Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS \
64 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS \
68 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
70 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
71 | X86_CR4_OSXSAVE \
72 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
73
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
75
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
78
79 /* EFER defaults:
80 * - enable syscall per default because its emulated by KVM
81 * - enable LME and LMA per default on 64 bit KVM
82 */
83 #ifdef CONFIG_X86_64
84 static
85 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
86 #else
87 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
88 #endif
89
90 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
91 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
92
93 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
94 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
95 struct kvm_cpuid_entry2 __user *entries);
96
97 struct kvm_x86_ops *kvm_x86_ops;
98 EXPORT_SYMBOL_GPL(kvm_x86_ops);
99
100 int ignore_msrs = 0;
101 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
102
103 #define KVM_NR_SHARED_MSRS 16
104
105 struct kvm_shared_msrs_global {
106 int nr;
107 u32 msrs[KVM_NR_SHARED_MSRS];
108 };
109
110 struct kvm_shared_msrs {
111 struct user_return_notifier urn;
112 bool registered;
113 struct kvm_shared_msr_values {
114 u64 host;
115 u64 curr;
116 } values[KVM_NR_SHARED_MSRS];
117 };
118
119 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
120 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
121
122 struct kvm_stats_debugfs_item debugfs_entries[] = {
123 { "pf_fixed", VCPU_STAT(pf_fixed) },
124 { "pf_guest", VCPU_STAT(pf_guest) },
125 { "tlb_flush", VCPU_STAT(tlb_flush) },
126 { "invlpg", VCPU_STAT(invlpg) },
127 { "exits", VCPU_STAT(exits) },
128 { "io_exits", VCPU_STAT(io_exits) },
129 { "mmio_exits", VCPU_STAT(mmio_exits) },
130 { "signal_exits", VCPU_STAT(signal_exits) },
131 { "irq_window", VCPU_STAT(irq_window_exits) },
132 { "nmi_window", VCPU_STAT(nmi_window_exits) },
133 { "halt_exits", VCPU_STAT(halt_exits) },
134 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
135 { "hypercalls", VCPU_STAT(hypercalls) },
136 { "request_irq", VCPU_STAT(request_irq_exits) },
137 { "irq_exits", VCPU_STAT(irq_exits) },
138 { "host_state_reload", VCPU_STAT(host_state_reload) },
139 { "efer_reload", VCPU_STAT(efer_reload) },
140 { "fpu_reload", VCPU_STAT(fpu_reload) },
141 { "insn_emulation", VCPU_STAT(insn_emulation) },
142 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
143 { "irq_injections", VCPU_STAT(irq_injections) },
144 { "nmi_injections", VCPU_STAT(nmi_injections) },
145 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
146 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
147 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
148 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
149 { "mmu_flooded", VM_STAT(mmu_flooded) },
150 { "mmu_recycled", VM_STAT(mmu_recycled) },
151 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
152 { "mmu_unsync", VM_STAT(mmu_unsync) },
153 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
154 { "largepages", VM_STAT(lpages) },
155 { NULL }
156 };
157
158 u64 __read_mostly host_xcr0;
159
160 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
161 {
162 int i;
163 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
164 vcpu->arch.apf.gfns[i] = ~0;
165 }
166
167 static void kvm_on_user_return(struct user_return_notifier *urn)
168 {
169 unsigned slot;
170 struct kvm_shared_msrs *locals
171 = container_of(urn, struct kvm_shared_msrs, urn);
172 struct kvm_shared_msr_values *values;
173
174 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
175 values = &locals->values[slot];
176 if (values->host != values->curr) {
177 wrmsrl(shared_msrs_global.msrs[slot], values->host);
178 values->curr = values->host;
179 }
180 }
181 locals->registered = false;
182 user_return_notifier_unregister(urn);
183 }
184
185 static void shared_msr_update(unsigned slot, u32 msr)
186 {
187 struct kvm_shared_msrs *smsr;
188 u64 value;
189
190 smsr = &__get_cpu_var(shared_msrs);
191 /* only read, and nobody should modify it at this time,
192 * so don't need lock */
193 if (slot >= shared_msrs_global.nr) {
194 printk(KERN_ERR "kvm: invalid MSR slot!");
195 return;
196 }
197 rdmsrl_safe(msr, &value);
198 smsr->values[slot].host = value;
199 smsr->values[slot].curr = value;
200 }
201
202 void kvm_define_shared_msr(unsigned slot, u32 msr)
203 {
204 if (slot >= shared_msrs_global.nr)
205 shared_msrs_global.nr = slot + 1;
206 shared_msrs_global.msrs[slot] = msr;
207 /* we need ensured the shared_msr_global have been updated */
208 smp_wmb();
209 }
210 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
211
212 static void kvm_shared_msr_cpu_online(void)
213 {
214 unsigned i;
215
216 for (i = 0; i < shared_msrs_global.nr; ++i)
217 shared_msr_update(i, shared_msrs_global.msrs[i]);
218 }
219
220 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
221 {
222 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
223
224 if (((value ^ smsr->values[slot].curr) & mask) == 0)
225 return;
226 smsr->values[slot].curr = value;
227 wrmsrl(shared_msrs_global.msrs[slot], value);
228 if (!smsr->registered) {
229 smsr->urn.on_user_return = kvm_on_user_return;
230 user_return_notifier_register(&smsr->urn);
231 smsr->registered = true;
232 }
233 }
234 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
235
236 static void drop_user_return_notifiers(void *ignore)
237 {
238 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
239
240 if (smsr->registered)
241 kvm_on_user_return(&smsr->urn);
242 }
243
244 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
245 {
246 if (irqchip_in_kernel(vcpu->kvm))
247 return vcpu->arch.apic_base;
248 else
249 return vcpu->arch.apic_base;
250 }
251 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
252
253 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
254 {
255 /* TODO: reserve bits check */
256 if (irqchip_in_kernel(vcpu->kvm))
257 kvm_lapic_set_base(vcpu, data);
258 else
259 vcpu->arch.apic_base = data;
260 }
261 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
262
263 #define EXCPT_BENIGN 0
264 #define EXCPT_CONTRIBUTORY 1
265 #define EXCPT_PF 2
266
267 static int exception_class(int vector)
268 {
269 switch (vector) {
270 case PF_VECTOR:
271 return EXCPT_PF;
272 case DE_VECTOR:
273 case TS_VECTOR:
274 case NP_VECTOR:
275 case SS_VECTOR:
276 case GP_VECTOR:
277 return EXCPT_CONTRIBUTORY;
278 default:
279 break;
280 }
281 return EXCPT_BENIGN;
282 }
283
284 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
285 unsigned nr, bool has_error, u32 error_code,
286 bool reinject)
287 {
288 u32 prev_nr;
289 int class1, class2;
290
291 kvm_make_request(KVM_REQ_EVENT, vcpu);
292
293 if (!vcpu->arch.exception.pending) {
294 queue:
295 vcpu->arch.exception.pending = true;
296 vcpu->arch.exception.has_error_code = has_error;
297 vcpu->arch.exception.nr = nr;
298 vcpu->arch.exception.error_code = error_code;
299 vcpu->arch.exception.reinject = reinject;
300 return;
301 }
302
303 /* to check exception */
304 prev_nr = vcpu->arch.exception.nr;
305 if (prev_nr == DF_VECTOR) {
306 /* triple fault -> shutdown */
307 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
308 return;
309 }
310 class1 = exception_class(prev_nr);
311 class2 = exception_class(nr);
312 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
313 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
314 /* generate double fault per SDM Table 5-5 */
315 vcpu->arch.exception.pending = true;
316 vcpu->arch.exception.has_error_code = true;
317 vcpu->arch.exception.nr = DF_VECTOR;
318 vcpu->arch.exception.error_code = 0;
319 } else
320 /* replace previous exception with a new one in a hope
321 that instruction re-execution will regenerate lost
322 exception */
323 goto queue;
324 }
325
326 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
327 {
328 kvm_multiple_exception(vcpu, nr, false, 0, false);
329 }
330 EXPORT_SYMBOL_GPL(kvm_queue_exception);
331
332 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
333 {
334 kvm_multiple_exception(vcpu, nr, false, 0, true);
335 }
336 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
337
338 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
339 {
340 if (err)
341 kvm_inject_gp(vcpu, 0);
342 else
343 kvm_x86_ops->skip_emulated_instruction(vcpu);
344 }
345 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
346
347 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
348 {
349 ++vcpu->stat.pf_guest;
350 vcpu->arch.cr2 = fault->address;
351 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
352 }
353
354 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
355 {
356 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
357 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
358 else
359 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
360 }
361
362 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
363 {
364 kvm_make_request(KVM_REQ_NMI, vcpu);
365 kvm_make_request(KVM_REQ_EVENT, vcpu);
366 }
367 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
368
369 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 {
371 kvm_multiple_exception(vcpu, nr, true, error_code, false);
372 }
373 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
374
375 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
376 {
377 kvm_multiple_exception(vcpu, nr, true, error_code, true);
378 }
379 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
380
381 /*
382 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
383 * a #GP and return false.
384 */
385 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
386 {
387 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
388 return true;
389 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
390 return false;
391 }
392 EXPORT_SYMBOL_GPL(kvm_require_cpl);
393
394 /*
395 * This function will be used to read from the physical memory of the currently
396 * running guest. The difference to kvm_read_guest_page is that this function
397 * can read from guest physical or from the guest's guest physical memory.
398 */
399 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
400 gfn_t ngfn, void *data, int offset, int len,
401 u32 access)
402 {
403 gfn_t real_gfn;
404 gpa_t ngpa;
405
406 ngpa = gfn_to_gpa(ngfn);
407 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
408 if (real_gfn == UNMAPPED_GVA)
409 return -EFAULT;
410
411 real_gfn = gpa_to_gfn(real_gfn);
412
413 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
414 }
415 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
416
417 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
418 void *data, int offset, int len, u32 access)
419 {
420 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
421 data, offset, len, access);
422 }
423
424 /*
425 * Load the pae pdptrs. Return true is they are all valid.
426 */
427 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
428 {
429 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
430 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
431 int i;
432 int ret;
433 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
434
435 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
436 offset * sizeof(u64), sizeof(pdpte),
437 PFERR_USER_MASK|PFERR_WRITE_MASK);
438 if (ret < 0) {
439 ret = 0;
440 goto out;
441 }
442 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
443 if (is_present_gpte(pdpte[i]) &&
444 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
445 ret = 0;
446 goto out;
447 }
448 }
449 ret = 1;
450
451 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
452 __set_bit(VCPU_EXREG_PDPTR,
453 (unsigned long *)&vcpu->arch.regs_avail);
454 __set_bit(VCPU_EXREG_PDPTR,
455 (unsigned long *)&vcpu->arch.regs_dirty);
456 out:
457
458 return ret;
459 }
460 EXPORT_SYMBOL_GPL(load_pdptrs);
461
462 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
463 {
464 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
465 bool changed = true;
466 int offset;
467 gfn_t gfn;
468 int r;
469
470 if (is_long_mode(vcpu) || !is_pae(vcpu))
471 return false;
472
473 if (!test_bit(VCPU_EXREG_PDPTR,
474 (unsigned long *)&vcpu->arch.regs_avail))
475 return true;
476
477 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
478 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
479 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
480 PFERR_USER_MASK | PFERR_WRITE_MASK);
481 if (r < 0)
482 goto out;
483 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
484 out:
485
486 return changed;
487 }
488
489 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
490 {
491 unsigned long old_cr0 = kvm_read_cr0(vcpu);
492 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
493 X86_CR0_CD | X86_CR0_NW;
494
495 cr0 |= X86_CR0_ET;
496
497 #ifdef CONFIG_X86_64
498 if (cr0 & 0xffffffff00000000UL)
499 return 1;
500 #endif
501
502 cr0 &= ~CR0_RESERVED_BITS;
503
504 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
505 return 1;
506
507 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
508 return 1;
509
510 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
511 #ifdef CONFIG_X86_64
512 if ((vcpu->arch.efer & EFER_LME)) {
513 int cs_db, cs_l;
514
515 if (!is_pae(vcpu))
516 return 1;
517 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
518 if (cs_l)
519 return 1;
520 } else
521 #endif
522 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
523 kvm_read_cr3(vcpu)))
524 return 1;
525 }
526
527 kvm_x86_ops->set_cr0(vcpu, cr0);
528
529 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
530 kvm_clear_async_pf_completion_queue(vcpu);
531 kvm_async_pf_hash_reset(vcpu);
532 }
533
534 if ((cr0 ^ old_cr0) & update_bits)
535 kvm_mmu_reset_context(vcpu);
536 return 0;
537 }
538 EXPORT_SYMBOL_GPL(kvm_set_cr0);
539
540 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
541 {
542 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
543 }
544 EXPORT_SYMBOL_GPL(kvm_lmsw);
545
546 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
547 {
548 u64 xcr0;
549
550 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
551 if (index != XCR_XFEATURE_ENABLED_MASK)
552 return 1;
553 xcr0 = xcr;
554 if (kvm_x86_ops->get_cpl(vcpu) != 0)
555 return 1;
556 if (!(xcr0 & XSTATE_FP))
557 return 1;
558 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
559 return 1;
560 if (xcr0 & ~host_xcr0)
561 return 1;
562 vcpu->arch.xcr0 = xcr0;
563 vcpu->guest_xcr0_loaded = 0;
564 return 0;
565 }
566
567 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
568 {
569 if (__kvm_set_xcr(vcpu, index, xcr)) {
570 kvm_inject_gp(vcpu, 0);
571 return 1;
572 }
573 return 0;
574 }
575 EXPORT_SYMBOL_GPL(kvm_set_xcr);
576
577 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
578 {
579 struct kvm_cpuid_entry2 *best;
580
581 best = kvm_find_cpuid_entry(vcpu, 1, 0);
582 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
583 }
584
585 static void update_cpuid(struct kvm_vcpu *vcpu)
586 {
587 struct kvm_cpuid_entry2 *best;
588
589 best = kvm_find_cpuid_entry(vcpu, 1, 0);
590 if (!best)
591 return;
592
593 /* Update OSXSAVE bit */
594 if (cpu_has_xsave && best->function == 0x1) {
595 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
596 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
597 best->ecx |= bit(X86_FEATURE_OSXSAVE);
598 }
599 }
600
601 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
602 {
603 unsigned long old_cr4 = kvm_read_cr4(vcpu);
604 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
605
606 if (cr4 & CR4_RESERVED_BITS)
607 return 1;
608
609 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
610 return 1;
611
612 if (is_long_mode(vcpu)) {
613 if (!(cr4 & X86_CR4_PAE))
614 return 1;
615 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
616 && ((cr4 ^ old_cr4) & pdptr_bits)
617 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
618 kvm_read_cr3(vcpu)))
619 return 1;
620
621 if (cr4 & X86_CR4_VMXE)
622 return 1;
623
624 kvm_x86_ops->set_cr4(vcpu, cr4);
625
626 if ((cr4 ^ old_cr4) & pdptr_bits)
627 kvm_mmu_reset_context(vcpu);
628
629 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
630 update_cpuid(vcpu);
631
632 return 0;
633 }
634 EXPORT_SYMBOL_GPL(kvm_set_cr4);
635
636 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
637 {
638 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
639 kvm_mmu_sync_roots(vcpu);
640 kvm_mmu_flush_tlb(vcpu);
641 return 0;
642 }
643
644 if (is_long_mode(vcpu)) {
645 if (cr3 & CR3_L_MODE_RESERVED_BITS)
646 return 1;
647 } else {
648 if (is_pae(vcpu)) {
649 if (cr3 & CR3_PAE_RESERVED_BITS)
650 return 1;
651 if (is_paging(vcpu) &&
652 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
653 return 1;
654 }
655 /*
656 * We don't check reserved bits in nonpae mode, because
657 * this isn't enforced, and VMware depends on this.
658 */
659 }
660
661 /*
662 * Does the new cr3 value map to physical memory? (Note, we
663 * catch an invalid cr3 even in real-mode, because it would
664 * cause trouble later on when we turn on paging anyway.)
665 *
666 * A real CPU would silently accept an invalid cr3 and would
667 * attempt to use it - with largely undefined (and often hard
668 * to debug) behavior on the guest side.
669 */
670 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
671 return 1;
672 vcpu->arch.cr3 = cr3;
673 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
674 vcpu->arch.mmu.new_cr3(vcpu);
675 return 0;
676 }
677 EXPORT_SYMBOL_GPL(kvm_set_cr3);
678
679 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
680 {
681 if (cr8 & CR8_RESERVED_BITS)
682 return 1;
683 if (irqchip_in_kernel(vcpu->kvm))
684 kvm_lapic_set_tpr(vcpu, cr8);
685 else
686 vcpu->arch.cr8 = cr8;
687 return 0;
688 }
689 EXPORT_SYMBOL_GPL(kvm_set_cr8);
690
691 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
692 {
693 if (irqchip_in_kernel(vcpu->kvm))
694 return kvm_lapic_get_cr8(vcpu);
695 else
696 return vcpu->arch.cr8;
697 }
698 EXPORT_SYMBOL_GPL(kvm_get_cr8);
699
700 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
701 {
702 switch (dr) {
703 case 0 ... 3:
704 vcpu->arch.db[dr] = val;
705 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
706 vcpu->arch.eff_db[dr] = val;
707 break;
708 case 4:
709 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
710 return 1; /* #UD */
711 /* fall through */
712 case 6:
713 if (val & 0xffffffff00000000ULL)
714 return -1; /* #GP */
715 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
716 break;
717 case 5:
718 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
719 return 1; /* #UD */
720 /* fall through */
721 default: /* 7 */
722 if (val & 0xffffffff00000000ULL)
723 return -1; /* #GP */
724 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
725 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
726 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
727 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
728 }
729 break;
730 }
731
732 return 0;
733 }
734
735 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
736 {
737 int res;
738
739 res = __kvm_set_dr(vcpu, dr, val);
740 if (res > 0)
741 kvm_queue_exception(vcpu, UD_VECTOR);
742 else if (res < 0)
743 kvm_inject_gp(vcpu, 0);
744
745 return res;
746 }
747 EXPORT_SYMBOL_GPL(kvm_set_dr);
748
749 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
750 {
751 switch (dr) {
752 case 0 ... 3:
753 *val = vcpu->arch.db[dr];
754 break;
755 case 4:
756 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
757 return 1;
758 /* fall through */
759 case 6:
760 *val = vcpu->arch.dr6;
761 break;
762 case 5:
763 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
764 return 1;
765 /* fall through */
766 default: /* 7 */
767 *val = vcpu->arch.dr7;
768 break;
769 }
770
771 return 0;
772 }
773
774 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
775 {
776 if (_kvm_get_dr(vcpu, dr, val)) {
777 kvm_queue_exception(vcpu, UD_VECTOR);
778 return 1;
779 }
780 return 0;
781 }
782 EXPORT_SYMBOL_GPL(kvm_get_dr);
783
784 /*
785 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
786 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
787 *
788 * This list is modified at module load time to reflect the
789 * capabilities of the host cpu. This capabilities test skips MSRs that are
790 * kvm-specific. Those are put in the beginning of the list.
791 */
792
793 #define KVM_SAVE_MSRS_BEGIN 8
794 static u32 msrs_to_save[] = {
795 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
796 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
797 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
798 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
799 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
800 MSR_STAR,
801 #ifdef CONFIG_X86_64
802 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
803 #endif
804 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
805 };
806
807 static unsigned num_msrs_to_save;
808
809 static u32 emulated_msrs[] = {
810 MSR_IA32_MISC_ENABLE,
811 MSR_IA32_MCG_STATUS,
812 MSR_IA32_MCG_CTL,
813 };
814
815 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
816 {
817 u64 old_efer = vcpu->arch.efer;
818
819 if (efer & efer_reserved_bits)
820 return 1;
821
822 if (is_paging(vcpu)
823 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
824 return 1;
825
826 if (efer & EFER_FFXSR) {
827 struct kvm_cpuid_entry2 *feat;
828
829 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
830 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
831 return 1;
832 }
833
834 if (efer & EFER_SVME) {
835 struct kvm_cpuid_entry2 *feat;
836
837 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
838 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
839 return 1;
840 }
841
842 efer &= ~EFER_LMA;
843 efer |= vcpu->arch.efer & EFER_LMA;
844
845 kvm_x86_ops->set_efer(vcpu, efer);
846
847 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
848
849 /* Update reserved bits */
850 if ((efer ^ old_efer) & EFER_NX)
851 kvm_mmu_reset_context(vcpu);
852
853 return 0;
854 }
855
856 void kvm_enable_efer_bits(u64 mask)
857 {
858 efer_reserved_bits &= ~mask;
859 }
860 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
861
862
863 /*
864 * Writes msr value into into the appropriate "register".
865 * Returns 0 on success, non-0 otherwise.
866 * Assumes vcpu_load() was already called.
867 */
868 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
869 {
870 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
871 }
872
873 /*
874 * Adapt set_msr() to msr_io()'s calling convention
875 */
876 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
877 {
878 return kvm_set_msr(vcpu, index, *data);
879 }
880
881 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
882 {
883 int version;
884 int r;
885 struct pvclock_wall_clock wc;
886 struct timespec boot;
887
888 if (!wall_clock)
889 return;
890
891 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
892 if (r)
893 return;
894
895 if (version & 1)
896 ++version; /* first time write, random junk */
897
898 ++version;
899
900 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
901
902 /*
903 * The guest calculates current wall clock time by adding
904 * system time (updated by kvm_guest_time_update below) to the
905 * wall clock specified here. guest system time equals host
906 * system time for us, thus we must fill in host boot time here.
