373e17a0d398f9498cfe9feebbc22b0551a0b9d6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
77 */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32 kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109 int nr;
110 u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114 struct user_return_notifier urn;
115 bool registered;
116 struct kvm_shared_msr_values {
117 u64 host;
118 u64 curr;
119 } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126 { "pf_fixed", VCPU_STAT(pf_fixed) },
127 { "pf_guest", VCPU_STAT(pf_guest) },
128 { "tlb_flush", VCPU_STAT(tlb_flush) },
129 { "invlpg", VCPU_STAT(invlpg) },
130 { "exits", VCPU_STAT(exits) },
131 { "io_exits", VCPU_STAT(io_exits) },
132 { "mmio_exits", VCPU_STAT(mmio_exits) },
133 { "signal_exits", VCPU_STAT(signal_exits) },
134 { "irq_window", VCPU_STAT(irq_window_exits) },
135 { "nmi_window", VCPU_STAT(nmi_window_exits) },
136 { "halt_exits", VCPU_STAT(halt_exits) },
137 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138 { "hypercalls", VCPU_STAT(hypercalls) },
139 { "request_irq", VCPU_STAT(request_irq_exits) },
140 { "irq_exits", VCPU_STAT(irq_exits) },
141 { "host_state_reload", VCPU_STAT(host_state_reload) },
142 { "efer_reload", VCPU_STAT(efer_reload) },
143 { "fpu_reload", VCPU_STAT(fpu_reload) },
144 { "insn_emulation", VCPU_STAT(insn_emulation) },
145 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146 { "irq_injections", VCPU_STAT(irq_injections) },
147 { "nmi_injections", VCPU_STAT(nmi_injections) },
148 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152 { "mmu_flooded", VM_STAT(mmu_flooded) },
153 { "mmu_recycled", VM_STAT(mmu_recycled) },
154 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155 { "mmu_unsync", VM_STAT(mmu_unsync) },
156 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157 { "largepages", VM_STAT(lpages) },
158 { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu);
166
167 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
168 {
169 int i;
170 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
171 vcpu->arch.apf.gfns[i] = ~0;
172 }
173
174 static void kvm_on_user_return(struct user_return_notifier *urn)
175 {
176 unsigned slot;
177 struct kvm_shared_msrs *locals
178 = container_of(urn, struct kvm_shared_msrs, urn);
179 struct kvm_shared_msr_values *values;
180
181 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
182 values = &locals->values[slot];
183 if (values->host != values->curr) {
184 wrmsrl(shared_msrs_global.msrs[slot], values->host);
185 values->curr = values->host;
186 }
187 }
188 locals->registered = false;
189 user_return_notifier_unregister(urn);
190 }
191
192 static void shared_msr_update(unsigned slot, u32 msr)
193 {
194 struct kvm_shared_msrs *smsr;
195 u64 value;
196
197 smsr = &__get_cpu_var(shared_msrs);
198 /* only read, and nobody should modify it at this time,
199 * so don't need lock */
200 if (slot >= shared_msrs_global.nr) {
201 printk(KERN_ERR "kvm: invalid MSR slot!");
202 return;
203 }
204 rdmsrl_safe(msr, &value);
205 smsr->values[slot].host = value;
206 smsr->values[slot].curr = value;
207 }
208
209 void kvm_define_shared_msr(unsigned slot, u32 msr)
210 {
211 if (slot >= shared_msrs_global.nr)
212 shared_msrs_global.nr = slot + 1;
213 shared_msrs_global.msrs[slot] = msr;
214 /* we need ensured the shared_msr_global have been updated */
215 smp_wmb();
216 }
217 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
218
219 static void kvm_shared_msr_cpu_online(void)
220 {
221 unsigned i;
222
223 for (i = 0; i < shared_msrs_global.nr; ++i)
224 shared_msr_update(i, shared_msrs_global.msrs[i]);
225 }
226
227 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
228 {
229 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
230
231 if (((value ^ smsr->values[slot].curr) & mask) == 0)
232 return;
233 smsr->values[slot].curr = value;
234 wrmsrl(shared_msrs_global.msrs[slot], value);
235 if (!smsr->registered) {
236 smsr->urn.on_user_return = kvm_on_user_return;
237 user_return_notifier_register(&smsr->urn);
238 smsr->registered = true;
239 }
240 }
241 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
242
243 static void drop_user_return_notifiers(void *ignore)
244 {
245 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
246
247 if (smsr->registered)
248 kvm_on_user_return(&smsr->urn);
249 }
250
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253 return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259 /* TODO: reserve bits check */
260 kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263
264 #define EXCPT_BENIGN 0
265 #define EXCPT_CONTRIBUTORY 1
266 #define EXCPT_PF 2
267
268 static int exception_class(int vector)
269 {
270 switch (vector) {
271 case PF_VECTOR:
272 return EXCPT_PF;
273 case DE_VECTOR:
274 case TS_VECTOR:
275 case NP_VECTOR:
276 case SS_VECTOR:
277 case GP_VECTOR:
278 return EXCPT_CONTRIBUTORY;
279 default:
280 break;
281 }
282 return EXCPT_BENIGN;
283 }
284
285 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
286 unsigned nr, bool has_error, u32 error_code,
287 bool reinject)
288 {
289 u32 prev_nr;
290 int class1, class2;
291
292 kvm_make_request(KVM_REQ_EVENT, vcpu);
293
294 if (!vcpu->arch.exception.pending) {
295 queue:
296 vcpu->arch.exception.pending = true;
297 vcpu->arch.exception.has_error_code = has_error;
298 vcpu->arch.exception.nr = nr;
299 vcpu->arch.exception.error_code = error_code;
300 vcpu->arch.exception.reinject = reinject;
301 return;
302 }
303
304 /* to check exception */
305 prev_nr = vcpu->arch.exception.nr;
306 if (prev_nr == DF_VECTOR) {
307 /* triple fault -> shutdown */
308 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
309 return;
310 }
311 class1 = exception_class(prev_nr);
312 class2 = exception_class(nr);
313 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
314 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
315 /* generate double fault per SDM Table 5-5 */
316 vcpu->arch.exception.pending = true;
317 vcpu->arch.exception.has_error_code = true;
318 vcpu->arch.exception.nr = DF_VECTOR;
319 vcpu->arch.exception.error_code = 0;
320 } else
321 /* replace previous exception with a new one in a hope
322 that instruction re-execution will regenerate lost
323 exception */
324 goto queue;
325 }
326
327 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
328 {
329 kvm_multiple_exception(vcpu, nr, false, 0, false);
330 }
331 EXPORT_SYMBOL_GPL(kvm_queue_exception);
332
333 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
334 {
335 kvm_multiple_exception(vcpu, nr, false, 0, true);
336 }
337 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
338
339 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
340 {
341 if (err)
342 kvm_inject_gp(vcpu, 0);
343 else
344 kvm_x86_ops->skip_emulated_instruction(vcpu);
345 }
346 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
347
348 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
349 {
350 ++vcpu->stat.pf_guest;
351 vcpu->arch.cr2 = fault->address;
352 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
353 }
354 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
355
356 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
357 {
358 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
359 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
360 else
361 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
362 }
363
364 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
365 {
366 atomic_inc(&vcpu->arch.nmi_queued);
367 kvm_make_request(KVM_REQ_NMI, vcpu);
368 }
369 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
370
371 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
372 {
373 kvm_multiple_exception(vcpu, nr, true, error_code, false);
374 }
375 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
376
377 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
378 {
379 kvm_multiple_exception(vcpu, nr, true, error_code, true);
380 }
381 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
382
383 /*
384 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
385 * a #GP and return false.
386 */
387 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
388 {
389 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
390 return true;
391 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
392 return false;
393 }
394 EXPORT_SYMBOL_GPL(kvm_require_cpl);
395
396 /*
397 * This function will be used to read from the physical memory of the currently
398 * running guest. The difference to kvm_read_guest_page is that this function
399 * can read from guest physical or from the guest's guest physical memory.
400 */
401 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
402 gfn_t ngfn, void *data, int offset, int len,
403 u32 access)
404 {
405 gfn_t real_gfn;
406 gpa_t ngpa;
407
408 ngpa = gfn_to_gpa(ngfn);
409 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
410 if (real_gfn == UNMAPPED_GVA)
411 return -EFAULT;
412
413 real_gfn = gpa_to_gfn(real_gfn);
414
415 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
416 }
417 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
418
419 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
420 void *data, int offset, int len, u32 access)
421 {
422 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
423 data, offset, len, access);
424 }
425
426 /*
427 * Load the pae pdptrs. Return true is they are all valid.
