTRRs */
792 int idx, is_mtrr_mask;
793 u64 *pt;
794
795 idx = (msr - 0x200) / 2;
796 is_mtrr_mask = msr - 0x200 - 2 * idx;
797 if (!is_mtrr_mask)
798 pt =
799 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
800 else
801 pt =
802 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
803 *pt = data;
804 }
805
806 kvm_mmu_reset_context(vcpu);
807 return 0;
808 }
809
810 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
811 {
812 u64 mcg_cap = vcpu->arch.mcg_cap;
813 unsigned bank_num = mcg_cap & 0xff;
814
815 switch (msr) {
816 case MSR_IA32_MCG_STATUS:
817 vcpu->arch.mcg_status = data;
818 break;
819 case MSR_IA32_MCG_CTL:
820 if (!(mcg_cap & MCG_CTL_P))
821 return 1;
822 if (data != 0 && data != ~(u64)0)
823 return -1;
824 vcpu->arch.mcg_ctl = data;
825 break;
826 default:
827 if (msr >= MSR_IA32_MC0_CTL &&
828 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
829 u32 offset = msr - MSR_IA32_MC0_CTL;
830 /* only 0 or all 1s can be written to IA32_MCi_CTL */
831 if ((offset & 0x3) == 0 &&
832 data != 0 && data != ~(u64)0)
833 return -1;
834 vcpu->arch.mce_banks[offset] = data;
835 break;
836 }
837 return 1;
838 }
839 return 0;
840 }
841
842 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
843 {
844 struct kvm *kvm = vcpu->kvm;
845 int lm = is_long_mode(vcpu);
846 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
847 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
848 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
849 : kvm->arch.xen_hvm_config.blob_size_32;
850 u32 page_num = data & ~PAGE_MASK;
851 u64 page_addr = data & PAGE_MASK;
852 u8 *page;
853 int r;
854
855 r = -E2BIG;
856 if (page_num >= blob_size)
857 goto out;
858 r = -ENOMEM;
859 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
860 if (!page)
861 goto out;
862 r = -EFAULT;
863 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
864 goto out_free;
865 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
866 goto out_free;
867 r = 0;
868 out_free:
869 kfree(page);
870 out:
871 return r;
872 }
873
874 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
875 {
876 switch (msr) {
877 case MSR_EFER:
878 set_efer(vcpu, data);
879 break;
880 case MSR_K7_HWCR:
881 data &= ~(u64)0x40; /* ignore flush filter disable */
882 if (data != 0) {
883 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
884 data);
885 return 1;
886 }
887 break;
888 case MSR_FAM10H_MMIO_CONF_BASE:
889 if (data != 0) {
890 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
891 "0x%llx\n", data);
892 return 1;
893 }
894 break;
895 case MSR_AMD64_NB_CFG:
896 break;
897 case MSR_IA32_DEBUGCTLMSR:
898 if (!data) {
899 /* We support the non-activated case already */
900 break;
901 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
902 /* Values other than LBR and BTF are vendor-specific,
903 thus reserved and should throw a #GP */
904 return 1;
905 }
906 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
907 __func__, data);
908 break;
909 case MSR_IA32_UCODE_REV:
910 case MSR_IA32_UCODE_WRITE:
911 case MSR_VM_HSAVE_PA:
912 case MSR_AMD64_PATCH_LOADER:
913 break;
914 case 0x200 ... 0x2ff:
915 return set_msr_mtrr(vcpu, msr, data);
916 case MSR_IA32_APICBASE:
917 kvm_set_apic_base(vcpu, data);
918 break;
919 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
920 return kvm_x2apic_msr_write(vcpu, msr, data);
921 case MSR_IA32_MISC_ENABLE:
922 vcpu->arch.ia32_misc_enable_msr = data;
923 break;
924 case MSR_KVM_WALL_CLOCK:
925 vcpu->kvm->arch.wall_clock = data;
926 kvm_write_wall_clock(vcpu->kvm, data);
927 break;
928 case MSR_KVM_SYSTEM_TIME: {
929 if (vcpu->arch.time_page) {
930 kvm_release_page_dirty(vcpu->arch.time_page);
931 vcpu->arch.time_page = NULL;
932 }
933
934 vcpu->arch.time = data;
935
936 /* we verify if the enable bit is set... */
937 if (!(data & 1))
938 break;
939
940 /* ...but clean it before doing the actual write */
941 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
942
943 vcpu->arch.time_page =
944 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
945
946 if (is_error_page(vcpu->arch.time_page)) {
947 kvm_release_page_clean(vcpu->arch.time_page);
948 vcpu->arch.time_page = NULL;
949 }
950
951 kvm_request_guest_time_update(vcpu);
952 break;
953 }
954 case MSR_IA32_MCG_CTL:
955 case MSR_IA32_MCG_STATUS:
956 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
957 return set_msr_mce(vcpu, msr, data);
958
959 /* Performance counters are not protected by a CPUID bit,
960 * so we should check all of them in the generic path for the sake of
961 * cross vendor migration.
962 * Writing a zero into the event select MSRs disables them,
963 * which we perfectly emulate ;-). Any other value should be at least
964 * reported, some guests depend on them.
965 */
966 case MSR_P6_EVNTSEL0:
967 case MSR_P6_EVNTSEL1:
968 case MSR_K7_EVNTSEL0:
969 case MSR_K7_EVNTSEL1:
970 case MSR_K7_EVNTSEL2:
971 case MSR_K7_EVNTSEL3:
972 if (data != 0)
973 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
974 "0x%x data 0x%llx\n", msr, data);
975 break;
976 /* at least RHEL 4 unconditionally writes to the perfctr registers,
977 * so we ignore writes to make it happy.
978 */
979 case MSR_P6_PERFCTR0:
980 case MSR_P6_PERFCTR1:
981 case MSR_K7_PERFCTR0:
982 case MSR_K7_PERFCTR1:
983 case MSR_K7_PERFCTR2:
984 case MSR_K7_PERFCTR3:
985 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
986 "0x%x data 0x%llx\n", msr, data);
987 break;
988 default:
989 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
990 return xen_hvm_config(vcpu, data);
991 if (!ignore_msrs) {
992 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
993 msr, data);
994 return 1;
995 } else {
996 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
997 msr, data);
998 break;
999 }
1000 }
1001 return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1004
1005
1006 /*
1007 * Reads an msr value (of 'msr_index') into 'pdata'.
1008 * Returns 0 on success, non-0 otherwise.
1009 * Assumes vcpu_load() was already called.
1010 */
1011 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1012 {
1013 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1014 }
1015
1016 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1017 {
1018 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1019
1020 if (!msr_mtrr_valid(msr))
1021 return 1;
1022
1023 if (msr == MSR_MTRRdefType)
1024 *pdata = vcpu->arch.mtrr_state.def_type +
1025 (vcpu->arch.mtrr_state.enabled << 10);
1026 else if (msr == MSR_MTRRfix64K_00000)
1027 *pdata = p[0];
1028 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1029 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1030 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1031 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1032 else if (msr == MSR_IA32_CR_PAT)
1033 *pdata = vcpu->arch.pat;
1034 else { /* Variable MTRRs */
1035 int idx, is_mtrr_mask;
1036 u64 *pt;
1037
1038 idx = (msr - 0x200) / 2;
1039 is_mtrr_mask = msr - 0x200 - 2 * idx;
1040 if (!is_mtrr_mask)
1041 pt =
1042 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1043 else
1044 pt =
1045 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1046 *pdata = *pt;
1047 }
1048
1049 return 0;
1050 }
1051
1052 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1053 {
1054 u64 data;
1055 u64 mcg_cap = vcpu->arch.mcg_cap;
1056 unsigned bank_num = mcg_cap & 0xff;
1057
1058 switch (msr) {
1059 case MSR_IA32_P5_MC_ADDR:
1060 case MSR_IA32_P5_MC_TYPE:
1061 data = 0;
1062 break;
1063 case MSR_IA32_MCG_CAP:
1064 data = vcpu->arch.mcg_cap;
1065 break;
1066 case MSR_IA32_MCG_CTL:
1067 if (!(mcg_cap & MCG_CTL_P))
1068 return 1;
1069 data = vcpu->arch.mcg_ctl;
1070 break;
1071 case MSR_IA32_MCG_STATUS:
1072 data = vcpu->arch.mcg_status;
1073 break;
1074 default:
1075 if (msr >= MSR_IA32_MC0_CTL &&
1076 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1077 u32 offset = msr - MSR_IA32_MC0_CTL;
1078 data = vcpu->arch.mce_banks[offset];
1079 break;
1080 }
1081 return 1;
1082 }
1083 *pdata = data;
1084 return 0;
1085 }
1086
1087 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1088 {
1089 u64 data;
1090
1091 switch (msr) {
1092 case MSR_IA32_PLATFORM_ID:
1093 case MSR_IA32_UCODE_REV:
1094 case MSR_IA32_EBL_CR_POWERON:
1095 case MSR_IA32_DEBUGCTLMSR:
1096 case MSR_IA32_LASTBRANCHFROMIP:
1097 case MSR_IA32_LASTBRANCHTOIP:
1098 case MSR_IA32_LASTINTFROMIP:
1099 case MSR_IA32_LASTINTTOIP:
1100 case MSR_K8_SYSCFG:
1101 case MSR_K7_HWCR:
1102 case MSR_VM_HSAVE_PA:
1103 case MSR_P6_PERFCTR0:
1104 case MSR_P6_PERFCTR1:
1105 case MSR_P6_EVNTSEL0:
1106 case MSR_P6_EVNTSEL1:
1107 case MSR_K7_EVNTSEL0:
1108 case MSR_K7_PERFCTR0:
1109 case MSR_K8_INT_PENDING_MSG:
1110 case MSR_AMD64_NB_CFG:
1111 case MSR_FAM10H_MMIO_CONF_BASE:
1112 data = 0;
1113 break;
1114 case MSR_MTRRcap:
1115 data = 0x500 | KVM_NR_VAR_MTRR;
1116 break;
1117 case 0x200 ... 0x2ff:
1118 return get_msr_mtrr(vcpu, msr, pdata);
1119 case 0xcd: /* fsb frequency */
1120 data = 3;
1121 break;
1122 case MSR_IA32_APICBASE:
1123 data = kvm_get_apic_base(vcpu);
1124 break;
1125 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1126 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1127 break;
1128 case MSR_IA32_MISC_ENABLE:
1129 data = vcpu->arch.ia32_misc_enable_msr;
1130 break;
1131 case MSR_IA32_PERF_STATUS:
1132 /* TSC increment by tick */
1133 data = 1000ULL;
1134 /* CPU multiplier */
1135 data |= (((uint64_t)4ULL) << 40);
1136 break;
1137 case MSR_EFER:
1138 data = vcpu->arch.shadow_efer;
1139 break;
1140 case MSR_KVM_WALL_CLOCK:
1141 data = vcpu->kvm->arch.wall_clock;
1142 break;
1143 case MSR_KVM_SYSTEM_TIME:
1144 data = vcpu->arch.time;
1145 break;
1146 case MSR_IA32_P5_MC_ADDR:
1147 case MSR_IA32_P5_MC_TYPE:
1148 case MSR_IA32_MCG_CAP:
1149 case MSR_IA32_MCG_CTL:
1150 case MSR_IA32_MCG_STATUS:
1151 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1152 return get_msr_mce(vcpu, msr, pdata);
1153 default:
1154 if (!ignore_msrs) {
1155 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1156 return 1;
1157 } else {
1158 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1159 data = 0;
1160 }
1161 break;
1162 }
1163 *pdata = data;
1164 return 0;
1165 }
1166 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1167
1168 /*
1169 * Read or write a bunch of msrs. All parameters are kernel addresses.
1170 *
1171 * @return number of msrs set successfully.
1172 */
1173 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1174 struct kvm_msr_entry *entries,
1175 int (*do_msr)(struct kvm_vcpu *vcpu,
1176 unsigned index, u64 *data))
1177 {
1178 int i;
1179
1180 vcpu_load(vcpu);
1181
1182 down_read(&vcpu->kvm->slots_lock);
1183 for (i = 0; i < msrs->nmsrs; ++i)
1184 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1185 break;
1186 up_read(&vcpu->kvm->slots_lock);
1187
1188 vcpu_put(vcpu);
1189
1190 return i;
1191 }
1192
1193 /*
1194 * Read or write a bunch of msrs. Parameters are user addresses.
1195 *
1196 * @return number of msrs set successfully.