907 */
908 getboottime(&boot);
909
910 wc.sec = boot.tv_sec;
911 wc.nsec = boot.tv_nsec;
912 wc.version = version;
913
914 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
915
916 version++;
917 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
918 }
919
920 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
921 {
922 uint32_t quotient, remainder;
923
924 /* Don't try to replace with do_div(), this one calculates
925 * "(dividend << 32) / divisor" */
926 __asm__ ( "divl %4"
927 : "=a" (quotient), "=d" (remainder)
928 : "0" (0), "1" (dividend), "r" (divisor) );
929 return quotient;
930 }
931
932 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
933 s8 *pshift, u32 *pmultiplier)
934 {
935 uint64_t scaled64;
936 int32_t shift = 0;
937 uint64_t tps64;
938 uint32_t tps32;
939
940 tps64 = base_khz * 1000LL;
941 scaled64 = scaled_khz * 1000LL;
942 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
943 tps64 >>= 1;
944 shift--;
945 }
946
947 tps32 = (uint32_t)tps64;
948 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
949 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
950 scaled64 >>= 1;
951 else
952 tps32 <<= 1;
953 shift++;
954 }
955
956 *pshift = shift;
957 *pmultiplier = div_frac(scaled64, tps32);
958
959 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
960 __func__, base_khz, scaled_khz, shift, *pmultiplier);
961 }
962
963 static inline u64 get_kernel_ns(void)
964 {
965 struct timespec ts;
966
967 WARN_ON(preemptible());
968 ktime_get_ts(&ts);
969 monotonic_to_bootbased(&ts);
970 return timespec_to_ns(&ts);
971 }
972
973 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
974 unsigned long max_tsc_khz;
975
976 static inline int kvm_tsc_changes_freq(void)
977 {
978 int cpu = get_cpu();
979 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
980 cpufreq_quick_get(cpu) != 0;
981 put_cpu();
982 return ret;
983 }
984
985 static inline u64 nsec_to_cycles(u64 nsec)
986 {
987 u64 ret;
988
989 WARN_ON(preemptible());
990 if (kvm_tsc_changes_freq())
991 printk_once(KERN_WARNING
992 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
993 ret = nsec * __this_cpu_read(cpu_tsc_khz);
994 do_div(ret, USEC_PER_SEC);
995 return ret;
996 }
997
998 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
999 {
1000 /* Compute a scale to convert nanoseconds in TSC cycles */
1001 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1002 &kvm->arch.virtual_tsc_shift,
1003 &kvm->arch.virtual_tsc_mult);
1004 kvm->arch.virtual_tsc_khz = this_tsc_khz;
1005 }
1006
1007 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1008 {
1009 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1010 vcpu->kvm->arch.virtual_tsc_mult,
1011 vcpu->kvm->arch.virtual_tsc_shift);
1012 tsc += vcpu->arch.last_tsc_write;
1013 return tsc;
1014 }
1015
1016 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1017 {
1018 struct kvm *kvm = vcpu->kvm;
1019 u64 offset, ns, elapsed;
1020 unsigned long flags;
1021 s64 sdiff;
1022
1023 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1024 offset = data - native_read_tsc();
1025 ns = get_kernel_ns();
1026 elapsed = ns - kvm->arch.last_tsc_nsec;
1027 sdiff = data - kvm->arch.last_tsc_write;
1028 if (sdiff < 0)
1029 sdiff = -sdiff;
1030
1031 /*
1032 * Special case: close write to TSC within 5 seconds of
1033 * another CPU is interpreted as an attempt to synchronize
1034 * The 5 seconds is to accommodate host load / swapping as
1035 * well as any reset of TSC during the boot process.
1036 *
1037 * In that case, for a reliable TSC, we can match TSC offsets,
1038 * or make a best guest using elapsed value.
1039 */
1040 if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1041 elapsed < 5ULL * NSEC_PER_SEC) {
1042 if (!check_tsc_unstable()) {
1043 offset = kvm->arch.last_tsc_offset;
1044 pr_debug("kvm: matched tsc offset for %llu\n", data);
1045 } else {
1046 u64 delta = nsec_to_cycles(elapsed);
1047 offset += delta;
1048 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1049 }
1050 ns = kvm->arch.last_tsc_nsec;
1051 }
1052 kvm->arch.last_tsc_nsec = ns;
1053 kvm->arch.last_tsc_write = data;
1054 kvm->arch.last_tsc_offset = offset;
1055 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1056 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1057
1058 /* Reset of TSC must disable overshoot protection below */
1059 vcpu->arch.hv_clock.tsc_timestamp = 0;
1060 vcpu->arch.last_tsc_write = data;
1061 vcpu->arch.last_tsc_nsec = ns;
1062 }
1063 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1064
1065 static int kvm_guest_time_update(struct kvm_vcpu *v)
1066 {
1067 unsigned long flags;
1068 struct kvm_vcpu_arch *vcpu = &v->arch;
1069 void *shared_kaddr;
1070 unsigned long this_tsc_khz;
1071 s64 kernel_ns, max_kernel_ns;
1072 u64 tsc_timestamp;
1073
1074 /* Keep irq disabled to prevent changes to the clock */
1075 local_irq_save(flags);
1076 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1077 kernel_ns = get_kernel_ns();
1078 this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1079
1080 if (unlikely(this_tsc_khz == 0)) {
1081 local_irq_restore(flags);
1082 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1083 return 1;
1084 }
1085
1086 /*
1087 * We may have to catch up the TSC to match elapsed wall clock
1088 * time for two reasons, even if kvmclock is used.
1089 * 1) CPU could have been running below the maximum TSC rate
1090 * 2) Broken TSC compensation resets the base at each VCPU
1091 * entry to avoid unknown leaps of TSC even when running
1092 * again on the same CPU. This may cause apparent elapsed
1093 * time to disappear, and the guest to stand still or run
1094 * very slowly.
1095 */
1096 if (vcpu->tsc_catchup) {
1097 u64 tsc = compute_guest_tsc(v, kernel_ns);
1098 if (tsc > tsc_timestamp) {
1099 kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1100 tsc_timestamp = tsc;
1101 }
1102 }
1103
1104 local_irq_restore(flags);
1105
1106 if (!vcpu->time_page)
1107 return 0;
1108
1109 /*
1110 * Time as measured by the TSC may go backwards when resetting the base
1111 * tsc_timestamp. The reason for this is that the TSC resolution is
1112 * higher than the resolution of the other clock scales. Thus, many
1113 * possible measurments of the TSC correspond to one measurement of any
1114 * other clock, and so a spread of values is possible. This is not a
1115 * problem for the computation of the nanosecond clock; with TSC rates
1116 * around 1GHZ, there can only be a few cycles which correspond to one
1117 * nanosecond value, and any path through this code will inevitably
1118 * take longer than that. However, with the kernel_ns value itself,
1119 * the precision may be much lower, down to HZ granularity. If the
1120 * first sampling of TSC against kernel_ns ends in the low part of the
1121 * range, and the second in the high end of the range, we can get:
1122 *
1123 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1124 *
1125 * As the sampling errors potentially range in the thousands of cycles,
1126 * it is possible such a time value has already been observed by the
1127 * guest. To protect against this, we must compute the system time as
1128 * observed by the guest and ensure the new system time is greater.
1129 */
1130 max_kernel_ns = 0;
1131 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1132 max_kernel_ns = vcpu->last_guest_tsc -
1133 vcpu->hv_clock.tsc_timestamp;
1134 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1135 vcpu->hv_clock.tsc_to_system_mul,
1136 vcpu->hv_clock.tsc_shift);
1137 max_kernel_ns += vcpu->last_kernel_ns;
1138 }
1139
1140 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1141 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1142 &vcpu->hv_clock.tsc_shift,
1143 &vcpu->hv_clock.tsc_to_system_mul);
1144 vcpu->hw_tsc_khz = this_tsc_khz;
1145 }
1146
1147 if (max_kernel_ns > kernel_ns)
1148 kernel_ns = max_kernel_ns;
1149
1150 /* With all the info we got, fill in the values */
1151 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1152 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1153 vcpu->last_kernel_ns = kernel_ns;
1154 vcpu->last_guest_tsc = tsc_timestamp;
1155 vcpu->hv_clock.flags = 0;
1156
1157 /*
1158 * The interface expects us to write an even number signaling that the
1159 * update is finished. Since the guest won't see the intermediate
1160 * state, we just increase by 2 at the end.
1161 */
1162 vcpu->hv_clock.version += 2;
1163
1164 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1165
1166 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1167 sizeof(vcpu->hv_clock));
1168
1169 kunmap_atomic(shared_kaddr, KM_USER0);
1170
1171 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1172 return 0;
1173 }
1174
1175 static bool msr_mtrr_valid(unsigned msr)
1176 {
1177 switch (msr) {
1178 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1179 case MSR_MTRRfix64K_00000:
1180 case MSR_MTRRfix16K_80000:
1181 case MSR_MTRRfix16K_A0000:
1182 case MSR_MTRRfix4K_C0000:
1183 case MSR_MTRRfix4K_C8000:
1184 case MSR_MTRRfix4K_D0000:
1185 case MSR_MTRRfix4K_D8000:
1186 case MSR_MTRRfix4K_E0000:
1187 case MSR_MTRRfix4K_E8000:
1188 case MSR_MTRRfix4K_F0000:
1189 case MSR_MTRRfix4K_F8000:
1190 case MSR_MTRRdefType:
1191 case MSR_IA32_CR_PAT:
1192 return true;
1193 case 0x2f8:
1194 return true;
1195 }
1196 return false;
1197 }
1198
1199 static bool valid_pat_type(unsigned t)
1200 {
1201 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1202 }
1203
1204 static bool valid_mtrr_type(unsigned t)
1205 {
1206 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1207 }
1208
1209 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1210 {
1211 int i;
1212
1213 if (!msr_mtrr_valid(msr))
1214 return false;
1215
1216 if (msr == MSR_IA32_CR_PAT) {
1217 for (i = 0; i < 8; i++)
1218 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1219 return false;
1220 return true;
1221 } else if (msr == MSR_MTRRdefType) {
1222 if (data & ~0xcff)
1223 return false;
1224 return valid_mtrr_type(data & 0xff);
1225 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1226 for (i = 0; i < 8 ; i++)
1227 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1228 return false;
1229 return true;
1230 }
1231
1232 /* variable MTRRs */
1233 return valid_mtrr_type(data & 0xff);
1234 }
1235
1236 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1237 {
1238 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1239
1240 if (!mtrr_valid(vcpu, msr, data))
1241 return 1;
1242
1243 if (msr == MSR_MTRRdefType) {
1244 vcpu->arch.mtrr_state.def_type = data;
1245 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1246 } else if (msr == MSR_MTRRfix64K_00000)
1247 p[0] = data;
1248 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1249 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1250 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1251 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1252 else if (msr == MSR_IA32_CR_PAT)
1253 vcpu->arch.pat = data;
1254 else { /* Variable MTRRs */
1255 int idx, is_mtrr_mask;
1256 u64 *pt;
1257
1258 idx = (msr - 0x200) / 2;
1259 is_mtrr_mask = msr - 0x200 - 2 * idx;
1260 if (!is_mtrr_mask)
1261 pt =
1262 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1263 else
1264 pt =
1265 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1266 *pt = data;
1267 }
1268
1269 kvm_mmu_reset_context(vcpu);
1270 return 0;
1271 }
1272
1273 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1274 {
1275 u64 mcg_cap = vcpu->arch.mcg_cap;
1276 unsigned bank_num = mcg_cap & 0xff;
1277
1278 switch (msr) {
1279 case MSR_IA32_MCG_STATUS:
1280 vcpu->arch.mcg_status = data;
1281 break;
1282 case MSR_IA32_MCG_CTL:
1283 if (!(mcg_cap & MCG_CTL_P))
1284 return 1;
1285 if (data != 0 && data != ~(u64)0)
1286 return -1;
1287 vcpu->arch.mcg_ctl = data;
1288 break;
1289 default:
1290 if (msr >= MSR_IA32_MC0_CTL &&
1291 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1292 u32 offset = msr - MSR_IA32_MC0_CTL;
1293 /* only 0 or all 1s can be written to IA32_MCi_CTL
1294 * some Linux kernels though clear bit 10 in bank 4 to
1295 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1296 * this to avoid an uncatched #GP in the guest
1297 */
1298 if ((offset & 0x3) == 0 &&
1299 data != 0 && (data | (1 << 10)) != ~(u64)0)
1300 return -1;
1301 vcpu->arch.mce_banks[offset] = data;
1302 break;
1303 }
1304 return 1;
1305 }
1306 return 0;
1307 }
1308
1309 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1310 {
1311 struct kvm *kvm = vcpu->kvm;
1312 int lm = is_long_mode(vcpu);
1313 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1314 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1315 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1316 : kvm->arch.xen_hvm_config.blob_size_32;
1317 u32 page_num = data & ~PAGE_MASK;
1318 u64 page_addr = data & PAGE_MASK;
1319 u8 *page;
1320 int r;
1321
1322 r = -E2BIG;
1323 if (page_num >= blob_size)
1324 goto out;
1325 r = -ENOMEM;
1326 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1327 if (!page)
1328 goto out;
1329 r = -EFAULT;
1330 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1331 goto out_free;
1332 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1333 goto out_free;
1334 r = 0;
1335 out_free:
1336 kfree(page);
1337 out:
1338 return r;
1339 }
1340
1341 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1342 {
1343 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1344 }
1345
1346 static bool kvm_hv_msr_partition_wide(u32 msr)
1347 {
1348 bool r = false;
1349 switch (msr) {
1350 case HV_X64_MSR_GUEST_OS_ID:
1351 case HV_X64_MSR_HYPERCALL:
1352 r = true;
1353 break;
1354 }
1355
1356 return r;
1357 }
1358
1359 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1360 {
1361 struct kvm *kvm = vcpu->kvm;
1362
1363 switch (msr) {
1364 case HV_X64_MSR_GUEST_OS_ID:
1365 kvm->arch.hv_guest_os_id = data;
1366 /* setting guest os id to zero disables hypercall page */
1367 if (!kvm->arch.hv_guest_os_id)
1368 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1369 break;
1370 case HV_X64_MSR_HYPERCALL: {
1371 u64 gfn;
1372 unsigned long addr;
1373 u8 instructions[4];
1374
1375 /* if guest os id is not set hypercall should remain disabled */
1376 if (!kvm->arch.hv_guest_os_id)
1377 break;
1378 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1379 kvm->arch.hv_hypercall = data;
1380 break;
1381 }
1382 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1383 addr = gfn_to_hva(kvm, gfn);
1384 if (kvm_is_error_hva(addr))
1385 return 1;
1386 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1387 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1388 if (copy_to_user((void __user *)addr, instructions, 4))
1389 return 1;
1390 kvm->arch.hv_hypercall = data;
1391 break;
1392 }
1393 default:
1394 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1395 "data 0x%llx\n", msr, data);
1396 return 1;
1397 }
1398 return 0;
1399 }
1400
1401 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1402 {
1403 switch (msr) {
1404 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1405 unsigned long addr;
1406
1407 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1408 vcpu->arch.hv_vapic = data;
1409 break;
1410 }
1411 addr = gfn_to_hva(vcpu->kvm, data >>
1412 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1413 if (kvm_is_error_hva(addr))
1414 return 1;
1415 if (clear_user((void __user *)addr, PAGE_SIZE))
1416 return 1;
1417 vcpu->arch.hv_vapic = data;
1418 break;
1419 }
1420 case HV_X64_MSR_EOI:
1421 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1422 case HV_X64_MSR_ICR:
1423 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1424 case HV_X64_MSR_TPR:
1425 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1426 default:
1427 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1428 "data 0x%llx\n", msr, data);
1429 return 1;
1430 }
1431
1432 return 0;
1433 }
1434
1435 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1436 {
1437 gpa_t gpa = data & ~0x3f;
1438
1439 /* Bits 2:5 are resrved, Should be zero */
1440 if (data & 0x3c)
1441 return 1;
1442
1443 vcpu->arch.apf.msr_val = data;
1444
1445 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1446 kvm_clear_async_pf_completion_queue(vcpu);
1447 kvm_async_pf_hash_reset(vcpu);
1448 return 0;
1449 }
1450
1451 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1452 return 1;
1453
1454 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1455 kvm_async_pf_wakeup_all(vcpu);
1456 return 0;
1457 }
1458
1459 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1460 {
1461 if (vcpu->arch.time_page) {
1462 kvm_release_page_dirty(vcpu->arch.time_page);
1463 vcpu->arch.time_page = NULL;
1464 }
1465 }
1466
1467 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1468 {
1469 switch (msr) {
1470 case MSR_EFER:
1471 return set_efer(vcpu, data);
1472 case MSR_K7_HWCR:
1473 data &= ~(u64)0x40; /* ignore flush filter disable */
1474 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1475 if (data != 0) {
1476 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1477 data);
1478 return 1;
1479 }
1480 break;
1481 case MSR_FAM10H_MMIO_CONF_BASE:
1482 if (data != 0) {
1483 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1484 "0x%llx\n", data);
1485 return 1;
1486 }
1487 break;
1488 case MSR_AMD64_NB_CFG:
1489 break;
1490 case MSR_IA32_DEBUGCTLMSR:
1491 if (!data) {
1492 /* We support the non-activated case already */
1493 break;
1494 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1495 /* Values other than LBR and BTF are vendor-specific,
1496 thus reserved and should throw a #GP */
1497 return 1;
1498 }
1499 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1500 __func__, data);
1501 break;
1502 case MSR_IA32_UCODE_REV:
1503 case MSR_IA32_UCODE_WRITE:
1504 case MSR_VM_HSAVE_PA:
1505 case MSR_AMD64_PATCH_LOADER:
1506 break;
1507 case 0x200 ... 0x2ff:
1508 return set_msr_mtrr(vcpu, msr, data);
1509 case MSR_IA32_APICBASE:
1510 kvm_set_apic_base(vcpu, data);
1511 break;
1512 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1513 return kvm_x2apic_msr_write(vcpu, msr, data);
1514 case MSR_IA32_MISC_ENABLE:
1515 vcpu->arch.ia32_misc_enable_msr = data;
1516 break;
1517 case MSR_KVM_WALL_CLOCK_NEW:
1518 case MSR_KVM_WALL_CLOCK:
1519 vcpu->kvm->arch.wall_clock = data;
1520 kvm_write_wall_clock(vcpu->kvm, data);
1521 break;
1522 case MSR_KVM_SYSTEM_TIME_NEW:
1523 case MSR_KVM_SYSTEM_TIME: {
1524 kvmclock_reset(vcpu);
1525
1526 vcpu->arch.time = data;
1527 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1528
1529 /* we verify if the enable bit is set... */
1530 if (!(data & 1))
1531 break;
1532
1533 /* ...but clean it before doing the actual write */
1534 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1535
1536 vcpu->arch.time_page =
1537 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1538
1539 if (is_error_page(vcpu->arch.time_page)) {
1540 kvm_release_page_clean(vcpu->arch.time_page);
1541 vcpu->arch.time_page = NULL;
1542 }
1543 break;
1544 }
1545 case MSR_KVM_ASYNC_PF_EN:
1546 if (kvm_pv_enable_async_pf(vcpu, data))
1547 return 1;
1548 break;
1549 case MSR_IA32_MCG_CTL:
1550 case MSR_IA32_MCG_STATUS:
1551 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1552 return set_msr_mce(vcpu, msr, data);
1553
1554 /* Performance counters are not protected by a CPUID bit,
1555 * so we should check all of them in the generic path for the sake of
1556 * cross vendor migration.
1557 * Writing a zero into the event select MSRs disables them,
1558 * which we perfectly emulate ;-). Any other value should be at least
1559 * reported, some guests depend on them.
1560 */
1561 case MSR_P6_EVNTSEL0:
1562 case MSR_P6_EVNTSEL1:
1563 case MSR_K7_EVNTSEL0:
1564 case MSR_K7_EVNTSEL1:
1565 case MSR_K7_EVNTSEL2:
1566 case MSR_K7_EVNTSEL3:
1567 if (data != 0)
1568 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1569 "0x%x data 0x%llx\n", msr, data);
1570 break;
1571 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1572 * so we ignore writes to make it happy.
1573 */
1574 case MSR_P6_PERFCTR0:
1575 case MSR_P6_PERFCTR1:
1576 case MSR_K7_PERFCTR0:
1577 case MSR_K7_PERFCTR1:
1578 case MSR_K7_PERFCTR2:
1579 case MSR_K7_PERFCTR3:
1580 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1581 "0x%x data 0x%llx\n", msr, data);
1582 break;
1583 case MSR_K7_CLK_CTL:
1584 /*
1585 * Ignore all writes to this no longer documented MSR.
1586 * Writes are only relevant for old K7 processors,
1587 * all pre-dating SVM, but a recommended workaround from
1588 * AMD for these chips. It is possible to speicify the
1589 * affected processor models on the command line, hence
1590 * the need to ignore the workaround.
1591 */
1592 break;
1593 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1594 if (kvm_hv_msr_partition_wide(msr)) {
1595 int r;
1596 mutex_lock(&vcpu->kvm->lock);
1597 r = set_msr_hyperv_pw(vcpu, msr, data);
1598 mutex_unlock(&vcpu->kvm->lock);
1599 return r;
1600 } else
1601 return set_msr_hyperv(vcpu, msr, data);
1602 break;
1603 case MSR_IA32_BBL_CR_CTL3:
1604 /* Drop writes to this legacy MSR -- see rdmsr
1605 * counterpart for further detail.