428 */
429 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
430 {
431 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
432 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
433 int i;
434 int ret;
435 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
436
437 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
438 offset * sizeof(u64), sizeof(pdpte),
439 PFERR_USER_MASK|PFERR_WRITE_MASK);
440 if (ret < 0) {
441 ret = 0;
442 goto out;
443 }
444 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
445 if (is_present_gpte(pdpte[i]) &&
446 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
447 ret = 0;
448 goto out;
449 }
450 }
451 ret = 1;
452
453 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
454 __set_bit(VCPU_EXREG_PDPTR,
455 (unsigned long *)&vcpu->arch.regs_avail);
456 __set_bit(VCPU_EXREG_PDPTR,
457 (unsigned long *)&vcpu->arch.regs_dirty);
458 out:
459
460 return ret;
461 }
462 EXPORT_SYMBOL_GPL(load_pdptrs);
463
464 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
465 {
466 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
467 bool changed = true;
468 int offset;
469 gfn_t gfn;
470 int r;
471
472 if (is_long_mode(vcpu) || !is_pae(vcpu))
473 return false;
474
475 if (!test_bit(VCPU_EXREG_PDPTR,
476 (unsigned long *)&vcpu->arch.regs_avail))
477 return true;
478
479 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
480 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
481 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
482 PFERR_USER_MASK | PFERR_WRITE_MASK);
483 if (r < 0)
484 goto out;
485 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
486 out:
487
488 return changed;
489 }
490
491 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
492 {
493 unsigned long old_cr0 = kvm_read_cr0(vcpu);
494 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
495 X86_CR0_CD | X86_CR0_NW;
496
497 cr0 |= X86_CR0_ET;
498
499 #ifdef CONFIG_X86_64
500 if (cr0 & 0xffffffff00000000UL)
501 return 1;
502 #endif
503
504 cr0 &= ~CR0_RESERVED_BITS;
505
506 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
507 return 1;
508
509 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
510 return 1;
511
512 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
513 #ifdef CONFIG_X86_64
514 if ((vcpu->arch.efer & EFER_LME)) {
515 int cs_db, cs_l;
516
517 if (!is_pae(vcpu))
518 return 1;
519 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
520 if (cs_l)
521 return 1;
522 } else
523 #endif
524 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
525 kvm_read_cr3(vcpu)))
526 return 1;
527 }
528
529 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
530 return 1;
531
532 kvm_x86_ops->set_cr0(vcpu, cr0);
533
534 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
535 kvm_clear_async_pf_completion_queue(vcpu);
536 kvm_async_pf_hash_reset(vcpu);
537 }
538
539 if ((cr0 ^ old_cr0) & update_bits)
540 kvm_mmu_reset_context(vcpu);
541 return 0;
542 }
543 EXPORT_SYMBOL_GPL(kvm_set_cr0);
544
545 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
546 {
547 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
548 }
549 EXPORT_SYMBOL_GPL(kvm_lmsw);
550
551 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
552 {
553 u64 xcr0;
554
555 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
556 if (index != XCR_XFEATURE_ENABLED_MASK)
557 return 1;
558 xcr0 = xcr;
559 if (kvm_x86_ops->get_cpl(vcpu) != 0)
560 return 1;
561 if (!(xcr0 & XSTATE_FP))
562 return 1;
563 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
564 return 1;
565 if (xcr0 & ~host_xcr0)
566 return 1;
567 vcpu->arch.xcr0 = xcr0;
568 vcpu->guest_xcr0_loaded = 0;
569 return 0;
570 }
571
572 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
573 {
574 if (__kvm_set_xcr(vcpu, index, xcr)) {
575 kvm_inject_gp(vcpu, 0);
576 return 1;
577 }
578 return 0;
579 }
580 EXPORT_SYMBOL_GPL(kvm_set_xcr);
581
582 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
583 {
584 unsigned long old_cr4 = kvm_read_cr4(vcpu);
585 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
586 X86_CR4_PAE | X86_CR4_SMEP;
587 if (cr4 & CR4_RESERVED_BITS)
588 return 1;
589
590 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
591 return 1;
592
593 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
594 return 1;
595
596 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
597 return 1;
598
599 if (is_long_mode(vcpu)) {
600 if (!(cr4 & X86_CR4_PAE))
601 return 1;
602 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
603 && ((cr4 ^ old_cr4) & pdptr_bits)
604 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
605 kvm_read_cr3(vcpu)))
606 return 1;
607
608 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
609 if (!guest_cpuid_has_pcid(vcpu))
610 return 1;
611
612 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
613 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
614 return 1;
615 }
616
617 if (kvm_x86_ops->set_cr4(vcpu, cr4))
618 return 1;
619
620 if (((cr4 ^ old_cr4) & pdptr_bits) ||
621 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
622 kvm_mmu_reset_context(vcpu);
623
624 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
625 kvm_update_cpuid(vcpu);
626
627 return 0;
628 }
629 EXPORT_SYMBOL_GPL(kvm_set_cr4);
630
631 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
632 {
633 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
634 kvm_mmu_sync_roots(vcpu);
635 kvm_mmu_flush_tlb(vcpu);
636 return 0;
637 }
638
639 if (is_long_mode(vcpu)) {
640 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
641 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
642 return 1;
643 } else
644 if (cr3 & CR3_L_MODE_RESERVED_BITS)
645 return 1;
646 } else {
647 if (is_pae(vcpu)) {
648 if (cr3 & CR3_PAE_RESERVED_BITS)
649 return 1;
650 if (is_paging(vcpu) &&
651 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
652 return 1;
653 }
654 /*
655 * We don't check reserved bits in nonpae mode, because
656 * this isn't enforced, and VMware depends on this.
657 */
658 }
659
660 /*
661 * Does the new cr3 value map to physical memory? (Note, we
662 * catch an invalid cr3 even in real-mode, because it would
663 * cause trouble later on when we turn on paging anyway.)
664 *
665 * A real CPU would silently accept an invalid cr3 and would
666 * attempt to use it - with largely undefined (and often hard
667 * to debug) behavior on the guest side.
668 */
669 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
670 return 1;
671 vcpu->arch.cr3 = cr3;
672 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
673 vcpu->arch.mmu.new_cr3(vcpu);
674 return 0;
675 }
676 EXPORT_SYMBOL_GPL(kvm_set_cr3);
677
678 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
679 {
680 if (cr8 & CR8_RESERVED_BITS)
681 return 1;
682 if (irqchip_in_kernel(vcpu->kvm))
683 kvm_lapic_set_tpr(vcpu, cr8);
684 else
685 vcpu->arch.cr8 = cr8;
686 return 0;
687 }
688 EXPORT_SYMBOL_GPL(kvm_set_cr8);
689
690 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
691 {
692 if (irqchip_in_kernel(vcpu->kvm))
693 return kvm_lapic_get_cr8(vcpu);
694 else
695 return vcpu->arch.cr8;
696 }
697 EXPORT_SYMBOL_GPL(kvm_get_cr8);
698
699 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
700 {
701 unsigned long dr7;
702
703 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
704 dr7 = vcpu->arch.guest_debug_dr7;
705 else
706 dr7 = vcpu->arch.dr7;
707 kvm_x86_ops->set_dr7(vcpu, dr7);
708 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
709 }
710
711 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
712 {
713 switch (dr) {
714 case 0 ... 3:
715 vcpu->arch.db[dr] = val;
716 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
717 vcpu->arch.eff_db[dr] = val;
718 break;
719 case 4:
720 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
721 return 1; /* #UD */
722 /* fall through */
723 case 6:
724 if (val & 0xffffffff00000000ULL)
725 return -1; /* #GP */
726 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
727 break;
728 case 5:
729 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
730 return 1; /* #UD */
731 /* fall through */
732 default: /* 7 */
733 if (val & 0xffffffff00000000ULL)
734 return -1; /* #GP */
735 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
736 kvm_update_dr7(vcpu);
737 break;
738 }
739
740 return 0;
741 }
742
743 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
744 {
745 int res;
746
747 res = __kvm_set_dr(vcpu, dr, val);
748 if (res > 0)
749 kvm_queue_exception(vcpu, UD_VECTOR);
750 else if (res < 0)
751 kvm_inject_gp(vcpu, 0);
752
753 return res;
754 }
755 EXPORT_SYMBOL_GPL(kvm_set_dr);
756
757 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
758 {
759 switch (dr) {
760 case 0 ... 3:
761 *val = vcpu->arch.db[dr];
762 break;
763 case 4:
764 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
765 return 1;
766 /* fall through */
767 case 6:
768 *val = vcpu->arch.dr6;
769 break;
770 case 5:
771 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
772 return 1;
773 /* fall through */
774 default: /* 7 */
775 *val = vcpu->arch.dr7;
776 break;
777 }
778
779 return 0;
780 }
781
782 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
783 {
784 if (_kvm_get_dr(vcpu, dr, val)) {
785 kvm_queue_exception(vcpu, UD_VECTOR);
786 return 1;
787 }
788 return 0;
789 }
790 EXPORT_SYMBOL_GPL(kvm_get_dr);
791
792 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
793 {
794 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
795 u64 data;
796 int err;
797
798 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
799 if (err)
800 return err;
801 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
802 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
803 return err;
804 }
805 EXPORT_SYMBOL_GPL(kvm_rdpmc);
806
807 /*
808 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
809 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
810 *
811 * This list is modified at module load time to reflect the
812 * capabilities of the host cpu. This capabilities test skips MSRs that are
813 * kvm-specific. Those are put in the beginning of the list.
814 */
815
816 #define KVM_SAVE_MSRS_BEGIN 10
817 static u32 msrs_to_save[] = {
818 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
819 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
820 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
821 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
822 MSR_KVM_PV_EOI_EN,
823 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
824 MSR_STAR,
825 #ifdef CONFIG_X86_64
826 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
827 #endif
828 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
829 };
830
831 static unsigned num_msrs_to_save;
832
833 static const u32 emulated_msrs[] = {
834 MSR_IA32_TSC_ADJUST,
835 MSR_IA32_TSCDEADLINE,
836 MSR_IA32_MISC_ENABLE,
837 MSR_IA32_MCG_STATUS,
838 MSR_IA32_MCG_CTL,
839 };
840
841 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
842 {
843 u64 old_efer = vcpu->arch.efer;
844
845 if (efer & efer_reserved_bits)
846 return 1;
847
848 if (is_paging(vcpu)
849 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
850 return 1;
851
852 if (efer & EFER_FFXSR) {
853 struct kvm_cpuid_entry2 *feat;
854
855 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
856 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
857 return 1;
858 }
859
860 if (efer & EFER_SVME) {
861 struct kvm_cpuid_entry2 *feat;
862
863 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
864 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
865 return 1;
866 }
867
868 efer &= ~EFER_LMA;
869 efer |= vcpu->arch.efer & EFER_LMA;
870
871 kvm_x86_ops->set_efer(vcpu, efer);
872
873 /* Update reserved bits */
874 if ((efer ^ old_efer) & EFER_NX)
875 kvm_mmu_reset_context(vcpu);
876
877 return 0;
878 }
879
880 void kvm_enable_efer_bits(u64 mask)
881 {
882 efer_reserved_bits &= ~mask;
883 }
884 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
885
886
887 /*
888 * Writes msr value into into the appropriate "register".
889 * Returns 0 on success, non-0 otherwise.
890 * Assumes vcpu_load() was already called.
891 */
892 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
893 {
894 return kvm_x86_ops->set_msr(vcpu, msr);
895 }
896
897 /*
898 * Adapt set_msr() to msr_io()'s calling convention
899 */
900 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
901 {
902 struct msr_data msr;
903
904 msr.data = *data;
905 msr.index = index;
906 msr.host_initiated = true;
907 return kvm_set_msr(vcpu, &msr);
908 }
909
910 #ifdef CONFIG_X86_64
911 struct pvclock_gtod_data {
912 seqcount_t seq;
913
914 struct { /* extract of a clocksource struct */
915 int vclock_mode;
916 cycle_t cycle_last;
917 cycle_t mask;
918 u32 mult;
919 u32 shift;
920 } clock;
921
922 /* open coded 'struct timespec' */
923 u64 monotonic_time_snsec;
924 time_t monotonic_time_sec;
925 };
926
927 static struct pvclock_gtod_data pvclock_gtod_data;
928
929 static void update_pvclock_gtod(struct timekeeper *tk)
930 {
931 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
932
933 write_seqcount_begin(&vdata->seq);
934
935 /* copy pvclock gtod data */
936 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode;
937 vdata->clock.cycle_last = tk->clock->cycle_last;
938 vdata->clock.mask = tk->clock->mask;
939 vdata->clock.mult = tk->mult;
940 vdata->clock.shift = tk->shift;
941
942 vdata->monotonic_time_sec = tk->xtime_sec
943 + tk->wall_to_monotonic.tv_sec;
944 vdata->monotonic_time_snsec = tk->xtime_nsec
945 + (tk->wall_to_monotonic.tv_nsec
946 << tk->shift);
947 while (vdata->monotonic_time_snsec >=
948 (((u64)NSEC_PER_SEC) << tk->shift)) {
949 vdata->monotonic_time_snsec -=
950 ((u64)NSEC_PER_SEC) << tk->shift;
951 vdata->monotonic_time_sec++;
952 }
953
954 write_seqcount_end(&vdata->seq);
955 }
956 #endif
957
958
959 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
960 {
961 int version;
962 int r;
963 struct pvclock_wall_clock wc;
964 struct timespec boot;
965
966 if (!wall_clock)
967 return;
968
969 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
970 if (r)
971 return;
972
973 if (version & 1)
974 ++version; /* first time write, random junk */
975
976 ++version;
977
978 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
979
980 /*
981 * The guest calculates current wall clock time by adding
982 * system time (updated by kvm_guest_time_update below) to the
983 * wall clock specified here. guest system time equals host
984 * system time for us, thus we must fill in host boot time here.