1197 */
1198 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1199 int (*do_msr)(struct kvm_vcpu *vcpu,
1200 unsigned index, u64 *data),
1201 int writeback)
1202 {
1203 struct kvm_msrs msrs;
1204 struct kvm_msr_entry *entries;
1205 int r, n;
1206 unsigned size;
1207
1208 r = -EFAULT;
1209 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1210 goto out;
1211
1212 r = -E2BIG;
1213 if (msrs.nmsrs >= MAX_IO_MSRS)
1214 goto out;
1215
1216 r = -ENOMEM;
1217 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1218 entries = vmalloc(size);
1219 if (!entries)
1220 goto out;
1221
1222 r = -EFAULT;
1223 if (copy_from_user(entries, user_msrs->entries, size))
1224 goto out_free;
1225
1226 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1227 if (r < 0)
1228 goto out_free;
1229
1230 r = -EFAULT;
1231 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1232 goto out_free;
1233
1234 r = n;
1235
1236 out_free:
1237 vfree(entries);
1238 out:
1239 return r;
1240 }
1241
1242 int kvm_dev_ioctl_check_extension(long ext)
1243 {
1244 int r;
1245
1246 switch (ext) {
1247 case KVM_CAP_IRQCHIP:
1248 case KVM_CAP_HLT:
1249 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1250 case KVM_CAP_SET_TSS_ADDR:
1251 case KVM_CAP_EXT_CPUID:
1252 case KVM_CAP_CLOCKSOURCE:
1253 case KVM_CAP_PIT:
1254 case KVM_CAP_NOP_IO_DELAY:
1255 case KVM_CAP_MP_STATE:
1256 case KVM_CAP_SYNC_MMU:
1257 case KVM_CAP_REINJECT_CONTROL:
1258 case KVM_CAP_IRQ_INJECT_STATUS:
1259 case KVM_CAP_ASSIGN_DEV_IRQ:
1260 case KVM_CAP_IRQFD:
1261 case KVM_CAP_IOEVENTFD:
1262 case KVM_CAP_PIT2:
1263 case KVM_CAP_PIT_STATE2:
1264 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1265 case KVM_CAP_XEN_HVM:
1266 case KVM_CAP_ADJUST_CLOCK:
1267 r = 1;
1268 break;
1269 case KVM_CAP_COALESCED_MMIO:
1270 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1271 break;
1272 case KVM_CAP_VAPIC:
1273 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1274 break;
1275 case KVM_CAP_NR_VCPUS:
1276 r = KVM_MAX_VCPUS;
1277 break;
1278 case KVM_CAP_NR_MEMSLOTS:
1279 r = KVM_MEMORY_SLOTS;
1280 break;
1281 case KVM_CAP_PV_MMU: /* obsolete */
1282 r = 0;
1283 break;
1284 case KVM_CAP_IOMMU:
1285 r = iommu_found();
1286 break;
1287 case KVM_CAP_MCE:
1288 r = KVM_MAX_MCE_BANKS;
1289 break;
1290 default:
1291 r = 0;
1292 break;
1293 }
1294 return r;
1295
1296 }
1297
1298 long kvm_arch_dev_ioctl(struct file *filp,
1299 unsigned int ioctl, unsigned long arg)
1300 {
1301 void __user *argp = (void __user *)arg;
1302 long r;
1303
1304 switch (ioctl) {
1305 case KVM_GET_MSR_INDEX_LIST: {
1306 struct kvm_msr_list __user *user_msr_list = argp;
1307 struct kvm_msr_list msr_list;
1308 unsigned n;
1309
1310 r = -EFAULT;
1311 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1312 goto out;
1313 n = msr_list.nmsrs;
1314 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1315 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1316 goto out;
1317 r = -E2BIG;
1318 if (n < msr_list.nmsrs)
1319 goto out;
1320 r = -EFAULT;
1321 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1322 num_msrs_to_save * sizeof(u32)))
1323 goto out;
1324 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1325 &emulated_msrs,
1326 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1327 goto out;
1328 r = 0;
1329 break;
1330 }
1331 case KVM_GET_SUPPORTED_CPUID: {
1332 struct kvm_cpuid2 __user *cpuid_arg = argp;
1333 struct kvm_cpuid2 cpuid;
1334
1335 r = -EFAULT;
1336 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1337 goto out;
1338 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1339 cpuid_arg->entries);
1340 if (r)
1341 goto out;
1342
1343 r = -EFAULT;
1344 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1345 goto out;
1346 r = 0;
1347 break;
1348 }
1349 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1350 u64 mce_cap;
1351
1352 mce_cap = KVM_MCE_CAP_SUPPORTED;
1353 r = -EFAULT;
1354 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1355 goto out;
1356 r = 0;
1357 break;
1358 }
1359 default:
1360 r = -EINVAL;
1361 }
1362 out:
1363 return r;
1364 }
1365
1366 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1367 {
1368 kvm_x86_ops->vcpu_load(vcpu, cpu);
1369 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1370 unsigned long khz = cpufreq_quick_get(cpu);
1371 if (!khz)
1372 khz = tsc_khz;
1373 per_cpu(cpu_tsc_khz, cpu) = khz;
1374 }
1375 kvm_request_guest_time_update(vcpu);
1376 }
1377
1378 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1379 {
1380 kvm_x86_ops->vcpu_put(vcpu);
1381 kvm_put_guest_fpu(vcpu);
1382 }
1383
1384 static int is_efer_nx(void)
1385 {
1386 unsigned long long efer = 0;
1387
1388 rdmsrl_safe(MSR_EFER, &efer);
1389 return efer & EFER_NX;
1390 }
1391
1392 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1393 {
1394 int i;
1395 struct kvm_cpuid_entry2 *e, *entry;
1396
1397 entry = NULL;
1398 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1399 e = &vcpu->arch.cpuid_entries[i];
1400 if (e->function == 0x80000001) {
1401 entry = e;
1402 break;
1403 }
1404 }
1405 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1406 entry->edx &= ~(1 << 20);
1407 printk(KERN_INFO "kvm: guest NX capability removed\n");
1408 }
1409 }
1410
1411 /* when an old userspace process fills a new kernel module */
1412 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1413 struct kvm_cpuid *cpuid,
1414 struct kvm_cpuid_entry __user *entries)
1415 {
1416 int r, i;
1417 struct kvm_cpuid_entry *cpuid_entries;
1418
1419 r = -E2BIG;
1420 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1421 goto out;
1422 r = -ENOMEM;
1423 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1424 if (!cpuid_entries)
1425 goto out;
1426 r = -EFAULT;
1427 if (copy_from_user(cpuid_entries, entries,
1428 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1429 goto out_free;
1430 for (i = 0; i < cpuid->nent; i++) {
1431 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1432 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1433 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1434 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1435 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1436 vcpu->arch.cpuid_entries[i].index = 0;
1437 vcpu->arch.cpuid_entries[i].flags = 0;
1438 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1439 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1440 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1441 }
1442 vcpu->arch.cpuid_nent = cpuid->nent;
1443 cpuid_fix_nx_cap(vcpu);
1444 r = 0;
1445 kvm_apic_set_version(vcpu);
1446
1447 out_free:
1448 vfree(cpuid_entries);
1449 out:
1450 return r;
1451 }
1452
1453 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1454 struct kvm_cpuid2 *cpuid,
1455 struct kvm_cpuid_entry2 __user *entries)
1456 {
1457 int r;
1458
1459 r = -E2BIG;
1460 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1461 goto out;
1462 r = -EFAULT;
1463 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1464 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1465 goto out;
1466 vcpu->arch.cpuid_nent = cpuid->nent;
1467 kvm_apic_set_version(vcpu);
1468 return 0;
1469
1470 out:
1471 return r;
1472 }
1473
1474 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1475 struct kvm_cpuid2 *cpuid,
1476 struct kvm_cpuid_entry2 __user *entries)
1477 {
1478 int r;
1479
1480 r = -E2BIG;
1481 if (cpuid->nent < vcpu->arch.cpuid_nent)
1482 goto out;
1483 r = -EFAULT;
1484 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1485 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1486 goto out;
1487 return 0;
1488
1489 out:
1490 cpuid->nent = vcpu->arch.cpuid_nent;
1491 return r;
1492 }
1493
1494 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1495 u32 index)
1496 {
1497 entry->function = function;
1498 entry->index = index;
1499 cpuid_count(entry->function, entry->index,
1500 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1501 entry->flags = 0;
1502 }
1503
1504 #define F(x) bit(X86_FEATURE_##x)
1505
1506 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1507 u32 index, int *nent, int maxnent)
1508 {
1509 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1510 unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
1511 #ifdef CONFIG_X86_64
1512 unsigned f_lm = F(LM);
1513 #else
1514 unsigned f_lm = 0;
1515 #endif
1516
1517 /* cpuid 1.edx */
1518 const u32 kvm_supported_word0_x86_features =
1519 F(FPU) | F(VME) | F(DE) | F(PSE) |
1520 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1521 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1522 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1523 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1524 0 /* Reserved, DS, ACPI */ | F(MMX) |
1525 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1526 0 /* HTT, TM, Reserved, PBE */;
1527 /* cpuid 0x80000001.edx */
1528 const u32 kvm_supported_word1_x86_features =
1529 F(FPU) | F(VME) | F(DE) | F(PSE) |
1530 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1531 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1532 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1533 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1534 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1535 F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
1536 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1537 /* cpuid 1.ecx */
1538 const u32 kvm_supported_word4_x86_features =
1539 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1540 0 /* DS-CPL, VMX, SMX, EST */ |
1541 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1542 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1543 0 /* Reserved, DCA */ | F(XMM4_1) |
1544 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1545 0 /* Reserved, XSAVE, OSXSAVE */;
1546 /* cpuid 0x80000001.ecx */
1547 const u32 kvm_supported_word6_x86_features =
1548 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1549 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1550 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1551 0 /* SKINIT */ | 0 /* WDT */;
1552
1553 /* all calls to cpuid_count() should be made on the same cpu */
1554 get_cpu();
1555 do_cpuid_1_ent(entry, function, index);
1556 ++*nent;
1557
1558 switch (function) {
1559 case 0:
1560 entry->eax = min(entry->eax, (u32)0xb);
1561 break;
1562 case 1:
1563 entry->edx &= kvm_supported_word0_x86_features;
1564 entry->ecx &= kvm_supported_word4_x86_features;
1565 /* we support x2apic emulation even if host does not support
1566 * it since we emulate x2apic in software */
1567 entry->ecx |= F(X2APIC);
1568 break;
1569 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1570 * may return different values. This forces us to get_cpu() before
1571 * issuing the first command, and also to emulate this annoying behavior
1572 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1573 case 2: {
1574 int t, times = entry->eax & 0xff;
1575
1576 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1577 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1578 for (t = 1; t < times && *nent < maxnent; ++t) {
1579 do_cpuid_1_ent(&entry[t], function, 0);
1580 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1581 ++*nent;
1582 }
1583 break;
1584 }
1585 /* function 4 and 0xb have additional index. */
1586 case 4: {
1587 int i, cache_type;
1588
1589 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1590 /* read more entries until cache_type is zero */
1591 for (i = 1; *nent < maxnent; ++i) {
1592 cache_type = entry[i - 1].eax & 0x1f;
1593 if (!cache_type)
1594 break;
1595 do_cpuid_1_ent(&entry[i], function, i);
1596 entry[i].flags |=
1597 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1598 ++*nent;
1599 }
1600 break;
1601 }
1602 case 0xb: {
1603 int i, level_type;
1604
1605 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1606 /* read more entries until level_type is zero */
1607 for (i = 1; *nent < maxnent; ++i) {
1608 level_type = entry[i - 1].ecx & 0xff00;
1609 if (!level_type)
1610 break;
1611 do_cpuid_1_ent(&entry[i], function, i);
1612 entry[i].flags |=
1613 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1614 ++*nent;
1615 }
1616 break;
1617 }
1618 case 0x80000000:
1619 entry->eax = min(entry->eax, 0x8000001a);
1620 break;
1621 case 0x80000001:
1622 entry->edx &= kvm_supported_word1_x86_features;
1623 entry->ecx &= kvm_supported_word6_x86_features;
1624 break;
1625 }
1626 put_cpu();
1627 }
1628
1629 #undef F
1630
1631 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1632 struct kvm_cpuid_entry2 __user *entries)
1633 {
1634 struct kvm_cpuid_entry2 *cpuid_entries;
1635 int limit, nent = 0, r = -E2BIG;
1636 u32 func;
1637
1638 if (cpuid->nent < 1)
1639 goto out;
1640 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1641 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1642 r = -ENOMEM;
1643 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1644 if (!cpuid_entries)
1645 goto out;
1646
1647 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1648 limit = cpuid_entries[0].eax;
1649 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1650 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1651 &nent, cpuid->nent);
1652 r = -E2BIG;
1653 if (nent >= cpuid->nent)
1654 goto out_free;
1655
1656 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1657 limit = cpuid_entries[nent - 1].eax;
1658 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1659 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1660 &nent, cpuid->nent);
1661 r = -E2BIG;
1662 if (nent >= cpuid->nent)
1663 goto out_free;
1664
1665 r = -EFAULT;
1666 if (copy_to_user(entries, cpuid_entries,
1667 nent * sizeof(struct kvm_cpuid_entry2)))
1668 goto out_free;
1669 cpuid->nent = nent;
1670 r = 0;
1671
1672 out_free:
1673 vfree(cpuid_entries);
1674 out:
1675 return r;
1676 }
1677
1678 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1679 struct kvm_lapic_state *s)
1680 {
1681 vcpu_load(vcpu);
1682 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1683 vcpu_put(vcpu);
1684
1685 return 0;
1686 }
1687
1688 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1689 struct kvm_lapic_state *s)
1690 {
1691 vcpu_load(vcpu);
1692 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1693 kvm_apic_post_state_restore(vcpu);
1694 update_cr8_intercept(vcpu);