1606 */
1607 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1608 break;
1609 default:
1610 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1611 return xen_hvm_config(vcpu, data);
1612 if (!ignore_msrs) {
1613 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1614 msr, data);
1615 return 1;
1616 } else {
1617 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1618 msr, data);
1619 break;
1620 }
1621 }
1622 return 0;
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1625
1626
1627 /*
1628 * Reads an msr value (of 'msr_index') into 'pdata'.
1629 * Returns 0 on success, non-0 otherwise.
1630 * Assumes vcpu_load() was already called.
1631 */
1632 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1633 {
1634 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1635 }
1636
1637 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1638 {
1639 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1640
1641 if (!msr_mtrr_valid(msr))
1642 return 1;
1643
1644 if (msr == MSR_MTRRdefType)
1645 *pdata = vcpu->arch.mtrr_state.def_type +
1646 (vcpu->arch.mtrr_state.enabled << 10);
1647 else if (msr == MSR_MTRRfix64K_00000)
1648 *pdata = p[0];
1649 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1650 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1651 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1652 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1653 else if (msr == MSR_IA32_CR_PAT)
1654 *pdata = vcpu->arch.pat;
1655 else { /* Variable MTRRs */
1656 int idx, is_mtrr_mask;
1657 u64 *pt;
1658
1659 idx = (msr - 0x200) / 2;
1660 is_mtrr_mask = msr - 0x200 - 2 * idx;
1661 if (!is_mtrr_mask)
1662 pt =
1663 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1664 else
1665 pt =
1666 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1667 *pdata = *pt;
1668 }
1669
1670 return 0;
1671 }
1672
1673 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1674 {
1675 u64 data;
1676 u64 mcg_cap = vcpu->arch.mcg_cap;
1677 unsigned bank_num = mcg_cap & 0xff;
1678
1679 switch (msr) {
1680 case MSR_IA32_P5_MC_ADDR:
1681 case MSR_IA32_P5_MC_TYPE:
1682 data = 0;
1683 break;
1684 case MSR_IA32_MCG_CAP:
1685 data = vcpu->arch.mcg_cap;
1686 break;
1687 case MSR_IA32_MCG_CTL:
1688 if (!(mcg_cap & MCG_CTL_P))
1689 return 1;
1690 data = vcpu->arch.mcg_ctl;
1691 break;
1692 case MSR_IA32_MCG_STATUS:
1693 data = vcpu->arch.mcg_status;
1694 break;
1695 default:
1696 if (msr >= MSR_IA32_MC0_CTL &&
1697 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1698 u32 offset = msr - MSR_IA32_MC0_CTL;
1699 data = vcpu->arch.mce_banks[offset];
1700 break;
1701 }
1702 return 1;
1703 }
1704 *pdata = data;
1705 return 0;
1706 }
1707
1708 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1709 {
1710 u64 data = 0;
1711 struct kvm *kvm = vcpu->kvm;
1712
1713 switch (msr) {
1714 case HV_X64_MSR_GUEST_OS_ID:
1715 data = kvm->arch.hv_guest_os_id;
1716 break;
1717 case HV_X64_MSR_HYPERCALL:
1718 data = kvm->arch.hv_hypercall;
1719 break;
1720 default:
1721 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1722 return 1;
1723 }
1724
1725 *pdata = data;
1726 return 0;
1727 }
1728
1729 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1730 {
1731 u64 data = 0;
1732
1733 switch (msr) {
1734 case HV_X64_MSR_VP_INDEX: {
1735 int r;
1736 struct kvm_vcpu *v;
1737 kvm_for_each_vcpu(r, v, vcpu->kvm)
1738 if (v == vcpu)
1739 data = r;
1740 break;
1741 }
1742 case HV_X64_MSR_EOI:
1743 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1744 case HV_X64_MSR_ICR:
1745 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1746 case HV_X64_MSR_TPR:
1747 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1748 default:
1749 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1750 return 1;
1751 }
1752 *pdata = data;
1753 return 0;
1754 }
1755
1756 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1757 {
1758 u64 data;
1759
1760 switch (msr) {
1761 case MSR_IA32_PLATFORM_ID:
1762 case MSR_IA32_UCODE_REV:
1763 case MSR_IA32_EBL_CR_POWERON:
1764 case MSR_IA32_DEBUGCTLMSR:
1765 case MSR_IA32_LASTBRANCHFROMIP:
1766 case MSR_IA32_LASTBRANCHTOIP:
1767 case MSR_IA32_LASTINTFROMIP:
1768 case MSR_IA32_LASTINTTOIP:
1769 case MSR_K8_SYSCFG:
1770 case MSR_K7_HWCR:
1771 case MSR_VM_HSAVE_PA:
1772 case MSR_P6_PERFCTR0:
1773 case MSR_P6_PERFCTR1:
1774 case MSR_P6_EVNTSEL0:
1775 case MSR_P6_EVNTSEL1:
1776 case MSR_K7_EVNTSEL0:
1777 case MSR_K7_PERFCTR0:
1778 case MSR_K8_INT_PENDING_MSG:
1779 case MSR_AMD64_NB_CFG:
1780 case MSR_FAM10H_MMIO_CONF_BASE:
1781 data = 0;
1782 break;
1783 case MSR_MTRRcap:
1784 data = 0x500 | KVM_NR_VAR_MTRR;
1785 break;
1786 case 0x200 ... 0x2ff:
1787 return get_msr_mtrr(vcpu, msr, pdata);
1788 case 0xcd: /* fsb frequency */
1789 data = 3;
1790 break;
1791 /*
1792 * MSR_EBC_FREQUENCY_ID
1793 * Conservative value valid for even the basic CPU models.
1794 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1795 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1796 * and 266MHz for model 3, or 4. Set Core Clock
1797 * Frequency to System Bus Frequency Ratio to 1 (bits
1798 * 31:24) even though these are only valid for CPU
1799 * models > 2, however guests may end up dividing or
1800 * multiplying by zero otherwise.
1801 */
1802 case MSR_EBC_FREQUENCY_ID:
1803 data = 1 << 24;
1804 break;
1805 case MSR_IA32_APICBASE:
1806 data = kvm_get_apic_base(vcpu);
1807 break;
1808 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1809 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1810 break;
1811 case MSR_IA32_MISC_ENABLE:
1812 data = vcpu->arch.ia32_misc_enable_msr;
1813 break;
1814 case MSR_IA32_PERF_STATUS:
1815 /* TSC increment by tick */
1816 data = 1000ULL;
1817 /* CPU multiplier */
1818 data |= (((uint64_t)4ULL) << 40);
1819 break;
1820 case MSR_EFER:
1821 data = vcpu->arch.efer;
1822 break;
1823 case MSR_KVM_WALL_CLOCK:
1824 case MSR_KVM_WALL_CLOCK_NEW:
1825 data = vcpu->kvm->arch.wall_clock;
1826 break;
1827 case MSR_KVM_SYSTEM_TIME:
1828 case MSR_KVM_SYSTEM_TIME_NEW:
1829 data = vcpu->arch.time;
1830 break;
1831 case MSR_KVM_ASYNC_PF_EN:
1832 data = vcpu->arch.apf.msr_val;
1833 break;
1834 case MSR_IA32_P5_MC_ADDR:
1835 case MSR_IA32_P5_MC_TYPE:
1836 case MSR_IA32_MCG_CAP:
1837 case MSR_IA32_MCG_CTL:
1838 case MSR_IA32_MCG_STATUS:
1839 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1840 return get_msr_mce(vcpu, msr, pdata);
1841 case MSR_K7_CLK_CTL:
1842 /*
1843 * Provide expected ramp-up count for K7. All other
1844 * are set to zero, indicating minimum divisors for
1845 * every field.
1846 *
1847 * This prevents guest kernels on AMD host with CPU
1848 * type 6, model 8 and higher from exploding due to
1849 * the rdmsr failing.
1850 */
1851 data = 0x20000000;
1852 break;
1853 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1854 if (kvm_hv_msr_partition_wide(msr)) {
1855 int r;
1856 mutex_lock(&vcpu->kvm->lock);
1857 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1858 mutex_unlock(&vcpu->kvm->lock);
1859 return r;
1860 } else
1861 return get_msr_hyperv(vcpu, msr, pdata);
1862 break;
1863 case MSR_IA32_BBL_CR_CTL3:
1864 /* This legacy MSR exists but isn't fully documented in current
1865 * silicon. It is however accessed by winxp in very narrow
1866 * scenarios where it sets bit #19, itself documented as
1867 * a "reserved" bit. Best effort attempt to source coherent
1868 * read data here should the balance of the register be
1869 * interpreted by the guest:
1870 *
1871 * L2 cache control register 3: 64GB range, 256KB size,
1872 * enabled, latency 0x1, configured
1873 */
1874 data = 0xbe702111;
1875 break;
1876 default:
1877 if (!ignore_msrs) {
1878 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1879 return 1;
1880 } else {
1881 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1882 data = 0;
1883 }
1884 break;
1885 }
1886 *pdata = data;
1887 return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1890
1891 /*
1892 * Read or write a bunch of msrs. All parameters are kernel addresses.
1893 *
1894 * @return number of msrs set successfully.
1895 */
1896 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1897 struct kvm_msr_entry *entries,
1898 int (*do_msr)(struct kvm_vcpu *vcpu,
1899 unsigned index, u64 *data))
1900 {
1901 int i, idx;
1902
1903 idx = srcu_read_lock(&vcpu->kvm->srcu);
1904 for (i = 0; i < msrs->nmsrs; ++i)
1905 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1906 break;
1907 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1908
1909 return i;
1910 }
1911
1912 /*
1913 * Read or write a bunch of msrs. Parameters are user addresses.
1914 *
1915 * @return number of msrs set successfully.
1916 */
1917 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1918 int (*do_msr)(struct kvm_vcpu *vcpu,
1919 unsigned index, u64 *data),
1920 int writeback)
1921 {
1922 struct kvm_msrs msrs;
1923 struct kvm_msr_entry *entries;
1924 int r, n;
1925 unsigned size;
1926
1927 r = -EFAULT;
1928 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1929 goto out;
1930
1931 r = -E2BIG;
1932 if (msrs.nmsrs >= MAX_IO_MSRS)
1933 goto out;
1934
1935 r = -ENOMEM;
1936 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1937 entries = kmalloc(size, GFP_KERNEL);
1938 if (!entries)
1939 goto out;
1940
1941 r = -EFAULT;
1942 if (copy_from_user(entries, user_msrs->entries, size))
1943 goto out_free;
1944
1945 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1946 if (r < 0)
1947 goto out_free;
1948
1949 r = -EFAULT;
1950 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1951 goto out_free;
1952
1953 r = n;
1954
1955 out_free:
1956 kfree(entries);
1957 out:
1958 return r;
1959 }
1960
1961 int kvm_dev_ioctl_check_extension(long ext)
1962 {
1963 int r;
1964
1965 switch (ext) {
1966 case KVM_CAP_IRQCHIP:
1967 case KVM_CAP_HLT:
1968 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1969 case KVM_CAP_SET_TSS_ADDR:
1970 case KVM_CAP_EXT_CPUID:
1971 case KVM_CAP_CLOCKSOURCE:
1972 case KVM_CAP_PIT:
1973 case KVM_CAP_NOP_IO_DELAY:
1974 case KVM_CAP_MP_STATE:
1975 case KVM_CAP_SYNC_MMU:
1976 case KVM_CAP_USER_NMI:
1977 case KVM_CAP_REINJECT_CONTROL:
1978 case KVM_CAP_IRQ_INJECT_STATUS:
1979 case KVM_CAP_ASSIGN_DEV_IRQ:
1980 case KVM_CAP_IRQFD:
1981 case KVM_CAP_IOEVENTFD:
1982 case KVM_CAP_PIT2:
1983 case KVM_CAP_PIT_STATE2:
1984 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1985 case KVM_CAP_XEN_HVM:
1986 case KVM_CAP_ADJUST_CLOCK:
1987 case KVM_CAP_VCPU_EVENTS:
1988 case KVM_CAP_HYPERV:
1989 case KVM_CAP_HYPERV_VAPIC:
1990 case KVM_CAP_HYPERV_SPIN:
1991 case KVM_CAP_PCI_SEGMENT:
1992 case KVM_CAP_DEBUGREGS:
1993 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1994 case KVM_CAP_XSAVE:
1995 case KVM_CAP_ASYNC_PF:
1996 r = 1;
1997 break;
1998 case KVM_CAP_COALESCED_MMIO:
1999 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2000 break;
2001 case KVM_CAP_VAPIC:
2002 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2003 break;
2004 case KVM_CAP_NR_VCPUS:
2005 r = KVM_MAX_VCPUS;
2006 break;
2007 case KVM_CAP_NR_MEMSLOTS:
2008 r = KVM_MEMORY_SLOTS;
2009 break;
2010 case KVM_CAP_PV_MMU: /* obsolete */
2011 r = 0;
2012 break;
2013 case KVM_CAP_IOMMU:
2014 r = iommu_found();
2015 break;
2016 case KVM_CAP_MCE:
2017 r = KVM_MAX_MCE_BANKS;
2018 break;
2019 case KVM_CAP_XCRS:
2020 r = cpu_has_xsave;
2021 break;
2022 default:
2023 r = 0;
2024 break;
2025 }
2026 return r;
2027
2028 }
2029
2030 long kvm_arch_dev_ioctl(struct file *filp,
2031 unsigned int ioctl, unsigned long arg)
2032 {
2033 void __user *argp = (void __user *)arg;
2034 long r;
2035
2036 switch (ioctl) {
2037 case KVM_GET_MSR_INDEX_LIST: {
2038 struct kvm_msr_list __user *user_msr_list = argp;
2039 struct kvm_msr_list msr_list;
2040 unsigned n;
2041
2042 r = -EFAULT;
2043 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2044 goto out;
2045 n = msr_list.nmsrs;
2046 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2047 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2048 goto out;
2049 r = -E2BIG;
2050 if (n < msr_list.nmsrs)
2051 goto out;
2052 r = -EFAULT;
2053 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2054 num_msrs_to_save * sizeof(u32)))
2055 goto out;
2056 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2057 &emulated_msrs,
2058 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2059 goto out;
2060 r = 0;
2061 break;
2062 }
2063 case KVM_GET_SUPPORTED_CPUID: {
2064 struct kvm_cpuid2 __user *cpuid_arg = argp;
2065 struct kvm_cpuid2 cpuid;
2066
2067 r = -EFAULT;
2068 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2069 goto out;
2070 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2071 cpuid_arg->entries);
2072 if (r)
2073 goto out;
2074
2075 r = -EFAULT;
2076 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2077 goto out;
2078 r = 0;
2079 break;
2080 }
2081 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2082 u64 mce_cap;
2083
2084 mce_cap = KVM_MCE_CAP_SUPPORTED;
2085 r = -EFAULT;
2086 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2087 goto out;
2088 r = 0;
2089 break;
2090 }
2091 default:
2092 r = -EINVAL;
2093 }
2094 out:
2095 return r;
2096 }
2097
2098 static void wbinvd_ipi(void *garbage)
2099 {
2100 wbinvd();
2101 }
2102
2103 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2104 {
2105 return vcpu->kvm->arch.iommu_domain &&
2106 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2107 }
2108
2109 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2110 {
2111 /* Address WBINVD may be executed by guest */
2112 if (need_emulate_wbinvd(vcpu)) {
2113 if (kvm_x86_ops->has_wbinvd_exit())
2114 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2115 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2116 smp_call_function_single(vcpu->cpu,
2117 wbinvd_ipi, NULL, 1);
2118 }
2119
2120 kvm_x86_ops->vcpu_load(vcpu, cpu);
2121 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2122 /* Make sure TSC doesn't go backwards */
2123 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2124 native_read_tsc() - vcpu->arch.last_host_tsc;
2125 if (tsc_delta < 0)
2126 mark_tsc_unstable("KVM discovered backwards TSC");
2127 if (check_tsc_unstable()) {
2128 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2129 vcpu->arch.tsc_catchup = 1;
2130 }
2131 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2132 if (vcpu->cpu != cpu)
2133 kvm_migrate_timers(vcpu);
2134 vcpu->cpu = cpu;
2135 }
2136 }
2137
2138 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2139 {
2140 kvm_x86_ops->vcpu_put(vcpu);
2141 kvm_put_guest_fpu(vcpu);
2142 vcpu->arch.last_host_tsc = native_read_tsc();
2143 }
2144
2145 static int is_efer_nx(void)
2146 {
2147 unsigned long long efer = 0;
2148
2149 rdmsrl_safe(MSR_EFER, &efer);
2150 return efer & EFER_NX;
2151 }
2152
2153 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2154 {
2155 int i;
2156 struct kvm_cpuid_entry2 *e, *entry;
2157
2158 entry = NULL;
2159 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2160 e = &vcpu->arch.cpuid_entries[i];
2161 if (e->function == 0x80000001) {
2162 entry = e;
2163 break;
2164 }
2165 }
2166 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2167 entry->edx &= ~(1 << 20);
2168 printk(KERN_INFO "kvm: guest NX capability removed\n");
2169 }
2170 }
2171
2172 /* when an old userspace process fills a new kernel module */
2173 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2174 struct kvm_cpuid *cpuid,
2175 struct kvm_cpuid_entry __user *entries)
2176 {
2177 int r, i;
2178 struct kvm_cpuid_entry *cpuid_entries;
2179
2180 r = -E2BIG;
2181 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2182 goto out;
2183 r = -ENOMEM;
2184 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2185 if (!cpuid_entries)
2186 goto out;
2187 r = -EFAULT;
2188 if (copy_from_user(cpuid_entries, entries,
2189 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2190 goto out_free;
2191 for (i = 0; i < cpuid->nent; i++) {
2192 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2193 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2194 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2195 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2196 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2197 vcpu->arch.cpuid_entries[i].index = 0;
2198 vcpu->arch.cpuid_entries[i].flags = 0;
2199 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2200 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2201 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2202 }
2203 vcpu->arch.cpuid_nent = cpuid->nent;
2204 cpuid_fix_nx_cap(vcpu);
2205 r = 0;
2206 kvm_apic_set_version(vcpu);
2207 kvm_x86_ops->cpuid_update(vcpu);
2208 update_cpuid(vcpu);
2209
2210 out_free:
2211 vfree(cpuid_entries);
2212 out:
2213 return r;
2214 }
2215
2216 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2217 struct kvm_cpuid2 *cpuid,
2218 struct kvm_cpuid_entry2 __user *entries)
2219 {
2220 int r;
2221
2222 r = -E2BIG;
2223 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2224 goto out;
2225 r = -EFAULT;
2226 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2227 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2228 goto out;
2229 vcpu->arch.cpuid_nent = cpuid->nent;
2230 kvm_apic_set_version(vcpu);
2231 kvm_x86_ops->cpuid_update(vcpu);
2232 update_cpuid(vcpu);
2233 return 0;
2234
2235 out:
2236 return r;
2237 }
2238
2239 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2240 struct kvm_cpuid2 *cpuid,
2241 struct kvm_cpuid_entry2 __user *entries)
2242 {
2243 int r;
2244
2245 r = -E2BIG;
2246 if (cpuid->nent < vcpu->arch.cpuid_nent)
2247 goto out;
2248 r = -EFAULT;
2249 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2250 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2251 goto out;
2252 return 0;
2253
2254 out:
2255 cpuid->nent = vcpu->arch.cpuid_nent;
2256 return r;
2257 }
2258
2259 static void cpuid_mask(u32 *word, int wordnum)
2260 {
2261 *word &= boot_cpu_data.x86_capability[wordnum];
2262 }
2263
2264 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2265 u32 index)
2266 {
2267 entry->function = function;
2268 entry->index = index;
2269 cpuid_count(entry->function, entry->index,
2270 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2271 entry->flags = 0;
2272 }
2273
2274 #define F(x) bit(X86_FEATURE_##x)
2275
2276 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2277 u32 index, int *nent, int maxnent)
2278 {
2279 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2280 #ifdef CONFIG_X86_64
2281 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2282 ? F(GBPAGES) : 0;
2283 unsigned f_lm = F(LM);
2284 #else
2285 unsigned f_gbpages = 0;
2286 unsigned f_lm = 0;
2287 #endif
2288 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2289
2290 /* cpuid 1.edx */
2291 const u32 kvm_supported_word0_x86_features =
2292 F(FPU) | F(VME) | F(DE) | F(PSE) |
2293 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2294 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2295 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2296 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2297 0 /* Reserved, DS, ACPI */ | F(MMX) |
2298 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2299 0 /* HTT, TM, Reserved, PBE */;
2300 /* cpuid 0x80000001.edx */
2301 const u32 kvm_supported_word1_x86_features =
2302 F(FPU) | F(VME) | F(DE) | F(PSE) |
2303 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2304 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2305 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2306 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2307 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2308 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2309 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2310 /* cpuid 1.ecx */
2311 const u32 kvm_supported_word4_x86_features =
2312 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2313 0 /* DS-CPL, VMX, SMX, EST */ |
2314 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2315 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2316 0 /* Reserved, DCA */ | F(XMM4_1) |
2317 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2318 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2319 F(F16C);
2320 /* cpuid 0x80000001.ecx */
2321 const u32 kvm_supported_word6_x86_features =
2322 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2323 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2324 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2325 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2326
2327 /* all calls to cpuid_count() should be made on the same cpu */
2328 get_cpu();
2329 do_cpuid_1_ent(entry, function, index);
2330 ++*nent;
2331
2332 switch (function) {
2333 case 0:
2334 entry->eax = min(entry->eax, (u32)0xd);
2335 break;
2336 case 1:
2337 entry->edx &= kvm_supported_word0_x86_features;
2338 cpuid_mask(&entry->edx, 0);
2339 entry->ecx &= kvm_supported_word4_x86_features;
2340 cpuid_mask(&entry->ecx, 4);
2341 /* we support x2apic emulation even if host does not support
2342 * it since we emulate x2apic in software */
2343 entry->ecx |= F(X2APIC);
2344 break;
2345 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2346 * may return different values. This forces us to get_cpu() before
2347 * issuing the first command, and also to emulate this annoying behavior
2348 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2349 case 2: {
2350 int t, times = entry->eax & 0xff;
2351
2352 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2353 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2354 for (t = 1; t < times && *nent < maxnent; ++t) {
2355 do_cpuid_1_ent(&entry[t], function, 0);
2356 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2357 ++*nent;
2358 }
2359 break;
2360 }
2361 /* function 4 and 0xb have additional index. */
2362 case 4: {
2363 int i, cache_type;
2364
2365 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2366 /* read more entries until cache_type is zero */
2367 for (i = 1; *nent < maxnent; ++i) {
2368 cache_type = entry[i - 1].eax & 0x1f;
2369 if (!cache_type)
2370 break;
2371 do_cpuid_1_ent(&entry[i], function, i);
2372 entry[i].flags |=
2373 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2374 ++*nent;
2375 }
2376 break;
2377 }
2378 case 0xb: {
2379 int i, level_type;
2380
2381 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2382 /* read more entries until level_type is zero */
2383 for (i = 1; *nent < maxnent; ++i) {
2384 level_type = entry[i - 1].ecx & 0xff00;
2385 if (!level_type)
2386 break;