985 */
986 getboottime(&boot);
987
988 if (kvm->arch.kvmclock_offset) {
989 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
990 boot = timespec_sub(boot, ts);
991 }
992 wc.sec = boot.tv_sec;
993 wc.nsec = boot.tv_nsec;
994 wc.version = version;
995
996 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
997
998 version++;
999 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1000 }
1001
1002 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1003 {
1004 uint32_t quotient, remainder;
1005
1006 /* Don't try to replace with do_div(), this one calculates
1007 * "(dividend << 32) / divisor" */
1008 __asm__ ( "divl %4"
1009 : "=a" (quotient), "=d" (remainder)
1010 : "0" (0), "1" (dividend), "r" (divisor) );
1011 return quotient;
1012 }
1013
1014 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1015 s8 *pshift, u32 *pmultiplier)
1016 {
1017 uint64_t scaled64;
1018 int32_t shift = 0;
1019 uint64_t tps64;
1020 uint32_t tps32;
1021
1022 tps64 = base_khz * 1000LL;
1023 scaled64 = scaled_khz * 1000LL;
1024 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1025 tps64 >>= 1;
1026 shift--;
1027 }
1028
1029 tps32 = (uint32_t)tps64;
1030 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1031 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1032 scaled64 >>= 1;
1033 else
1034 tps32 <<= 1;
1035 shift++;
1036 }
1037
1038 *pshift = shift;
1039 *pmultiplier = div_frac(scaled64, tps32);
1040
1041 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1042 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1043 }
1044
1045 static inline u64 get_kernel_ns(void)
1046 {
1047 struct timespec ts;
1048
1049 WARN_ON(preemptible());
1050 ktime_get_ts(&ts);
1051 monotonic_to_bootbased(&ts);
1052 return timespec_to_ns(&ts);
1053 }
1054
1055 #ifdef CONFIG_X86_64
1056 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1057 #endif
1058
1059 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1060 unsigned long max_tsc_khz;
1061
1062 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1063 {
1064 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1065 vcpu->arch.virtual_tsc_shift);
1066 }
1067
1068 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1069 {
1070 u64 v = (u64)khz * (1000000 + ppm);
1071 do_div(v, 1000000);
1072 return v;
1073 }
1074
1075 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1076 {
1077 u32 thresh_lo, thresh_hi;
1078 int use_scaling = 0;
1079
1080 /* Compute a scale to convert nanoseconds in TSC cycles */
1081 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1082 &vcpu->arch.virtual_tsc_shift,
1083 &vcpu->arch.virtual_tsc_mult);
1084 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1085
1086 /*
1087 * Compute the variation in TSC rate which is acceptable
1088 * within the range of tolerance and decide if the
1089 * rate being applied is within that bounds of the hardware
1090 * rate. If so, no scaling or compensation need be done.
1091 */
1092 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1093 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1094 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1095 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1096 use_scaling = 1;
1097 }
1098 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1099 }
1100
1101 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1102 {
1103 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1104 vcpu->arch.virtual_tsc_mult,
1105 vcpu->arch.virtual_tsc_shift);
1106 tsc += vcpu->arch.this_tsc_write;
1107 return tsc;
1108 }
1109
1110 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1111 {
1112 #ifdef CONFIG_X86_64
1113 bool vcpus_matched;
1114 bool do_request = false;
1115 struct kvm_arch *ka = &vcpu->kvm->arch;
1116 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1117
1118 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1119 atomic_read(&vcpu->kvm->online_vcpus));
1120
1121 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1122 if (!ka->use_master_clock)
1123 do_request = 1;
1124
1125 if (!vcpus_matched && ka->use_master_clock)
1126 do_request = 1;
1127
1128 if (do_request)
1129 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1130
1131 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1132 atomic_read(&vcpu->kvm->online_vcpus),
1133 ka->use_master_clock, gtod->clock.vclock_mode);
1134 #endif
1135 }
1136
1137 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1138 {
1139 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1140 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1141 }
1142
1143 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1144 {
1145 struct kvm *kvm = vcpu->kvm;
1146 u64 offset, ns, elapsed;
1147 unsigned long flags;
1148 s64 usdiff;
1149 bool matched;
1150 u64 data = msr->data;
1151
1152 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1153 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1154 ns = get_kernel_ns();
1155 elapsed = ns - kvm->arch.last_tsc_nsec;
1156
1157 /* n.b - signed multiplication and division required */
1158 usdiff = data - kvm->arch.last_tsc_write;
1159 #ifdef CONFIG_X86_64
1160 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1161 #else
1162 /* do_div() only does unsigned */
1163 asm("idivl %2; xor %%edx, %%edx"
1164 : "=A"(usdiff)
1165 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1166 #endif
1167 do_div(elapsed, 1000);
1168 usdiff -= elapsed;
1169 if (usdiff < 0)
1170 usdiff = -usdiff;
1171
1172 /*
1173 * Special case: TSC write with a small delta (1 second) of virtual
1174 * cycle time against real time is interpreted as an attempt to
1175 * synchronize the CPU.
1176 *
1177 * For a reliable TSC, we can match TSC offsets, and for an unstable
1178 * TSC, we add elapsed time in this computation. We could let the
1179 * compensation code attempt to catch up if we fall behind, but
1180 * it's better to try to match offsets from the beginning.
1181 */
1182 if (usdiff < USEC_PER_SEC &&
1183 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1184 if (!check_tsc_unstable()) {
1185 offset = kvm->arch.cur_tsc_offset;
1186 pr_debug("kvm: matched tsc offset for %llu\n", data);
1187 } else {
1188 u64 delta = nsec_to_cycles(vcpu, elapsed);
1189 data += delta;
1190 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1191 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1192 }
1193 matched = true;
1194 } else {
1195 /*
1196 * We split periods of matched TSC writes into generations.
1197 * For each generation, we track the original measured
1198 * nanosecond time, offset, and write, so if TSCs are in
1199 * sync, we can match exact offset, and if not, we can match
1200 * exact software computation in compute_guest_tsc()
1201 *
1202 * These values are tracked in kvm->arch.cur_xxx variables.
1203 */
1204 kvm->arch.cur_tsc_generation++;
1205 kvm->arch.cur_tsc_nsec = ns;
1206 kvm->arch.cur_tsc_write = data;
1207 kvm->arch.cur_tsc_offset = offset;
1208 matched = false;
1209 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1210 kvm->arch.cur_tsc_generation, data);
1211 }
1212
1213 /*
1214 * We also track th most recent recorded KHZ, write and time to
1215 * allow the matching interval to be extended at each write.
1216 */
1217 kvm->arch.last_tsc_nsec = ns;
1218 kvm->arch.last_tsc_write = data;
1219 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1220
1221 /* Reset of TSC must disable overshoot protection below */
1222 vcpu->arch.hv_clock.tsc_timestamp = 0;
1223 vcpu->arch.last_guest_tsc = data;
1224
1225 /* Keep track of which generation this VCPU has synchronized to */
1226 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1227 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1228 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1229
1230 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1231 update_ia32_tsc_adjust_msr(vcpu, offset);
1232 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1233 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1234
1235 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1236 if (matched)
1237 kvm->arch.nr_vcpus_matched_tsc++;
1238 else
1239 kvm->arch.nr_vcpus_matched_tsc = 0;
1240
1241 kvm_track_tsc_matching(vcpu);
1242 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1243 }
1244
1245 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1246
1247 #ifdef CONFIG_X86_64
1248
1249 static cycle_t read_tsc(void)
1250 {
1251 cycle_t ret;
1252 u64 last;
1253
1254 /*
1255 * Empirically, a fence (of type that depends on the CPU)
1256 * before rdtsc is enough to ensure that rdtsc is ordered
1257 * with respect to loads. The various CPU manuals are unclear
1258 * as to whether rdtsc can be reordered with later loads,
1259 * but no one has ever seen it happen.
1260 */
1261 rdtsc_barrier();
1262 ret = (cycle_t)vget_cycles();
1263
1264 last = pvclock_gtod_data.clock.cycle_last;
1265
1266 if (likely(ret >= last))
1267 return ret;
1268
1269 /*
1270 * GCC likes to generate cmov here, but this branch is extremely
1271 * predictable (it's just a funciton of time and the likely is
1272 * very likely) and there's a data dependence, so force GCC
1273 * to generate a branch instead. I don't barrier() because
1274 * we don't actually need a barrier, and if this function
1275 * ever gets inlined it will generate worse code.
1276 */
1277 asm volatile ("");
1278 return last;
1279 }
1280
1281 static inline u64 vgettsc(cycle_t *cycle_now)
1282 {
1283 long v;
1284 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1285
1286 *cycle_now = read_tsc();
1287
1288 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1289 return v * gtod->clock.mult;
1290 }
1291
1292 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1293 {
1294 unsigned long seq;
1295 u64 ns;
1296 int mode;
1297 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1298
1299 ts->tv_nsec = 0;
1300 do {
1301 seq = read_seqcount_begin(&gtod->seq);
1302 mode = gtod->clock.vclock_mode;
1303 ts->tv_sec = gtod->monotonic_time_sec;
1304 ns = gtod->monotonic_time_snsec;
1305 ns += vgettsc(cycle_now);
1306 ns >>= gtod->clock.shift;
1307 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1308 timespec_add_ns(ts, ns);
1309
1310 return mode;
1311 }
1312
1313 /* returns true if host is using tsc clocksource */
1314 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1315 {
1316 struct timespec ts;
1317
1318 /* checked again under seqlock below */
1319 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1320 return false;
1321
1322 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1323 return false;
1324
1325 monotonic_to_bootbased(&ts);
1326 *kernel_ns = timespec_to_ns(&ts);
1327
1328 return true;
1329 }
1330 #endif
1331
1332 /*
1333 *
1334 * Assuming a stable TSC across physical CPUS, and a stable TSC
1335 * across virtual CPUs, the following condition is possible.
1336 * Each numbered line represents an event visible to both
1337 * CPUs at the next numbered event.
1338 *
1339 * "timespecX" represents host monotonic time. "tscX" represents
1340 * RDTSC value.
1341 *
1342 * VCPU0 on CPU0 | VCPU1 on CPU1
1343 *
1344 * 1. read timespec0,tsc0
1345 * 2. | timespec1 = timespec0 + N
1346 * | tsc1 = tsc0 + M
1347 * 3. transition to guest | transition to guest
1348 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1349 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1350 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1351 *
1352 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1353 *
1354 * - ret0 < ret1
1355 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1356 * ...