1695 vcpu_put(vcpu);
1696
1697 return 0;
1698 }
1699
1700 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1701 struct kvm_interrupt *irq)
1702 {
1703 if (irq->irq < 0 || irq->irq >= 256)
1704 return -EINVAL;
1705 if (irqchip_in_kernel(vcpu->kvm))
1706 return -ENXIO;
1707 vcpu_load(vcpu);
1708
1709 kvm_queue_interrupt(vcpu, irq->irq, false);
1710
1711 vcpu_put(vcpu);
1712
1713 return 0;
1714 }
1715
1716 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1717 {
1718 vcpu_load(vcpu);
1719 kvm_inject_nmi(vcpu);
1720 vcpu_put(vcpu);
1721
1722 return 0;
1723 }
1724
1725 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1726 struct kvm_tpr_access_ctl *tac)
1727 {
1728 if (tac->flags)
1729 return -EINVAL;
1730 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1731 return 0;
1732 }
1733
1734 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1735 u64 mcg_cap)
1736 {
1737 int r;
1738 unsigned bank_num = mcg_cap & 0xff, bank;
1739
1740 r = -EINVAL;
1741 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
1742 goto out;
1743 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1744 goto out;
1745 r = 0;
1746 vcpu->arch.mcg_cap = mcg_cap;
1747 /* Init IA32_MCG_CTL to all 1s */
1748 if (mcg_cap & MCG_CTL_P)
1749 vcpu->arch.mcg_ctl = ~(u64)0;
1750 /* Init IA32_MCi_CTL to all 1s */
1751 for (bank = 0; bank < bank_num; bank++)
1752 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1753 out:
1754 return r;
1755 }
1756
1757 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1758 struct kvm_x86_mce *mce)
1759 {
1760 u64 mcg_cap = vcpu->arch.mcg_cap;
1761 unsigned bank_num = mcg_cap & 0xff;
1762 u64 *banks = vcpu->arch.mce_banks;
1763
1764 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1765 return -EINVAL;
1766 /*
1767 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1768 * reporting is disabled
1769 */
1770 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1771 vcpu->arch.mcg_ctl != ~(u64)0)
1772 return 0;
1773 banks += 4 * mce->bank;
1774 /*
1775 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1776 * reporting is disabled for the bank
1777 */
1778 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1779 return 0;
1780 if (mce->status & MCI_STATUS_UC) {
1781 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1782 !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1783 printk(KERN_DEBUG "kvm: set_mce: "
1784 "injects mce exception while "
1785 "previous one is in progress!\n");
1786 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1787 return 0;
1788 }
1789 if (banks[1] & MCI_STATUS_VAL)
1790 mce->status |= MCI_STATUS_OVER;
1791 banks[2] = mce->addr;
1792 banks[3] = mce->misc;
1793 vcpu->arch.mcg_status = mce->mcg_status;
1794 banks[1] = mce->status;
1795 kvm_queue_exception(vcpu, MC_VECTOR);
1796 } else if (!(banks[1] & MCI_STATUS_VAL)
1797 || !(banks[1] & MCI_STATUS_UC)) {
1798 if (banks[1] & MCI_STATUS_VAL)
1799 mce->status |= MCI_STATUS_OVER;
1800 banks[2] = mce->addr;
1801 banks[3] = mce->misc;
1802 banks[1] = mce->status;
1803 } else
1804 banks[1] |= MCI_STATUS_OVER;
1805 return 0;
1806 }
1807
1808 long kvm_arch_vcpu_ioctl(struct file *filp,
1809 unsigned int ioctl, unsigned long arg)
1810 {
1811 struct kvm_vcpu *vcpu = filp->private_data;
1812 void __user *argp = (void __user *)arg;
1813 int r;
1814 struct kvm_lapic_state *lapic = NULL;
1815
1816 switch (ioctl) {
1817 case KVM_GET_LAPIC: {
1818 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1819
1820 r = -ENOMEM;
1821 if (!lapic)
1822 goto out;
1823 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1824 if (r)
1825 goto out;
1826 r = -EFAULT;
1827 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1828 goto out;
1829 r = 0;
1830 break;
1831 }
1832 case KVM_SET_LAPIC: {
1833 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1834 r = -ENOMEM;
1835 if (!lapic)
1836 goto out;
1837 r = -EFAULT;
1838 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1839 goto out;
1840 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1841 if (r)
1842 goto out;
1843 r = 0;
1844 break;
1845 }
1846 case KVM_INTERRUPT: {
1847 struct kvm_interrupt irq;
1848
1849 r = -EFAULT;
1850 if (copy_from_user(&irq, argp, sizeof irq))
1851 goto out;
1852 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1853 if (r)
1854 goto out;
1855 r = 0;
1856 break;
1857 }
1858 case KVM_NMI: {
1859 r = kvm_vcpu_ioctl_nmi(vcpu);
1860 if (r)
1861 goto out;
1862 r = 0;
1863 break;
1864 }
1865 case KVM_SET_CPUID: {
1866 struct kvm_cpuid __user *cpuid_arg = argp;
1867 struct kvm_cpuid cpuid;
1868
1869 r = -EFAULT;
1870 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1871 goto out;
1872 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1873 if (r)
1874 goto out;
1875 break;
1876 }
1877 case KVM_SET_CPUID2: {
1878 struct kvm_cpuid2 __user *cpuid_arg = argp;
1879 struct kvm_cpuid2 cpuid;
1880
1881 r = -EFAULT;
1882 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1883 goto out;
1884 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1885 cpuid_arg->entries);
1886 if (r)
1887 goto out;
1888 break;
1889 }
1890 case KVM_GET_CPUID2: {
1891 struct kvm_cpuid2 __user *cpuid_arg = argp;
1892 struct kvm_cpuid2 cpuid;
1893
1894 r = -EFAULT;
1895 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1896 goto out;
1897 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1898 cpuid_arg->entries);
1899 if (r)
1900 goto out;
1901 r = -EFAULT;
1902 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1903 goto out;
1904 r = 0;
1905 break;
1906 }
1907 case KVM_GET_MSRS:
1908 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1909 break;
1910 case KVM_SET_MSRS:
1911 r = msr_io(vcpu, argp, do_set_msr, 0);
1912 break;
1913 case KVM_TPR_ACCESS_REPORTING: {
1914 struct kvm_tpr_access_ctl tac;
1915
1916 r = -EFAULT;
1917 if (copy_from_user(&tac, argp, sizeof tac))
1918 goto out;
1919 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1920 if (r)
1921 goto out;
1922 r = -EFAULT;
1923 if (copy_to_user(argp, &tac, sizeof tac))
1924 goto out;
1925 r = 0;
1926 break;
1927 };
1928 case KVM_SET_VAPIC_ADDR: {
1929 struct kvm_vapic_addr va;
1930
1931 r = -EINVAL;
1932 if (!irqchip_in_kernel(vcpu->kvm))
1933 goto out;
1934 r = -EFAULT;
1935 if (copy_from_user(&va, argp, sizeof va))
1936 goto out;
1937 r = 0;
1938 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1939 break;
1940 }
1941 case KVM_X86_SETUP_MCE: {
1942 u64 mcg_cap;
1943
1944 r = -EFAULT;
1945 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1946 goto out;
1947 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1948 break;
1949 }
1950 case KVM_X86_SET_MCE: {
1951 struct kvm_x86_mce mce;
1952
1953 r = -EFAULT;
1954 if (copy_from_user(&mce, argp, sizeof mce))
1955 goto out;
1956 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1957 break;
1958 }
1959 default:
1960 r = -EINVAL;
1961 }
1962 out:
1963 kfree(lapic);
1964 return r;
1965 }
1966
1967 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1968 {
1969 int ret;
1970
1971 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1972 return -1;
1973 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1974 return ret;
1975 }
1976
1977 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
1978 u64 ident_addr)
1979 {
1980 kvm->arch.ept_identity_map_addr = ident_addr;
1981 return 0;
1982 }
1983
1984 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1985 u32 kvm_nr_mmu_pages)
1986 {
1987 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1988 return -EINVAL;
1989
1990 down_write(&kvm->slots_lock);
1991 spin_lock(&kvm->mmu_lock);
1992
1993 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1994 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1995
1996 spin_unlock(&kvm->mmu_lock);
1997 up_write(&kvm->slots_lock);
1998 return 0;
1999 }
2000
2001 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2002 {
2003 return kvm->arch.n_alloc_mmu_pages;
2004 }
2005
2006 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2007 {
2008 int i;
2009 struct kvm_mem_alias *alias;
2010
2011 for (i = 0; i < kvm->arch.naliases; ++i) {
2012 alias = &kvm->arch.aliases[i];
2013 if (gfn >= alias->base_gfn
2014 && gfn < alias->base_gfn + alias->npages)
2015 return alias->target_gfn + gfn - alias->base_gfn;
2016 }
2017 return gfn;
2018 }
2019
2020 /*
2021 * Set a new alias region. Aliases map a portion of physical memory into
2022 * another portion. This is useful for memory windows, for example the PC
2023 * VGA region.
2024 */
2025 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2026 struct kvm_memory_alias *alias)
2027 {
2028 int r, n;
2029 struct kvm_mem_alias *p;
2030
2031 r = -EINVAL;
2032 /* General sanity checks */
2033 if (alias->memory_size & (PAGE_SIZE - 1))
2034 goto out;
2035 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2036 goto out;
2037 if (alias->slot >= KVM_ALIAS_SLOTS)
2038 goto out;
2039 if (alias->guest_phys_addr + alias->memory_size
2040 < alias->guest_phys_addr)
2041 goto out;
2042 if (alias->target_phys_addr + alias->memory_size
2043 < alias->target_phys_addr)
2044 goto out;
2045
2046 down_write(&kvm->slots_lock);
2047 spin_lock(&kvm->mmu_lock);
2048
2049 p = &kvm->arch.aliases[alias->slot];
2050 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2051 p->npages = alias->memory_size >> PAGE_SHIFT;
2052 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2053
2054 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2055 if (kvm->arch.aliases[n - 1].npages)
2056 break;
2057 kvm->arch.naliases = n;
2058
2059 spin_unlock(&kvm->mmu_lock);
2060 kvm_mmu_zap_all(kvm);
2061
2062 up_write(&kvm->slots_lock);
2063
2064 return 0;
2065
2066 out:
2067 return r;
2068 }
2069
2070 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2071 {
2072 int r;
2073
2074 r = 0;
2075 switch (chip->chip_id) {
2076 case KVM_IRQCHIP_PIC_MASTER:
2077 memcpy(&chip->chip.pic,
2078 &pic_irqchip(kvm)->pics[0],
2079 sizeof(struct kvm_pic_state));
2080 break;
2081 case KVM_IRQCHIP_PIC_SLAVE:
2082 memcpy(&chip->chip.pic,
2083 &pic_irqchip(kvm)->pics[1],
2084 sizeof(struct kvm_pic_state));
2085 break;
2086 case KVM_IRQCHIP_IOAPIC:
2087 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2088 break;
2089 default:
2090 r = -EINVAL;
2091 break;
2092 }
2093 return r;
2094 }
2095
2096 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2097 {
2098 int r;
2099
2100 r = 0;
2101 switch (chip->chip_id) {
2102 case KVM_IRQCHIP_PIC_MASTER:
2103 spin_lock(&pic_irqchip(kvm)->lock);
2104 memcpy(&pic_irqchip(kvm)->pics[0],
2105 &chip->chip.pic,
2106 sizeof(struct kvm_pic_state));
2107 spin_unlock(&pic_irqchip(kvm)->lock);
2108 break;
2109 case KVM_IRQCHIP_PIC_SLAVE:
2110 spin_lock(&pic_irqchip(kvm)->lock);
2111 memcpy(&pic_irqchip(kvm)->pics[1],
2112 &chip->chip.pic,
2113 sizeof(struct kvm_pic_state));
2114 spin_unlock(&pic_irqchip(kvm)->lock);
2115 break;
2116 case KVM_IRQCHIP_IOAPIC:
2117 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2118 break;
2119 default:
2120 r = -EINVAL;
2121 break;
2122 }
2123 kvm_pic_update_irq(pic_irqchip(kvm));
2124 return r;
2125 }
2126
2127 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2128 {
2129 int r = 0;
2130
2131 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2132 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2133 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2134 return r;
2135 }
2136
2137 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2138 {
2139 int r = 0;
2140
2141 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2142 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2143 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2144 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2145 return r;
2146 }
2147
2148 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2149 {
2150 int r = 0;
2151
2152 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2153 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2154 sizeof(ps->channels));
2155 ps->flags = kvm->arch.vpit->pit_state.flags;
2156 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2157 return r;
2158 }
2159
2160 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2161 {
2162 int r = 0, start = 0;
2163 u32 prev_legacy, cur_legacy;
2164 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2165 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2166 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2167 if (!prev_legacy && cur_legacy)
2168 start = 1;
2169 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2170 sizeof(kvm->arch.vpit->pit_state.channels));
2171 kvm->arch.vpit->pit_state.flags = ps->flags;
2172 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2173 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2174 return r;
2175 }
2176
2177 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2178 struct kvm_reinject_control *control)
2179 {
2180 if (!kvm->arch.vpit)
2181 return -ENXIO;
2182 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2183 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2184 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2185 return 0;
2186 }
2187
2188 /*
2189 * Get (and clear) the dirty memory log for a memory slot.
2190 */
2191 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2192 struct kvm_dirty_log *log)
2193 {
2194 int r;
2195 int n;
2196 struct kvm_memory_slot *memslot;
2197 int is_dirty = 0;
2198
2199 down_write(&kvm->slots_lock);
2200
2201 r = kvm_get_dirty_log(kvm, log, &is_dirty);
2202 if (r)
2203 goto out;
2204
2205 /* If nothing is dirty, don't bother messing with page tables. */
2206 if (is_dirty) {
2207 spin_lock(&kvm->mmu_lock);
2208 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2209 spin_unlock(&kvm->mmu_lock);
2210 memslot = &kvm->memslots[log->slot];
2211 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2212 memset(memslot->dirty_bitmap, 0, n);
2213 }
2214 r = 0;
2215 out:
2216 up_write(&kvm->slots_lock);
2217 return r;
2218 }
2219
2220 long kvm_arch_vm_ioctl(struct file *filp,
2221 unsigned int ioctl, unsigned long arg)
2222 {
2223 struct kvm *kvm = filp->private_data;
2224 void __user *argp = (void __user *)arg;
2225 int r = -ENOTTY;
2226 /*
2227 * This union makes it completely explicit to gcc-3.x
2228 * that these two variables' stack usage should be
2229 * combined, not added together.