2387 do_cpuid_1_ent(&entry[i], function, i);
2388 entry[i].flags |=
2389 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2390 ++*nent;
2391 }
2392 break;
2393 }
2394 case 0xd: {
2395 int i;
2396
2397 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2398 for (i = 1; *nent < maxnent; ++i) {
2399 if (entry[i - 1].eax == 0 && i != 2)
2400 break;
2401 do_cpuid_1_ent(&entry[i], function, i);
2402 entry[i].flags |=
2403 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2404 ++*nent;
2405 }
2406 break;
2407 }
2408 case KVM_CPUID_SIGNATURE: {
2409 char signature[12] = "KVMKVMKVM\0\0";
2410 u32 *sigptr = (u32 *)signature;
2411 entry->eax = 0;
2412 entry->ebx = sigptr[0];
2413 entry->ecx = sigptr[1];
2414 entry->edx = sigptr[2];
2415 break;
2416 }
2417 case KVM_CPUID_FEATURES:
2418 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2419 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2420 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2421 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2422 entry->ebx = 0;
2423 entry->ecx = 0;
2424 entry->edx = 0;
2425 break;
2426 case 0x80000000:
2427 entry->eax = min(entry->eax, 0x8000001a);
2428 break;
2429 case 0x80000001:
2430 entry->edx &= kvm_supported_word1_x86_features;
2431 cpuid_mask(&entry->edx, 1);
2432 entry->ecx &= kvm_supported_word6_x86_features;
2433 cpuid_mask(&entry->ecx, 6);
2434 break;
2435 }
2436
2437 kvm_x86_ops->set_supported_cpuid(function, entry);
2438
2439 put_cpu();
2440 }
2441
2442 #undef F
2443
2444 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2445 struct kvm_cpuid_entry2 __user *entries)
2446 {
2447 struct kvm_cpuid_entry2 *cpuid_entries;
2448 int limit, nent = 0, r = -E2BIG;
2449 u32 func;
2450
2451 if (cpuid->nent < 1)
2452 goto out;
2453 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2454 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2455 r = -ENOMEM;
2456 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2457 if (!cpuid_entries)
2458 goto out;
2459
2460 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2461 limit = cpuid_entries[0].eax;
2462 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2463 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2464 &nent, cpuid->nent);
2465 r = -E2BIG;
2466 if (nent >= cpuid->nent)
2467 goto out_free;
2468
2469 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2470 limit = cpuid_entries[nent - 1].eax;
2471 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2472 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2473 &nent, cpuid->nent);
2474
2475
2476
2477 r = -E2BIG;
2478 if (nent >= cpuid->nent)
2479 goto out_free;
2480
2481 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2482 cpuid->nent);
2483
2484 r = -E2BIG;
2485 if (nent >= cpuid->nent)
2486 goto out_free;
2487
2488 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2489 cpuid->nent);
2490
2491 r = -E2BIG;
2492 if (nent >= cpuid->nent)
2493 goto out_free;
2494
2495 r = -EFAULT;
2496 if (copy_to_user(entries, cpuid_entries,
2497 nent * sizeof(struct kvm_cpuid_entry2)))
2498 goto out_free;
2499 cpuid->nent = nent;
2500 r = 0;
2501
2502 out_free:
2503 vfree(cpuid_entries);
2504 out:
2505 return r;
2506 }
2507
2508 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2509 struct kvm_lapic_state *s)
2510 {
2511 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2512
2513 return 0;
2514 }
2515
2516 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2517 struct kvm_lapic_state *s)
2518 {
2519 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2520 kvm_apic_post_state_restore(vcpu);
2521 update_cr8_intercept(vcpu);
2522
2523 return 0;
2524 }
2525
2526 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2527 struct kvm_interrupt *irq)
2528 {
2529 if (irq->irq < 0 || irq->irq >= 256)
2530 return -EINVAL;
2531 if (irqchip_in_kernel(vcpu->kvm))
2532 return -ENXIO;
2533
2534 kvm_queue_interrupt(vcpu, irq->irq, false);
2535 kvm_make_request(KVM_REQ_EVENT, vcpu);
2536
2537 return 0;
2538 }
2539
2540 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2541 {
2542 kvm_inject_nmi(vcpu);
2543
2544 return 0;
2545 }
2546
2547 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2548 struct kvm_tpr_access_ctl *tac)
2549 {
2550 if (tac->flags)
2551 return -EINVAL;
2552 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2553 return 0;
2554 }
2555
2556 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2557 u64 mcg_cap)
2558 {
2559 int r;
2560 unsigned bank_num = mcg_cap & 0xff, bank;
2561
2562 r = -EINVAL;
2563 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2564 goto out;
2565 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2566 goto out;
2567 r = 0;
2568 vcpu->arch.mcg_cap = mcg_cap;
2569 /* Init IA32_MCG_CTL to all 1s */
2570 if (mcg_cap & MCG_CTL_P)
2571 vcpu->arch.mcg_ctl = ~(u64)0;
2572 /* Init IA32_MCi_CTL to all 1s */
2573 for (bank = 0; bank < bank_num; bank++)
2574 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2575 out:
2576 return r;
2577 }
2578
2579 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2580 struct kvm_x86_mce *mce)
2581 {
2582 u64 mcg_cap = vcpu->arch.mcg_cap;
2583 unsigned bank_num = mcg_cap & 0xff;
2584 u64 *banks = vcpu->arch.mce_banks;
2585
2586 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2587 return -EINVAL;
2588 /*
2589 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2590 * reporting is disabled
2591 */
2592 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2593 vcpu->arch.mcg_ctl != ~(u64)0)
2594 return 0;
2595 banks += 4 * mce->bank;
2596 /*
2597 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2598 * reporting is disabled for the bank
2599 */
2600 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2601 return 0;
2602 if (mce->status & MCI_STATUS_UC) {
2603 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2604 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2605 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2606 return 0;
2607 }
2608 if (banks[1] & MCI_STATUS_VAL)
2609 mce->status |= MCI_STATUS_OVER;
2610 banks[2] = mce->addr;
2611 banks[3] = mce->misc;
2612 vcpu->arch.mcg_status = mce->mcg_status;
2613 banks[1] = mce->status;
2614 kvm_queue_exception(vcpu, MC_VECTOR);
2615 } else if (!(banks[1] & MCI_STATUS_VAL)
2616 || !(banks[1] & MCI_STATUS_UC)) {
2617 if (banks[1] & MCI_STATUS_VAL)
2618 mce->status |= MCI_STATUS_OVER;
2619 banks[2] = mce->addr;
2620 banks[3] = mce->misc;
2621 banks[1] = mce->status;
2622 } else
2623 banks[1] |= MCI_STATUS_OVER;
2624 return 0;
2625 }
2626
2627 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2628 struct kvm_vcpu_events *events)
2629 {
2630 events->exception.injected =
2631 vcpu->arch.exception.pending &&
2632 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2633 events->exception.nr = vcpu->arch.exception.nr;
2634 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2635 events->exception.pad = 0;
2636 events->exception.error_code = vcpu->arch.exception.error_code;
2637
2638 events->interrupt.injected =
2639 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2640 events->interrupt.nr = vcpu->arch.interrupt.nr;
2641 events->interrupt.soft = 0;
2642 events->interrupt.shadow =
2643 kvm_x86_ops->get_interrupt_shadow(vcpu,
2644 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2645
2646 events->nmi.injected = vcpu->arch.nmi_injected;
2647 events->nmi.pending = vcpu->arch.nmi_pending;
2648 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2649 events->nmi.pad = 0;
2650
2651 events->sipi_vector = vcpu->arch.sipi_vector;
2652
2653 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2654 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2655 | KVM_VCPUEVENT_VALID_SHADOW);
2656 memset(&events->reserved, 0, sizeof(events->reserved));
2657 }
2658
2659 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2660 struct kvm_vcpu_events *events)
2661 {
2662 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2663 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2664 | KVM_VCPUEVENT_VALID_SHADOW))
2665 return -EINVAL;
2666
2667 vcpu->arch.exception.pending = events->exception.injected;
2668 vcpu->arch.exception.nr = events->exception.nr;
2669 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2670 vcpu->arch.exception.error_code = events->exception.error_code;
2671
2672 vcpu->arch.interrupt.pending = events->interrupt.injected;
2673 vcpu->arch.interrupt.nr = events->interrupt.nr;
2674 vcpu->arch.interrupt.soft = events->interrupt.soft;
2675 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2676 kvm_x86_ops->set_interrupt_shadow(vcpu,
2677 events->interrupt.shadow);
2678
2679 vcpu->arch.nmi_injected = events->nmi.injected;
2680 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2681 vcpu->arch.nmi_pending = events->nmi.pending;
2682 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2683
2684 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2685 vcpu->arch.sipi_vector = events->sipi_vector;
2686
2687 kvm_make_request(KVM_REQ_EVENT, vcpu);
2688
2689 return 0;
2690 }
2691
2692 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2693 struct kvm_debugregs *dbgregs)
2694 {
2695 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2696 dbgregs->dr6 = vcpu->arch.dr6;
2697 dbgregs->dr7 = vcpu->arch.dr7;
2698 dbgregs->flags = 0;
2699 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2700 }
2701
2702 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2703 struct kvm_debugregs *dbgregs)
2704 {
2705 if (dbgregs->flags)
2706 return -EINVAL;
2707
2708 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2709 vcpu->arch.dr6 = dbgregs->dr6;
2710 vcpu->arch.dr7 = dbgregs->dr7;
2711
2712 return 0;
2713 }
2714
2715 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2716 struct kvm_xsave *guest_xsave)
2717 {
2718 if (cpu_has_xsave)
2719 memcpy(guest_xsave->region,
2720 &vcpu->arch.guest_fpu.state->xsave,
2721 xstate_size);
2722 else {
2723 memcpy(guest_xsave->region,
2724 &vcpu->arch.guest_fpu.state->fxsave,
2725 sizeof(struct i387_fxsave_struct));
2726 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2727 XSTATE_FPSSE;
2728 }
2729 }
2730
2731 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2732 struct kvm_xsave *guest_xsave)
2733 {
2734 u64 xstate_bv =
2735 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2736
2737 if (cpu_has_xsave)
2738 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2739 guest_xsave->region, xstate_size);
2740 else {
2741 if (xstate_bv & ~XSTATE_FPSSE)
2742 return -EINVAL;
2743 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2744 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2745 }
2746 return 0;
2747 }
2748
2749 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2750 struct kvm_xcrs *guest_xcrs)
2751 {
2752 if (!cpu_has_xsave) {
2753 guest_xcrs->nr_xcrs = 0;
2754 return;
2755 }
2756
2757 guest_xcrs->nr_xcrs = 1;
2758 guest_xcrs->flags = 0;
2759 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2760 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2761 }
2762
2763 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2764 struct kvm_xcrs *guest_xcrs)
2765 {
2766 int i, r = 0;
2767
2768 if (!cpu_has_xsave)
2769 return -EINVAL;
2770
2771 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2772 return -EINVAL;
2773
2774 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2775 /* Only support XCR0 currently */
2776 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2777 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2778 guest_xcrs->xcrs[0].value);
2779 break;
2780 }
2781 if (r)
2782 r = -EINVAL;
2783 return r;
2784 }
2785
2786 long kvm_arch_vcpu_ioctl(struct file *filp,
2787 unsigned int ioctl, unsigned long arg)
2788 {
2789 struct kvm_vcpu *vcpu = filp->private_data;
2790 void __user *argp = (void __user *)arg;
2791 int r;
2792 union {
2793 struct kvm_lapic_state *lapic;
2794 struct kvm_xsave *xsave;
2795 struct kvm_xcrs *xcrs;
2796 void *buffer;
2797 } u;
2798
2799 u.buffer = NULL;
2800 switch (ioctl) {
2801 case KVM_GET_LAPIC: {
2802 r = -EINVAL;
2803 if (!vcpu->arch.apic)
2804 goto out;
2805 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2806
2807 r = -ENOMEM;
2808 if (!u.lapic)
2809 goto out;
2810 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2811 if (r)
2812 goto out;
2813 r = -EFAULT;
2814 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2815 goto out;
2816 r = 0;
2817 break;
2818 }
2819 case KVM_SET_LAPIC: {
2820 r = -EINVAL;
2821 if (!vcpu->arch.apic)
2822 goto out;
2823 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2824 r = -ENOMEM;
2825 if (!u.lapic)
2826 goto out;
2827 r = -EFAULT;
2828 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2829 goto out;
2830 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2831 if (r)
2832 goto out;
2833 r = 0;
2834 break;
2835 }
2836 case KVM_INTERRUPT: {
2837 struct kvm_interrupt irq;
2838
2839 r = -EFAULT;
2840 if (copy_from_user(&irq, argp, sizeof irq))
2841 goto out;
2842 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2843 if (r)
2844 goto out;
2845 r = 0;
2846 break;
2847 }
2848 case KVM_NMI: {
2849 r = kvm_vcpu_ioctl_nmi(vcpu);
2850 if (r)
2851 goto out;
2852 r = 0;
2853 break;
2854 }
2855 case KVM_SET_CPUID: {
2856 struct kvm_cpuid __user *cpuid_arg = argp;
2857 struct kvm_cpuid cpuid;
2858
2859 r = -EFAULT;
2860 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2861 goto out;
2862 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2863 if (r)
2864 goto out;
2865 break;
2866 }
2867 case KVM_SET_CPUID2: {
2868 struct kvm_cpuid2 __user *cpuid_arg = argp;
2869 struct kvm_cpuid2 cpuid;
2870
2871 r = -EFAULT;
2872 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2873 goto out;
2874 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2875 cpuid_arg->entries);
2876 if (r)
2877 goto out;
2878 break;
2879 }
2880 case KVM_GET_CPUID2: {
2881 struct kvm_cpuid2 __user *cpuid_arg = argp;
2882 struct kvm_cpuid2 cpuid;
2883
2884 r = -EFAULT;
2885 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2886 goto out;
2887 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2888 cpuid_arg->entries);
2889 if (r)
2890 goto out;
2891 r = -EFAULT;
2892 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2893 goto out;
2894 r = 0;
2895 break;
2896 }
2897 case KVM_GET_MSRS:
2898 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2899 break;
2900 case KVM_SET_MSRS:
2901 r = msr_io(vcpu, argp, do_set_msr, 0);
2902 break;
2903 case KVM_TPR_ACCESS_REPORTING: {
2904 struct kvm_tpr_access_ctl tac;
2905
2906 r = -EFAULT;
2907 if (copy_from_user(&tac, argp, sizeof tac))
2908 goto out;
2909 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2910 if (r)
2911 goto out;
2912 r = -EFAULT;
2913 if (copy_to_user(argp, &tac, sizeof tac))
2914 goto out;
2915 r = 0;
2916 break;
2917 };
2918 case KVM_SET_VAPIC_ADDR: {
2919 struct kvm_vapic_addr va;
2920
2921 r = -EINVAL;
2922 if (!irqchip_in_kernel(vcpu->kvm))
2923 goto out;
2924 r = -EFAULT;
2925 if (copy_from_user(&va, argp, sizeof va))
2926 goto out;
2927 r = 0;
2928 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2929 break;
2930 }
2931 case KVM_X86_SETUP_MCE: {
2932 u64 mcg_cap;
2933
2934 r = -EFAULT;
2935 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2936 goto out;
2937 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2938 break;
2939 }
2940 case KVM_X86_SET_MCE: {
2941 struct kvm_x86_mce mce;
2942
2943 r = -EFAULT;
2944 if (copy_from_user(&mce, argp, sizeof mce))
2945 goto out;
2946 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2947 break;
2948 }
2949 case KVM_GET_VCPU_EVENTS: {
2950 struct kvm_vcpu_events events;
2951
2952 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2953
2954 r = -EFAULT;
2955 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2956 break;
2957 r = 0;
2958 break;
2959 }
2960 case KVM_SET_VCPU_EVENTS: {
2961 struct kvm_vcpu_events events;
2962
2963 r = -EFAULT;
2964 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2965 break;
2966
2967 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2968 break;
2969 }
2970 case KVM_GET_DEBUGREGS: {
2971 struct kvm_debugregs dbgregs;
2972
2973 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2974
2975 r = -EFAULT;
2976 if (copy_to_user(argp, &dbgregs,
2977 sizeof(struct kvm_debugregs)))
2978 break;
2979 r = 0;
2980 break;
2981 }
2982 case KVM_SET_DEBUGREGS: {
2983 struct kvm_debugregs dbgregs;
2984
2985 r = -EFAULT;
2986 if (copy_from_user(&dbgregs, argp,
2987 sizeof(struct kvm_debugregs)))
2988 break;
2989
2990 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2991 break;
2992 }
2993 case KVM_GET_XSAVE: {
2994 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2995 r = -ENOMEM;
2996 if (!u.xsave)
2997 break;
2998
2999 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3000
3001 r = -EFAULT;
3002 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3003 break;
3004 r = 0;
3005 break;
3006 }
3007 case KVM_SET_XSAVE: {
3008 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3009 r = -ENOMEM;
3010 if (!u.xsave)
3011 break;
3012
3013 r = -EFAULT;
3014 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3015 break;
3016
3017 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3018 break;
3019 }
3020 case KVM_GET_XCRS: {
3021 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3022 r = -ENOMEM;
3023 if (!u.xcrs)
3024 break;
3025
3026 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3027
3028 r = -EFAULT;
3029 if (copy_to_user(argp, u.xcrs,
3030 sizeof(struct kvm_xcrs)))
3031 break;
3032 r = 0;
3033 break;
3034 }
3035 case KVM_SET_XCRS: {
3036 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3037 r = -ENOMEM;
3038 if (!u.xcrs)
3039 break;
3040
3041 r = -EFAULT;
3042 if (copy_from_user(u.xcrs, argp,
3043 sizeof(struct kvm_xcrs)))
3044 break;
3045
3046 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3047 break;
3048 }
3049 default:
3050 r = -EINVAL;
3051 }
3052 out:
3053 kfree(u.buffer);
3054 return r;
3055 }
3056
3057 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3058 {
3059 int ret;
3060
3061 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3062 return -1;
3063 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3064 return ret;
3065 }
3066
3067 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3068 u64 ident_addr)
3069 {
3070 kvm->arch.ept_identity_map_addr = ident_addr;
3071 return 0;
3072 }
3073
3074 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3075 u32 kvm_nr_mmu_pages)
3076 {
3077 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3078 return -EINVAL;
3079
3080 mutex_lock(&kvm->slots_lock);
3081 spin_lock(&kvm->mmu_lock);
3082
3083 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3084 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3085
3086 spin_unlock(&kvm->mmu_lock);
3087 mutex_unlock(&kvm->slots_lock);
3088 return 0;
3089 }
3090
3091 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3092 {
3093 return kvm->arch.n_max_mmu_pages;
3094 }
3095
3096 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3097 {
3098 int r;
3099
3100 r = 0;
3101 switch (chip->chip_id) {
3102 case KVM_IRQCHIP_PIC_MASTER:
3103 memcpy(&chip->chip.pic,
3104 &pic_irqchip(kvm)->pics[0],
3105 sizeof(struct kvm_pic_state));
3106 break;
3107 case KVM_IRQCHIP_PIC_SLAVE:
3108 memcpy(&chip->chip.pic,
3109 &pic_irqchip(kvm)->pics[1],
3110 sizeof(struct kvm_pic_state));
3111 break;
3112 case KVM_IRQCHIP_IOAPIC:
3113 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3114 break;
3115 default:
3116 r = -EINVAL;
3117 break;
3118 }
3119 return r;
3120 }
3121
3122 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3123 {
3124 int r;
3125
3126 r = 0;
3127 switch (chip->chip_id) {
3128 case KVM_IRQCHIP_PIC_MASTER:
3129 spin_lock(&pic_irqchip(kvm)->lock);
3130 memcpy(&pic_irqchip(kvm)->pics[0],
3131 &chip->chip.pic,
3132 sizeof(struct kvm_pic_state));
3133 spin_unlock(&pic_irqchip(kvm)->lock);
3134 break;
3135 case KVM_IRQCHIP_PIC_SLAVE:
3136 spin_lock(&pic_irqchip(kvm)->lock);
3137 memcpy(&pic_irqchip(kvm)->pics[1],
3138 &chip->chip.pic,
3139 sizeof(struct kvm_pic_state));
3140 spin_unlock(&pic_irqchip(kvm)->lock);
3141 break;
3142 case KVM_IRQCHIP_IOAPIC:
3143 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3144 break;
3145 default:
3146 r = -EINVAL;
3147 break;
3148 }
3149 kvm_pic_update_irq(pic_irqchip(kvm));
3150 return r;
3151 }
3152
3153 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3154 {
3155 int r = 0;
3156
3157 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3158 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3159 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3160 return r;
3161 }
3162
3163 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3164 {
3165 int r = 0;
3166
3167 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3168 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3169 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3170 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3171 return r;
3172 }
3173
3174 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3175 {
3176 int r = 0;
3177
3178 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3179 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3180 sizeof(ps->channels));
3181 ps->flags = kvm->arch.vpit->pit_state.flags;
3182 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3183 memset(&ps->reserved, 0, sizeof(ps->reserved));
3184 return r;
3185 }
3186
3187 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3188 {
3189 int r = 0, start = 0;
3190 u32 prev_legacy, cur_legacy;
3191 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3192 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3193 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3194 if (!prev_legacy && cur_legacy)
3195 start = 1;
3196 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3197 sizeof(kvm->arch.vpit->pit_state.channels));
3198 kvm->arch.vpit->pit_state.flags = ps->flags;
3199 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3200 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3201 return r;
3202 }
3203
3204 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3205 struct kvm_reinject_control *control)
3206 {
3207 if (!kvm->arch.vpit)
3208 return -ENXIO;
3209 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3210 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3211 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3212 return 0;
3213 }
3214
3215 /*
3216 * Get (and clear) the dirty memory log for a memory slot.