1357 * - 0 < N - M => M < N
1358 *
1359 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1360 * always the case (the difference between two distinct xtime instances
1361 * might be smaller then the difference between corresponding TSC reads,
1362 * when updating guest vcpus pvclock areas).
1363 *
1364 * To avoid that problem, do not allow visibility of distinct
1365 * system_timestamp/tsc_timestamp values simultaneously: use a master
1366 * copy of host monotonic time values. Update that master copy
1367 * in lockstep.
1368 *
1369 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1370 *
1371 */
1372
1373 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1374 {
1375 #ifdef CONFIG_X86_64
1376 struct kvm_arch *ka = &kvm->arch;
1377 int vclock_mode;
1378 bool host_tsc_clocksource, vcpus_matched;
1379
1380 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1381 atomic_read(&kvm->online_vcpus));
1382
1383 /*
1384 * If the host uses TSC clock, then passthrough TSC as stable
1385 * to the guest.
1386 */
1387 host_tsc_clocksource = kvm_get_time_and_clockread(
1388 &ka->master_kernel_ns,
1389 &ka->master_cycle_now);
1390
1391 ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1392
1393 if (ka->use_master_clock)
1394 atomic_set(&kvm_guest_has_master_clock, 1);
1395
1396 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1397 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1398 vcpus_matched);
1399 #endif
1400 }
1401
1402 static int kvm_guest_time_update(struct kvm_vcpu *v)
1403 {
1404 unsigned long flags, this_tsc_khz;
1405 struct kvm_vcpu_arch *vcpu = &v->arch;
1406 struct kvm_arch *ka = &v->kvm->arch;
1407 void *shared_kaddr;
1408 s64 kernel_ns, max_kernel_ns;
1409 u64 tsc_timestamp, host_tsc;
1410 struct pvclock_vcpu_time_info *guest_hv_clock;
1411 u8 pvclock_flags;
1412 bool use_master_clock;
1413
1414 kernel_ns = 0;
1415 host_tsc = 0;
1416
1417 /* Keep irq disabled to prevent changes to the clock */
1418 local_irq_save(flags);
1419 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1420 if (unlikely(this_tsc_khz == 0)) {
1421 local_irq_restore(flags);
1422 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1423 return 1;
1424 }
1425
1426 /*
1427 * If the host uses TSC clock, then passthrough TSC as stable
1428 * to the guest.
1429 */
1430 spin_lock(&ka->pvclock_gtod_sync_lock);
1431 use_master_clock = ka->use_master_clock;
1432 if (use_master_clock) {
1433 host_tsc = ka->master_cycle_now;
1434 kernel_ns = ka->master_kernel_ns;
1435 }
1436 spin_unlock(&ka->pvclock_gtod_sync_lock);
1437 if (!use_master_clock) {
1438 host_tsc = native_read_tsc();
1439 kernel_ns = get_kernel_ns();
1440 }
1441
1442 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1443
1444 /*
1445 * We may have to catch up the TSC to match elapsed wall clock
1446 * time for two reasons, even if kvmclock is used.
1447 * 1) CPU could have been running below the maximum TSC rate
1448 * 2) Broken TSC compensation resets the base at each VCPU
1449 * entry to avoid unknown leaps of TSC even when running
1450 * again on the same CPU. This may cause apparent elapsed
1451 * time to disappear, and the guest to stand still or run
1452 * very slowly.
1453 */
1454 if (vcpu->tsc_catchup) {
1455 u64 tsc = compute_guest_tsc(v, kernel_ns);
1456 if (tsc > tsc_timestamp) {
1457 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1458 tsc_timestamp = tsc;
1459 }
1460 }
1461
1462 local_irq_restore(flags);
1463
1464 if (!vcpu->time_page)
1465 return 0;
1466
1467 /*
1468 * Time as measured by the TSC may go backwards when resetting the base
1469 * tsc_timestamp. The reason for this is that the TSC resolution is
1470 * higher than the resolution of the other clock scales. Thus, many
1471 * possible measurments of the TSC correspond to one measurement of any
1472 * other clock, and so a spread of values is possible. This is not a
1473 * problem for the computation of the nanosecond clock; with TSC rates
1474 * around 1GHZ, there can only be a few cycles which correspond to one
1475 * nanosecond value, and any path through this code will inevitably
1476 * take longer than that. However, with the kernel_ns value itself,
1477 * the precision may be much lower, down to HZ granularity. If the
1478 * first sampling of TSC against kernel_ns ends in the low part of the
1479 * range, and the second in the high end of the range, we can get:
1480 *
1481 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1482 *
1483 * As the sampling errors potentially range in the thousands of cycles,
1484 * it is possible such a time value has already been observed by the
1485 * guest. To protect against this, we must compute the system time as
1486 * observed by the guest and ensure the new system time is greater.
1487 */
1488 max_kernel_ns = 0;
1489 if (vcpu->hv_clock.tsc_timestamp) {
1490 max_kernel_ns = vcpu->last_guest_tsc -
1491 vcpu->hv_clock.tsc_timestamp;
1492 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1493 vcpu->hv_clock.tsc_to_system_mul,
1494 vcpu->hv_clock.tsc_shift);
1495 max_kernel_ns += vcpu->last_kernel_ns;
1496 }
1497
1498 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1499 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1500 &vcpu->hv_clock.tsc_shift,
1501 &vcpu->hv_clock.tsc_to_system_mul);
1502 vcpu->hw_tsc_khz = this_tsc_khz;
1503 }
1504
1505 /* with a master <monotonic time, tsc value> tuple,
1506 * pvclock clock reads always increase at the (scaled) rate
1507 * of guest TSC - no need to deal with sampling errors.
1508 */
1509 if (!use_master_clock) {
1510 if (max_kernel_ns > kernel_ns)
1511 kernel_ns = max_kernel_ns;
1512 }
1513 /* With all the info we got, fill in the values */
1514 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1515 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1516 vcpu->last_kernel_ns = kernel_ns;
1517 vcpu->last_guest_tsc = tsc_timestamp;
1518
1519 /*
1520 * The interface expects us to write an even number signaling that the
1521 * update is finished. Since the guest won't see the intermediate
1522 * state, we just increase by 2 at the end.
1523 */
1524 vcpu->hv_clock.version += 2;
1525
1526 shared_kaddr = kmap_atomic(vcpu->time_page);
1527
1528 guest_hv_clock = shared_kaddr + vcpu->time_offset;
1529
1530 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1531 pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
1532
1533 if (vcpu->pvclock_set_guest_stopped_request) {
1534 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1535 vcpu->pvclock_set_guest_stopped_request = false;
1536 }
1537
1538 /* If the host uses TSC clocksource, then it is stable */
1539 if (use_master_clock)
1540 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1541
1542 vcpu->hv_clock.flags = pvclock_flags;
1543
1544 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1545 sizeof(vcpu->hv_clock));
1546
1547 kunmap_atomic(shared_kaddr);
1548
1549 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1550 return 0;
1551 }
1552
1553 static bool msr_mtrr_valid(unsigned msr)
1554 {
1555 switch (msr) {
1556 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1557 case MSR_MTRRfix64K_00000:
1558 case MSR_MTRRfix16K_80000:
1559 case MSR_MTRRfix16K_A0000:
1560 case MSR_MTRRfix4K_C0000:
1561 case MSR_MTRRfix4K_C8000:
1562 case MSR_MTRRfix4K_D0000:
1563 case MSR_MTRRfix4K_D8000:
1564 case MSR_MTRRfix4K_E0000:
1565 case MSR_MTRRfix4K_E8000:
1566 case MSR_MTRRfix4K_F0000:
1567 case MSR_MTRRfix4K_F8000:
1568 case MSR_MTRRdefType:
1569 case MSR_IA32_CR_PAT:
1570 return true;
1571 case 0x2f8:
1572 return true;
1573 }
1574 return false;
1575 }
1576
1577 static bool valid_pat_type(unsigned t)
1578 {
1579 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1580 }
1581
1582 static bool valid_mtrr_type(unsigned t)
1583 {
1584 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1585 }
1586
1587 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1588 {
1589 int i;
1590
1591 if (!msr_mtrr_valid(msr))
1592 return false;
1593
1594 if (msr == MSR_IA32_CR_PAT) {
1595 for (i = 0; i < 8; i++)
1596 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1597 return false;
1598 return true;
1599 } else if (msr == MSR_MTRRdefType) {
1600 if (data & ~0xcff)
1601 return false;
1602 return valid_mtrr_type(data & 0xff);
1603 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1604 for (i = 0; i < 8 ; i++)
1605 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1606 return false;
1607 return true;
1608 }
1609
1610 /* variable MTRRs */
1611 return valid_mtrr_type(data & 0xff);
1612 }
1613
1614 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1615 {
1616 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1617
1618 if (!mtrr_valid(vcpu, msr, data))
1619 return 1;
1620
1621 if (msr == MSR_MTRRdefType) {
1622 vcpu->arch.mtrr_state.def_type = data;
1623 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1624 } else if (msr == MSR_MTRRfix64K_00000)
1625 p[0] = data;
1626 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1627 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1628 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1629 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1630 else if (msr == MSR_IA32_CR_PAT)
1631 vcpu->arch.pat = data;
1632 else { /* Variable MTRRs */
1633 int idx, is_mtrr_mask;
1634 u64 *pt;
1635
1636 idx = (msr - 0x200) / 2;
1637 is_mtrr_mask = msr - 0x200 - 2 * idx;
1638 if (!is_mtrr_mask)
1639 pt =
1640 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1641 else
1642 pt =
1643 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1644 *pt = data;
1645 }
1646
1647 kvm_mmu_reset_context(vcpu);
1648 return 0;
1649 }
1650
1651 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1652 {
1653 u64 mcg_cap = vcpu->arch.mcg_cap;
1654 unsigned bank_num = mcg_cap & 0xff;
1655
1656 switch (msr) {
1657 case MSR_IA32_MCG_STATUS:
1658 vcpu->arch.mcg_status = data;
1659 break;
1660 case MSR_IA32_MCG_CTL:
1661 if (!(mcg_cap & MCG_CTL_P))
1662 return 1;
1663 if (data != 0 && data != ~(u64)0)
1664 return -1;
1665 vcpu->arch.mcg_ctl = data;
1666 break;
1667 default:
1668 if (msr >= MSR_IA32_MC0_CTL &&
1669 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1670 u32 offset = msr - MSR_IA32_MC0_CTL;
1671 /* only 0 or all 1s can be written to IA32_MCi_CTL
1672 * some Linux kernels though clear bit 10 in bank 4 to
1673 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1674 * this to avoid an uncatched #GP in the guest
1675 */
1676 if ((offset & 0x3) == 0 &&
1677 data != 0 && (data | (1 << 10)) != ~(u64)0)
1678 return -1;
1679 vcpu->arch.mce_banks[offset] = data;
1680 break;
1681 }
1682 return 1;
1683 }
1684 return 0;
1685 }
1686
1687 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1688 {
1689 struct kvm *kvm = vcpu->kvm;
1690 int lm = is_long_mode(vcpu);