2230 */
2231 union {
2232 struct kvm_pit_state ps;
2233 struct kvm_pit_state2 ps2;
2234 struct kvm_memory_alias alias;
2235 struct kvm_pit_config pit_config;
2236 } u;
2237
2238 switch (ioctl) {
2239 case KVM_SET_TSS_ADDR:
2240 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2241 if (r < 0)
2242 goto out;
2243 break;
2244 case KVM_SET_IDENTITY_MAP_ADDR: {
2245 u64 ident_addr;
2246
2247 r = -EFAULT;
2248 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2249 goto out;
2250 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2251 if (r < 0)
2252 goto out;
2253 break;
2254 }
2255 case KVM_SET_MEMORY_REGION: {
2256 struct kvm_memory_region kvm_mem;
2257 struct kvm_userspace_memory_region kvm_userspace_mem;
2258
2259 r = -EFAULT;
2260 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2261 goto out;
2262 kvm_userspace_mem.slot = kvm_mem.slot;
2263 kvm_userspace_mem.flags = kvm_mem.flags;
2264 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2265 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2266 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2267 if (r)
2268 goto out;
2269 break;
2270 }
2271 case KVM_SET_NR_MMU_PAGES:
2272 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2273 if (r)
2274 goto out;
2275 break;
2276 case KVM_GET_NR_MMU_PAGES:
2277 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2278 break;
2279 case KVM_SET_MEMORY_ALIAS:
2280 r = -EFAULT;
2281 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2282 goto out;
2283 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2284 if (r)
2285 goto out;
2286 break;
2287 case KVM_CREATE_IRQCHIP:
2288 r = -ENOMEM;
2289 kvm->arch.vpic = kvm_create_pic(kvm);
2290 if (kvm->arch.vpic) {
2291 r = kvm_ioapic_init(kvm);
2292 if (r) {
2293 kfree(kvm->arch.vpic);
2294 kvm->arch.vpic = NULL;
2295 goto out;
2296 }
2297 } else
2298 goto out;
2299 r = kvm_setup_default_irq_routing(kvm);
2300 if (r) {
2301 kfree(kvm->arch.vpic);
2302 kfree(kvm->arch.vioapic);
2303 goto out;
2304 }
2305 break;
2306 case KVM_CREATE_PIT:
2307 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2308 goto create_pit;
2309 case KVM_CREATE_PIT2:
2310 r = -EFAULT;
2311 if (copy_from_user(&u.pit_config, argp,
2312 sizeof(struct kvm_pit_config)))
2313 goto out;
2314 create_pit:
2315 down_write(&kvm->slots_lock);
2316 r = -EEXIST;
2317 if (kvm->arch.vpit)
2318 goto create_pit_unlock;
2319 r = -ENOMEM;
2320 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2321 if (kvm->arch.vpit)
2322 r = 0;
2323 create_pit_unlock:
2324 up_write(&kvm->slots_lock);
2325 break;
2326 case KVM_IRQ_LINE_STATUS:
2327 case KVM_IRQ_LINE: {
2328 struct kvm_irq_level irq_event;
2329
2330 r = -EFAULT;
2331 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2332 goto out;
2333 if (irqchip_in_kernel(kvm)) {
2334 __s32 status;
2335 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2336 irq_event.irq, irq_event.level);
2337 if (ioctl == KVM_IRQ_LINE_STATUS) {
2338 irq_event.status = status;
2339 if (copy_to_user(argp, &irq_event,
2340 sizeof irq_event))
2341 goto out;
2342 }
2343 r = 0;
2344 }
2345 break;
2346 }
2347 case KVM_GET_IRQCHIP: {
2348 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2349 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2350
2351 r = -ENOMEM;
2352 if (!chip)
2353 goto out;
2354 r = -EFAULT;
2355 if (copy_from_user(chip, argp, sizeof *chip))
2356 goto get_irqchip_out;
2357 r = -ENXIO;
2358 if (!irqchip_in_kernel(kvm))
2359 goto get_irqchip_out;
2360 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2361 if (r)
2362 goto get_irqchip_out;
2363 r = -EFAULT;
2364 if (copy_to_user(argp, chip, sizeof *chip))
2365 goto get_irqchip_out;
2366 r = 0;
2367 get_irqchip_out:
2368 kfree(chip);
2369 if (r)
2370 goto out;
2371 break;
2372 }
2373 case KVM_SET_IRQCHIP: {
2374 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2375 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2376
2377 r = -ENOMEM;
2378 if (!chip)
2379 goto out;
2380 r = -EFAULT;
2381 if (copy_from_user(chip, argp, sizeof *chip))
2382 goto set_irqchip_out;
2383 r = -ENXIO;
2384 if (!irqchip_in_kernel(kvm))
2385 goto set_irqchip_out;
2386 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2387 if (r)
2388 goto set_irqchip_out;
2389 r = 0;
2390 set_irqchip_out:
2391 kfree(chip);
2392 if (r)
2393 goto out;
2394 break;
2395 }
2396 case KVM_GET_PIT: {
2397 r = -EFAULT;
2398 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2399 goto out;
2400 r = -ENXIO;
2401 if (!kvm->arch.vpit)
2402 goto out;
2403 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2404 if (r)
2405 goto out;
2406 r = -EFAULT;
2407 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2408 goto out;
2409 r = 0;
2410 break;
2411 }
2412 case KVM_SET_PIT: {
2413 r = -EFAULT;
2414 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2415 goto out;
2416 r = -ENXIO;
2417 if (!kvm->arch.vpit)
2418 goto out;
2419 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2420 if (r)
2421 goto out;
2422 r = 0;
2423 break;
2424 }
2425 case KVM_GET_PIT2: {
2426 r = -ENXIO;
2427 if (!kvm->arch.vpit)
2428 goto out;
2429 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2430 if (r)
2431 goto out;
2432 r = -EFAULT;
2433 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2434 goto out;
2435 r = 0;
2436 break;
2437 }
2438 case KVM_SET_PIT2: {
2439 r = -EFAULT;
2440 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2441 goto out;
2442 r = -ENXIO;
2443 if (!kvm->arch.vpit)
2444 goto out;
2445 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2446 if (r)
2447 goto out;
2448 r = 0;
2449 break;
2450 }
2451 case KVM_REINJECT_CONTROL: {
2452 struct kvm_reinject_control control;
2453 r = -EFAULT;
2454 if (copy_from_user(&control, argp, sizeof(control)))
2455 goto out;
2456 r = kvm_vm_ioctl_reinject(kvm, &control);
2457 if (r)
2458 goto out;
2459 r = 0;
2460 break;
2461 }
2462 case KVM_XEN_HVM_CONFIG: {
2463 r = -EFAULT;
2464 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2465 sizeof(struct kvm_xen_hvm_config)))
2466 goto out;
2467 r = -EINVAL;
2468 if (kvm->arch.xen_hvm_config.flags)
2469 goto out;
2470 r = 0;
2471 break;
2472 }
2473 case KVM_SET_CLOCK: {
2474 struct timespec now;
2475 struct kvm_clock_data user_ns;
2476 u64 now_ns;
2477 s64 delta;
2478
2479 r = -EFAULT;
2480 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2481 goto out;
2482
2483 r = -EINVAL;
2484 if (user_ns.flags)
2485 goto out;
2486
2487 r = 0;
2488 ktime_get_ts(&now);
2489 now_ns = timespec_to_ns(&now);
2490 delta = user_ns.clock - now_ns;
2491 kvm->arch.kvmclock_offset = delta;
2492 break;
2493 }
2494 case KVM_GET_CLOCK: {
2495 struct timespec now;
2496 struct kvm_clock_data user_ns;
2497 u64 now_ns;
2498
2499 ktime_get_ts(&now);
2500 now_ns = timespec_to_ns(&now);
2501 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2502 user_ns.flags = 0;
2503
2504 r = -EFAULT;
2505 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2506 goto out;
2507 r = 0;
2508 break;
2509 }
2510
2511 default:
2512 ;
2513 }
2514 out:
2515 return r;
2516 }
2517
2518 static void kvm_init_msr_list(void)
2519 {
2520 u32 dummy[2];
2521 unsigned i, j;
2522
2523 /* skip the first msrs in the list. KVM-specific */
2524 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
2525 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2526 continue;
2527 if (j < i)
2528 msrs_to_save[j] = msrs_to_save[i];
2529 j++;
2530 }
2531 num_msrs_to_save = j;
2532 }
2533
2534 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2535 const void *v)
2536 {
2537 if (vcpu->arch.apic &&
2538 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2539 return 0;
2540
2541 return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2542 }
2543
2544 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2545 {
2546 if (vcpu->arch.apic &&
2547 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2548 return 0;
2549
2550 return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2551 }
2552
2553 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2554 struct kvm_vcpu *vcpu)
2555 {
2556 void *data = val;
2557 int r = X86EMUL_CONTINUE;
2558
2559 while (bytes) {
2560 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2561 unsigned offset = addr & (PAGE_SIZE-1);
2562 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2563 int ret;
2564
2565 if (gpa == UNMAPPED_GVA) {
2566 r = X86EMUL_PROPAGATE_FAULT;
2567 goto out;
2568 }
2569 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2570 if (ret < 0) {
2571 r = X86EMUL_UNHANDLEABLE;
2572 goto out;
2573 }
2574
2575 bytes -= toread;
2576 data += toread;
2577 addr += toread;
2578 }
2579 out:
2580 return r;
2581 }
2582
2583 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2584 struct kvm_vcpu *vcpu)
2585 {
2586 void *data = val;
2587 int r = X86EMUL_CONTINUE;
2588
2589 while (bytes) {
2590 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2591 unsigned offset = addr & (PAGE_SIZE-1);
2592 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2593 int ret;
2594
2595 if (gpa == UNMAPPED_GVA) {
2596 r = X86EMUL_PROPAGATE_FAULT;
2597 goto out;
2598 }
2599 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2600 if (ret < 0) {
2601 r = X86EMUL_UNHANDLEABLE;
2602 goto out;
2603 }
2604
2605 bytes -= towrite;
2606 data += towrite;
2607 addr += towrite;
2608 }
2609 out:
2610 return r;
2611 }
2612
2613
2614 static int emulator_read_emulated(unsigned long addr,
2615 void *val,
2616 unsigned int bytes,
2617 struct kvm_vcpu *vcpu)
2618 {
2619 gpa_t gpa;
2620
2621 if (vcpu->mmio_read_completed) {
2622 memcpy(val, vcpu->mmio_data, bytes);
2623 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2624 vcpu->mmio_phys_addr, *(u64 *)val);
2625 vcpu->mmio_read_completed = 0;
2626 return X86EMUL_CONTINUE;
2627 }
2628
2629 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2630
2631 /* For APIC access vmexit */
2632 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2633 goto mmio;
2634
2635 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2636 == X86EMUL_CONTINUE)
2637 return X86EMUL_CONTINUE;
2638 if (gpa == UNMAPPED_GVA)
2639 return X86EMUL_PROPAGATE_FAULT;
2640
2641 mmio:
2642 /*
2643 * Is this MMIO handled locally?
2644 */
2645 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2646 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2647 return X86EMUL_CONTINUE;
2648 }
2649
2650 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2651
2652 vcpu->mmio_needed = 1;
2653 vcpu->mmio_phys_addr = gpa;
2654 vcpu->mmio_size = bytes;
2655 vcpu->mmio_is_write = 0;
2656
2657 return X86EMUL_UNHANDLEABLE;
2658 }
2659
2660 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2661 const void *val, int bytes)
2662 {
2663 int ret;
2664
2665 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2666 if (ret < 0)
2667 return 0;
2668 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2669 return 1;
2670 }
2671
2672 static int emulator_write_emulated_onepage(unsigned long addr,
2673 const void *val,
2674 unsigned int bytes,
2675 struct kvm_vcpu *vcpu)
2676 {
2677 gpa_t gpa;
2678
2679 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2680
2681 if (gpa == UNMAPPED_GVA) {
2682 kvm_inject_page_fault(vcpu, addr, 2);
2683 return X86EMUL_PROPAGATE_FAULT;
2684 }
2685
2686 /* For APIC access vmexit */
2687 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2688 goto mmio;
2689
2690 if (emulator_write_phys(vcpu, gpa, val, bytes))
2691 return X86EMUL_CONTINUE;
2692
2693 mmio:
2694 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2695 /*
2696 * Is this MMIO handled locally?
2697 */
2698 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2699 return X86EMUL_CONTINUE;
2700
2701 vcpu->mmio_needed = 1;
2702 vcpu->mmio_phys_addr = gpa;
2703 vcpu->mmio_size = bytes;
2704 vcpu->mmio_is_write = 1;
2705 memcpy(vcpu->mmio_data, val, bytes);
2706
2707 return X86EMUL_CONTINUE;
2708 }
2709
2710 int emulator_write_emulated(unsigned long addr,
2711 const void *val,
2712 unsigned int bytes,
2713 struct kvm_vcpu *vcpu)
2714 {
2715 /* Crossing a page boundary? */
2716 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2717 int rc, now;
2718
2719 now = -addr & ~PAGE_MASK;
2720 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2721 if (rc != X86EMUL_CONTINUE)
2722 return rc;
2723 addr += now;
2724 val += now;
2725 bytes -= now;
2726 }
2727 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2728 }
2729 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2730
2731 static int emulator_cmpxchg_emulated(unsigned long addr,
2732 const void *old,
2733 const void *new,
2734 unsigned int bytes,
2735 struct kvm_vcpu *vcpu)
2736 {
2737 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2738 #ifndef CONFIG_X86_64
2739 /* guests cmpxchg8b have to be emulated atomically */
2740 if (bytes == 8) {
2741 gpa_t gpa;
2742 struct page *page;
2743 char *kaddr;
2744 u64 val;
2745
2746 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2747
2748 if (gpa == UNMAPPED_GVA ||
2749 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2750 goto emul_write;
2751
2752 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2753 goto emul_write;
2754
2755 val = *(u64 *)new;
2756
2757 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2758
2759 kaddr = kmap_atomic(page, KM_USER0);
2760 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2761 kunmap_atomic(kaddr, KM_USER0);
2762 kvm_release_page_dirty(page);
2763 }
2764 emul_write:
2765 #endif
2766
2767 return emulator_write_emulated(addr, new, bytes, vcpu);
2768 }
2769
2770 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2771 {
2772 return kvm_x86_ops->get_segment_base(vcpu, seg);
2773 }
2774
2775 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2776 {
2777 kvm_mmu_invlpg(vcpu, address);
2778 return X86EMUL_CONTINUE;
2779 }
2780
2781 int emulate_clts(struct kvm_vcpu *vcpu)
2782 {
2783 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2784 return X86EMUL_CONTINUE;
2785 }
2786
2787 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2788 {
2789 struct kvm_vcpu *vcpu = ctxt->vcpu;
2790
2791 switch (dr) {
2792 case 0 ... 3:
2793 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2794 return X86EMUL_CONTINUE;
2795 default:
2796 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2797 return X86EMUL_UNHANDLEABLE;
2798 }
2799 }
2800
2801 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2802 {
2803 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2804 int exception;
2805
2806 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2807 if (exception) {
2808 /* FIXME: better handling */
2809 return X86EMUL_UNHANDLEABLE;
2810 }
2811 return X86EMUL_CONTINUE;
2812 }
2813
2814 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2815 {
2816 u8 opcodes[4];
2817 unsigned long rip = kvm_rip_read(vcpu);
2818 unsigned long rip_linear;
2819
2820 if (!printk_ratelimit())
2821 return;
2822
2823 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2824
2825 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2826
2827 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2828 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2829 }
2830 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2831
2832 static struct x86_emulate_ops emulate_ops = {
2833 .read_std = kvm_read_guest_virt,
2834 .read_emulated = emulator_read_emulated,
2835 .write_emulated = emulator_write_emulated,
2836 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2837 };
2838
2839 static void cache_all_regs(struct kvm_vcpu *vcpu)
2840 {
2841 kvm_register_read(vcpu, VCPU_REGS_RAX);
2842 kvm_register_read(vcpu, VCPU_REGS_RSP);
2843 kvm_register_read(vcpu, VCPU_REGS_RIP);
2844 vcpu->arch.regs_dirty = ~0;
2845 }
2846
2847 int emulate_instruction(struct kvm_vcpu *vcpu,
2848 unsigned long cr2,
2849 u16 error_code,
2850 int emulation_type)
2851 {
2852 int r, shadow_mask;
2853 struct decode_cache *c;
2854 struct kvm_run *run = vcpu->run;
2855
2856 kvm_clear_exception_queue(vcpu);
2857 vcpu->arch.mmio_fault_cr2 = cr2;
2858 /*
2859 * TODO: fix emulate.c to use guest_read/write_register
2860 * instead of direct ->regs accesses, can save hundred cycles
2861 * on Intel for instructions that don't read/change RSP, for
2862 * for example.