3217 */
3218 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3219 struct kvm_dirty_log *log)
3220 {
3221 int r, i;
3222 struct kvm_memory_slot *memslot;
3223 unsigned long n;
3224 unsigned long is_dirty = 0;
3225
3226 mutex_lock(&kvm->slots_lock);
3227
3228 r = -EINVAL;
3229 if (log->slot >= KVM_MEMORY_SLOTS)
3230 goto out;
3231
3232 memslot = &kvm->memslots->memslots[log->slot];
3233 r = -ENOENT;
3234 if (!memslot->dirty_bitmap)
3235 goto out;
3236
3237 n = kvm_dirty_bitmap_bytes(memslot);
3238
3239 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3240 is_dirty = memslot->dirty_bitmap[i];
3241
3242 /* If nothing is dirty, don't bother messing with page tables. */
3243 if (is_dirty) {
3244 struct kvm_memslots *slots, *old_slots;
3245 unsigned long *dirty_bitmap;
3246
3247 dirty_bitmap = memslot->dirty_bitmap_head;
3248 if (memslot->dirty_bitmap == dirty_bitmap)
3249 dirty_bitmap += n / sizeof(long);
3250 memset(dirty_bitmap, 0, n);
3251
3252 r = -ENOMEM;
3253 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3254 if (!slots)
3255 goto out;
3256 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3257 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3258 slots->generation++;
3259
3260 old_slots = kvm->memslots;
3261 rcu_assign_pointer(kvm->memslots, slots);
3262 synchronize_srcu_expedited(&kvm->srcu);
3263 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3264 kfree(old_slots);
3265
3266 spin_lock(&kvm->mmu_lock);
3267 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3268 spin_unlock(&kvm->mmu_lock);
3269
3270 r = -EFAULT;
3271 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3272 goto out;
3273 } else {
3274 r = -EFAULT;
3275 if (clear_user(log->dirty_bitmap, n))
3276 goto out;
3277 }
3278
3279 r = 0;
3280 out:
3281 mutex_unlock(&kvm->slots_lock);
3282 return r;
3283 }
3284
3285 long kvm_arch_vm_ioctl(struct file *filp,
3286 unsigned int ioctl, unsigned long arg)
3287 {
3288 struct kvm *kvm = filp->private_data;
3289 void __user *argp = (void __user *)arg;
3290 int r = -ENOTTY;
3291 /*
3292 * This union makes it completely explicit to gcc-3.x
3293 * that these two variables' stack usage should be
3294 * combined, not added together.
3295 */
3296 union {
3297 struct kvm_pit_state ps;
3298 struct kvm_pit_state2 ps2;
3299 struct kvm_pit_config pit_config;
3300 } u;
3301
3302 switch (ioctl) {
3303 case KVM_SET_TSS_ADDR:
3304 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3305 if (r < 0)
3306 goto out;
3307 break;
3308 case KVM_SET_IDENTITY_MAP_ADDR: {
3309 u64 ident_addr;
3310
3311 r = -EFAULT;
3312 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3313 goto out;
3314 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3315 if (r < 0)
3316 goto out;
3317 break;
3318 }
3319 case KVM_SET_NR_MMU_PAGES:
3320 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3321 if (r)
3322 goto out;
3323 break;
3324 case KVM_GET_NR_MMU_PAGES:
3325 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3326 break;
3327 case KVM_CREATE_IRQCHIP: {
3328 struct kvm_pic *vpic;
3329
3330 mutex_lock(&kvm->lock);
3331 r = -EEXIST;
3332 if (kvm->arch.vpic)
3333 goto create_irqchip_unlock;
3334 r = -ENOMEM;
3335 vpic = kvm_create_pic(kvm);
3336 if (vpic) {
3337 r = kvm_ioapic_init(kvm);
3338 if (r) {
3339 mutex_lock(&kvm->slots_lock);
3340 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3341 &vpic->dev);
3342 mutex_unlock(&kvm->slots_lock);
3343 kfree(vpic);
3344 goto create_irqchip_unlock;
3345 }
3346 } else
3347 goto create_irqchip_unlock;
3348 smp_wmb();
3349 kvm->arch.vpic = vpic;
3350 smp_wmb();
3351 r = kvm_setup_default_irq_routing(kvm);
3352 if (r) {
3353 mutex_lock(&kvm->slots_lock);
3354 mutex_lock(&kvm->irq_lock);
3355 kvm_ioapic_destroy(kvm);
3356 kvm_destroy_pic(kvm);
3357 mutex_unlock(&kvm->irq_lock);
3358 mutex_unlock(&kvm->slots_lock);
3359 }
3360 create_irqchip_unlock:
3361 mutex_unlock(&kvm->lock);
3362 break;
3363 }
3364 case KVM_CREATE_PIT:
3365 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3366 goto create_pit;
3367 case KVM_CREATE_PIT2:
3368 r = -EFAULT;
3369 if (copy_from_user(&u.pit_config, argp,
3370 sizeof(struct kvm_pit_config)))
3371 goto out;
3372 create_pit:
3373 mutex_lock(&kvm->slots_lock);
3374 r = -EEXIST;
3375 if (kvm->arch.vpit)
3376 goto create_pit_unlock;
3377 r = -ENOMEM;
3378 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3379 if (kvm->arch.vpit)
3380 r = 0;
3381 create_pit_unlock:
3382 mutex_unlock(&kvm->slots_lock);
3383 break;
3384 case KVM_IRQ_LINE_STATUS:
3385 case KVM_IRQ_LINE: {
3386 struct kvm_irq_level irq_event;
3387
3388 r = -EFAULT;
3389 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3390 goto out;
3391 r = -ENXIO;
3392 if (irqchip_in_kernel(kvm)) {
3393 __s32 status;
3394 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3395 irq_event.irq, irq_event.level);
3396 if (ioctl == KVM_IRQ_LINE_STATUS) {
3397 r = -EFAULT;
3398 irq_event.status = status;
3399 if (copy_to_user(argp, &irq_event,
3400 sizeof irq_event))
3401 goto out;
3402 }
3403 r = 0;
3404 }
3405 break;
3406 }
3407 case KVM_GET_IRQCHIP: {
3408 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3409 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3410
3411 r = -ENOMEM;
3412 if (!chip)
3413 goto out;
3414 r = -EFAULT;
3415 if (copy_from_user(chip, argp, sizeof *chip))
3416 goto get_irqchip_out;
3417 r = -ENXIO;
3418 if (!irqchip_in_kernel(kvm))
3419 goto get_irqchip_out;
3420 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3421 if (r)
3422 goto get_irqchip_out;
3423 r = -EFAULT;
3424 if (copy_to_user(argp, chip, sizeof *chip))
3425 goto get_irqchip_out;
3426 r = 0;
3427 get_irqchip_out:
3428 kfree(chip);
3429 if (r)
3430 goto out;
3431 break;
3432 }
3433 case KVM_SET_IRQCHIP: {
3434 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3435 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3436
3437 r = -ENOMEM;
3438 if (!chip)
3439 goto out;
3440 r = -EFAULT;
3441 if (copy_from_user(chip, argp, sizeof *chip))
3442 goto set_irqchip_out;
3443 r = -ENXIO;
3444 if (!irqchip_in_kernel(kvm))
3445 goto set_irqchip_out;
3446 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3447 if (r)
3448 goto set_irqchip_out;
3449 r = 0;
3450 set_irqchip_out:
3451 kfree(chip);
3452 if (r)
3453 goto out;
3454 break;
3455 }
3456 case KVM_GET_PIT: {
3457 r = -EFAULT;
3458 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3459 goto out;
3460 r = -ENXIO;
3461 if (!kvm->arch.vpit)
3462 goto out;
3463 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3464 if (r)
3465 goto out;
3466 r = -EFAULT;
3467 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3468 goto out;
3469 r = 0;
3470 break;
3471 }
3472 case KVM_SET_PIT: {
3473 r = -EFAULT;
3474 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3475 goto out;
3476 r = -ENXIO;
3477 if (!kvm->arch.vpit)
3478 goto out;
3479 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3480 if (r)
3481 goto out;
3482 r = 0;
3483 break;
3484 }
3485 case KVM_GET_PIT2: {
3486 r = -ENXIO;
3487 if (!kvm->arch.vpit)
3488 goto out;
3489 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3490 if (r)
3491 goto out;
3492 r = -EFAULT;
3493 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3494 goto out;
3495 r = 0;
3496 break;
3497 }
3498 case KVM_SET_PIT2: {
3499 r = -EFAULT;
3500 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3501 goto out;
3502 r = -ENXIO;
3503 if (!kvm->arch.vpit)
3504 goto out;
3505 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3506 if (r)
3507 goto out;
3508 r = 0;
3509 break;
3510 }
3511 case KVM_REINJECT_CONTROL: {
3512 struct kvm_reinject_control control;
3513 r = -EFAULT;
3514 if (copy_from_user(&control, argp, sizeof(control)))
3515 goto out;
3516 r = kvm_vm_ioctl_reinject(kvm, &control);
3517 if (r)
3518 goto out;
3519 r = 0;
3520 break;
3521 }
3522 case KVM_XEN_HVM_CONFIG: {
3523 r = -EFAULT;
3524 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3525 sizeof(struct kvm_xen_hvm_config)))
3526 goto out;
3527 r = -EINVAL;
3528 if (kvm->arch.xen_hvm_config.flags)
3529 goto out;
3530 r = 0;
3531 break;
3532 }
3533 case KVM_SET_CLOCK: {
3534 struct kvm_clock_data user_ns;
3535 u64 now_ns;
3536 s64 delta;
3537
3538 r = -EFAULT;
3539 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3540 goto out;
3541
3542 r = -EINVAL;
3543 if (user_ns.flags)
3544 goto out;
3545
3546 r = 0;
3547 local_irq_disable();
3548 now_ns = get_kernel_ns();
3549 delta = user_ns.clock - now_ns;
3550 local_irq_enable();
3551 kvm->arch.kvmclock_offset = delta;
3552 break;
3553 }
3554 case KVM_GET_CLOCK: {
3555 struct kvm_clock_data user_ns;
3556 u64 now_ns;
3557
3558 local_irq_disable();
3559 now_ns = get_kernel_ns();
3560 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3561 local_irq_enable();
3562 user_ns.flags = 0;
3563 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3564
3565 r = -EFAULT;
3566 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3567 goto out;
3568 r = 0;
3569 break;
3570 }
3571
3572 default:
3573 ;
3574 }
3575 out:
3576 return r;
3577 }
3578
3579 static void kvm_init_msr_list(void)
3580 {
3581 u32 dummy[2];
3582 unsigned i, j;
3583
3584 /* skip the first msrs in the list. KVM-specific */
3585 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3586 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3587 continue;
3588 if (j < i)
3589 msrs_to_save[j] = msrs_to_save[i];
3590 j++;
3591 }
3592 num_msrs_to_save = j;
3593 }
3594
3595 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3596 const void *v)
3597 {
3598 if (vcpu->arch.apic &&
3599 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3600 return 0;
3601
3602 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3603 }
3604
3605 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3606 {
3607 if (vcpu->arch.apic &&
3608 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3609 return 0;
3610
3611 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3612 }
3613
3614 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3615 struct kvm_segment *var, int seg)
3616 {
3617 kvm_x86_ops->set_segment(vcpu, var, seg);
3618 }
3619
3620 void kvm_get_segment(struct kvm_vcpu *vcpu,
3621 struct kvm_segment *var, int seg)
3622 {
3623 kvm_x86_ops->get_segment(vcpu, var, seg);
3624 }
3625
3626 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3627 {
3628 return gpa;
3629 }
3630
3631 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3632 {
3633 gpa_t t_gpa;
3634 struct x86_exception exception;
3635
3636 BUG_ON(!mmu_is_nested(vcpu));
3637
3638 /* NPT walks are always user-walks */
3639 access |= PFERR_USER_MASK;
3640 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3641
3642 return t_gpa;
3643 }
3644
3645 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3646 struct x86_exception *exception)
3647 {
3648 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3649 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3650 }
3651
3652 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3653 struct x86_exception *exception)
3654 {
3655 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3656 access |= PFERR_FETCH_MASK;
3657 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3658 }
3659
3660 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3661 struct x86_exception *exception)
3662 {
3663 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3664 access |= PFERR_WRITE_MASK;
3665 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3666 }
3667
3668 /* uses this to access any guest's mapped memory without checking CPL */
3669 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3670 struct x86_exception *exception)
3671 {
3672 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3673 }
3674
3675 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3676 struct kvm_vcpu *vcpu, u32 access,
3677 struct x86_exception *exception)
3678 {
3679 void *data = val;
3680 int r = X86EMUL_CONTINUE;
3681
3682 while (bytes) {
3683 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3684 exception);
3685 unsigned offset = addr & (PAGE_SIZE-1);
3686 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3687 int ret;
3688
3689 if (gpa == UNMAPPED_GVA)
3690 return X86EMUL_PROPAGATE_FAULT;
3691 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3692 if (ret < 0) {
3693 r = X86EMUL_IO_NEEDED;
3694 goto out;
3695 }
3696
3697 bytes -= toread;
3698 data += toread;
3699 addr += toread;
3700 }
3701 out:
3702 return r;
3703 }
3704
3705 /* used for instruction fetching */
3706 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3707 struct kvm_vcpu *vcpu,
3708 struct x86_exception *exception)
3709 {
3710 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3711 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3712 access | PFERR_FETCH_MASK,
3713 exception);
3714 }
3715
3716 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3717 struct kvm_vcpu *vcpu,
3718 struct x86_exception *exception)
3719 {
3720 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3721 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3722 exception);
3723 }
3724
3725 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3726 struct kvm_vcpu *vcpu,
3727 struct x86_exception *exception)
3728 {
3729 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3730 }
3731
3732 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3733 unsigned int bytes,
3734 struct kvm_vcpu *vcpu,
3735 struct x86_exception *exception)
3736 {
3737 void *data = val;
3738 int r = X86EMUL_CONTINUE;
3739
3740 while (bytes) {
3741 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3742 PFERR_WRITE_MASK,
3743 exception);
3744 unsigned offset = addr & (PAGE_SIZE-1);
3745 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3746 int ret;
3747
3748 if (gpa == UNMAPPED_GVA)
3749 return X86EMUL_PROPAGATE_FAULT;
3750 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3751 if (ret < 0) {
3752 r = X86EMUL_IO_NEEDED;
3753 goto out;
3754 }
3755
3756 bytes -= towrite;
3757 data += towrite;
3758 addr += towrite;
3759 }
3760 out:
3761 return r;
3762 }
3763
3764 static int emulator_read_emulated(unsigned long addr,
3765 void *val,
3766 unsigned int bytes,
3767 struct x86_exception *exception,
3768 struct kvm_vcpu *vcpu)
3769 {
3770 gpa_t gpa;
3771
3772 if (vcpu->mmio_read_completed) {
3773 memcpy(val, vcpu->mmio_data, bytes);
3774 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3775 vcpu->mmio_phys_addr, *(u64 *)val);
3776 vcpu->mmio_read_completed = 0;
3777 return X86EMUL_CONTINUE;
3778 }
3779
3780 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
3781
3782 if (gpa == UNMAPPED_GVA)
3783 return X86EMUL_PROPAGATE_FAULT;
3784
3785 /* For APIC access vmexit */
3786 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3787 goto mmio;
3788
3789 if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
3790 == X86EMUL_CONTINUE)
3791 return X86EMUL_CONTINUE;
3792
3793 mmio:
3794 /*
3795 * Is this MMIO handled locally?
3796 */
3797 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3798 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3799 return X86EMUL_CONTINUE;
3800 }
3801
3802 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3803
3804 vcpu->mmio_needed = 1;
3805 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3806 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3807 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3808 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3809
3810 return X86EMUL_IO_NEEDED;
3811 }
3812
3813 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3814 const void *val, int bytes)
3815 {
3816 int ret;
3817
3818 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3819 if (ret < 0)
3820 return 0;
3821 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3822 return 1;
3823 }
3824
3825 static int emulator_write_emulated_onepage(unsigned long addr,
3826 const void *val,
3827 unsigned int bytes,
3828 struct x86_exception *exception,
3829 struct kvm_vcpu *vcpu)
3830 {
3831 gpa_t gpa;
3832
3833 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
3834
3835 if (gpa == UNMAPPED_GVA)
3836 return X86EMUL_PROPAGATE_FAULT;
3837
3838 /* For APIC access vmexit */
3839 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3840 goto mmio;
3841
3842 if (emulator_write_phys(vcpu, gpa, val, bytes))
3843 return X86EMUL_CONTINUE;
3844
3845 mmio:
3846 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3847 /*
3848 * Is this MMIO handled locally?