1691 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1692 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1693 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1694 : kvm->arch.xen_hvm_config.blob_size_32;
1695 u32 page_num = data & ~PAGE_MASK;
1696 u64 page_addr = data & PAGE_MASK;
1697 u8 *page;
1698 int r;
1699
1700 r = -E2BIG;
1701 if (page_num >= blob_size)
1702 goto out;
1703 r = -ENOMEM;
1704 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1705 if (IS_ERR(page)) {
1706 r = PTR_ERR(page);
1707 goto out;
1708 }
1709 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1710 goto out_free;
1711 r = 0;
1712 out_free:
1713 kfree(page);
1714 out:
1715 return r;
1716 }
1717
1718 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1719 {
1720 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1721 }
1722
1723 static bool kvm_hv_msr_partition_wide(u32 msr)
1724 {
1725 bool r = false;
1726 switch (msr) {
1727 case HV_X64_MSR_GUEST_OS_ID:
1728 case HV_X64_MSR_HYPERCALL:
1729 r = true;
1730 break;
1731 }
1732
1733 return r;
1734 }
1735
1736 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1737 {
1738 struct kvm *kvm = vcpu->kvm;
1739
1740 switch (msr) {
1741 case HV_X64_MSR_GUEST_OS_ID:
1742 kvm->arch.hv_guest_os_id = data;
1743 /* setting guest os id to zero disables hypercall page */
1744 if (!kvm->arch.hv_guest_os_id)
1745 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1746 break;
1747 case HV_X64_MSR_HYPERCALL: {
1748 u64 gfn;
1749 unsigned long addr;
1750 u8 instructions[4];
1751
1752 /* if guest os id is not set hypercall should remain disabled */
1753 if (!kvm->arch.hv_guest_os_id)
1754 break;
1755 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1756 kvm->arch.hv_hypercall = data;
1757 break;
1758 }
1759 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1760 addr = gfn_to_hva(kvm, gfn);
1761 if (kvm_is_error_hva(addr))
1762 return 1;
1763 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1764 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1765 if (__copy_to_user((void __user *)addr, instructions, 4))
1766 return 1;
1767 kvm->arch.hv_hypercall = data;
1768 break;
1769 }
1770 default:
1771 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1772 "data 0x%llx\n", msr, data);
1773 return 1;
1774 }
1775 return 0;
1776 }
1777
1778 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1779 {
1780 switch (msr) {
1781 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1782 unsigned long addr;
1783
1784 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1785 vcpu->arch.hv_vapic = data;
1786 break;
1787 }
1788 addr = gfn_to_hva(vcpu->kvm, data >>
1789 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1790 if (kvm_is_error_hva(addr))
1791 return 1;
1792 if (__clear_user((void __user *)addr, PAGE_SIZE))
1793 return 1;
1794 vcpu->arch.hv_vapic = data;
1795 break;
1796 }
1797 case HV_X64_MSR_EOI:
1798 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1799 case HV_X64_MSR_ICR:
1800 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1801 case HV_X64_MSR_TPR:
1802 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1803 default:
1804 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1805 "data 0x%llx\n", msr, data);
1806 return 1;
1807 }
1808
1809 return 0;
1810 }
1811
1812 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1813 {
1814 gpa_t gpa = data & ~0x3f;
1815
1816 /* Bits 2:5 are reserved, Should be zero */
1817 if (data & 0x3c)
1818 return 1;
1819
1820 vcpu->arch.apf.msr_val = data;
1821
1822 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1823 kvm_clear_async_pf_completion_queue(vcpu);
1824 kvm_async_pf_hash_reset(vcpu);
1825 return 0;
1826 }
1827
1828 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1829 return 1;
1830
1831 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1832 kvm_async_pf_wakeup_all(vcpu);
1833 return 0;
1834 }
1835
1836 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1837 {
1838 if (vcpu->arch.time_page) {
1839 kvm_release_page_dirty(vcpu->arch.time_page);
1840 vcpu->arch.time_page = NULL;
1841 }
1842 }
1843
1844 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1845 {
1846 u64 delta;
1847
1848 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1849 return;
1850
1851 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1852 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1853 vcpu->arch.st.accum_steal = delta;
1854 }
1855
1856 static void record_steal_time(struct kvm_vcpu *vcpu)
1857 {
1858 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1859 return;
1860
1861 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1862 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1863 return;
1864
1865 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1866 vcpu->arch.st.steal.version += 2;
1867 vcpu->arch.st.accum_steal = 0;
1868
1869 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1870 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1871 }
1872
1873 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1874 {
1875 bool pr = false;
1876 u32 msr = msr_info->index;
1877 u64 data = msr_info->data;
1878
1879 switch (msr) {
1880 case MSR_EFER:
1881 return set_efer(vcpu, data);
1882 case MSR_K7_HWCR:
1883 data &= ~(u64)0x40; /* ignore flush filter disable */
1884 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1885 data &= ~(u64)0x8; /* ignore TLB cache disable */
1886 if (data != 0) {
1887 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1888 data);
1889 return 1;
1890 }
1891 break;
1892 case MSR_FAM10H_MMIO_CONF_BASE:
1893 if (data != 0) {
1894 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1895 "0x%llx\n", data);
1896 return 1;
1897 }
1898 break;
1899 case MSR_AMD64_NB_CFG:
1900 break;
1901 case MSR_IA32_DEBUGCTLMSR:
1902 if (!data) {
1903 /* We support the non-activated case already */
1904 break;
1905 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1906 /* Values other than LBR and BTF are vendor-specific,
1907 thus reserved and should throw a #GP */
1908 return 1;
1909 }
1910 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1911 __func__, data);
1912 break;
1913 case MSR_IA32_UCODE_REV:
1914 case MSR_IA32_UCODE_WRITE:
1915 case MSR_VM_HSAVE_PA:
1916 case MSR_AMD64_PATCH_LOADER:
1917 break;
1918 case 0x200 ... 0x2ff:
1919 return set_msr_mtrr(vcpu, msr, data);
1920 case MSR_IA32_APICBASE:
1921 kvm_set_apic_base(vcpu, data);
1922 break;
1923 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1924 return kvm_x2apic_msr_write(vcpu, msr, data);
1925 case MSR_IA32_TSCDEADLINE:
1926 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1927 break;
1928 case MSR_IA32_TSC_ADJUST:
1929 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1930 if (!msr_info->host_initiated) {
1931 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1932 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1933 }
1934 vcpu->arch.ia32_tsc_adjust_msr = data;
1935 }
1936 break;
1937 case MSR_IA32_MISC_ENABLE:
1938 vcpu->arch.ia32_misc_enable_msr = data;
1939 break;
1940 case MSR_KVM_WALL_CLOCK_NEW:
1941 case MSR_KVM_WALL_CLOCK:
1942 vcpu->kvm->arch.wall_clock = data;
1943 kvm_write_wall_clock(vcpu->kvm, data);
1944 break;
1945 case MSR_KVM_SYSTEM_TIME_NEW:
1946 case MSR_KVM_SYSTEM_TIME: {
1947 kvmclock_reset(vcpu);
1948
1949 vcpu->arch.time = data;
1950 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1951
1952 /* we verify if the enable bit is set... */
1953 if (!(data & 1))
1954 break;
1955
1956 /* ...but clean it before doing the actual write */
1957 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1958
1959 vcpu->arch.time_page =
1960 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1961
1962 if (is_error_page(vcpu->arch.time_page))
1963 vcpu->arch.time_page = NULL;
1964
1965 break;
1966 }
1967 case MSR_KVM_ASYNC_PF_EN:
1968 if (kvm_pv_enable_async_pf(vcpu, data))
1969 return 1;
1970 break;
1971 case MSR_KVM_STEAL_TIME:
1972
1973 if (unlikely(!sched_info_on()))
1974 return 1;
1975
1976 if (data & KVM_STEAL_RESERVED_MASK)
1977 return 1;
1978
1979 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1980 data & KVM_STEAL_VALID_BITS))
1981 return 1;
1982
1983 vcpu->arch.st.msr_val = data;
1984
1985 if (!(data & KVM_MSR_ENABLED))
1986 break;
1987
1988 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1989
1990 preempt_disable();
1991 accumulate_steal_time(vcpu);
1992 preempt_enable();
1993
1994 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1995
1996 break;
1997 case MSR_KVM_PV_EOI_EN:
1998 if (kvm_lapic_enable_pv_eoi(vcpu, data))
1999 return 1;
2000 break;
2001
2002 case MSR_IA32_MCG_CTL:
2003 case MSR_IA32_MCG_STATUS:
2004 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2005 return set_msr_mce(vcpu, msr, data);
2006
2007 /* Performance counters are not protected by a CPUID bit,
2008 * so we should check all of them in the generic path for the sake of
2009 * cross vendor migration.
2010 * Writing a zero into the event select MSRs disables them,
2011 * which we perfectly emulate ;-). Any other value should be at least
2012 * reported, some guests depend on them.
2013 */
2014 case MSR_K7_EVNTSEL0:
2015 case MSR_K7_EVNTSEL1:
2016 case MSR_K7_EVNTSEL2:
2017 case MSR_K7_EVNTSEL3:
2018 if (data != 0)
2019 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2020 "0x%x data 0x%llx\n", msr, data);
2021 break;
2022 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2023 * so we ignore writes to make it happy.
2024 */
2025 case MSR_K7_PERFCTR0:
2026 case MSR_K7_PERFCTR1:
2027 case MSR_K7_PERFCTR2:
2028 case MSR_K7_PERFCTR3:
2029 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2030 "0x%x data 0x%llx\n", msr, data);
2031 break;
2032 case MSR_P6_PERFCTR0:
2033 case MSR_P6_PERFCTR1:
2034 pr = true;
2035 case MSR_P6_EVNTSEL0:
2036 case MSR_P6_EVNTSEL1:
2037 if (kvm_pmu_msr(vcpu, msr))
2038 return kvm_pmu_set_msr(vcpu, msr, data);
2039
2040 if (pr || data != 0)
2041 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2042 "0x%x data 0x%llx\n", msr, data);
2043 break;
2044 case MSR_K7_CLK_CTL:
2045 /*
2046 * Ignore all writes to this no longer documented MSR.
2047 * Writes are only relevant for old K7 processors,
2048 * all pre-dating SVM, but a recommended workaround from
2049 * AMD for these chips. It is possible to specify the
2050 * affected processor models on the command line, hence
2051 * the need to ignore the workaround.
2052 */
2053 break;
2054 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2055 if (kvm_hv_msr_partition_wide(msr)) {
2056 int r;
2057 mutex_lock(&vcpu->kvm->lock);
2058 r = set_msr_hyperv_pw(vcpu, msr, data);
2059 mutex_unlock(&vcpu->kvm->lock);
2060 return r;
2061 } else
2062 return set_msr_hyperv(vcpu, msr, data);
2063 break;
2064 case MSR_IA32_BBL_CR_CTL3:
2065 /* Drop writes to this legacy MSR -- see rdmsr
2066 * counterpart for further detail.