2863 */
2864 cache_all_regs(vcpu);
2865
2866 vcpu->mmio_is_write = 0;
2867 vcpu->arch.pio.string = 0;
2868
2869 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2870 int cs_db, cs_l;
2871 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2872
2873 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2874 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
2875 vcpu->arch.emulate_ctxt.mode =
2876 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2877 ? X86EMUL_MODE_REAL : cs_l
2878 ? X86EMUL_MODE_PROT64 : cs_db
2879 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2880
2881 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2882
2883 /* Only allow emulation of specific instructions on #UD
2884 * (namely VMMCALL, sysenter, sysexit, syscall)*/
2885 c = &vcpu->arch.emulate_ctxt.decode;
2886 if (emulation_type & EMULTYPE_TRAP_UD) {
2887 if (!c->twobyte)
2888 return EMULATE_FAIL;
2889 switch (c->b) {
2890 case 0x01: /* VMMCALL */
2891 if (c->modrm_mod != 3 || c->modrm_rm != 1)
2892 return EMULATE_FAIL;
2893 break;
2894 case 0x34: /* sysenter */
2895 case 0x35: /* sysexit */
2896 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2897 return EMULATE_FAIL;
2898 break;
2899 case 0x05: /* syscall */
2900 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2901 return EMULATE_FAIL;
2902 break;
2903 default:
2904 return EMULATE_FAIL;
2905 }
2906
2907 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
2908 return EMULATE_FAIL;
2909 }
2910
2911 ++vcpu->stat.insn_emulation;
2912 if (r) {
2913 ++vcpu->stat.insn_emulation_fail;
2914 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2915 return EMULATE_DONE;
2916 return EMULATE_FAIL;
2917 }
2918 }
2919
2920 if (emulation_type & EMULTYPE_SKIP) {
2921 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2922 return EMULATE_DONE;
2923 }
2924
2925 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2926 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2927
2928 if (r == 0)
2929 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2930
2931 if (vcpu->arch.pio.string)
2932 return EMULATE_DO_MMIO;
2933
2934 if ((r || vcpu->mmio_is_write) && run) {
2935 run->exit_reason = KVM_EXIT_MMIO;
2936 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2937 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2938 run->mmio.len = vcpu->mmio_size;
2939 run->mmio.is_write = vcpu->mmio_is_write;
2940 }
2941
2942 if (r) {
2943 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2944 return EMULATE_DONE;
2945 if (!vcpu->mmio_needed) {
2946 kvm_report_emulation_failure(vcpu, "mmio");
2947 return EMULATE_FAIL;
2948 }
2949 return EMULATE_DO_MMIO;
2950 }
2951
2952 kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2953
2954 if (vcpu->mmio_is_write) {
2955 vcpu->mmio_needed = 0;
2956 return EMULATE_DO_MMIO;
2957 }
2958
2959 return EMULATE_DONE;
2960 }
2961 EXPORT_SYMBOL_GPL(emulate_instruction);
2962
2963 static int pio_copy_data(struct kvm_vcpu *vcpu)
2964 {
2965 void *p = vcpu->arch.pio_data;
2966 gva_t q = vcpu->arch.pio.guest_gva;
2967 unsigned bytes;
2968 int ret;
2969
2970 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2971 if (vcpu->arch.pio.in)
2972 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2973 else
2974 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2975 return ret;
2976 }
2977
2978 int complete_pio(struct kvm_vcpu *vcpu)
2979 {
2980 struct kvm_pio_request *io = &vcpu->arch.pio;
2981 long delta;
2982 int r;
2983 unsigned long val;
2984
2985 if (!io->string) {
2986 if (io->in) {
2987 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2988 memcpy(&val, vcpu->arch.pio_data, io->size);
2989 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2990 }
2991 } else {
2992 if (io->in) {
2993 r = pio_copy_data(vcpu);
2994 if (r)
2995 return r;
2996 }
2997
2998 delta = 1;
2999 if (io->rep) {
3000 delta *= io->cur_count;
3001 /*
3002 * The size of the register should really depend on
3003 * current address size.
3004 */
3005 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3006 val -= delta;
3007 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3008 }
3009 if (io->down)
3010 delta = -delta;
3011 delta *= io->size;
3012 if (io->in) {
3013 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3014 val += delta;
3015 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3016 } else {
3017 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3018 val += delta;
3019 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3020 }
3021 }
3022
3023 io->count -= io->cur_count;
3024 io->cur_count = 0;
3025
3026 return 0;
3027 }
3028
3029 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3030 {
3031 /* TODO: String I/O for in kernel device */
3032 int r;
3033
3034 if (vcpu->arch.pio.in)
3035 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3036 vcpu->arch.pio.size, pd);
3037 else
3038 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3039 vcpu->arch.pio.size, pd);
3040 return r;
3041 }
3042
3043 static int pio_string_write(struct kvm_vcpu *vcpu)
3044 {
3045 struct kvm_pio_request *io = &vcpu->arch.pio;
3046 void *pd = vcpu->arch.pio_data;
3047 int i, r = 0;
3048
3049 for (i = 0; i < io->cur_count; i++) {
3050 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
3051 io->port, io->size, pd)) {
3052 r = -EOPNOTSUPP;
3053 break;
3054 }
3055 pd += io->size;
3056 }
3057 return r;
3058 }
3059
3060 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3061 {
3062 unsigned long val;
3063
3064 vcpu->run->exit_reason = KVM_EXIT_IO;
3065 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3066 vcpu->run->io.size = vcpu->arch.pio.size = size;
3067 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3068 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3069 vcpu->run->io.port = vcpu->arch.pio.port = port;
3070 vcpu->arch.pio.in = in;
3071 vcpu->arch.pio.string = 0;
3072 vcpu->arch.pio.down = 0;
3073 vcpu->arch.pio.rep = 0;
3074
3075 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3076 size, 1);
3077
3078 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3079 memcpy(vcpu->arch.pio_data, &val, 4);
3080
3081 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3082 complete_pio(vcpu);
3083 return 1;
3084 }
3085 return 0;
3086 }
3087 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3088
3089 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3090 int size, unsigned long count, int down,
3091 gva_t address, int rep, unsigned port)
3092 {
3093 unsigned now, in_page;
3094 int ret = 0;
3095
3096 vcpu->run->exit_reason = KVM_EXIT_IO;
3097 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3098 vcpu->run->io.size = vcpu->arch.pio.size = size;
3099 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3100 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3101 vcpu->run->io.port = vcpu->arch.pio.port = port;
3102 vcpu->arch.pio.in = in;
3103 vcpu->arch.pio.string = 1;
3104 vcpu->arch.pio.down = down;
3105 vcpu->arch.pio.rep = rep;
3106
3107 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3108 size, count);
3109
3110 if (!count) {
3111 kvm_x86_ops->skip_emulated_instruction(vcpu);
3112 return 1;
3113 }
3114
3115 if (!down)
3116 in_page = PAGE_SIZE - offset_in_page(address);
3117 else
3118 in_page = offset_in_page(address) + size;
3119 now = min(count, (unsigned long)in_page / size);
3120 if (!now)
3121 now = 1;
3122 if (down) {
3123 /*
3124 * String I/O in reverse. Yuck. Kill the guest, fix later.
3125 */
3126 pr_unimpl(vcpu, "guest string pio down\n");
3127 kvm_inject_gp(vcpu, 0);
3128 return 1;
3129 }
3130 vcpu->run->io.count = now;
3131 vcpu->arch.pio.cur_count = now;
3132
3133 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3134 kvm_x86_ops->skip_emulated_instruction(vcpu);
3135
3136 vcpu->arch.pio.guest_gva = address;
3137
3138 if (!vcpu->arch.pio.in) {
3139 /* string PIO write */
3140 ret = pio_copy_data(vcpu);
3141 if (ret == X86EMUL_PROPAGATE_FAULT) {
3142 kvm_inject_gp(vcpu, 0);
3143 return 1;
3144 }
3145 if (ret == 0 && !pio_string_write(vcpu)) {
3146 complete_pio(vcpu);
3147 if (vcpu->arch.pio.count == 0)
3148 ret = 1;
3149 }
3150 }
3151 /* no string PIO read support yet */
3152
3153 return ret;
3154 }
3155 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3156
3157 static void bounce_off(void *info)
3158 {
3159 /* nothing */
3160 }
3161
3162 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3163 void *data)
3164 {
3165 struct cpufreq_freqs *freq = data;
3166 struct kvm *kvm;
3167 struct kvm_vcpu *vcpu;
3168 int i, send_ipi = 0;
3169
3170 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3171 return 0;
3172 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3173 return 0;
3174 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3175
3176 spin_lock(&kvm_lock);
3177 list_for_each_entry(kvm, &vm_list, vm_list) {
3178 kvm_for_each_vcpu(i, vcpu, kvm) {
3179 if (vcpu->cpu != freq->cpu)
3180 continue;
3181 if (!kvm_request_guest_time_update(vcpu))
3182 continue;
3183 if (vcpu->cpu != smp_processor_id())
3184 send_ipi++;
3185 }
3186 }
3187 spin_unlock(&kvm_lock);
3188
3189 if (freq->old < freq->new && send_ipi) {
3190 /*
3191 * We upscale the frequency. Must make the guest
3192 * doesn't see old kvmclock values while running with
3193 * the new frequency, otherwise we risk the guest sees
3194 * time go backwards.
3195 *
3196 * In case we update the frequency for another cpu
3197 * (which might be in guest context) send an interrupt
3198 * to kick the cpu out of guest context. Next time
3199 * guest context is entered kvmclock will be updated,
3200 * so the guest will not see stale values.
3201 */
3202 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3203 }
3204 return 0;
3205 }
3206
3207 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3208 .notifier_call = kvmclock_cpufreq_notifier
3209 };
3210
3211 static void kvm_timer_init(void)
3212 {
3213 int cpu;
3214
3215 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3216 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3217 CPUFREQ_TRANSITION_NOTIFIER);
3218 for_each_online_cpu(cpu) {
3219 unsigned long khz = cpufreq_get(cpu);
3220 if (!khz)
3221 khz = tsc_khz;
3222 per_cpu(cpu_tsc_khz, cpu) = khz;
3223 }
3224 } else {
3225 for_each_possible_cpu(cpu)
3226 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3227 }
3228 }
3229
3230 int kvm_arch_init(void *opaque)
3231 {
3232 int r;
3233 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3234
3235 if (kvm_x86_ops) {
3236 printk(KERN_ERR "kvm: already loaded the other module\n");
3237 r = -EEXIST;
3238 goto out;
3239 }
3240
3241 if (!ops->cpu_has_kvm_support()) {
3242 printk(KERN_ERR "kvm: no hardware support\n");
3243 r = -EOPNOTSUPP;
3244 goto out;
3245 }
3246 if (ops->disabled_by_bios()) {
3247 printk(KERN_ERR "kvm: disabled by bios\n");
3248 r = -EOPNOTSUPP;
3249 goto out;
3250 }
3251
3252 r = kvm_mmu_module_init();
3253 if (r)
3254 goto out;
3255
3256 kvm_init_msr_list();
3257
3258 kvm_x86_ops = ops;
3259 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3260 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3261 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3262 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3263
3264 kvm_timer_init();
3265
3266 return 0;
3267
3268 out:
3269 return r;
3270 }
3271
3272 void kvm_arch_exit(void)
3273 {
3274 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3275 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3276 CPUFREQ_TRANSITION_NOTIFIER);
3277 kvm_x86_ops = NULL;
3278 kvm_mmu_module_exit();
3279 }
3280
3281 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3282 {
3283 ++vcpu->stat.halt_exits;
3284 if (irqchip_in_kernel(vcpu->kvm)) {
3285 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3286 return 1;
3287 } else {
3288 vcpu->run->exit_reason = KVM_EXIT_HLT;
3289 return 0;
3290 }
3291 }
3292 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3293
3294 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3295 unsigned long a1)
3296 {
3297 if (is_long_mode(vcpu))
3298 return a0;
3299 else
3300 return a0 | ((gpa_t)a1 << 32);
3301 }
3302
3303 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3304 {
3305 unsigned long nr, a0, a1, a2, a3, ret;
3306 int r = 1;
3307
3308 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3309 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3310 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3311 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3312 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3313
3314 trace_kvm_hypercall(nr, a0, a1, a2, a3);
3315
3316 if (!is_long_mode(vcpu)) {
3317 nr &= 0xFFFFFFFF;
3318 a0 &= 0xFFFFFFFF;
3319 a1 &= 0xFFFFFFFF;
3320 a2 &= 0xFFFFFFFF;
3321 a3 &= 0xFFFFFFFF;
3322 }
3323
3324 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3325 ret = -KVM_EPERM;
3326 goto out;
3327 }
3328
3329 switch (nr) {
3330 case KVM_HC_VAPIC_POLL_IRQ:
3331 ret = 0;
3332 break;
3333 case KVM_HC_MMU_OP:
3334 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3335 break;
3336 default:
3337 ret = -KVM_ENOSYS;
3338 break;
3339 }
3340 out:
3341 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3342 ++vcpu->stat.hypercalls;
3343 return r;
3344 }
3345 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3346
3347 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3348 {
3349 char instruction[3];
3350 int ret = 0;
3351 unsigned long rip = kvm_rip_read(vcpu);
3352
3353
3354 /*
3355 * Blow out the MMU to ensure that no other VCPU has an active mapping
3356 * to ensure that the updated hypercall appears atomically across all
3357 * VCPUs.
3358 */
3359 kvm_mmu_zap_all(vcpu->kvm);
3360
3361 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3362 if (emulator_write_emulated(rip, instruction, 3, vcpu)
3363 != X86EMUL_CONTINUE)
3364 ret = -EFAULT;
3365
3366 return ret;
3367 }
3368
3369 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3370 {
3371 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3372 }
3373
3374 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3375 {
3376 struct descriptor_table dt = { limit, base };
3377
3378 kvm_x86_ops->set_gdt(vcpu, &dt);
3379 }
3380
3381 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3382 {
3383 struct descriptor_table dt = { limit, base };
3384
3385 kvm_x86_ops->set_idt(vcpu, &dt);
3386 }
3387
3388 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3389 unsigned long *rflags)
3390 {
3391 kvm_lmsw(vcpu, msw);
3392 *rflags = kvm_get_rflags(vcpu);
3393 }
3394
3395 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3396 {
3397 unsigned long value;
3398
3399 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3400 switch (cr) {
3401 case 0:
3402 value = vcpu->arch.cr0;
3403 break;
3404 case 2:
3405 value = vcpu->arch.cr2;
3406 break;
3407 case 3:
3408 value = vcpu->arch.cr3;
3409 break;
3410 case 4:
3411 value = vcpu->arch.cr4;
3412 break;
3413 case 8:
3414 value = kvm_get_cr8(vcpu);
3415 break;
3416 default:
3417 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3418 return 0;
3419 }
3420
3421 return value;
3422 }
3423
3424 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3425 unsigned long *rflags)
3426 {
3427 switch (cr) {
3428 case 0:
3429 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3430 *rflags = kvm_get_rflags(vcpu);
3431 break;
3432 case 2:
3433 vcpu->arch.cr2 = val;
3434 break;
3435 case 3:
3436 kvm_set_cr3(vcpu, val);
3437 break;
3438 case 4:
3439 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3440 break;
3441 case 8:
3442 kvm_set_cr8(vcpu, val & 0xfUL);
3443 break;
3444 default:
3445 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3446 }
3447 }
3448
3449 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3450 {
3451 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3452 int j, nent = vcpu->arch.cpuid_nent;
3453
3454 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3455 /* when no next entry is found, the current entry[i] is reselected */
3456 for (j = i + 1; ; j = (j + 1) % nent) {
3457 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3458 if (ej->function == e->function) {
3459 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3460 return j;
3461 }
3462 }
3463 return 0; /* silence gcc, even though control never reaches here */
3464 }
3465
3466 /* find an entry with matching function, matching index (if needed), and that
3467 * should be read next (if it's stateful) */
3468 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3469 u32 function, u32 index)
3470 {
3471 if (e->function != function)
3472 return 0;
3473 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3474 return 0;
3475 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3476 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3477 return 0;
3478 return 1;
3479 }
3480
3481 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3482 u32 function, u32 index)
3483 {
3484 int i;
3485 struct kvm_cpuid_entry2 *best = NULL;
3486
3487 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3488 struct kvm_cpuid_entry2 *e;
3489
3490 e = &vcpu->arch.cpuid_entries[i];
3491 if (is_matching_cpuid_entry(e, function, index)) {
3492 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3493 move_to_next_stateful_cpuid_entry(vcpu, i);
3494 best = e;
3495 break;
3496 }
3497 /*
3498 * Both basic or both extended?