3849 */
3850 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3851 return X86EMUL_CONTINUE;
3852
3853 vcpu->mmio_needed = 1;
3854 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3855 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3856 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3857 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3858 memcpy(vcpu->run->mmio.data, val, bytes);
3859
3860 return X86EMUL_CONTINUE;
3861 }
3862
3863 int emulator_write_emulated(unsigned long addr,
3864 const void *val,
3865 unsigned int bytes,
3866 struct x86_exception *exception,
3867 struct kvm_vcpu *vcpu)
3868 {
3869 /* Crossing a page boundary? */
3870 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3871 int rc, now;
3872
3873 now = -addr & ~PAGE_MASK;
3874 rc = emulator_write_emulated_onepage(addr, val, now, exception,
3875 vcpu);
3876 if (rc != X86EMUL_CONTINUE)
3877 return rc;
3878 addr += now;
3879 val += now;
3880 bytes -= now;
3881 }
3882 return emulator_write_emulated_onepage(addr, val, bytes, exception,
3883 vcpu);
3884 }
3885
3886 #define CMPXCHG_TYPE(t, ptr, old, new) \
3887 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3888
3889 #ifdef CONFIG_X86_64
3890 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3891 #else
3892 # define CMPXCHG64(ptr, old, new) \
3893 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3894 #endif
3895
3896 static int emulator_cmpxchg_emulated(unsigned long addr,
3897 const void *old,
3898 const void *new,
3899 unsigned int bytes,
3900 struct x86_exception *exception,
3901 struct kvm_vcpu *vcpu)
3902 {
3903 gpa_t gpa;
3904 struct page *page;
3905 char *kaddr;
3906 bool exchanged;
3907
3908 /* guests cmpxchg8b have to be emulated atomically */
3909 if (bytes > 8 || (bytes & (bytes - 1)))
3910 goto emul_write;
3911
3912 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3913
3914 if (gpa == UNMAPPED_GVA ||
3915 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3916 goto emul_write;
3917
3918 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3919 goto emul_write;
3920
3921 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3922 if (is_error_page(page)) {
3923 kvm_release_page_clean(page);
3924 goto emul_write;
3925 }
3926
3927 kaddr = kmap_atomic(page, KM_USER0);
3928 kaddr += offset_in_page(gpa);
3929 switch (bytes) {
3930 case 1:
3931 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3932 break;
3933 case 2:
3934 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3935 break;
3936 case 4:
3937 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3938 break;
3939 case 8:
3940 exchanged = CMPXCHG64(kaddr, old, new);
3941 break;
3942 default:
3943 BUG();
3944 }
3945 kunmap_atomic(kaddr, KM_USER0);
3946 kvm_release_page_dirty(page);
3947
3948 if (!exchanged)
3949 return X86EMUL_CMPXCHG_FAILED;
3950
3951 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3952
3953 return X86EMUL_CONTINUE;
3954
3955 emul_write:
3956 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3957
3958 return emulator_write_emulated(addr, new, bytes, exception, vcpu);
3959 }
3960
3961 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3962 {
3963 /* TODO: String I/O for in kernel device */
3964 int r;
3965
3966 if (vcpu->arch.pio.in)
3967 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3968 vcpu->arch.pio.size, pd);
3969 else
3970 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3971 vcpu->arch.pio.port, vcpu->arch.pio.size,
3972 pd);
3973 return r;
3974 }
3975
3976
3977 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3978 unsigned int count, struct kvm_vcpu *vcpu)
3979 {
3980 if (vcpu->arch.pio.count)
3981 goto data_avail;
3982
3983 trace_kvm_pio(0, port, size, count);
3984
3985 vcpu->arch.pio.port = port;
3986 vcpu->arch.pio.in = 1;
3987 vcpu->arch.pio.count = count;
3988 vcpu->arch.pio.size = size;
3989
3990 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3991 data_avail:
3992 memcpy(val, vcpu->arch.pio_data, size * count);
3993 vcpu->arch.pio.count = 0;
3994 return 1;
3995 }
3996
3997 vcpu->run->exit_reason = KVM_EXIT_IO;
3998 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3999 vcpu->run->io.size = size;
4000 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4001 vcpu->run->io.count = count;
4002 vcpu->run->io.port = port;
4003
4004 return 0;
4005 }
4006
4007 static int emulator_pio_out_emulated(int size, unsigned short port,
4008 const void *val, unsigned int count,
4009 struct kvm_vcpu *vcpu)
4010 {
4011 trace_kvm_pio(1, port, size, count);
4012
4013 vcpu->arch.pio.port = port;
4014 vcpu->arch.pio.in = 0;
4015 vcpu->arch.pio.count = count;
4016 vcpu->arch.pio.size = size;
4017
4018 memcpy(vcpu->arch.pio_data, val, size * count);
4019
4020 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4021 vcpu->arch.pio.count = 0;
4022 return 1;
4023 }
4024
4025 vcpu->run->exit_reason = KVM_EXIT_IO;
4026 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4027 vcpu->run->io.size = size;
4028 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4029 vcpu->run->io.count = count;
4030 vcpu->run->io.port = port;
4031
4032 return 0;
4033 }
4034
4035 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4036 {
4037 return kvm_x86_ops->get_segment_base(vcpu, seg);
4038 }
4039
4040 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
4041 {
4042 kvm_mmu_invlpg(vcpu, address);
4043 return X86EMUL_CONTINUE;
4044 }
4045
4046 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4047 {
4048 if (!need_emulate_wbinvd(vcpu))
4049 return X86EMUL_CONTINUE;
4050
4051 if (kvm_x86_ops->has_wbinvd_exit()) {
4052 int cpu = get_cpu();
4053
4054 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4055 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4056 wbinvd_ipi, NULL, 1);
4057 put_cpu();
4058 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4059 } else
4060 wbinvd();
4061 return X86EMUL_CONTINUE;
4062 }
4063 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4064
4065 int emulate_clts(struct kvm_vcpu *vcpu)
4066 {
4067 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4068 kvm_x86_ops->fpu_activate(vcpu);
4069 return X86EMUL_CONTINUE;
4070 }
4071
4072 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4073 {
4074 return _kvm_get_dr(vcpu, dr, dest);
4075 }
4076
4077 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4078 {
4079
4080 return __kvm_set_dr(vcpu, dr, value);
4081 }
4082
4083 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4084 {
4085 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4086 }
4087
4088 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4089 {
4090 unsigned long value;
4091
4092 switch (cr) {
4093 case 0:
4094 value = kvm_read_cr0(vcpu);
4095 break;
4096 case 2:
4097 value = vcpu->arch.cr2;
4098 break;
4099 case 3:
4100 value = kvm_read_cr3(vcpu);
4101 break;
4102 case 4:
4103 value = kvm_read_cr4(vcpu);
4104 break;
4105 case 8:
4106 value = kvm_get_cr8(vcpu);
4107 break;
4108 default:
4109 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4110 return 0;
4111 }
4112
4113 return value;
4114 }
4115
4116 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4117 {
4118 int res = 0;
4119
4120 switch (cr) {
4121 case 0:
4122 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4123 break;
4124 case 2:
4125 vcpu->arch.cr2 = val;
4126 break;
4127 case 3:
4128 res = kvm_set_cr3(vcpu, val);
4129 break;
4130 case 4:
4131 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4132 break;
4133 case 8:
4134 res = kvm_set_cr8(vcpu, val);
4135 break;
4136 default:
4137 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4138 res = -1;
4139 }
4140
4141 return res;
4142 }
4143
4144 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4145 {
4146 return kvm_x86_ops->get_cpl(vcpu);
4147 }
4148
4149 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4150 {
4151 kvm_x86_ops->get_gdt(vcpu, dt);
4152 }
4153
4154 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4155 {
4156 kvm_x86_ops->get_idt(vcpu, dt);
4157 }
4158
4159 static unsigned long emulator_get_cached_segment_base(int seg,
4160 struct kvm_vcpu *vcpu)
4161 {
4162 return get_segment_base(vcpu, seg);
4163 }
4164
4165 static bool emulator_get_cached_descriptor(struct desc_struct *desc, u32 *base3,
4166 int seg, struct kvm_vcpu *vcpu)
4167 {
4168 struct kvm_segment var;
4169
4170 kvm_get_segment(vcpu, &var, seg);
4171
4172 if (var.unusable)
4173 return false;
4174
4175 if (var.g)
4176 var.limit >>= 12;
4177 set_desc_limit(desc, var.limit);
4178 set_desc_base(desc, (unsigned long)var.base);
4179 #ifdef CONFIG_X86_64
4180 if (base3)
4181 *base3 = var.base >> 32;
4182 #endif
4183 desc->type = var.type;
4184 desc->s = var.s;
4185 desc->dpl = var.dpl;
4186 desc->p = var.present;
4187 desc->avl = var.avl;
4188 desc->l = var.l;
4189 desc->d = var.db;
4190 desc->g = var.g;
4191
4192 return true;
4193 }
4194
4195 static void emulator_set_cached_descriptor(struct desc_struct *desc, u32 base3,
4196 int seg, struct kvm_vcpu *vcpu)
4197 {
4198 struct kvm_segment var;
4199
4200 /* needed to preserve selector */
4201 kvm_get_segment(vcpu, &var, seg);
4202
4203 var.base = get_desc_base(desc);
4204 #ifdef CONFIG_X86_64
4205 var.base |= ((u64)base3) << 32;
4206 #endif
4207 var.limit = get_desc_limit(desc);
4208 if (desc->g)
4209 var.limit = (var.limit << 12) | 0xfff;
4210 var.type = desc->type;
4211 var.present = desc->p;
4212 var.dpl = desc->dpl;
4213 var.db = desc->d;
4214 var.s = desc->s;
4215 var.l = desc->l;
4216 var.g = desc->g;
4217 var.avl = desc->avl;
4218 var.present = desc->p;
4219 var.unusable = !var.present;
4220 var.padding = 0;
4221
4222 kvm_set_segment(vcpu, &var, seg);
4223 return;
4224 }
4225
4226 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4227 {
4228 struct kvm_segment kvm_seg;
4229
4230 kvm_get_segment(vcpu, &kvm_seg, seg);
4231 return kvm_seg.selector;
4232 }
4233
4234 static void emulator_set_segment_selector(u16 sel, int seg,
4235 struct kvm_vcpu *vcpu)
4236 {
4237 struct kvm_segment kvm_seg;
4238
4239 kvm_get_segment(vcpu, &kvm_seg, seg);
4240 kvm_seg.selector = sel;
4241 kvm_set_segment(vcpu, &kvm_seg, seg);
4242 }
4243
4244 static struct x86_emulate_ops emulate_ops = {
4245 .read_std = kvm_read_guest_virt_system,
4246 .write_std = kvm_write_guest_virt_system,
4247 .fetch = kvm_fetch_guest_virt,
4248 .read_emulated = emulator_read_emulated,
4249 .write_emulated = emulator_write_emulated,
4250 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4251 .pio_in_emulated = emulator_pio_in_emulated,
4252 .pio_out_emulated = emulator_pio_out_emulated,
4253 .get_cached_descriptor = emulator_get_cached_descriptor,
4254 .set_cached_descriptor = emulator_set_cached_descriptor,
4255 .get_segment_selector = emulator_get_segment_selector,
4256 .set_segment_selector = emulator_set_segment_selector,
4257 .get_cached_segment_base = emulator_get_cached_segment_base,
4258 .get_gdt = emulator_get_gdt,
4259 .get_idt = emulator_get_idt,
4260 .get_cr = emulator_get_cr,
4261 .set_cr = emulator_set_cr,
4262 .cpl = emulator_get_cpl,
4263 .get_dr = emulator_get_dr,
4264 .set_dr = emulator_set_dr,
4265 .set_msr = kvm_set_msr,
4266 .get_msr = kvm_get_msr,
4267 };
4268
4269 static void cache_all_regs(struct kvm_vcpu *vcpu)
4270 {
4271 kvm_register_read(vcpu, VCPU_REGS_RAX);
4272 kvm_register_read(vcpu, VCPU_REGS_RSP);
4273 kvm_register_read(vcpu, VCPU_REGS_RIP);
4274 vcpu->arch.regs_dirty = ~0;
4275 }
4276
4277 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4278 {
4279 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4280 /*
4281 * an sti; sti; sequence only disable interrupts for the first
4282 * instruction. So, if the last instruction, be it emulated or
4283 * not, left the system with the INT_STI flag enabled, it
4284 * means that the last instruction is an sti. We should not
4285 * leave the flag on in this case. The same goes for mov ss
4286 */
4287 if (!(int_shadow & mask))
4288 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4289 }
4290
4291 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4292 {
4293 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4294 if (ctxt->exception.vector == PF_VECTOR)
4295 kvm_propagate_fault(vcpu, &ctxt->exception);
4296 else if (ctxt->exception.error_code_valid)
4297 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4298 ctxt->exception.error_code);
4299 else
4300 kvm_queue_exception(vcpu, ctxt->exception.vector);
4301 }
4302
4303 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4304 {
4305 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4306 int cs_db, cs_l;
4307
4308 cache_all_regs(vcpu);
4309
4310 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4311
4312 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4313 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4314 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4315 vcpu->arch.emulate_ctxt.mode =
4316 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4317 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4318 ? X86EMUL_MODE_VM86 : cs_l
4319 ? X86EMUL_MODE_PROT64 : cs_db
4320 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4321 memset(c, 0, sizeof(struct decode_cache));
4322 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4323 }
4324
4325 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4326 {
4327 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4328 int ret;
4329
4330 init_emulate_ctxt(vcpu);
4331
4332 vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4333 vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4334 vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4335 ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4336
4337 if (ret != X86EMUL_CONTINUE)
4338 return EMULATE_FAIL;
4339
4340 vcpu->arch.emulate_ctxt.eip = c->eip;
4341 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4342 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4343 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4344
4345 if (irq == NMI_VECTOR)
4346 vcpu->arch.nmi_pending = false;
4347 else
4348 vcpu->arch.interrupt.pending = false;
4349
4350 return EMULATE_DONE;
4351 }
4352 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4353
4354 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4355 {
4356 int r = EMULATE_DONE;
4357
4358 ++vcpu->stat.insn_emulation_fail;
4359 trace_kvm_emulate_insn_failed(vcpu);
4360 if (!is_guest_mode(vcpu)) {
4361 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4362 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4363 vcpu->run->internal.ndata = 0;
4364 r = EMULATE_FAIL;
4365 }
4366 kvm_queue_exception(vcpu, UD_VECTOR);
4367
4368 return r;
4369 }
4370
4371 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4372 {
4373 gpa_t gpa;
4374
4375 if (tdp_enabled)
4376 return false;
4377
4378 /*
4379 * if emulation was due to access to shadowed page table
4380 * and it failed try to unshadow page and re-entetr the
4381 * guest to let CPU execute the instruction.
4382 */
4383 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4384 return true;
4385
4386 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4387
4388 if (gpa == UNMAPPED_GVA)
4389 return true; /* let cpu generate fault */
4390
4391 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4392 return true;
4393
4394 return false;
4395 }
4396
4397 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4398 unsigned long cr2,
4399 int emulation_type,
4400 void *insn,
4401 int insn_len)
4402 {
4403 int r;
4404 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4405
4406 kvm_clear_exception_queue(vcpu);
4407 vcpu->arch.mmio_fault_cr2 = cr2;
4408 /*
4409 * TODO: fix emulate.c to use guest_read/write_register
4410 * instead of direct ->regs accesses, can save hundred cycles
4411 * on Intel for instructions that don't read/change RSP, for
4412 * for example.
4413 */
4414 cache_all_regs(vcpu);
4415
4416 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4417 init_emulate_ctxt(vcpu);
4418 vcpu->arch.emulate_ctxt.interruptibility = 0;
4419 vcpu->arch.emulate_ctxt.have_exception = false;
4420 vcpu->arch.emulate_ctxt.perm_ok = false;
4421
4422 vcpu->arch.emulate_ctxt.only_vendor_specific_insn
4423 = emulation_type & EMULTYPE_TRAP_UD;
4424
4425 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
4426
4427 trace_kvm_emulate_insn_start(vcpu);
4428 ++vcpu->stat.insn_emulation;
4429 if (r) {
4430 if (emulation_type & EMULTYPE_TRAP_UD)
4431 return EMULATE_FAIL;
4432 if (reexecute_instruction(vcpu, cr2))
4433 return EMULATE_DONE;
4434 if (emulation_type & EMULTYPE_SKIP)
4435 return EMULATE_FAIL;
4436 return handle_emulation_failure(vcpu);
4437 }
4438 }
4439
4440 if (emulation_type & EMULTYPE_SKIP) {
4441 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4442 return EMULATE_DONE;
4443 }
4444
4445 /* this is needed for vmware backdor interface to work since it
4446 changes registers values during IO operation */
4447 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4448
4449 restart:
4450 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4451
4452 if (r == EMULATION_FAILED) {
4453 if (reexecute_instruction(vcpu, cr2))
4454 return EMULATE_DONE;
4455
4456 return handle_emulation_failure(vcpu);
4457 }
4458
4459 if (vcpu->arch.emulate_ctxt.have_exception) {
4460 inject_emulated_exception(vcpu);
4461 r = EMULATE_DONE;
4462 } else if (vcpu->arch.pio.count) {
4463 if (!vcpu->arch.pio.in)
4464 vcpu->arch.pio.count = 0;
4465 r = EMULATE_DO_MMIO;
4466 } else if (vcpu->mmio_needed) {
4467 if (vcpu->mmio_is_write)
4468 vcpu->mmio_needed = 0;
4469 r = EMULATE_DO_MMIO;
4470 } else if (r == EMULATION_RESTART)
4471 goto restart;
4472 else
4473 r = EMULATE_DONE;
4474
4475 toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4476 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4477 kvm_make_request(KVM_REQ_EVENT, vcpu);
4478 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4479 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4480
4481 return r;
4482 }
4483 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4484
4485 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4486 {
4487 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4488 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4489 /* do not return to emulator after return from userspace */
4490 vcpu->arch.pio.count = 0;
4491 return ret;
4492 }
4493 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4494
4495 static void tsc_bad(void *info)
4496 {
4497 __this_cpu_write(cpu_tsc_khz, 0);
4498 }
4499
4500 static void tsc_khz_changed(void *data)
4501 {
4502 struct cpufreq_freqs *freq = data;
4503 unsigned long khz = 0;
4504
4505 if (data)
4506 khz = freq->new;
4507 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4508 khz = cpufreq_quick_get(raw_smp_processor_id());
4509 if (!khz)
4510 khz = tsc_khz;
4511 __this_cpu_write(cpu_tsc_khz, khz);
4512 }
4513
4514 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4515 void *data)
4516 {
4517 struct cpufreq_freqs *freq = data;
4518 struct kvm *kvm;
4519 struct kvm_vcpu *vcpu;
4520 int i, send_ipi = 0;
4521
4522 /*
4523 * We allow guests to temporarily run on slowing clocks,
4524 * provided we notify them after, or to run on accelerating
4525 * clocks, provided we notify them before. Thus time never
4526 * goes backwards.
4527 *
4528 * However, we have a problem. We can't atomically update
4529 * the frequency of a given CPU from this function; it is
4530 * merely a notifier, which can be called from any CPU.
4531 * Changing the TSC frequency at arbitrary points in time
4532 * requires a recomputation of local variables related to
4533 * the TSC for each VCPU. We must flag these local variables
4534 * to be updated and be sure the update takes place with the
4535 * new frequency before any guests proceed.
4536 *
4537 * Unfortunately, the combination of hotplug CPU and frequency
4538 * change creates an intractable locking scenario; the order
4539 * of when these callouts happen is undefined with respect to
4540 * CPU hotplug, and they can race with each other. As such,
4541 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4542 * undefined; you can actually have a CPU frequency change take
4543 * place in between the computation of X and the setting of the
4544 * variable. To protect against this problem, all updates of
4545 * the per_cpu tsc_khz variable are done in an interrupt
4546 * protected IPI, and all callers wishing to update the value
4547 * must wait for a synchronous IPI to complete (which is trivial
4548 * if the caller is on the CPU already). This establishes the
4549 * necessary total order on variable updates.
4550 *
4551 * Note that because a guest time update may take place
4552 * anytime after the setting of the VCPU's request bit, the
4553 * correct TSC value must be set before the request. However,
4554 * to ensure the update actually makes it to any guest which
4555 * starts running in hardware virtualization between the set
4556 * and the acquisition of the spinlock, we must also ping the
4557 * CPU after setting the request bit.
4558 *
4559 */
4560
4561 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4562 return 0;
4563 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4564 return 0;
4565
4566 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4567
4568 raw_spin_lock(&kvm_lock);
4569 list_for_each_entry(kvm, &vm_list, vm_list) {
4570 kvm_for_each_vcpu(i, vcpu, kvm) {
4571 if (vcpu->cpu != freq->cpu)
4572 continue;
4573 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4574 if (vcpu->cpu != smp_processor_id())
4575 send_ipi = 1;
4576 }
4577 }
4578 raw_spin_unlock(&kvm_lock);
4579
4580 if (freq->old < freq->new && send_ipi) {
4581 /*
4582 * We upscale the frequency. Must make the guest
4583 * doesn't see old kvmclock values while running with
4584 * the new frequency, otherwise we risk the guest sees
4585 * time go backwards.
4586 *
4587 * In case we update the frequency for another cpu
4588 * (which might be in guest context) send an interrupt
4589 * to kick the cpu out of guest context. Next time
4590 * guest context is entered kvmclock will be updated,
4591 * so the guest will not see stale values.