2067 */
2068 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2069 break;
2070 case MSR_AMD64_OSVW_ID_LENGTH:
2071 if (!guest_cpuid_has_osvw(vcpu))
2072 return 1;
2073 vcpu->arch.osvw.length = data;
2074 break;
2075 case MSR_AMD64_OSVW_STATUS:
2076 if (!guest_cpuid_has_osvw(vcpu))
2077 return 1;
2078 vcpu->arch.osvw.status = data;
2079 break;
2080 default:
2081 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2082 return xen_hvm_config(vcpu, data);
2083 if (kvm_pmu_msr(vcpu, msr))
2084 return kvm_pmu_set_msr(vcpu, msr, data);
2085 if (!ignore_msrs) {
2086 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2087 msr, data);
2088 return 1;
2089 } else {
2090 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2091 msr, data);
2092 break;
2093 }
2094 }
2095 return 0;
2096 }
2097 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2098
2099
2100 /*
2101 * Reads an msr value (of 'msr_index') into 'pdata'.
2102 * Returns 0 on success, non-0 otherwise.
2103 * Assumes vcpu_load() was already called.
2104 */
2105 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2106 {
2107 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2108 }
2109
2110 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2111 {
2112 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2113
2114 if (!msr_mtrr_valid(msr))
2115 return 1;
2116
2117 if (msr == MSR_MTRRdefType)
2118 *pdata = vcpu->arch.mtrr_state.def_type +
2119 (vcpu->arch.mtrr_state.enabled << 10);
2120 else if (msr == MSR_MTRRfix64K_00000)
2121 *pdata = p[0];
2122 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2123 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2124 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2125 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2126 else if (msr == MSR_IA32_CR_PAT)
2127 *pdata = vcpu->arch.pat;
2128 else { /* Variable MTRRs */
2129 int idx, is_mtrr_mask;
2130 u64 *pt;
2131
2132 idx = (msr - 0x200) / 2;
2133 is_mtrr_mask = msr - 0x200 - 2 * idx;
2134 if (!is_mtrr_mask)
2135 pt =
2136 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2137 else
2138 pt =
2139 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2140 *pdata = *pt;
2141 }
2142
2143 return 0;
2144 }
2145
2146 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2147 {
2148 u64 data;
2149 u64 mcg_cap = vcpu->arch.mcg_cap;
2150 unsigned bank_num = mcg_cap & 0xff;
2151
2152 switch (msr) {
2153 case MSR_IA32_P5_MC_ADDR:
2154 case MSR_IA32_P5_MC_TYPE:
2155 data = 0;
2156 break;
2157 case MSR_IA32_MCG_CAP:
2158 data = vcpu->arch.mcg_cap;
2159 break;
2160 case MSR_IA32_MCG_CTL:
2161 if (!(mcg_cap & MCG_CTL_P))
2162 return 1;
2163 data = vcpu->arch.mcg_ctl;
2164 break;
2165 case MSR_IA32_MCG_STATUS:
2166 data = vcpu->arch.mcg_status;
2167 break;
2168 default:
2169 if (msr >= MSR_IA32_MC0_CTL &&
2170 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2171 u32 offset = msr - MSR_IA32_MC0_CTL;
2172 data = vcpu->arch.mce_banks[offset];
2173 break;
2174 }
2175 return 1;
2176 }
2177 *pdata = data;
2178 return 0;
2179 }
2180
2181 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2182 {
2183 u64 data = 0;
2184 struct kvm *kvm = vcpu->kvm;
2185
2186 switch (msr) {
2187 case HV_X64_MSR_GUEST_OS_ID:
2188 data = kvm->arch.hv_guest_os_id;
2189 break;
2190 case HV_X64_MSR_HYPERCALL:
2191 data = kvm->arch.hv_hypercall;
2192 break;
2193 default:
2194 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2195 return 1;
2196 }
2197
2198 *pdata = data;
2199 return 0;
2200 }
2201
2202 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2203 {
2204 u64 data = 0;
2205
2206 switch (msr) {
2207 case HV_X64_MSR_VP_INDEX: {
2208 int r;
2209 struct kvm_vcpu *v;
2210 kvm_for_each_vcpu(r, v, vcpu->kvm)
2211 if (v == vcpu)
2212 data = r;
2213 break;
2214 }
2215 case HV_X64_MSR_EOI:
2216 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2217 case HV_X64_MSR_ICR:
2218 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2219 case HV_X64_MSR_TPR:
2220 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2221 case HV_X64_MSR_APIC_ASSIST_PAGE:
2222 data = vcpu->arch.hv_vapic;
2223 break;
2224 default:
2225 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2226 return 1;
2227 }
2228 *pdata = data;
2229 return 0;
2230 }
2231
2232 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2233 {
2234 u64 data;
2235
2236 switch (msr) {
2237 case MSR_IA32_PLATFORM_ID:
2238 case MSR_IA32_EBL_CR_POWERON:
2239 case MSR_IA32_DEBUGCTLMSR:
2240 case MSR_IA32_LASTBRANCHFROMIP:
2241 case MSR_IA32_LASTBRANCHTOIP:
2242 case MSR_IA32_LASTINTFROMIP:
2243 case MSR_IA32_LASTINTTOIP:
2244 case MSR_K8_SYSCFG:
2245 case MSR_K7_HWCR:
2246 case MSR_VM_HSAVE_PA:
2247 case MSR_K7_EVNTSEL0:
2248 case MSR_K7_PERFCTR0:
2249 case MSR_K8_INT_PENDING_MSG:
2250 case MSR_AMD64_NB_CFG:
2251 case MSR_FAM10H_MMIO_CONF_BASE:
2252 data = 0;
2253 break;
2254 case MSR_P6_PERFCTR0:
2255 case MSR_P6_PERFCTR1:
2256 case MSR_P6_EVNTSEL0:
2257 case MSR_P6_EVNTSEL1:
2258 if (kvm_pmu_msr(vcpu, msr))
2259 return kvm_pmu_get_msr(vcpu, msr, pdata);
2260 data = 0;
2261 break;
2262 case MSR_IA32_UCODE_REV:
2263 data = 0x100000000ULL;
2264 break;
2265 case MSR_MTRRcap:
2266 data = 0x500 | KVM_NR_VAR_MTRR;
2267 break;
2268 case 0x200 ... 0x2ff:
2269 return get_msr_mtrr(vcpu, msr, pdata);
2270 case 0xcd: /* fsb frequency */
2271 data = 3;
2272 break;
2273 /*
2274 * MSR_EBC_FREQUENCY_ID
2275 * Conservative value valid for even the basic CPU models.
2276 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2277 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2278 * and 266MHz for model 3, or 4. Set Core Clock
2279 * Frequency to System Bus Frequency Ratio to 1 (bits
2280 * 31:24) even though these are only valid for CPU
2281 * models > 2, however guests may end up dividing or
2282 * multiplying by zero otherwise.
2283 */
2284 case MSR_EBC_FREQUENCY_ID:
2285 data = 1 << 24;
2286 break;
2287 case MSR_IA32_APICBASE:
2288 data = kvm_get_apic_base(vcpu);
2289 break;
2290 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2291 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2292 break;
2293 case MSR_IA32_TSCDEADLINE:
2294 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2295 break;
2296 case MSR_IA32_TSC_ADJUST:
2297 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2298 break;
2299 case MSR_IA32_MISC_ENABLE:
2300 data = vcpu->arch.ia32_misc_enable_msr;
2301 break;
2302 case MSR_IA32_PERF_STATUS:
2303 /* TSC increment by tick */
2304 data = 1000ULL;
2305 /* CPU multiplier */
2306 data |= (((uint64_t)4ULL) << 40);
2307 break;
2308 case MSR_EFER:
2309 data = vcpu->arch.efer;
2310 break;
2311 case MSR_KVM_WALL_CLOCK:
2312 case MSR_KVM_WALL_CLOCK_NEW:
2313 data = vcpu->kvm->arch.wall_clock;
2314 break;
2315 case MSR_KVM_SYSTEM_TIME:
2316 case MSR_KVM_SYSTEM_TIME_NEW:
2317 data = vcpu->arch.time;
2318 break;
2319 case MSR_KVM_ASYNC_PF_EN:
2320 data = vcpu->arch.apf.msr_val;
2321 break;
2322 case MSR_KVM_STEAL_TIME:
2323 data = vcpu->arch.st.msr_val;
2324 break;
2325 case MSR_KVM_PV_EOI_EN:
2326 data = vcpu->arch.pv_eoi.msr_val;
2327 break;
2328 case MSR_IA32_P5_MC_ADDR:
2329 case MSR_IA32_P5_MC_TYPE:
2330 case MSR_IA32_MCG_CAP:
2331 case MSR_IA32_MCG_CTL:
2332 case MSR_IA32_MCG_STATUS:
2333 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2334 return get_msr_mce(vcpu, msr, pdata);
2335 case MSR_K7_CLK_CTL:
2336 /*
2337 * Provide expected ramp-up count for K7. All other
2338 * are set to zero, indicating minimum divisors for
2339 * every field.
2340 *
2341 * This prevents guest kernels on AMD host with CPU
2342 * type 6, model 8 and higher from exploding due to
2343 * the rdmsr failing.
2344 */
2345 data = 0x20000000;
2346 break;
2347 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2348 if (kvm_hv_msr_partition_wide(msr)) {
2349 int r;
2350 mutex_lock(&vcpu->kvm->lock);
2351 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2352 mutex_unlock(&vcpu->kvm->lock);
2353 return r;
2354 } else
2355 return get_msr_hyperv(vcpu, msr, pdata);
2356 break;
2357 case MSR_IA32_BBL_CR_CTL3:
2358 /* This legacy MSR exists but isn't fully documented in current
2359 * silicon. It is however accessed by winxp in very narrow
2360 * scenarios where it sets bit #19, itself documented as
2361 * a "reserved" bit. Best effort attempt to source coherent
2362 * read data here should the balance of the register be
2363 * interpreted by the guest:
2364 *
2365 * L2 cache control register 3: 64GB range, 256KB size,
2366 * enabled, latency 0x1, configured
2367 */
2368 data = 0xbe702111;
2369 break;
2370 case MSR_AMD64_OSVW_ID_LENGTH:
2371 if (!guest_cpuid_has_osvw(vcpu))
2372 return 1;
2373 data = vcpu->arch.osvw.length;
2374 break;
2375 case MSR_AMD64_OSVW_STATUS:
2376 if (!guest_cpuid_has_osvw(vcpu))
2377 return 1;
2378 data = vcpu->arch.osvw.status;
2379 break;
2380 default:
2381 if (kvm_pmu_msr(vcpu, msr))
2382 return kvm_pmu_get_msr(vcpu, msr, pdata);
2383 if (!ignore_msrs) {
2384 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2385 return 1;
2386 } else {
2387 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2388 data = 0;
2389 }
2390 break;
2391 }
2392 *pdata = data;
2393 return 0;
2394 }
2395 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2396
2397 /*
2398 * Read or write a bunch of msrs. All parameters are kernel addresses.
2399 *
2400 * @return number of msrs set successfully.