3499 */
3500 if (((e->function ^ function) & 0x80000000) == 0)
3501 if (!best || e->function > best->function)
3502 best = e;
3503 }
3504 return best;
3505 }
3506
3507 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3508 {
3509 struct kvm_cpuid_entry2 *best;
3510
3511 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3512 if (best)
3513 return best->eax & 0xff;
3514 return 36;
3515 }
3516
3517 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3518 {
3519 u32 function, index;
3520 struct kvm_cpuid_entry2 *best;
3521
3522 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3523 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3524 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3525 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3526 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3527 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3528 best = kvm_find_cpuid_entry(vcpu, function, index);
3529 if (best) {
3530 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3531 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3532 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3533 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3534 }
3535 kvm_x86_ops->skip_emulated_instruction(vcpu);
3536 trace_kvm_cpuid(function,
3537 kvm_register_read(vcpu, VCPU_REGS_RAX),
3538 kvm_register_read(vcpu, VCPU_REGS_RBX),
3539 kvm_register_read(vcpu, VCPU_REGS_RCX),
3540 kvm_register_read(vcpu, VCPU_REGS_RDX));
3541 }
3542 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3543
3544 /*
3545 * Check if userspace requested an interrupt window, and that the
3546 * interrupt window is open.
3547 *
3548 * No need to exit to userspace if we already have an interrupt queued.
3549 */
3550 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
3551 {
3552 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3553 vcpu->run->request_interrupt_window &&
3554 kvm_arch_interrupt_allowed(vcpu));
3555 }
3556
3557 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
3558 {
3559 struct kvm_run *kvm_run = vcpu->run;
3560
3561 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3562 kvm_run->cr8 = kvm_get_cr8(vcpu);
3563 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3564 if (irqchip_in_kernel(vcpu->kvm))
3565 kvm_run->ready_for_interrupt_injection = 1;
3566 else
3567 kvm_run->ready_for_interrupt_injection =
3568 kvm_arch_interrupt_allowed(vcpu) &&
3569 !kvm_cpu_has_interrupt(vcpu) &&
3570 !kvm_event_needs_reinjection(vcpu);
3571 }
3572
3573 static void vapic_enter(struct kvm_vcpu *vcpu)
3574 {
3575 struct kvm_lapic *apic = vcpu->arch.apic;
3576 struct page *page;
3577
3578 if (!apic || !apic->vapic_addr)
3579 return;
3580
3581 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3582
3583 vcpu->arch.apic->vapic_page = page;
3584 }
3585
3586 static void vapic_exit(struct kvm_vcpu *vcpu)
3587 {
3588 struct kvm_lapic *apic = vcpu->arch.apic;
3589
3590 if (!apic || !apic->vapic_addr)
3591 return;
3592
3593 down_read(&vcpu->kvm->slots_lock);
3594 kvm_release_page_dirty(apic->vapic_page);
3595 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3596 up_read(&vcpu->kvm->slots_lock);
3597 }
3598
3599 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3600 {
3601 int max_irr, tpr;
3602
3603 if (!kvm_x86_ops->update_cr8_intercept)
3604 return;
3605
3606 if (!vcpu->arch.apic)
3607 return;
3608
3609 if (!vcpu->arch.apic->vapic_addr)
3610 max_irr = kvm_lapic_find_highest_irr(vcpu);
3611 else
3612 max_irr = -1;
3613
3614 if (max_irr != -1)
3615 max_irr >>= 4;
3616
3617 tpr = kvm_lapic_get_cr8(vcpu);
3618
3619 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3620 }
3621
3622 static void inject_pending_event(struct kvm_vcpu *vcpu)
3623 {
3624 /* try to reinject previous events if any */
3625 if (vcpu->arch.exception.pending) {
3626 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3627 vcpu->arch.exception.has_error_code,
3628 vcpu->arch.exception.error_code);
3629 return;
3630 }
3631
3632 if (vcpu->arch.nmi_injected) {
3633 kvm_x86_ops->set_nmi(vcpu);
3634 return;
3635 }
3636
3637 if (vcpu->arch.interrupt.pending) {
3638 kvm_x86_ops->set_irq(vcpu);
3639 return;
3640 }
3641
3642 /* try to inject new event if pending */
3643 if (vcpu->arch.nmi_pending) {
3644 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3645 vcpu->arch.nmi_pending = false;
3646 vcpu->arch.nmi_injected = true;
3647 kvm_x86_ops->set_nmi(vcpu);
3648 }
3649 } else if (kvm_cpu_has_interrupt(vcpu)) {
3650 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3651 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3652 false);
3653 kvm_x86_ops->set_irq(vcpu);
3654 }
3655 }
3656 }
3657
3658 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
3659 {
3660 int r;
3661 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3662 vcpu->run->request_interrupt_window;
3663
3664 if (vcpu->requests)
3665 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3666 kvm_mmu_unload(vcpu);
3667
3668 r = kvm_mmu_reload(vcpu);
3669 if (unlikely(r))
3670 goto out;
3671
3672 if (vcpu->requests) {
3673 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3674 __kvm_migrate_timers(vcpu);
3675 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3676 kvm_write_guest_time(vcpu);
3677 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3678 kvm_mmu_sync_roots(vcpu);
3679 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3680 kvm_x86_ops->tlb_flush(vcpu);
3681 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3682 &vcpu->requests)) {
3683 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
3684 r = 0;
3685 goto out;
3686 }
3687 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3688 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3689 r = 0;
3690 goto out;
3691 }
3692 }
3693
3694 preempt_disable();
3695
3696 kvm_x86_ops->prepare_guest_switch(vcpu);
3697 kvm_load_guest_fpu(vcpu);
3698
3699 local_irq_disable();
3700
3701 clear_bit(KVM_REQ_KICK, &vcpu->requests);
3702 smp_mb__after_clear_bit();
3703
3704 if (vcpu->requests || need_resched() || signal_pending(current)) {
3705 set_bit(KVM_REQ_KICK, &vcpu->requests);
3706 local_irq_enable();
3707 preempt_enable();
3708 r = 1;
3709 goto out;
3710 }
3711
3712 inject_pending_event(vcpu);
3713
3714 /* enable NMI/IRQ window open exits if needed */
3715 if (vcpu->arch.nmi_pending)
3716 kvm_x86_ops->enable_nmi_window(vcpu);
3717 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3718 kvm_x86_ops->enable_irq_window(vcpu);
3719
3720 if (kvm_lapic_enabled(vcpu)) {
3721 update_cr8_intercept(vcpu);
3722 kvm_lapic_sync_to_vapic(vcpu);
3723 }
3724
3725 up_read(&vcpu->kvm->slots_lock);
3726
3727 kvm_guest_enter();
3728
3729 if (unlikely(vcpu->arch.switch_db_regs)) {
3730 set_debugreg(0, 7);
3731 set_debugreg(vcpu->arch.eff_db[0], 0);
3732 set_debugreg(vcpu->arch.eff_db[1], 1);
3733 set_debugreg(vcpu->arch.eff_db[2], 2);
3734 set_debugreg(vcpu->arch.eff_db[3], 3);
3735 }
3736
3737 trace_kvm_entry(vcpu->vcpu_id);
3738 kvm_x86_ops->run(vcpu);
3739
3740 if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
3741 set_debugreg(current->thread.debugreg0, 0);
3742 set_debugreg(current->thread.debugreg1, 1);
3743 set_debugreg(current->thread.debugreg2, 2);
3744 set_debugreg(current->thread.debugreg3, 3);
3745 set_debugreg(current->thread.debugreg6, 6);
3746 set_debugreg(current->thread.debugreg7, 7);
3747 }
3748
3749 set_bit(KVM_REQ_KICK, &vcpu->requests);
3750 local_irq_enable();
3751
3752 ++vcpu->stat.exits;
3753
3754 /*
3755 * We must have an instruction between local_irq_enable() and
3756 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3757 * the interrupt shadow. The stat.exits increment will do nicely.
3758 * But we need to prevent reordering, hence this barrier():
3759 */
3760 barrier();
3761
3762 kvm_guest_exit();
3763
3764 preempt_enable();
3765
3766 down_read(&vcpu->kvm->slots_lock);
3767
3768 /*
3769 * Profile KVM exit RIPs:
3770 */
3771 if (unlikely(prof_on == KVM_PROFILING)) {
3772 unsigned long rip = kvm_rip_read(vcpu);
3773 profile_hit(KVM_PROFILING, (void *)rip);
3774 }
3775
3776
3777 kvm_lapic_sync_from_vapic(vcpu);
3778
3779 r = kvm_x86_ops->handle_exit(vcpu);
3780 out:
3781 return r;
3782 }
3783
3784
3785 static int __vcpu_run(struct kvm_vcpu *vcpu)
3786 {
3787 int r;
3788
3789 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3790 pr_debug("vcpu %d received sipi with vector # %x\n",
3791 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3792 kvm_lapic_reset(vcpu);
3793 r = kvm_arch_vcpu_reset(vcpu);
3794 if (r)
3795 return r;
3796 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3797 }
3798
3799 down_read(&vcpu->kvm->slots_lock);
3800 vapic_enter(vcpu);
3801
3802 r = 1;
3803 while (r > 0) {
3804 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3805 r = vcpu_enter_guest(vcpu);
3806 else {
3807 up_read(&vcpu->kvm->slots_lock);
3808 kvm_vcpu_block(vcpu);
3809 down_read(&vcpu->kvm->slots_lock);
3810 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3811 {
3812 switch(vcpu->arch.mp_state) {
3813 case KVM_MP_STATE_HALTED:
3814 vcpu->arch.mp_state =
3815 KVM_MP_STATE_RUNNABLE;
3816 case KVM_MP_STATE_RUNNABLE:
3817 break;
3818 case KVM_MP_STATE_SIPI_RECEIVED:
3819 default:
3820 r = -EINTR;
3821 break;
3822 }
3823 }
3824 }
3825
3826 if (r <= 0)
3827 break;
3828
3829 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3830 if (kvm_cpu_has_pending_timer(vcpu))
3831 kvm_inject_pending_timer_irqs(vcpu);
3832
3833 if (dm_request_for_irq_injection(vcpu)) {
3834 r = -EINTR;
3835 vcpu->run->exit_reason = KVM_EXIT_INTR;
3836 ++vcpu->stat.request_irq_exits;
3837 }
3838 if (signal_pending(current)) {
3839 r = -EINTR;
3840 vcpu->run->exit_reason = KVM_EXIT_INTR;
3841 ++vcpu->stat.signal_exits;
3842 }
3843 if (need_resched()) {
3844 up_read(&vcpu->kvm->slots_lock);
3845 kvm_resched(vcpu);
3846 down_read(&vcpu->kvm->slots_lock);
3847 }
3848 }
3849
3850 up_read(&vcpu->kvm->slots_lock);
3851 post_kvm_run_save(vcpu);
3852
3853 vapic_exit(vcpu);
3854
3855 return r;
3856 }
3857
3858 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3859 {
3860 int r;
3861 sigset_t sigsaved;
3862
3863 vcpu_load(vcpu);
3864
3865 if (vcpu->sigset_active)
3866 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3867
3868 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3869 kvm_vcpu_block(vcpu);
3870 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3871 r = -EAGAIN;
3872 goto out;
3873 }
3874
3875 /* re-sync apic's tpr */
3876 if (!irqchip_in_kernel(vcpu->kvm))
3877 kvm_set_cr8(vcpu, kvm_run->cr8);
3878
3879 if (vcpu->arch.pio.cur_count) {
3880 r = complete_pio(vcpu);
3881 if (r)
3882 goto out;
3883 }
3884 if (vcpu->mmio_needed) {
3885 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3886 vcpu->mmio_read_completed = 1;
3887 vcpu->mmio_needed = 0;
3888
3889 down_read(&vcpu->kvm->slots_lock);
3890 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
3891 EMULTYPE_NO_DECODE);
3892 up_read(&vcpu->kvm->slots_lock);
3893 if (r == EMULATE_DO_MMIO) {
3894 /*
3895 * Read-modify-write. Back to userspace.