4592 */
4593 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4594 }
4595 return 0;
4596 }
4597
4598 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4599 .notifier_call = kvmclock_cpufreq_notifier
4600 };
4601
4602 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4603 unsigned long action, void *hcpu)
4604 {
4605 unsigned int cpu = (unsigned long)hcpu;
4606
4607 switch (action) {
4608 case CPU_ONLINE:
4609 case CPU_DOWN_FAILED:
4610 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4611 break;
4612 case CPU_DOWN_PREPARE:
4613 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4614 break;
4615 }
4616 return NOTIFY_OK;
4617 }
4618
4619 static struct notifier_block kvmclock_cpu_notifier_block = {
4620 .notifier_call = kvmclock_cpu_notifier,
4621 .priority = -INT_MAX
4622 };
4623
4624 static void kvm_timer_init(void)
4625 {
4626 int cpu;
4627
4628 max_tsc_khz = tsc_khz;
4629 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4630 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4631 #ifdef CONFIG_CPU_FREQ
4632 struct cpufreq_policy policy;
4633 memset(&policy, 0, sizeof(policy));
4634 cpu = get_cpu();
4635 cpufreq_get_policy(&policy, cpu);
4636 if (policy.cpuinfo.max_freq)
4637 max_tsc_khz = policy.cpuinfo.max_freq;
4638 put_cpu();
4639 #endif
4640 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4641 CPUFREQ_TRANSITION_NOTIFIER);
4642 }
4643 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4644 for_each_online_cpu(cpu)
4645 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4646 }
4647
4648 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4649
4650 static int kvm_is_in_guest(void)
4651 {
4652 return percpu_read(current_vcpu) != NULL;
4653 }
4654
4655 static int kvm_is_user_mode(void)
4656 {
4657 int user_mode = 3;
4658
4659 if (percpu_read(current_vcpu))
4660 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4661
4662 return user_mode != 0;
4663 }
4664
4665 static unsigned long kvm_get_guest_ip(void)
4666 {
4667 unsigned long ip = 0;
4668
4669 if (percpu_read(current_vcpu))
4670 ip = kvm_rip_read(percpu_read(current_vcpu));
4671
4672 return ip;
4673 }
4674
4675 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4676 .is_in_guest = kvm_is_in_guest,
4677 .is_user_mode = kvm_is_user_mode,
4678 .get_guest_ip = kvm_get_guest_ip,
4679 };
4680
4681 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4682 {
4683 percpu_write(current_vcpu, vcpu);
4684 }
4685 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4686
4687 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4688 {
4689 percpu_write(current_vcpu, NULL);
4690 }
4691 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4692
4693 int kvm_arch_init(void *opaque)
4694 {
4695 int r;
4696 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4697
4698 if (kvm_x86_ops) {
4699 printk(KERN_ERR "kvm: already loaded the other module\n");
4700 r = -EEXIST;
4701 goto out;
4702 }
4703
4704 if (!ops->cpu_has_kvm_support()) {
4705 printk(KERN_ERR "kvm: no hardware support\n");
4706 r = -EOPNOTSUPP;
4707 goto out;
4708 }
4709 if (ops->disabled_by_bios()) {
4710 printk(KERN_ERR "kvm: disabled by bios\n");
4711 r = -EOPNOTSUPP;
4712 goto out;
4713 }
4714
4715 r = kvm_mmu_module_init();
4716 if (r)
4717 goto out;
4718
4719 kvm_init_msr_list();
4720
4721 kvm_x86_ops = ops;
4722 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4723 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4724 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4725
4726 kvm_timer_init();
4727
4728 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4729
4730 if (cpu_has_xsave)
4731 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4732
4733 return 0;
4734
4735 out:
4736 return r;
4737 }
4738
4739 void kvm_arch_exit(void)
4740 {
4741 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4742
4743 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4744 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4745 CPUFREQ_TRANSITION_NOTIFIER);
4746 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4747 kvm_x86_ops = NULL;
4748 kvm_mmu_module_exit();
4749 }
4750
4751 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4752 {
4753 ++vcpu->stat.halt_exits;
4754 if (irqchip_in_kernel(vcpu->kvm)) {
4755 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4756 return 1;
4757 } else {
4758 vcpu->run->exit_reason = KVM_EXIT_HLT;
4759 return 0;
4760 }
4761 }
4762 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4763
4764 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4765 unsigned long a1)
4766 {
4767 if (is_long_mode(vcpu))
4768 return a0;
4769 else
4770 return a0 | ((gpa_t)a1 << 32);
4771 }
4772
4773 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4774 {
4775 u64 param, ingpa, outgpa, ret;
4776 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4777 bool fast, longmode;
4778 int cs_db, cs_l;
4779
4780 /*
4781 * hypercall generates UD from non zero cpl and real mode
4782 * per HYPER-V spec
4783 */
4784 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4785 kvm_queue_exception(vcpu, UD_VECTOR);
4786 return 0;
4787 }
4788
4789 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4790 longmode = is_long_mode(vcpu) && cs_l == 1;
4791
4792 if (!longmode) {
4793 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4794 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4795 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4796 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4797 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4798 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4799 }
4800 #ifdef CONFIG_X86_64
4801 else {
4802 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4803 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4804 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4805 }
4806 #endif
4807
4808 code = param & 0xffff;
4809 fast = (param >> 16) & 0x1;
4810 rep_cnt = (param >> 32) & 0xfff;
4811 rep_idx = (param >> 48) & 0xfff;
4812
4813 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4814
4815 switch (code) {
4816 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4817 kvm_vcpu_on_spin(vcpu);
4818 break;
4819 default:
4820 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4821 break;
4822 }
4823
4824 ret = res | (((u64)rep_done & 0xfff) << 32);
4825 if (longmode) {
4826 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4827 } else {
4828 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4829 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4830 }
4831
4832 return 1;
4833 }
4834
4835 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4836 {
4837 unsigned long nr, a0, a1, a2, a3, ret;
4838 int r = 1;
4839
4840 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4841 return kvm_hv_hypercall(vcpu);
4842
4843 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4844 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4845 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4846 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4847 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4848
4849 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4850
4851 if (!is_long_mode(vcpu)) {
4852 nr &= 0xFFFFFFFF;
4853 a0 &= 0xFFFFFFFF;
4854 a1 &= 0xFFFFFFFF;
4855 a2 &= 0xFFFFFFFF;
4856 a3 &= 0xFFFFFFFF;
4857 }
4858
4859 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4860 ret = -KVM_EPERM;
4861 goto out;
4862 }
4863
4864 switch (nr) {
4865 case KVM_HC_VAPIC_POLL_IRQ:
4866 ret = 0;
4867 break;
4868 case KVM_HC_MMU_OP:
4869 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4870 break;
4871 default:
4872 ret = -KVM_ENOSYS;
4873 break;
4874 }
4875 out:
4876 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4877 ++vcpu->stat.hypercalls;
4878 return r;
4879 }
4880 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4881
4882 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4883 {
4884 char instruction[3];
4885 unsigned long rip = kvm_rip_read(vcpu);
4886
4887 /*
4888 * Blow out the MMU to ensure that no other VCPU has an active mapping
4889 * to ensure that the updated hypercall appears atomically across all
4890 * VCPUs.
4891 */
4892 kvm_mmu_zap_all(vcpu->kvm);
4893
4894 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4895
4896 return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4897 }
4898
4899 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4900 {
4901 struct desc_ptr dt = { limit, base };
4902
4903 kvm_x86_ops->set_gdt(vcpu, &dt);
4904 }
4905
4906 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4907 {
4908 struct desc_ptr dt = { limit, base };
4909
4910 kvm_x86_ops->set_idt(vcpu, &dt);
4911 }
4912
4913 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4914 {
4915 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4916 int j, nent = vcpu->arch.cpuid_nent;
4917
4918 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4919 /* when no next entry is found, the current entry[i] is reselected */
4920 for (j = i + 1; ; j = (j + 1) % nent) {
4921 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4922 if (ej->function == e->function) {
4923 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4924 return j;
4925 }
4926 }
4927 return 0; /* silence gcc, even though control never reaches here */
4928 }
4929
4930 /* find an entry with matching function, matching index (if needed), and that
4931 * should be read next (if it's stateful) */
4932 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4933 u32 function, u32 index)
4934 {
4935 if (e->function != function)
4936 return 0;
4937 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4938 return 0;
4939 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4940 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4941 return 0;
4942 return 1;
4943 }
4944
4945 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4946 u32 function, u32 index)
4947 {
4948 int i;
4949 struct kvm_cpuid_entry2 *best = NULL;
4950
4951 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4952 struct kvm_cpuid_entry2 *e;
4953
4954 e = &vcpu->arch.cpuid_entries[i];
4955 if (is_matching_cpuid_entry(e, function, index)) {
4956 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4957 move_to_next_stateful_cpuid_entry(vcpu, i);
4958 best = e;
4959 break;
4960 }
4961 /*
4962 * Both basic or both extended?
4963 */
4964 if (((e->function ^ function) & 0x80000000) == 0)
4965 if (!best || e->function > best->function)
4966 best = e;
4967 }
4968 return best;
4969 }
4970 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4971
4972 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4973 {
4974 struct kvm_cpuid_entry2 *best;
4975
4976 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4977 if (!best || best->eax < 0x80000008)
4978 goto not_found;
4979 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4980 if (best)
4981 return best->eax & 0xff;
4982 not_found:
4983 return 36;
4984 }
4985
4986 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4987 {
4988 u32 function, index;
4989 struct kvm_cpuid_entry2 *best;
4990
4991 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4992 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4993 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4994 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4995 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4996 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4997 best = kvm_find_cpuid_entry(vcpu, function, index);
4998 if (best) {
4999 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5000 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5001 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5002 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5003 }
5004 kvm_x86_ops->skip_emulated_instruction(vcpu);
5005 trace_kvm_cpuid(function,
5006 kvm_register_read(vcpu, VCPU_REGS_RAX),
5007 kvm_register_read(vcpu, VCPU_REGS_RBX),
5008 kvm_register_read(vcpu, VCPU_REGS_RCX),
5009 kvm_register_read(vcpu, VCPU_REGS_RDX));
5010 }
5011 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5012
5013 /*
5014 * Check if userspace requested an interrupt window, and that the
5015 * interrupt window is open.
5016 *
5017 * No need to exit to userspace if we already have an interrupt queued.
5018 */
5019 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5020 {
5021 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5022 vcpu->run->request_interrupt_window &&
5023 kvm_arch_interrupt_allowed(vcpu));
5024 }
5025
5026 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5027 {
5028 struct kvm_run *kvm_run = vcpu->run;
5029
5030 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5031 kvm_run->cr8 = kvm_get_cr8(vcpu);
5032 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5033 if (irqchip_in_kernel(vcpu->kvm))
5034 kvm_run->ready_for_interrupt_injection = 1;
5035 else
5036 kvm_run->ready_for_interrupt_injection =
5037 kvm_arch_interrupt_allowed(vcpu) &&
5038 !kvm_cpu_has_interrupt(vcpu) &&
5039 !kvm_event_needs_reinjection(vcpu);
5040 }
5041
5042 static void vapic_enter(struct kvm_vcpu *vcpu)
5043 {
5044 struct kvm_lapic *apic = vcpu->arch.apic;
5045 struct page *page;
5046
5047 if (!apic || !apic->vapic_addr)
5048 return;
5049
5050 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5051
5052 vcpu->arch.apic->vapic_page = page;
5053 }
5054
5055 static void vapic_exit(struct kvm_vcpu *vcpu)
5056 {
5057 struct kvm_lapic *apic = vcpu->arch.apic;
5058 int idx;
5059
5060 if (!apic || !apic->vapic_addr)
5061 return;
5062
5063 idx = srcu_read_lock(&vcpu->kvm->srcu);
5064 kvm_release_page_dirty(apic->vapic_page);
5065 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5066 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5067 }
5068
5069 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5070 {
5071 int max_irr, tpr;
5072
5073 if (!kvm_x86_ops->update_cr8_intercept)
5074 return;
5075
5076 if (!vcpu->arch.apic)
5077 return;
5078
5079 if (!vcpu->arch.apic->vapic_addr)
5080 max_irr = kvm_lapic_find_highest_irr(vcpu);
5081 else
5082 max_irr = -1;
5083
5084 if (max_irr != -1)
5085 max_irr >>= 4;
5086
5087 tpr = kvm_lapic_get_cr8(vcpu);
5088
5089 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5090 }
5091
5092 static void inject_pending_event(struct kvm_vcpu *vcpu)
5093 {
5094 /* try to reinject previous events if any */
5095 if (vcpu->arch.exception.pending) {
5096 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5097 vcpu->arch.exception.has_error_code,
5098 vcpu->arch.exception.error_code);
5099 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5100 vcpu->arch.exception.has_error_code,
5101 vcpu->arch.exception.error_code,
5102 vcpu->arch.exception.reinject);
5103 return;
5104 }
5105
5106 if (vcpu->arch.nmi_injected) {
5107 kvm_x86_ops->set_nmi(vcpu);
5108 return;
5109 }
5110
5111 if (vcpu->arch.interrupt.pending) {
5112 kvm_x86_ops->set_irq(vcpu);
5113 return;
5114 }
5115
5116 /* try to inject new event if pending */
5117 if (vcpu->arch.nmi_pending) {
5118 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5119 vcpu->arch.nmi_pending = false;
5120 vcpu->arch.nmi_injected = true;
5121 kvm_x86_ops->set_nmi(vcpu);
5122 }
5123 } else if (kvm_cpu_has_interrupt(vcpu)) {
5124 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5125 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5126 false);
5127 kvm_x86_ops->set_irq(vcpu);
5128 }
5129 }
5130 }
5131
5132 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5133 {
5134 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5135 !vcpu->guest_xcr0_loaded) {
5136 /* kvm_set_xcr() also depends on this */
5137 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5138 vcpu->guest_xcr0_loaded = 1;
5139 }
5140 }
5141
5142 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5143 {
5144 if (vcpu->guest_xcr0_loaded) {
5145 if (vcpu->arch.xcr0 != host_xcr0)
5146 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5147 vcpu->guest_xcr0_loaded = 0;
5148 }
5149 }
5150
5151 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5152 {
5153 int r;
5154 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5155 vcpu->run->request_interrupt_window;
5156
5157 if (vcpu->requests) {
5158 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5159 kvm_mmu_unload(vcpu);
5160 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5161 __kvm_migrate_timers(vcpu);
5162 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5163 r = kvm_guest_time_update(vcpu);
5164 if (unlikely(r))
5165 goto out;
5166 }
5167 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5168 kvm_mmu_sync_roots(vcpu);
5169 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5170 kvm_x86_ops->tlb_flush(vcpu);
5171 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5172 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5173 r = 0;
5174 goto out;
5175 }
5176 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5177 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5178 r = 0;
5179 goto out;
5180 }
5181 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5182 vcpu->fpu_active = 0;
5183 kvm_x86_ops->fpu_deactivate(vcpu);
5184 }
5185 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5186 /* Page is swapped out. Do synthetic halt */
5187 vcpu->arch.apf.halted = true;
5188 r = 1;
5189 goto out;
5190 }
5191 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5192 vcpu->arch.nmi_pending = true;
5193 }
5194
5195 r = kvm_mmu_reload(vcpu);
5196 if (unlikely(r))
5197 goto out;
5198
5199 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5200 inject_pending_event(vcpu);
5201
5202 /* enable NMI/IRQ window open exits if needed */
5203 if (vcpu->arch.nmi_pending)
5204 kvm_x86_ops->enable_nmi_window(vcpu);
5205 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5206 kvm_x86_ops->enable_irq_window(vcpu);
5207
5208 if (kvm_lapic_enabled(vcpu)) {
5209 update_cr8_intercept(vcpu);
5210 kvm_lapic_sync_to_vapic(vcpu);
5211 }
5212 }
5213
5214 preempt_disable();
5215
5216 kvm_x86_ops->prepare_guest_switch(vcpu);
5217 if (vcpu->fpu_active)
5218 kvm_load_guest_fpu(vcpu);
5219 kvm_load_guest_xcr0(vcpu);
5220
5221 vcpu->mode = IN_GUEST_MODE;
5222
5223 /* We should set ->mode before check ->requests,
5224 * see the comment in make_all_cpus_request.
5225 */
5226 smp_mb();
5227
5228 local_irq_disable();
5229
5230 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5231 || need_resched() || signal_pending(current)) {
5232 vcpu->mode = OUTSIDE_GUEST_MODE;
5233 smp_wmb();
5234 local_irq_enable();
5235 preempt_enable();
5236 kvm_x86_ops->cancel_injection(vcpu);
5237 r = 1;
5238 goto out;
5239 }
5240
5241 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5242
5243 kvm_guest_enter();
5244
5245 if (unlikely(vcpu->arch.switch_db_regs)) {
5246 set_debugreg(0, 7);
5247 set_debugreg(vcpu->arch.eff_db[0], 0);
5248 set_debugreg(vcpu->arch.eff_db[1], 1);
5249 set_debugreg(vcpu->arch.eff_db[2], 2);
5250 set_debugreg(vcpu->arch.eff_db[3], 3);
5251 }
5252
5253 trace_kvm_entry(vcpu->vcpu_id);
5254 kvm_x86_ops->run(vcpu);
5255
5256 /*
5257 * If the guest has used debug registers, at least dr7
5258 * will be disabled while returning to the host.
5259 * If we don't have active breakpoints in the host, we don't
5260 * care about the messed up debug address registers. But if
5261 * we have some of them active, restore the old state.
5262 */
5263 if (hw_breakpoint_active())
5264 hw_breakpoint_restore();
5265
5266 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5267
5268 vcpu->mode = OUTSIDE_GUEST_MODE;
5269 smp_wmb();
5270 local_irq_enable();
5271
5272 ++vcpu->stat.exits;
5273
5274 /*
5275 * We must have an instruction between local_irq_enable() and
5276 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5277 * the interrupt shadow. The stat.exits increment will do nicely.
5278 * But we need to prevent reordering, hence this barrier():
5279 */
5280 barrier();
5281
5282 kvm_guest_exit();
5283
5284 preempt_enable();
5285
5286 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5287
5288 /*
5289 * Profile KVM exit RIPs:
5290 */
5291 if (unlikely(prof_on == KVM_PROFILING)) {
5292 unsigned long rip = kvm_rip_read(vcpu);
5293 profile_hit(KVM_PROFILING, (void *)rip);
5294 }
5295
5296
5297 kvm_lapic_sync_from_vapic(vcpu);
5298
5299 r = kvm_x86_ops->handle_exit(vcpu);
5300 out:
5301 return r;
5302 }
5303
5304
5305 static int __vcpu_run(struct kvm_vcpu *vcpu)
5306 {
5307 int r;
5308 struct kvm *kvm = vcpu->kvm;
5309
5310 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5311 pr_debug("vcpu %d received sipi with vector # %x\n",
5312 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5313 kvm_lapic_reset(vcpu);
5314 r = kvm_arch_vcpu_reset(vcpu);
5315 if (r)
5316 return r;
5317 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5318 }
5319
5320 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5321 vapic_enter(vcpu);
5322
5323 r = 1;
5324 while (r > 0) {
5325 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5326 !vcpu->arch.apf.halted)
5327 r = vcpu_enter_guest(vcpu);
5328 else {
5329 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5330 kvm_vcpu_block(vcpu);
5331 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5332 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5333 {
5334 switch(vcpu->arch.mp_state) {
5335 case KVM_MP_STATE_HALTED:
5336 vcpu->arch.mp_state =
5337 KVM_MP_STATE_RUNNABLE;
5338 case KVM_MP_STATE_RUNNABLE:
5339 vcpu->arch.apf.halted = false;
5340 break;
5341 case KVM_MP_STATE_SIPI_RECEIVED:
5342 default:
5343 r = -EINTR;
5344 break;
5345 }
5346 }
5347 }
5348
5349 if (r <= 0)
5350 break;
5351
5352 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5353 if (kvm_cpu_has_pending_timer(vcpu))
5354 kvm_inject_pending_timer_irqs(vcpu);
5355
5356 if (dm_request_for_irq_injection(vcpu)) {
5357 r = -EINTR;
5358 vcpu->run->exit_reason = KVM_EXIT_INTR;
5359 ++vcpu->stat.request_irq_exits;
5360 }
5361
5362 kvm_check_async_pf_completion(vcpu);
5363
5364 if (signal_pending(current)) {
5365 r = -EINTR;
5366 vcpu->run->exit_reason = KVM_EXIT_INTR;
5367 ++vcpu->stat.signal_exits;
5368 }
5369 if (need_resched()) {
5370 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5371 kvm_resched(vcpu);
5372 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5373 }
5374 }
5375
5376 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5377
5378 vapic_exit(vcpu);
5379
5380 return r;
5381 }
5382
5383 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5384 {
5385 int r;
5386 sigset_t sigsaved;
5387
5388 if (!tsk_used_math(current) && init_fpu(current))
5389 return -ENOMEM;
5390
5391 if (vcpu->sigset_active)
5392 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5393
5394 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5395 kvm_vcpu_block(vcpu);
5396 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5397 r = -EAGAIN;
5398 goto out;
5399 }
5400
5401 /* re-sync apic's tpr */
5402 if (!irqchip_in_kernel(vcpu->kvm)) {
5403 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5404 r = -EINVAL;
5405 goto out;
5406 }
5407 }
5408
5409 if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5410 if (vcpu->mmio_needed) {
5411 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5412 vcpu->mmio_read_completed = 1;
5413 vcpu->mmio_needed = 0;
5414 }
5415 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5416 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5417 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5418 if (r != EMULATE_DONE) {
5419 r = 0;
5420 goto out;
5421 }
5422 }
5423 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5424 kvm_register_write(vcpu, VCPU_REGS_RAX,
5425 kvm_run->hypercall.ret);
5426
5427 r = __vcpu_run(vcpu);
5428
5429 out:
5430 post_kvm_run_save(vcpu);
5431 if (vcpu->sigset_active)
5432 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5433
5434 return r;
5435 }
5436
5437 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5438 {
5439 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5440 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5441 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5442 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5443 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5444 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5445 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5446 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5447 #ifdef CONFIG_X86_64
5448 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5449 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5450 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5451 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5452 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5453 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5454 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5455 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5456 #endif
5457
5458 regs->rip = kvm_rip_read(vcpu);
5459 regs->rflags = kvm_get_rflags(vcpu);
5460
5461 return 0;
5462 }
5463
5464 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5465 {
5466 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5467 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5468 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5469 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5470 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5471 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5472 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5473 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5474 #ifdef CONFIG_X86_64
5475 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5476 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5477 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5478 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5479 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5480 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5481 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5482 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5483 #endif
5484
5485 kvm_rip_write(vcpu, regs->rip);
5486 kvm_set_rflags(vcpu, regs->rflags);
5487
5488 vcpu->arch.exception.pending = false;
5489
5490 kvm_make_request(KVM_REQ_EVENT, vcpu);
5491
5492 return 0;
5493 }
5494
5495 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5496 {
5497 struct kvm_segment cs;
5498
5499 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5500 *db = cs.db;
5501 *l = cs.l;
5502 }
5503 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5504
5505 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5506 struct kvm_sregs *sregs)
5507 {
5508 struct desc_ptr dt;
5509
5510 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5511 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5512 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5513 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5514 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5515 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5516
5517 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5518 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5519
5520 kvm_x86_ops->get_idt(vcpu, &dt);
5521 sregs->idt.limit = dt.size;
5522 sregs->idt.base = dt.address;
5523 kvm_x86_ops->get_gdt(vcpu, &dt);
5524 sregs->gdt.limit = dt.size;
5525 sregs->gdt.base = dt.address;
5526
5527 sregs->cr0 = kvm_read_cr0(vcpu);
5528 sregs->cr2 = vcpu->arch.cr2;
5529 sregs->cr3 = kvm_read_cr3(vcpu);
5530 sregs->cr4 = kvm_read_cr4(vcpu);
5531 sregs->cr8 = kvm_get_cr8(vcpu);
5532 sregs->efer = vcpu->arch.efer;
5533 sregs->apic_base = kvm_get_apic_base(vcpu);
5534
5535 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5536
5537 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5538 set_bit(vcpu->arch.interrupt.nr,
5539 (unsigned long *)sregs->interrupt_bitmap);
5540
5541 return 0;
5542 }
5543
5544 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5545 struct kvm_mp_state *mp_state)
5546 {
5547 mp_state->mp_state = vcpu->arch.mp_state;
5548 return 0;
5549 }
5550
5551 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5552 struct kvm_mp_state *mp_state)
5553 {
5554 vcpu->arch.mp_state = mp_state->mp_state;
5555 kvm_make_request(KVM_REQ_EVENT, vcpu);
5556 return 0;
5557 }
5558
5559 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5560 bool has_error_code, u32 error_code)
5561 {
5562 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5563 int ret;
5564
5565 init_emulate_ctxt(vcpu);
5566
5567 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5568 tss_selector, reason, has_error_code,
5569 error_code);
5570
5571 if (ret)
5572 return EMULATE_FAIL;
5573
5574 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5575 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5576 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5577 kvm_make_request(KVM_REQ_EVENT, vcpu);
5578 return EMULATE_DONE;
5579 }
5580 EXPORT_SYMBOL_GPL(kvm_task_switch);
5581
5582 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5583 struct kvm_sregs *sregs)
5584 {
5585 int mmu_reset_needed = 0;
5586 int pending_vec, max_bits, idx;
5587 struct desc_ptr dt;
5588
5589 dt.size = sregs->idt.limit;
5590 dt.address = sregs->idt.base;
5591 kvm_x86_ops->set_idt(vcpu, &dt);
5592 dt.size = sregs->gdt.limit;
5593 dt.address = sregs->gdt.base;
5594 kvm_x86_ops->set_gdt(vcpu, &dt);
5595
5596 vcpu->arch.cr2 = sregs->cr2;
5597 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5598 vcpu->arch.cr3 = sregs->cr3;
5599 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5600
5601 kvm_set_cr8(vcpu, sregs->cr8);
5602
5603 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5604 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5605 kvm_set_apic_base(vcpu, sregs->apic_base);
5606
5607 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5608 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5609 vcpu->arch.cr0 = sregs->cr0;
5610
5611 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5612 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5613 if (sregs->cr4 & X86_CR4_OSXSAVE)
5614 update_cpuid(vcpu);
5615
5616 idx = srcu_read_lock(&vcpu->kvm->srcu);
5617 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5618 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5619 mmu_reset_needed = 1;
5620 }
5621 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5622
5623 if (mmu_reset_needed)
5624 kvm_mmu_reset_context(vcpu);
5625
5626 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5627 pending_vec = find_first_bit(
5628 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5629 if (pending_vec < max_bits) {
5630 kvm_queue_interrupt(vcpu, pending_vec, false);
5631 pr_debug("Set back pending irq %d\n", pending_vec);
5632 }
5633
5634 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5635 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5636 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5637 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5638 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5639 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5640
5641 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5642 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5643
5644 update_cr8_intercept(vcpu);
5645
5646 /* Older userspace won't unhalt the vcpu on reset. */
5647 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5648 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5649 !is_protmode(vcpu))
5650 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5651
5652 kvm_make_request(KVM_REQ_EVENT, vcpu);
5653
5654 return 0;
5655 }
5656
5657 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5658 struct kvm_guest_debug *dbg)
5659 {
5660 unsigned long rflags;
5661 int i, r;
5662
5663 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5664 r = -EBUSY;
5665 if (vcpu->arch.exception.pending)
5666 goto out;
5667 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5668 kvm_queue_exception(vcpu, DB_VECTOR);
5669 else
5670 kvm_queue_exception(vcpu, BP_VECTOR);
5671 }
5672
5673 /*
5674 * Read rflags as long as potentially injected trace flags are still
5675 * filtered out.