2401 */
2402 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2403 struct kvm_msr_entry *entries,
2404 int (*do_msr)(struct kvm_vcpu *vcpu,
2405 unsigned index, u64 *data))
2406 {
2407 int i, idx;
2408
2409 idx = srcu_read_lock(&vcpu->kvm->srcu);
2410 for (i = 0; i < msrs->nmsrs; ++i)
2411 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2412 break;
2413 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2414
2415 return i;
2416 }
2417
2418 /*
2419 * Read or write a bunch of msrs. Parameters are user addresses.
2420 *
2421 * @return number of msrs set successfully.
2422 */
2423 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2424 int (*do_msr)(struct kvm_vcpu *vcpu,
2425 unsigned index, u64 *data),
2426 int writeback)
2427 {
2428 struct kvm_msrs msrs;
2429 struct kvm_msr_entry *entries;
2430 int r, n;
2431 unsigned size;
2432
2433 r = -EFAULT;
2434 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2435 goto out;
2436
2437 r = -E2BIG;
2438 if (msrs.nmsrs >= MAX_IO_MSRS)
2439 goto out;
2440
2441 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2442 entries = memdup_user(user_msrs->entries, size);
2443 if (IS_ERR(entries)) {
2444 r = PTR_ERR(entries);
2445 goto out;
2446 }
2447
2448 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2449 if (r < 0)
2450 goto out_free;
2451
2452 r = -EFAULT;
2453 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2454 goto out_free;
2455
2456 r = n;
2457
2458 out_free:
2459 kfree(entries);
2460 out:
2461 return r;
2462 }
2463
2464 int kvm_dev_ioctl_check_extension(long ext)
2465 {
2466 int r;
2467
2468 switch (ext) {
2469 case KVM_CAP_IRQCHIP:
2470 case KVM_CAP_HLT:
2471 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2472 case KVM_CAP_SET_TSS_ADDR:
2473 case KVM_CAP_EXT_CPUID:
2474 case KVM_CAP_CLOCKSOURCE:
2475 case KVM_CAP_PIT:
2476 case KVM_CAP_NOP_IO_DELAY:
2477 case KVM_CAP_MP_STATE:
2478 case KVM_CAP_SYNC_MMU:
2479 case KVM_CAP_USER_NMI:
2480 case KVM_CAP_REINJECT_CONTROL:
2481 case KVM_CAP_IRQ_INJECT_STATUS:
2482 case KVM_CAP_ASSIGN_DEV_IRQ:
2483 case KVM_CAP_IRQFD:
2484 case KVM_CAP_IOEVENTFD:
2485 case KVM_CAP_PIT2:
2486 case KVM_CAP_PIT_STATE2:
2487 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2488 case KVM_CAP_XEN_HVM:
2489 case KVM_CAP_ADJUST_CLOCK:
2490 case KVM_CAP_VCPU_EVENTS:
2491 case KVM_CAP_HYPERV:
2492 case KVM_CAP_HYPERV_VAPIC:
2493 case KVM_CAP_HYPERV_SPIN:
2494 case KVM_CAP_PCI_SEGMENT:
2495 case KVM_CAP_DEBUGREGS:
2496 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2497 case KVM_CAP_XSAVE:
2498 case KVM_CAP_ASYNC_PF:
2499 case KVM_CAP_GET_TSC_KHZ:
2500 case KVM_CAP_PCI_2_3:
2501 case KVM_CAP_KVMCLOCK_CTRL:
2502 case KVM_CAP_READONLY_MEM:
2503 case KVM_CAP_IRQFD_RESAMPLE:
2504 r = 1;
2505 break;
2506 case KVM_CAP_COALESCED_MMIO:
2507 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2508 break;
2509 case KVM_CAP_VAPIC:
2510 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2511 break;
2512 case KVM_CAP_NR_VCPUS:
2513 r = KVM_SOFT_MAX_VCPUS;
2514 break;
2515 case KVM_CAP_MAX_VCPUS:
2516 r = KVM_MAX_VCPUS;
2517 break;
2518 case KVM_CAP_NR_MEMSLOTS:
2519 r = KVM_USER_MEM_SLOTS;
2520 break;
2521 case KVM_CAP_PV_MMU: /* obsolete */
2522 r = 0;
2523 break;
2524 case KVM_CAP_IOMMU:
2525 r = iommu_present(&pci_bus_type);
2526 break;
2527 case KVM_CAP_MCE:
2528 r = KVM_MAX_MCE_BANKS;
2529 break;
2530 case KVM_CAP_XCRS:
2531 r = cpu_has_xsave;
2532 break;
2533 case KVM_CAP_TSC_CONTROL:
2534 r = kvm_has_tsc_control;
2535 break;
2536 case KVM_CAP_TSC_DEADLINE_TIMER:
2537 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2538 break;
2539 default:
2540 r = 0;
2541 break;
2542 }
2543 return r;
2544
2545 }
2546
2547 long kvm_arch_dev_ioctl(struct file *filp,
2548 unsigned int ioctl, unsigned long arg)
2549 {
2550 void __user *argp = (void __user *)arg;
2551 long r;
2552
2553 switch (ioctl) {
2554 case KVM_GET_MSR_INDEX_LIST: {
2555 struct kvm_msr_list __user *user_msr_list = argp;
2556 struct kvm_msr_list msr_list;
2557 unsigned n;
2558
2559 r = -EFAULT;
2560 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2561 goto out;
2562 n = msr_list.nmsrs;
2563 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2564 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2565 goto out;
2566 r = -E2BIG;
2567 if (n < msr_list.nmsrs)
2568 goto out;
2569 r = -EFAULT;
2570 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2571 num_msrs_to_save * sizeof(u32)))
2572 goto out;
2573 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2574 &emulated_msrs,
2575 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2576 goto out;
2577 r = 0;
2578 break;
2579 }
2580 case KVM_GET_SUPPORTED_CPUID: {
2581 struct kvm_cpuid2 __user *cpuid_arg = argp;
2582 struct kvm_cpuid2 cpuid;
2583
2584 r = -EFAULT;
2585 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2586 goto out;
2587 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2588 cpuid_arg->entries);
2589 if (r)
2590 goto out;
2591
2592 r = -EFAULT;
2593 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2594 goto out;
2595 r = 0;
2596 break;
2597 }
2598 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2599 u64 mce_cap;
2600
2601 mce_cap = KVM_MCE_CAP_SUPPORTED;
2602 r = -EFAULT;
2603 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2604 goto out;
2605 r = 0;
2606 break;
2607 }
2608 default:
2609 r = -EINVAL;
2610 }
2611 out:
2612 return r;
2613 }
2614
2615 static void wbinvd_ipi(void *garbage)
2616 {
2617 wbinvd();
2618 }
2619
2620 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2621 {
2622 return vcpu->kvm->arch.iommu_domain &&
2623 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2624 }
2625
2626 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2627 {
2628 /* Address WBINVD may be executed by guest */
2629 if (need_emulate_wbinvd(vcpu)) {
2630 if (kvm_x86_ops->has_wbinvd_exit())
2631 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2632 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2633 smp_call_function_single(vcpu->cpu,
2634 wbinvd_ipi, NULL, 1);
2635 }
2636
2637 kvm_x86_ops->vcpu_load(vcpu, cpu);
2638
2639 /* Apply any externally detected TSC adjustments (due to suspend) */
2640 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2641 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2642 vcpu->arch.tsc_offset_adjustment = 0;
2643 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2644 }
2645
2646 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2647 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2648 native_read_tsc() - vcpu->arch.last_host_tsc;
2649 if (tsc_delta < 0)
2650 mark_tsc_unstable("KVM discovered backwards TSC");
2651 if (check_tsc_unstable()) {
2652 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2653 vcpu->arch.last_guest_tsc);
2654 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2655 vcpu->arch.tsc_catchup = 1;
2656 }
2657 /*
2658 * On a host with synchronized TSC, there is no need to update
2659 * kvmclock on vcpu->cpu migration
2660 */
2661 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2662 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2663 if (vcpu->cpu != cpu)
2664 kvm_migrate_timers(vcpu);
2665 vcpu->cpu = cpu;
2666 }
2667
2668 accumulate_steal_time(vcpu);
2669 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2670 }
2671
2672 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2673 {
2674 kvm_x86_ops->vcpu_put(vcpu);
2675 kvm_put_guest_fpu(vcpu);
2676 vcpu->arch.last_host_tsc = native_read_tsc();
2677 }
2678
2679 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2680 struct kvm_lapic_state *s)
2681 {
2682 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2683
2684 return 0;
2685 }
2686
2687 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2688 struct kvm_lapic_state *s)
2689 {
2690 kvm_apic_post_state_restore(vcpu, s);
2691 update_cr8_intercept(vcpu);
2692
2693 return 0;
2694 }
2695
2696 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2697 struct kvm_interrupt *irq)
2698 {
2699 if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2700 return -EINVAL;
2701 if (irqchip_in_kernel(vcpu->kvm))
2702 return -ENXIO;
2703
2704 kvm_queue_interrupt(vcpu, irq->irq, false);
2705 kvm_make_request(KVM_REQ_EVENT, vcpu);
2706
2707 return 0;
2708 }
2709
2710 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2711 {
2712 kvm_inject_nmi(vcpu);
2713
2714 return 0;
2715 }
2716
2717 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2718 struct kvm_tpr_access_ctl *tac)
2719 {
2720 if (tac->flags)
2721 return -EINVAL;
2722 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2723 return 0;
2724 }
2725
2726 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2727 u64 mcg_cap)
2728 {
2729 int r;
2730 unsigned bank_num = mcg_cap & 0xff, bank;
2731
2732 r = -EINVAL;
2733 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2734 goto out;
2735 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2736 goto out;
2737 r = 0;
2738 vcpu->arch.mcg_cap = mcg_cap;
2739 /* Init IA32_MCG_CTL to all 1s */
2740 if (mcg_cap & MCG_CTL_P)
2741 vcpu->arch.mcg_ctl = ~(u64)0;
2742 /* Init IA32_MCi_CTL to all 1s */
2743 for (bank = 0; bank < bank_num; bank++)
2744 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2745 out:
2746 return r;
2747 }
2748
2749 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2750 struct kvm_x86_mce *mce)
2751 {
2752 u64 mcg_cap = vcpu->arch.mcg_cap;
2753 unsigned bank_num = mcg_cap & 0xff;
2754 u64 *banks = vcpu->arch.mce_banks;
2755
2756 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2757 return -EINVAL;
2758 /*
2759 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2760 * reporting is disabled
2761 */
2762 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2763 vcpu->arch.mcg_ctl != ~(u64)0)
2764 return 0;
2765 banks += 4 * mce->bank;
2766 /*
2767 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2768 * reporting is disabled for the bank
2769 */
2770 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2771 return 0;
2772 if (mce->status & MCI_STATUS_UC) {
2773 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2774 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2775 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2776 return 0;
2777 }
2778 if (banks[1] & MCI_STATUS_VAL)
2779 mce->status |= MCI_STATUS_OVER;
2780 banks[2] = mce->addr;
2781 banks[3] = mce->misc;
2782 vcpu->arch.mcg_status = mce->mcg_status;
2783 banks[1] = mce->status;
2784 kvm_queue_exception(vcpu, MC_VECTOR);
2785 } else if (!(banks[1] & MCI_STATUS_VAL)
2786 || !(banks[1] & MCI_STATUS_UC)) {
2787 if (banks[1] & MCI_STATUS_VAL)