3896 */
3897 r = 0;
3898 goto out;
3899 }
3900 }
3901 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3902 kvm_register_write(vcpu, VCPU_REGS_RAX,
3903 kvm_run->hypercall.ret);
3904
3905 r = __vcpu_run(vcpu);
3906
3907 out:
3908 if (vcpu->sigset_active)
3909 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3910
3911 vcpu_put(vcpu);
3912 return r;
3913 }
3914
3915 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3916 {
3917 vcpu_load(vcpu);
3918
3919 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3920 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3921 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3922 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3923 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3924 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3925 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3926 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3927 #ifdef CONFIG_X86_64
3928 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3929 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3930 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3931 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3932 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3933 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3934 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3935 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3936 #endif
3937
3938 regs->rip = kvm_rip_read(vcpu);
3939 regs->rflags = kvm_get_rflags(vcpu);
3940
3941 vcpu_put(vcpu);
3942
3943 return 0;
3944 }
3945
3946 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3947 {
3948 vcpu_load(vcpu);
3949
3950 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3951 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3952 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3953 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3954 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3955 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3956 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3957 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3958 #ifdef CONFIG_X86_64
3959 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3960 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3961 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3962 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3963 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3964 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3965 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3966 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3967 #endif
3968
3969 kvm_rip_write(vcpu, regs->rip);
3970 kvm_set_rflags(vcpu, regs->rflags);
3971
3972 vcpu->arch.exception.pending = false;
3973
3974 vcpu_put(vcpu);
3975
3976 return 0;
3977 }
3978
3979 void kvm_get_segment(struct kvm_vcpu *vcpu,
3980 struct kvm_segment *var, int seg)
3981 {
3982 kvm_x86_ops->get_segment(vcpu, var, seg);
3983 }
3984
3985 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3986 {
3987 struct kvm_segment cs;
3988
3989 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3990 *db = cs.db;
3991 *l = cs.l;
3992 }
3993 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3994
3995 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3996 struct kvm_sregs *sregs)
3997 {
3998 struct descriptor_table dt;
3999
4000 vcpu_load(vcpu);
4001
4002 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4003 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4004 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4005 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4006 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4007 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4008
4009 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4010 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4011
4012 kvm_x86_ops->get_idt(vcpu, &dt);
4013 sregs->idt.limit = dt.limit;
4014 sregs->idt.base = dt.base;
4015 kvm_x86_ops->get_gdt(vcpu, &dt);
4016 sregs->gdt.limit = dt.limit;
4017 sregs->gdt.base = dt.base;
4018
4019 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4020 sregs->cr0 = vcpu->arch.cr0;
4021 sregs->cr2 = vcpu->arch.cr2;
4022 sregs->cr3 = vcpu->arch.cr3;
4023 sregs->cr4 = vcpu->arch.cr4;
4024 sregs->cr8 = kvm_get_cr8(vcpu);
4025 sregs->efer = vcpu->arch.shadow_efer;
4026 sregs->apic_base = kvm_get_apic_base(vcpu);
4027
4028 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4029
4030 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4031 set_bit(vcpu->arch.interrupt.nr,
4032 (unsigned long *)sregs->interrupt_bitmap);
4033
4034 vcpu_put(vcpu);
4035
4036 return 0;
4037 }
4038
4039 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4040 struct kvm_mp_state *mp_state)
4041 {
4042 vcpu_load(vcpu);
4043 mp_state->mp_state = vcpu->arch.mp_state;
4044 vcpu_put(vcpu);
4045 return 0;
4046 }
4047
4048 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4049 struct kvm_mp_state *mp_state)
4050 {
4051 vcpu_load(vcpu);
4052 vcpu->arch.mp_state = mp_state->mp_state;
4053 vcpu_put(vcpu);
4054 return 0;
4055 }
4056
4057 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4058 struct kvm_segment *var, int seg)
4059 {
4060 kvm_x86_ops->set_segment(vcpu, var, seg);
4061 }
4062
4063 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4064 struct kvm_segment *kvm_desct)
4065 {
4066 kvm_desct->base = get_desc_base(seg_desc);
4067 kvm_desct->limit = get_desc_limit(seg_desc);
4068 if (seg_desc->g) {
4069 kvm_desct->limit <<= 12;
4070 kvm_desct->limit |= 0xfff;
4071 }
4072 kvm_desct->selector = selector;
4073 kvm_desct->type = seg_desc->type;
4074 kvm_desct->present = seg_desc->p;
4075 kvm_desct->dpl = seg_desc->dpl;
4076 kvm_desct->db = seg_desc->d;
4077 kvm_desct->s = seg_desc->s;
4078 kvm_desct->l = seg_desc->l;
4079 kvm_desct->g = seg_desc->g;
4080 kvm_desct->avl = seg_desc->avl;
4081 if (!selector)
4082 kvm_desct->unusable = 1;
4083 else
4084 kvm_desct->unusable = 0;
4085 kvm_desct->padding = 0;
4086 }
4087
4088 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4089 u16 selector,
4090 struct descriptor_table *dtable)
4091 {
4092 if (selector & 1 << 2) {
4093 struct kvm_segment kvm_seg;
4094
4095 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4096
4097 if (kvm_seg.unusable)
4098 dtable->limit = 0;
4099 else
4100 dtable->limit = kvm_seg.limit;
4101 dtable->base = kvm_seg.base;
4102 }
4103 else
4104 kvm_x86_ops->get_gdt(vcpu, dtable);
4105 }
4106
4107 /* allowed just for 8 bytes segments */
4108 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4109 struct desc_struct *seg_desc)
4110 {
4111 struct descriptor_table dtable;
4112 u16 index = selector >> 3;
4113
4114 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4115
4116 if (dtable.limit < index * 8 + 7) {
4117 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4118 return 1;
4119 }
4120 return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4121 }
4122
4123 /* allowed just for 8 bytes segments */
4124 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4125 struct desc_struct *seg_desc)
4126 {
4127 struct descriptor_table dtable;
4128 u16 index = selector >> 3;
4129
4130 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4131
4132 if (dtable.limit < index * 8 + 7)
4133 return 1;
4134 return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4135 }
4136
4137 static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
4138 struct desc_struct *seg_desc)
4139 {
4140 u32 base_addr = get_desc_base(seg_desc);
4141
4142 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4143 }
4144
4145 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4146 {
4147 struct kvm_segment kvm_seg;
4148
4149 kvm_get_segment(vcpu, &kvm_seg, seg);
4150 return kvm_seg.selector;
4151 }
4152
4153 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4154 u16 selector,
4155 struct kvm_segment *kvm_seg)
4156 {
4157 struct desc_struct seg_desc;
4158
4159 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4160 return 1;
4161 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4162 return 0;
4163 }
4164
4165 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4166 {
4167 struct kvm_segment segvar = {
4168 .base = selector << 4,
4169 .limit = 0xffff,
4170 .selector = selector,
4171 .type = 3,
4172 .present = 1,
4173 .dpl = 3,
4174 .db = 0,
4175 .s = 1,
4176 .l = 0,
4177 .g = 0,
4178 .avl = 0,
4179 .unusable = 0,
4180 };
4181 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4182 return 0;
4183 }
4184
4185 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4186 {
4187 return (seg != VCPU_SREG_LDTR) &&
4188 (seg != VCPU_SREG_TR) &&
4189 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4190 }
4191
4192 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4193 int type_bits, int seg)
4194 {
4195 struct kvm_segment kvm_seg;
4196
4197 if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
4198 return kvm_load_realmode_segment(vcpu, selector, seg);
4199 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4200 return 1;
4201 kvm_seg.type |= type_bits;
4202
4203 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4204 seg != VCPU_SREG_LDTR)
4205 if (!kvm_seg.s)
4206 kvm_seg.unusable = 1;
4207
4208 kvm_set_segment(vcpu, &kvm_seg, seg);
4209 return 0;
4210 }
4211
4212 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4213 struct tss_segment_32 *tss)
4214 {
4215 tss->cr3 = vcpu->arch.cr3;
4216 tss->eip = kvm_rip_read(vcpu);
4217 tss->eflags = kvm_get_rflags(vcpu);
4218 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4219 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4220 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4221 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4222 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4223 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4224 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4225 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4226 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4227 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4228 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4229 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4230 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4231 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4232 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4233 }
4234
4235 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4236 struct tss_segment_32 *tss)
4237 {
4238 kvm_set_cr3(vcpu, tss->cr3);
4239
4240 kvm_rip_write(vcpu, tss->eip);
4241 kvm_set_rflags(vcpu, tss->eflags | 2);
4242
4243 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4244 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4245 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4246 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4247 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4248 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4249 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4250 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4251
4252 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4253 return 1;
4254
4255 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4256 return 1;
4257
4258 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4259 return 1;
4260
4261 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4262 return 1;
4263
4264 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4265 return 1;
4266
4267 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4268 return 1;
4269
4270 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4271 return 1;
4272 return 0;
4273 }
4274
4275 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4276 struct tss_segment_16 *tss)
4277 {
4278 tss->ip = kvm_rip_read(vcpu);
4279 tss->flag = kvm_get_rflags(vcpu);
4280 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4281 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4282 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4283 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4284 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4285 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4286 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4287 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4288
4289 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4290 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4291 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4292 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4293 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4294 }
4295
4296 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4297 struct tss_segment_16 *tss)
4298 {
4299 kvm_rip_write(vcpu, tss->ip);
4300 kvm_set_rflags(vcpu, tss->flag | 2);
4301 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4302 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4303 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4304 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4305 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4306 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4307 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4308 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4309
4310 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4311 return 1;
4312
4313 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4314 return 1;
4315
4316 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4317 return 1;
4318
4319 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4320 return 1;
4321
4322 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4323 return 1;
4324 return 0;
4325 }
4326
4327 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4328 u16 old_tss_sel, u32 old_tss_base,
4329 struct desc_struct *nseg_desc)
4330 {
4331 struct tss_segment_16 tss_segment_16;
4332 int ret = 0;
4333
4334 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4335 sizeof tss_segment_16))
4336 goto out;
4337
4338 save_state_to_tss16(vcpu, &tss_segment_16);
4339
4340 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4341 sizeof tss_segment_16))
4342 goto out;
4343
4344 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4345 &tss_segment_16, sizeof tss_segment_16))
4346 goto out;
4347
4348 if (old_tss_sel != 0xffff) {
4349 tss_segment_16.prev_task_link = old_tss_sel;
4350
4351 if (kvm_write_guest(vcpu->kvm,
4352 get_tss_base_addr(vcpu, nseg_desc),
4353 &tss_segment_16.prev_task_link,
4354 sizeof tss_segment_16.prev_task_link))
4355 goto out;
4356 }
4357
4358 if (load_state_from_tss16(vcpu, &tss_segment_16))
4359 goto out;
4360
4361 ret = 1;
4362 out:
4363 return ret;
4364 }
4365
4366 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4367 u16 old_tss_sel, u32 old_tss_base,
4368 struct desc_struct *nseg_desc)
4369 {
4370 struct tss_segment_32 tss_segment_32;
4371 int ret = 0;
4372
4373 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4374 sizeof tss_segment_32))
4375 goto out;
4376
4377 save_state_to_tss32(vcpu, &tss_segment_32);
4378
4379 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4380 sizeof tss_segment_32))
4381 goto out;
4382
4383 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4384 &tss_segment_32, sizeof tss_segment_32))
4385 goto out;
4386
4387 if (old_tss_sel != 0xffff) {
4388 tss_segment_32.prev_task_link = old_tss_sel;
4389
4390 if (kvm_write_guest(vcpu->kvm,
4391 get_tss_base_addr(vcpu, nseg_desc),
4392 &tss_segment_32.prev_task_link,
4393 sizeof tss_segment_32.prev_task_link))
4394 goto out;
4395 }
4396
4397 if (load_state_from_tss32(vcpu, &tss_segment_32))
4398 goto out;
4399
4400 ret = 1;
4401 out:
4402 return ret;
4403 }
4404
4405 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4406 {
4407 struct kvm_segment tr_seg;
4408 struct desc_struct cseg_desc;
4409 struct desc_struct nseg_desc;
4410 int ret = 0;
4411 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4412 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4413
4414 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4415
4416 /* FIXME: Handle errors. Failure to read either TSS or their
4417 * descriptors should generate a pagefault.
4418 */
4419 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4420 goto out;
4421
4422 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4423 goto out;
4424
4425 if (reason != TASK_SWITCH_IRET) {
4426 int cpl;
4427
4428 cpl = kvm_x86_ops->get_cpl(vcpu);
4429 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4430 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4431 return 1;
4432 }
4433 }
4434
4435 if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4436 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4437 return 1;
4438 }
4439
4440 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4441 cseg_desc.type &= ~(1 << 1); //clear the B flag
4442 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4443 }
4444
4445 if (reason == TASK_SWITCH_IRET) {
4446 u32 eflags = kvm_get_rflags(vcpu);
4447 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4448 }
4449
4450 /* set back link to prev task only if NT bit is set in eflags
4451 note that old_tss_sel is not used afetr this point */
4452 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4453 old_tss_sel = 0xffff;
4454
4455 /* set back link to prev task only if NT bit is set in eflags
4456 note that old_tss_sel is not used afetr this point */
4457 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4458 old_tss_sel = 0xffff;
4459
4460 if (nseg_desc.type & 8)
4461 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4462 old_tss_base, &nseg_desc);
4463 else
4464 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4465 old_tss_base, &nseg_desc);
4466
4467 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4468 u32 eflags = kvm_get_rflags(vcpu);
4469 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4470 }
4471
4472 if (reason != TASK_SWITCH_IRET) {
4473 nseg_desc.type |= (1 << 1);
4474 save_guest_segment_descriptor(vcpu, tss_selector,
4475 &nseg_desc);
4476 }
4477
4478 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4479 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4480 tr_seg.type = 11;
4481 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4482 out:
4483 return ret;
4484 }
4485 EXPORT_SYMBOL_GPL(kvm_task_switch);
4486
4487 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4488 struct kvm_sregs *sregs)
4489 {
4490 int mmu_reset_needed = 0;
4491 int pending_vec, max_bits;
4492 struct descriptor_table dt;
4493
4494 vcpu_load(vcpu);
4495
4496 dt.limit = sregs->idt.limit;
4497 dt.base = sregs->idt.base;
4498 kvm_x86_ops->set_idt(vcpu, &dt);
4499 dt.limit = sregs->gdt.limit;
4500 dt.base = sregs->gdt.base;
4501 kvm_x86_ops->set_gdt(vcpu, &dt);
4502
4503 vcpu->arch.cr2 = sregs->cr2;
4504 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4505 vcpu->arch.cr3 = sregs->cr3;
4506
4507 kvm_set_cr8(vcpu, sregs->cr8);
4508
4509 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4510 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4511 kvm_set_apic_base(vcpu, sregs->apic_base);
4512
4513 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4514
4515 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4516 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4517 vcpu->arch.cr0 = sregs->cr0;
4518
4519 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4520 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4521 if (!is_long_mode(vcpu) && is_pae(vcpu))
4522 load_pdptrs(vcpu, vcpu->arch.cr3);
4523
4524 if (mmu_reset_needed)
4525 kvm_mmu_reset_context(vcpu);
4526
4527 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4528 pending_vec = find_first_bit(
4529 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4530 if (pending_vec < max_bits) {
4531 kvm_queue_interrupt(vcpu, pending_vec, false);
4532 pr_debug("Set back pending irq %d\n", pending_vec);
4533 if (irqchip_in_kernel(vcpu->kvm))
4534 kvm_pic_clear_isr_ack(vcpu->kvm);
4535 }
4536
4537 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4538 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4539 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4540 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4541 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4542 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4543
4544 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4545 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4546
4547 update_cr8_intercept(vcpu);
4548
4549 /* Older userspace won't unhalt the vcpu on reset. */
4550 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4551 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4552 !(vcpu->arch.cr0 & X86_CR0_PE))
4553 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4554
4555 vcpu_put(vcpu);
4556
4557 return 0;
4558 }
4559
4560 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4561 struct kvm_guest_debug *dbg)
4562 {
4563 unsigned long rflags;
4564 int i;
4565
4566 vcpu_load(vcpu);
4567
4568 /*
4569 * Read rflags as long as potentially injected trace flags are still
4570 * filtered out.