5676 */
5677 rflags = kvm_get_rflags(vcpu);
5678
5679 vcpu->guest_debug = dbg->control;
5680 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5681 vcpu->guest_debug = 0;
5682
5683 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5684 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5685 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5686 vcpu->arch.switch_db_regs =
5687 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5688 } else {
5689 for (i = 0; i < KVM_NR_DB_REGS; i++)
5690 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5691 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5692 }
5693
5694 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5695 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5696 get_segment_base(vcpu, VCPU_SREG_CS);
5697
5698 /*
5699 * Trigger an rflags update that will inject or remove the trace
5700 * flags.
5701 */
5702 kvm_set_rflags(vcpu, rflags);
5703
5704 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5705
5706 r = 0;
5707
5708 out:
5709
5710 return r;
5711 }
5712
5713 /*
5714 * Translate a guest virtual address to a guest physical address.
5715 */
5716 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5717 struct kvm_translation *tr)
5718 {
5719 unsigned long vaddr = tr->linear_address;
5720 gpa_t gpa;
5721 int idx;
5722
5723 idx = srcu_read_lock(&vcpu->kvm->srcu);
5724 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5725 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5726 tr->physical_address = gpa;
5727 tr->valid = gpa != UNMAPPED_GVA;
5728 tr->writeable = 1;
5729 tr->usermode = 0;
5730
5731 return 0;
5732 }
5733
5734 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5735 {
5736 struct i387_fxsave_struct *fxsave =
5737 &vcpu->arch.guest_fpu.state->fxsave;
5738
5739 memcpy(fpu->fpr, fxsave->st_space, 128);
5740 fpu->fcw = fxsave->cwd;
5741 fpu->fsw = fxsave->swd;
5742 fpu->ftwx = fxsave->twd;
5743 fpu->last_opcode = fxsave->fop;
5744 fpu->last_ip = fxsave->rip;
5745 fpu->last_dp = fxsave->rdp;
5746 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5747
5748 return 0;
5749 }
5750
5751 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5752 {
5753 struct i387_fxsave_struct *fxsave =
5754 &vcpu->arch.guest_fpu.state->fxsave;
5755
5756 memcpy(fxsave->st_space, fpu->fpr, 128);
5757 fxsave->cwd = fpu->fcw;
5758 fxsave->swd = fpu->fsw;
5759 fxsave->twd = fpu->ftwx;
5760 fxsave->fop = fpu->last_opcode;
5761 fxsave->rip = fpu->last_ip;
5762 fxsave->rdp = fpu->last_dp;
5763 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5764
5765 return 0;
5766 }
5767
5768 int fx_init(struct kvm_vcpu *vcpu)
5769 {
5770 int err;
5771
5772 err = fpu_alloc(&vcpu->arch.guest_fpu);
5773 if (err)
5774 return err;
5775
5776 fpu_finit(&vcpu->arch.guest_fpu);
5777
5778 /*
5779 * Ensure guest xcr0 is valid for loading
5780 */
5781 vcpu->arch.xcr0 = XSTATE_FP;
5782
5783 vcpu->arch.cr0 |= X86_CR0_ET;
5784
5785 return 0;
5786 }
5787 EXPORT_SYMBOL_GPL(fx_init);
5788
5789 static void fx_free(struct kvm_vcpu *vcpu)
5790 {
5791 fpu_free(&vcpu->arch.guest_fpu);
5792 }
5793
5794 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5795 {
5796 if (vcpu->guest_fpu_loaded)
5797 return;
5798
5799 /*
5800 * Restore all possible states in the guest,
5801 * and assume host would use all available bits.
5802 * Guest xcr0 would be loaded later.
5803 */
5804 kvm_put_guest_xcr0(vcpu);
5805 vcpu->guest_fpu_loaded = 1;
5806 unlazy_fpu(current);
5807 fpu_restore_checking(&vcpu->arch.guest_fpu);
5808 trace_kvm_fpu(1);
5809 }
5810
5811 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5812 {
5813 kvm_put_guest_xcr0(vcpu);
5814
5815 if (!vcpu->guest_fpu_loaded)
5816 return;
5817
5818 vcpu->guest_fpu_loaded = 0;
5819 fpu_save_init(&vcpu->arch.guest_fpu);
5820 ++vcpu->stat.fpu_reload;
5821 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5822 trace_kvm_fpu(0);
5823 }
5824
5825 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5826 {
5827 kvmclock_reset(vcpu);
5828
5829 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5830 fx_free(vcpu);
5831 kvm_x86_ops->vcpu_free(vcpu);
5832 }
5833
5834 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5835 unsigned int id)
5836 {
5837 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5838 printk_once(KERN_WARNING
5839 "kvm: SMP vm created on host with unstable TSC; "
5840 "guest TSC will not be reliable\n");
5841 return kvm_x86_ops->vcpu_create(kvm, id);
5842 }
5843
5844 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5845 {
5846 int r;
5847
5848 vcpu->arch.mtrr_state.have_fixed = 1;
5849 vcpu_load(vcpu);
5850 r = kvm_arch_vcpu_reset(vcpu);
5851 if (r == 0)
5852 r = kvm_mmu_setup(vcpu);
5853 vcpu_put(vcpu);
5854 if (r < 0)
5855 goto free_vcpu;
5856
5857 return 0;
5858 free_vcpu:
5859 kvm_x86_ops->vcpu_free(vcpu);
5860 return r;
5861 }
5862
5863 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5864 {
5865 vcpu->arch.apf.msr_val = 0;
5866
5867 vcpu_load(vcpu);
5868 kvm_mmu_unload(vcpu);
5869 vcpu_put(vcpu);
5870
5871 fx_free(vcpu);
5872 kvm_x86_ops->vcpu_free(vcpu);
5873 }
5874
5875 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5876 {
5877 vcpu->arch.nmi_pending = false;
5878 vcpu->arch.nmi_injected = false;
5879
5880 vcpu->arch.switch_db_regs = 0;
5881 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5882 vcpu->arch.dr6 = DR6_FIXED_1;
5883 vcpu->arch.dr7 = DR7_FIXED_1;
5884
5885 kvm_make_request(KVM_REQ_EVENT, vcpu);
5886 vcpu->arch.apf.msr_val = 0;
5887
5888 kvmclock_reset(vcpu);
5889
5890 kvm_clear_async_pf_completion_queue(vcpu);
5891 kvm_async_pf_hash_reset(vcpu);
5892 vcpu->arch.apf.halted = false;
5893
5894 return kvm_x86_ops->vcpu_reset(vcpu);
5895 }
5896
5897 int kvm_arch_hardware_enable(void *garbage)
5898 {
5899 struct kvm *kvm;
5900 struct kvm_vcpu *vcpu;
5901 int i;
5902
5903 kvm_shared_msr_cpu_online();
5904 list_for_each_entry(kvm, &vm_list, vm_list)
5905 kvm_for_each_vcpu(i, vcpu, kvm)
5906 if (vcpu->cpu == smp_processor_id())
5907 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5908 return kvm_x86_ops->hardware_enable(garbage);
5909 }
5910
5911 void kvm_arch_hardware_disable(void *garbage)
5912 {
5913 kvm_x86_ops->hardware_disable(garbage);
5914 drop_user_return_notifiers(garbage);
5915 }
5916
5917 int kvm_arch_hardware_setup(void)
5918 {
5919 return kvm_x86_ops->hardware_setup();
5920 }
5921
5922 void kvm_arch_hardware_unsetup(void)
5923 {
5924 kvm_x86_ops->hardware_unsetup();
5925 }
5926
5927 void kvm_arch_check_processor_compat(void *rtn)
5928 {
5929 kvm_x86_ops->check_processor_compatibility(rtn);
5930 }
5931
5932 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5933 {
5934 struct page *page;
5935 struct kvm *kvm;
5936 int r;
5937
5938 BUG_ON(vcpu->kvm == NULL);
5939 kvm = vcpu->kvm;
5940
5941 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5942 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5943 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5944 vcpu->arch.mmu.translate_gpa = translate_gpa;
5945 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5946 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5947 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5948 else
5949 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5950
5951 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5952 if (!page) {
5953 r = -ENOMEM;
5954 goto fail;
5955 }
5956 vcpu->arch.pio_data = page_address(page);
5957
5958 if (!kvm->arch.virtual_tsc_khz)
5959 kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
5960
5961 r = kvm_mmu_create(vcpu);
5962 if (r < 0)
5963 goto fail_free_pio_data;
5964
5965 if (irqchip_in_kernel(kvm)) {
5966 r = kvm_create_lapic(vcpu);
5967 if (r < 0)
5968 goto fail_mmu_destroy;
5969 }
5970
5971 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5972 GFP_KERNEL);
5973 if (!vcpu->arch.mce_banks) {
5974 r = -ENOMEM;
5975 goto fail_free_lapic;
5976 }
5977 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5978
5979 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5980 goto fail_free_mce_banks;
5981
5982 kvm_async_pf_hash_reset(vcpu);
5983
5984 return 0;
5985 fail_free_mce_banks:
5986 kfree(vcpu->arch.mce_banks);
5987 fail_free_lapic:
5988 kvm_free_lapic(vcpu);
5989 fail_mmu_destroy:
5990 kvm_mmu_destroy(vcpu);
5991 fail_free_pio_data:
5992 free_page((unsigned long)vcpu->arch.pio_data);
5993 fail:
5994 return r;
5995 }
5996
5997 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5998 {
5999 int idx;
6000
6001 kfree(vcpu->arch.mce_banks);
6002 kvm_free_lapic(vcpu);
6003 idx = srcu_read_lock(&vcpu->kvm->srcu);
6004 kvm_mmu_destroy(vcpu);
6005 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6006 free_page((unsigned long)vcpu->arch.pio_data);
6007 }
6008
6009 int kvm_arch_init_vm(struct kvm *kvm)
6010 {
6011 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6012 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6013
6014 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6015 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6016
6017 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6018
6019 return 0;
6020 }
6021
6022 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6023 {
6024 vcpu_load(vcpu);
6025 kvm_mmu_unload(vcpu);
6026 vcpu_put(vcpu);
6027 }
6028
6029 static void kvm_free_vcpus(struct kvm *kvm)
6030 {
6031 unsigned int i;
6032 struct kvm_vcpu *vcpu;
6033
6034 /*
6035 * Unpin any mmu pages first.
6036 */
6037 kvm_for_each_vcpu(i, vcpu, kvm) {
6038 kvm_clear_async_pf_completion_queue(vcpu);
6039 kvm_unload_vcpu_mmu(vcpu);
6040 }
6041 kvm_for_each_vcpu(i, vcpu, kvm)
6042 kvm_arch_vcpu_free(vcpu);
6043
6044 mutex_lock(&kvm->lock);
6045 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6046 kvm->vcpus[i] = NULL;
6047
6048 atomic_set(&kvm->online_vcpus, 0);
6049 mutex_unlock(&kvm->lock);
6050 }
6051
6052 void kvm_arch_sync_events(struct kvm *kvm)
6053 {
6054 kvm_free_all_assigned_devices(kvm);
6055 kvm_free_pit(kvm);
6056 }
6057
6058 void kvm_arch_destroy_vm(struct kvm *kvm)
6059 {
6060 kvm_iommu_unmap_guest(kvm);
6061 kfree(kvm->arch.vpic);
6062 kfree(kvm->arch.vioapic);
6063 kvm_free_vcpus(kvm);
6064 if (kvm->arch.apic_access_page)
6065 put_page(kvm->arch.apic_access_page);
6066 if (kvm->arch.ept_identity_pagetable)
6067 put_page(kvm->arch.ept_identity_pagetable);
6068 }
6069
6070 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6071 struct kvm_memory_slot *memslot,
6072 struct kvm_memory_slot old,
6073 struct kvm_userspace_memory_region *mem,
6074 int user_alloc)
6075 {
6076 int npages = memslot->npages;
6077 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6078
6079 /* Prevent internal slot pages from being moved by fork()/COW. */
6080 if (memslot->id >= KVM_MEMORY_SLOTS)
6081 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6082
6083 /*To keep backward compatibility with older userspace,
6084 *x86 needs to hanlde !user_alloc case.
6085 */
6086 if (!user_alloc) {
6087 if (npages && !old.rmap) {
6088 unsigned long userspace_addr;
6089
6090 down_write(&current->mm->mmap_sem);
6091 userspace_addr = do_mmap(NULL, 0,
6092 npages * PAGE_SIZE,
6093 PROT_READ | PROT_WRITE,
6094 map_flags,
6095 0);
6096 up_write(&current->mm->mmap_sem);
6097
6098 if (IS_ERR((void *)userspace_addr))
6099 return PTR_ERR((void *)userspace_addr);
6100
6101 memslot->userspace_addr = userspace_addr;
6102 }
6103 }
6104
6105
6106 return 0;
6107 }
6108
6109 void kvm_arch_commit_memory_region(struct kvm *kvm,
6110 struct kvm_userspace_memory_region *mem,
6111 struct kvm_memory_slot old,
6112 int user_alloc)
6113 {
6114
6115 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6116
6117 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6118 int ret;
6119
6120 down_write(&current->mm->mmap_sem);
6121 ret = do_munmap(current->mm, old.userspace_addr,
6122 old.npages * PAGE_SIZE);
6123 up_write(&current->mm->mmap_sem);
6124 if (ret < 0)
6125 printk(KERN_WARNING
6126 "kvm_vm_ioctl_set_memory_region: "
6127 "failed to munmap memory\n");
6128 }
6129
6130 if (!kvm->arch.n_requested_mmu_pages)
6131 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6132
6133 spin_lock(&kvm->mmu_lock);
6134 if (nr_mmu_pages)
6135 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6136 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6137 spin_unlock(&kvm->mmu_lock);
6138 }
6139
6140 void kvm_arch_flush_shadow(struct kvm *kvm)
6141 {
6142 kvm_mmu_zap_all(kvm);
6143 kvm_reload_remote_mmus(kvm);
6144 }
6145
6146 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6147 {
6148 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6149 !vcpu->arch.apf.halted)
6150 || !list_empty_careful(&vcpu->async_pf.done)
6151 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6152 || vcpu->arch.nmi_pending ||
6153 (kvm_arch_interrupt_allowed(vcpu) &&
6154 kvm_cpu_has_interrupt(vcpu));
6155 }
6156
6157 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6158 {
6159 int me;
6160 int cpu = vcpu->cpu;
6161
6162 if (waitqueue_active(&vcpu->wq)) {
6163 wake_up_interruptible(&vcpu->wq);
6164 ++vcpu->stat.halt_wakeup;
6165 }
6166
6167 me = get_cpu();
6168 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6169 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6170 smp_send_reschedule(cpu);
6171 put_cpu();
6172 }
6173
6174 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6175 {
6176 return kvm_x86_ops->interrupt_allowed(vcpu);
6177 }
6178
6179 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6180 {
6181 unsigned long current_rip = kvm_rip_read(vcpu) +
6182 get_segment_base(vcpu, VCPU_SREG_CS);
6183
6184 return current_rip == linear_rip;
6185 }
6186 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6187
6188 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6189 {
6190 unsigned long rflags;
6191
6192 rflags = kvm_x86_ops->get_rflags(vcpu);
6193 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6194 rflags &= ~X86_EFLAGS_TF;
6195 return rflags;
6196 }
6197 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6198
6199 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6200 {
6201 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6202 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6203 rflags |= X86_EFLAGS_TF;
6204 kvm_x86_ops->set_rflags(vcpu, rflags);
6205 kvm_make_request(KVM_REQ_EVENT, vcpu);
6206 }
6207 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6208
6209 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6210 {
6211 int r;
6212
6213 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6214 is_error_page(work->page))
6215 return;
6216
6217 r = kvm_mmu_reload(vcpu);
6218 if (unlikely(r))
6219 return;
6220
6221 if (!vcpu->arch.mmu.direct_map &&
6222 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6223 return;
6224
6225 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6226 }
6227
6228 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6229 {
6230 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6231 }
6232
6233 static inline u32 kvm_async_pf_next_probe(u32 key)
6234 {
6235 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6236 }
6237
6238 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6239 {
6240 u32 key = kvm_async_pf_hash_fn(gfn);
6241
6242 while (vcpu->arch.apf.gfns[key] != ~0)
6243 key = kvm_async_pf_next_probe(key);
6244
6245 vcpu->arch.apf.gfns[key] = gfn;
6246 }
6247
6248 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6249 {
6250 int i;
6251 u32 key = kvm_async_pf_hash_fn(gfn);
6252
6253 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6254 (vcpu->arch.apf.gfns[key] != gfn &&
6255 vcpu->arch.apf.gfns[key] != ~0); i++)
6256 key = kvm_async_pf_next_probe(key);
6257
6258 return key;
6259 }
6260
6261 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6262 {
6263 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6264 }
6265
6266 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6267 {
6268 u32 i, j, k;
6269
6270 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6271 while (true) {
6272 vcpu->arch.apf.gfns[i] = ~0;
6273 do {
6274 j = kvm_async_pf_next_probe(j);
6275 if (vcpu->arch.apf.gfns[j] == ~0)
6276 return;
6277 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6278 /*
6279 * k lies cyclically in ]i,j]
6280 * | i.k.j |
6281 * |....j i.k.| or |.k..j i...|
6282 */
6283 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6284 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6285 i = j;
6286 }
6287 }
6288
6289 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6290 {
6291
6292 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6293 sizeof(val));
6294 }
6295
6296 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6297 struct kvm_async_pf *work)
6298 {
6299 struct x86_exception fault;
6300
6301 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6302 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6303
6304 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6305 (vcpu->arch.apf.send_user_only &&
6306 kvm_x86_ops->get_cpl(vcpu) == 0))
6307 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6308 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6309 fault.vector = PF_VECTOR;
6310 fault.error_code_valid = true;
6311 fault.error_code = 0;
6312 fault.nested_page_fault = false;
6313 fault.address = work->arch.token;
6314 kvm_inject_page_fault(vcpu, &fault);
6315 }
6316 }
6317
6318 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6319 struct kvm_async_pf *work)
6320 {
6321 struct x86_exception fault;
6322
6323 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6324 if (is_error_page(work->page))
6325 work->arch.token = ~0; /* broadcast wakeup */
6326 else
6327 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6328
6329 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6330 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6331 fault.vector = PF_VECTOR;
6332 fault.error_code_valid = true;
6333 fault.error_code = 0;
6334 fault.nested_page_fault = false;
6335 fault.address = work->arch.token;
6336 kvm_inject_page_fault(vcpu, &fault);
6337 }
6338 vcpu->arch.apf.halted = false;
6339 }
6340
6341 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6342 {
6343 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6344 return true;
6345 else
6346 return !kvm_event_needs_reinjection(vcpu) &&
6347 kvm_x86_ops->interrupt_allowed(vcpu);
6348 }
6349
6350 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6351 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6352 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6353 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6354 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6355 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6356 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6357 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6358 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6359 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6360 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6361 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);