4571 */
4572 rflags = kvm_get_rflags(vcpu);
4573
4574 vcpu->guest_debug = dbg->control;
4575 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
4576 vcpu->guest_debug = 0;
4577
4578 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4579 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4580 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4581 vcpu->arch.switch_db_regs =
4582 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4583 } else {
4584 for (i = 0; i < KVM_NR_DB_REGS; i++)
4585 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4586 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4587 }
4588
4589 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
4590 vcpu->arch.singlestep_cs =
4591 get_segment_selector(vcpu, VCPU_SREG_CS);
4592 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
4593 }
4594
4595 /*
4596 * Trigger an rflags update that will inject or remove the trace
4597 * flags.
4598 */
4599 kvm_set_rflags(vcpu, rflags);
4600
4601 kvm_x86_ops->set_guest_debug(vcpu, dbg);
4602
4603 if (vcpu->guest_debug & KVM_GUESTDBG_INJECT_DB)
4604 kvm_queue_exception(vcpu, DB_VECTOR);
4605 else if (vcpu->guest_debug & KVM_GUESTDBG_INJECT_BP)
4606 kvm_queue_exception(vcpu, BP_VECTOR);
4607
4608 vcpu_put(vcpu);
4609
4610 return 0;
4611 }
4612
4613 /*
4614 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4615 * we have asm/x86/processor.h
4616 */
4617 struct fxsave {
4618 u16 cwd;
4619 u16 swd;
4620 u16 twd;
4621 u16 fop;
4622 u64 rip;
4623 u64 rdp;
4624 u32 mxcsr;
4625 u32 mxcsr_mask;
4626 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4627 #ifdef CONFIG_X86_64
4628 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4629 #else
4630 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4631 #endif
4632 };
4633
4634 /*
4635 * Translate a guest virtual address to a guest physical address.
4636 */
4637 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4638 struct kvm_translation *tr)
4639 {
4640 unsigned long vaddr = tr->linear_address;
4641 gpa_t gpa;
4642
4643 vcpu_load(vcpu);
4644 down_read(&vcpu->kvm->slots_lock);
4645 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4646 up_read(&vcpu->kvm->slots_lock);
4647 tr->physical_address = gpa;
4648 tr->valid = gpa != UNMAPPED_GVA;
4649 tr->writeable = 1;
4650 tr->usermode = 0;
4651 vcpu_put(vcpu);
4652
4653 return 0;
4654 }
4655
4656 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4657 {
4658 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4659
4660 vcpu_load(vcpu);
4661
4662 memcpy(fpu->fpr, fxsave->st_space, 128);
4663 fpu->fcw = fxsave->cwd;
4664 fpu->fsw = fxsave->swd;
4665 fpu->ftwx = fxsave->twd;
4666 fpu->last_opcode = fxsave->fop;
4667 fpu->last_ip = fxsave->rip;
4668 fpu->last_dp = fxsave->rdp;
4669 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4670
4671 vcpu_put(vcpu);
4672
4673 return 0;
4674 }
4675
4676 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4677 {
4678 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4679
4680 vcpu_load(vcpu);
4681
4682 memcpy(fxsave->st_space, fpu->fpr, 128);
4683 fxsave->cwd = fpu->fcw;
4684 fxsave->swd = fpu->fsw;
4685 fxsave->twd = fpu->ftwx;
4686 fxsave->fop = fpu->last_opcode;
4687 fxsave->rip = fpu->last_ip;
4688 fxsave->rdp = fpu->last_dp;
4689 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4690
4691 vcpu_put(vcpu);
4692
4693 return 0;
4694 }
4695
4696 void fx_init(struct kvm_vcpu *vcpu)
4697 {
4698 unsigned after_mxcsr_mask;
4699
4700 /*
4701 * Touch the fpu the first time in non atomic context as if
4702 * this is the first fpu instruction the exception handler
4703 * will fire before the instruction returns and it'll have to
4704 * allocate ram with GFP_KERNEL.
4705 */
4706 if (!used_math())
4707 kvm_fx_save(&vcpu->arch.host_fx_image);
4708
4709 /* Initialize guest FPU by resetting ours and saving into guest's */
4710 preempt_disable();
4711 kvm_fx_save(&vcpu->arch.host_fx_image);
4712 kvm_fx_finit();
4713 kvm_fx_save(&vcpu->arch.guest_fx_image);
4714 kvm_fx_restore(&vcpu->arch.host_fx_image);
4715 preempt_enable();
4716
4717 vcpu->arch.cr0 |= X86_CR0_ET;
4718 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4719 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4720 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4721 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4722 }
4723 EXPORT_SYMBOL_GPL(fx_init);
4724
4725 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4726 {
4727 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4728 return;
4729
4730 vcpu->guest_fpu_loaded = 1;
4731 kvm_fx_save(&vcpu->arch.host_fx_image);
4732 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4733 }
4734 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4735
4736 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4737 {
4738 if (!vcpu->guest_fpu_loaded)
4739 return;
4740
4741 vcpu->guest_fpu_loaded = 0;
4742 kvm_fx_save(&vcpu->arch.guest_fx_image);
4743 kvm_fx_restore(&vcpu->arch.host_fx_image);
4744 ++vcpu->stat.fpu_reload;
4745 }
4746 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4747
4748 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4749 {
4750 if (vcpu->arch.time_page) {
4751 kvm_release_page_dirty(vcpu->arch.time_page);
4752 vcpu->arch.time_page = NULL;
4753 }
4754
4755 kvm_x86_ops->vcpu_free(vcpu);
4756 }
4757
4758 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4759 unsigned int id)
4760 {
4761 return kvm_x86_ops->vcpu_create(kvm, id);
4762 }
4763
4764 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4765 {
4766 int r;
4767
4768 /* We do fxsave: this must be aligned. */
4769 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4770
4771 vcpu->arch.mtrr_state.have_fixed = 1;
4772 vcpu_load(vcpu);
4773 r = kvm_arch_vcpu_reset(vcpu);
4774 if (r == 0)
4775 r = kvm_mmu_setup(vcpu);
4776 vcpu_put(vcpu);
4777 if (r < 0)
4778 goto free_vcpu;
4779
4780 return 0;
4781 free_vcpu:
4782 kvm_x86_ops->vcpu_free(vcpu);
4783 return r;
4784 }
4785
4786 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4787 {
4788 vcpu_load(vcpu);
4789 kvm_mmu_unload(vcpu);
4790 vcpu_put(vcpu);
4791
4792 kvm_x86_ops->vcpu_free(vcpu);
4793 }
4794
4795 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4796 {
4797 vcpu->arch.nmi_pending = false;
4798 vcpu->arch.nmi_injected = false;
4799
4800 vcpu->arch.switch_db_regs = 0;
4801 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4802 vcpu->arch.dr6 = DR6_FIXED_1;
4803 vcpu->arch.dr7 = DR7_FIXED_1;
4804
4805 return kvm_x86_ops->vcpu_reset(vcpu);
4806 }
4807
4808 int kvm_arch_hardware_enable(void *garbage)
4809 {
4810 /*
4811 * Since this may be called from a hotplug notifcation,
4812 * we can't get the CPU frequency directly.
4813 */
4814 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4815 int cpu = raw_smp_processor_id();
4816 per_cpu(cpu_tsc_khz, cpu) = 0;
4817 }
4818 return kvm_x86_ops->hardware_enable(garbage);
4819 }
4820
4821 void kvm_arch_hardware_disable(void *garbage)
4822 {
4823 kvm_x86_ops->hardware_disable(garbage);
4824 }
4825
4826 int kvm_arch_hardware_setup(void)
4827 {
4828 return kvm_x86_ops->hardware_setup();
4829 }
4830
4831 void kvm_arch_hardware_unsetup(void)
4832 {
4833 kvm_x86_ops->hardware_unsetup();
4834 }
4835
4836 void kvm_arch_check_processor_compat(void *rtn)
4837 {
4838 kvm_x86_ops->check_processor_compatibility(rtn);
4839 }
4840
4841 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4842 {
4843 struct page *page;
4844 struct kvm *kvm;
4845 int r;
4846
4847 BUG_ON(vcpu->kvm == NULL);
4848 kvm = vcpu->kvm;
4849
4850 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4851 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4852 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4853 else
4854 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4855
4856 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4857 if (!page) {
4858 r = -ENOMEM;
4859 goto fail;
4860 }
4861 vcpu->arch.pio_data = page_address(page);
4862
4863 r = kvm_mmu_create(vcpu);
4864 if (r < 0)
4865 goto fail_free_pio_data;
4866
4867 if (irqchip_in_kernel(kvm)) {
4868 r = kvm_create_lapic(vcpu);
4869 if (r < 0)
4870 goto fail_mmu_destroy;
4871 }
4872
4873 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4874 GFP_KERNEL);
4875 if (!vcpu->arch.mce_banks) {
4876 r = -ENOMEM;
4877 goto fail_mmu_destroy;
4878 }
4879 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4880
4881 return 0;
4882
4883 fail_mmu_destroy:
4884 kvm_mmu_destroy(vcpu);
4885 fail_free_pio_data:
4886 free_page((unsigned long)vcpu->arch.pio_data);
4887 fail:
4888 return r;
4889 }
4890
4891 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4892 {
4893 kvm_free_lapic(vcpu);
4894 down_read(&vcpu->kvm->slots_lock);
4895 kvm_mmu_destroy(vcpu);
4896 up_read(&vcpu->kvm->slots_lock);
4897 free_page((unsigned long)vcpu->arch.pio_data);
4898 }
4899
4900 struct kvm *kvm_arch_create_vm(void)
4901 {
4902 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4903
4904 if (!kvm)
4905 return ERR_PTR(-ENOMEM);
4906
4907 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4908 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4909
4910 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4911 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4912
4913 rdtscll(kvm->arch.vm_init_tsc);
4914
4915 return kvm;
4916 }
4917
4918 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4919 {
4920 vcpu_load(vcpu);
4921 kvm_mmu_unload(vcpu);
4922 vcpu_put(vcpu);
4923 }
4924
4925 static void kvm_free_vcpus(struct kvm *kvm)
4926 {
4927 unsigned int i;
4928 struct kvm_vcpu *vcpu;
4929
4930 /*
4931 * Unpin any mmu pages first.
4932 */
4933 kvm_for_each_vcpu(i, vcpu, kvm)
4934 kvm_unload_vcpu_mmu(vcpu);
4935 kvm_for_each_vcpu(i, vcpu, kvm)
4936 kvm_arch_vcpu_free(vcpu);
4937
4938 mutex_lock(&kvm->lock);
4939 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
4940 kvm->vcpus[i] = NULL;
4941
4942 atomic_set(&kvm->online_vcpus, 0);
4943 mutex_unlock(&kvm->lock);
4944 }
4945
4946 void kvm_arch_sync_events(struct kvm *kvm)
4947 {
4948 kvm_free_all_assigned_devices(kvm);
4949 }
4950
4951 void kvm_arch_destroy_vm(struct kvm *kvm)
4952 {
4953 kvm_iommu_unmap_guest(kvm);
4954 kvm_free_pit(kvm);
4955 kfree(kvm->arch.vpic);
4956 kfree(kvm->arch.vioapic);
4957 kvm_free_vcpus(kvm);
4958 kvm_free_physmem(kvm);
4959 if (kvm->arch.apic_access_page)
4960 put_page(kvm->arch.apic_access_page);
4961 if (kvm->arch.ept_identity_pagetable)
4962 put_page(kvm->arch.ept_identity_pagetable);
4963 kfree(kvm);
4964 }
4965
4966 int kvm_arch_set_memory_region(struct kvm *kvm,
4967 struct kvm_userspace_memory_region *mem,
4968 struct kvm_memory_slot old,
4969 int user_alloc)
4970 {
4971 int npages = mem->memory_size >> PAGE_SHIFT;
4972 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4973
4974 /*To keep backward compatibility with older userspace,
4975 *x86 needs to hanlde !user_alloc case.
4976 */
4977 if (!user_alloc) {
4978 if (npages && !old.rmap) {
4979 unsigned long userspace_addr;
4980
4981 down_write(&current->mm->mmap_sem);
4982 userspace_addr = do_mmap(NULL, 0,
4983 npages * PAGE_SIZE,
4984 PROT_READ | PROT_WRITE,
4985 MAP_PRIVATE | MAP_ANONYMOUS,
4986 0);
4987 up_write(&current->mm->mmap_sem);
4988
4989 if (IS_ERR((void *)userspace_addr))
4990 return PTR_ERR((void *)userspace_addr);
4991
4992 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4993 spin_lock(&kvm->mmu_lock);
4994 memslot->userspace_addr = userspace_addr;
4995 spin_unlock(&kvm->mmu_lock);
4996 } else {
4997 if (!old.user_alloc && old.rmap) {
4998 int ret;
4999
5000 down_write(&current->mm->mmap_sem);
5001 ret = do_munmap(current->mm, old.userspace_addr,
5002 old.npages * PAGE_SIZE);
5003 up_write(&current->mm->mmap_sem);
5004 if (ret < 0)
5005 printk(KERN_WARNING
5006 "kvm_vm_ioctl_set_memory_region: "
5007 "failed to munmap memory\n");
5008 }
5009 }
5010 }
5011
5012 spin_lock(&kvm->mmu_lock);
5013 if (!kvm->arch.n_requested_mmu_pages) {
5014 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5015 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5016 }
5017
5018 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5019 spin_unlock(&kvm->mmu_lock);
5020
5021 return 0;
5022 }
5023
5024 void kvm_arch_flush_shadow(struct kvm *kvm)
5025 {
5026 kvm_mmu_zap_all(kvm);
5027 kvm_reload_remote_mmus(kvm);
5028 }
5029
5030 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5031 {
5032 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5033 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5034 || vcpu->arch.nmi_pending ||
5035 (kvm_arch_interrupt_allowed(vcpu) &&
5036 kvm_cpu_has_interrupt(vcpu));
5037 }
5038
5039 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5040 {
5041 int me;
5042 int cpu = vcpu->cpu;
5043
5044 if (waitqueue_active(&vcpu->wq)) {
5045 wake_up_interruptible(&vcpu->wq);
5046 ++vcpu->stat.halt_wakeup;
5047 }
5048
5049 me = get_cpu();
5050 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5051 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5052 smp_send_reschedule(cpu);
5053 put_cpu();
5054 }
5055
5056 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5057 {
5058 return kvm_x86_ops->interrupt_allowed(vcpu);
5059 }
5060
5061 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5062 {
5063 unsigned long rflags;
5064
5065 rflags = kvm_x86_ops->get_rflags(vcpu);
5066 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5067 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5068 return rflags;
5069 }
5070 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5071
5072 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5073 {
5074 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5075 vcpu->arch.singlestep_cs ==
5076 get_segment_selector(vcpu, VCPU_SREG_CS) &&
5077 vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5078 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5079 kvm_x86_ops->set_rflags(vcpu, rflags);
5080 }
5081 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5082
5083 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5084 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5085 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5086 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5087 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5091 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5092 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5093 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);