2788 mce->status |= MCI_STATUS_OVER;
2789 banks[2] = mce->addr;
2790 banks[3] = mce->misc;
2791 banks[1] = mce->status;
2792 } else
2793 banks[1] |= MCI_STATUS_OVER;
2794 return 0;
2795 }
2796
2797 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2798 struct kvm_vcpu_events *events)
2799 {
2800 process_nmi(vcpu);
2801 events->exception.injected =
2802 vcpu->arch.exception.pending &&
2803 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2804 events->exception.nr = vcpu->arch.exception.nr;
2805 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2806 events->exception.pad = 0;
2807 events->exception.error_code = vcpu->arch.exception.error_code;
2808
2809 events->interrupt.injected =
2810 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2811 events->interrupt.nr = vcpu->arch.interrupt.nr;
2812 events->interrupt.soft = 0;
2813 events->interrupt.shadow =
2814 kvm_x86_ops->get_interrupt_shadow(vcpu,
2815 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2816
2817 events->nmi.injected = vcpu->arch.nmi_injected;
2818 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2819 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2820 events->nmi.pad = 0;
2821
2822 events->sipi_vector = vcpu->arch.sipi_vector;
2823
2824 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2825 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2826 | KVM_VCPUEVENT_VALID_SHADOW);
2827 memset(&events->reserved, 0, sizeof(events->reserved));
2828 }
2829
2830 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2831 struct kvm_vcpu_events *events)
2832 {
2833 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2834 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2835 | KVM_VCPUEVENT_VALID_SHADOW))
2836 return -EINVAL;
2837
2838 process_nmi(vcpu);
2839 vcpu->arch.exception.pending = events->exception.injected;
2840 vcpu->arch.exception.nr = events->exception.nr;
2841 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2842 vcpu->arch.exception.error_code = events->exception.error_code;
2843
2844 vcpu->arch.interrupt.pending = events->interrupt.injected;
2845 vcpu->arch.interrupt.nr = events->interrupt.nr;
2846 vcpu->arch.interrupt.soft = events->interrupt.soft;
2847 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2848 kvm_x86_ops->set_interrupt_shadow(vcpu,
2849 events->interrupt.shadow);
2850
2851 vcpu->arch.nmi_injected = events->nmi.injected;
2852 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2853 vcpu->arch.nmi_pending = events->nmi.pending;
2854 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2855
2856 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2857 vcpu->arch.sipi_vector = events->sipi_vector;
2858
2859 kvm_make_request(KVM_REQ_EVENT, vcpu);
2860
2861 return 0;
2862 }
2863
2864 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2865 struct kvm_debugregs *dbgregs)
2866 {
2867 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2868 dbgregs->dr6 = vcpu->arch.dr6;
2869 dbgregs->dr7 = vcpu->arch.dr7;
2870 dbgregs->flags = 0;
2871 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2872 }
2873
2874 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2875 struct kvm_debugregs *dbgregs)
2876 {
2877 if (dbgregs->flags)
2878 return -EINVAL;
2879
2880 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2881 vcpu->arch.dr6 = dbgregs->dr6;
2882 vcpu->arch.dr7 = dbgregs->dr7;
2883
2884 return 0;
2885 }
2886
2887 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2888 struct kvm_xsave *guest_xsave)
2889 {
2890 if (cpu_has_xsave)
2891 memcpy(guest_xsave->region,
2892 &vcpu->arch.guest_fpu.state->xsave,
2893 xstate_size);
2894 else {
2895 memcpy(guest_xsave->region,
2896 &vcpu->arch.guest_fpu.state->fxsave,
2897 sizeof(struct i387_fxsave_struct));
2898 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2899 XSTATE_FPSSE;
2900 }
2901 }
2902
2903 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2904 struct kvm_xsave *guest_xsave)
2905 {
2906 u64 xstate_bv =
2907 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2908
2909 if (cpu_has_xsave)
2910 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2911 guest_xsave->region, xstate_size);
2912 else {
2913 if (xstate_bv & ~XSTATE_FPSSE)
2914 return -EINVAL;
2915 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2916 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2917 }
2918 return 0;
2919 }
2920
2921 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2922 struct kvm_xcrs *guest_xcrs)
2923 {
2924 if (!cpu_has_xsave) {
2925 guest_xcrs->nr_xcrs = 0;
2926 return;
2927 }
2928
2929 guest_xcrs->nr_xcrs = 1;
2930 guest_xcrs->flags = 0;
2931 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2932 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2933 }
2934
2935 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2936 struct kvm_xcrs *guest_xcrs)
2937 {
2938 int i, r = 0;
2939
2940 if (!cpu_has_xsave)
2941 return -EINVAL;
2942
2943 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2944 return -EINVAL;
2945
2946 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2947 /* Only support XCR0 currently */
2948 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2949 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2950 guest_xcrs->xcrs[0].value);
2951 break;
2952 }
2953 if (r)
2954 r = -EINVAL;
2955 return r;
2956 }
2957
2958 /*
2959 * kvm_set_guest_paused() indicates to the guest kernel that it has been
2960 * stopped by the hypervisor. This function will be called from the host only.
2961 * EINVAL is returned when the host attempts to set the flag for a guest that
2962 * does not support pv clocks.
2963 */
2964 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2965 {
2966 if (!vcpu->arch.time_page)
2967 return -EINVAL;
2968 vcpu->arch.pvclock_set_guest_stopped_request = true;
2969 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2970 return 0;
2971 }
2972
2973 long kvm_arch_vcpu_ioctl(struct file *filp,
2974 unsigned int ioctl, unsigned long arg)
2975 {
2976 struct kvm_vcpu *vcpu = filp->private_data;
2977 void __user *argp = (void __user *)arg;
2978 int r;
2979 union {
2980 struct kvm_lapic_state *lapic;
2981 struct kvm_xsave *xsave;
2982 struct kvm_xcrs *xcrs;
2983 void *buffer;
2984 } u;
2985
2986 u.buffer = NULL;
2987 switch (ioctl) {
2988 case KVM_GET_LAPIC: {
2989 r = -EINVAL;
2990 if (!vcpu->arch.apic)
2991 goto out;
2992 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2993
2994 r = -ENOMEM;
2995 if (!u.lapic)
2996 goto out;
2997 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2998 if (r)
2999 goto out;
3000 r = -EFAULT;
3001 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3002 goto out;
3003 r = 0;
3004 break;
3005 }
3006 case KVM_SET_LAPIC: {
3007 r = -EINVAL;
3008 if (!vcpu->arch.apic)
3009 goto out;
3010 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3011 if (IS_ERR(u.lapic))
3012 return PTR_ERR(u.lapic);
3013
3014 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3015 break;
3016 }
3017 case KVM_INTERRUPT: {
3018 struct kvm_interrupt irq;
3019
3020 r = -EFAULT;
3021 if (copy_from_user(&irq, argp, sizeof irq))
3022 goto out;
3023 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3024 break;
3025 }
3026 case KVM_NMI: {
3027 r = kvm_vcpu_ioctl_nmi(vcpu);
3028 break;
3029 }
3030 case KVM_SET_CPUID: {
3031 struct kvm_cpuid __user *cpuid_arg = argp;
3032 struct kvm_cpuid cpuid;
3033
3034 r = -EFAULT;
3035 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3036 goto out;
3037 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3038 break;
3039 }
3040 case KVM_SET_CPUID2: {
3041 struct kvm_cpuid2 __user *cpuid_arg = argp;
3042 struct kvm_cpuid2 cpuid;
3043
3044 r = -EFAULT;
3045 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3046 goto out;
3047 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3048 cpuid_arg->entries);
3049 break;
3050 }
3051 case KVM_GET_CPUID2: {
3052 struct kvm_cpuid2 __user *cpuid_arg = argp;
3053 struct kvm_cpuid2 cpuid;
3054
3055 r = -EFAULT;
3056 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3057 goto out;
3058 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3059 cpuid_arg->entries);
3060 if (r)
3061 goto out;
3062 r = -EFAULT;
3063 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3064 goto out;
3065 r = 0;
3066 break;
3067 }
3068 case KVM_GET_MSRS:
3069 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3070 break;
3071 case KVM_SET_MSRS:
3072 r = msr_io(vcpu, argp, do_set_msr, 0);
3073 break;
3074 case KVM_TPR_ACCESS_REPORTING: {
3075 struct kvm_tpr_access_ctl tac;
3076
3077 r = -EFAULT;
3078 if (copy_from_user(&tac, argp, sizeof tac))
3079 goto out;
3080 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3081 if (r)
3082 goto out;
3083 r = -EFAULT;
3084 if (copy_to_user(argp, &tac, sizeof tac))
3085 goto out;
3086 r = 0;
3087 break;
3088 };
3089 case KVM_SET_VAPIC_ADDR: {
3090 struct kvm_vapic_addr va;
3091
3092 r = -EINVAL;
3093 if (!irqchip_in_kernel(vcpu->kvm))
3094 goto out;
3095 r = -EFAULT;
3096 if (copy_from_user(&va, argp, sizeof va))
3097 goto out;
3098 r = 0;
3099 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3100 break;
3101 }
3102 case KVM_X86_SETUP_MCE: {
3103 u64 mcg_cap;
3104
3105 r = -EFAULT;
3106 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3107 goto out;
3108 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3109 break;
3110 }
3111 case KVM_X86_SET_MCE: {
3112 struct kvm_x86_mce mce;
3113
3114 r = -EFAULT;
3115 if (copy_from_user(&mce, argp, sizeof mce))
3116 goto out;
3117 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3118 break;
3119 }
3120 case KVM_GET_VCPU_EVENTS: {
3121 struct kvm_vcpu_events events;
3122
3123 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3124
3125 r = -EFAULT;
3126 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3127 break;
3128 r = 0;
3129 break;
3130 }
3131 case KVM_SET_VCPU_EVENTS: {
3132 struct kvm_vcpu_events events;
3133
3134 r = -EFAULT;
3135 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3136 break;
3137
3138 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3139 break;
3140 }
3141 case KVM_GET_DEBUGREGS: {
3142 struct kvm_debugregs dbgregs;
3143
3144 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3145
3146 r = -EFAULT;
3147 if (copy_to_user(argp, &dbgregs,
3148 sizeof(struct kvm_debugregs)))
3149 break;
3150 r = 0;
3151 break;
3152 }
3153 case KVM_SET_DEBUGREGS: {
3154 struct kvm_debugregs dbgregs;
3155
3156 r = -EFAULT;
3157 if (copy_from_user(&dbgregs, argp,
3158 sizeof(struct kvm_debugregs)))
3159 break;
3160
3161 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3162 break;
3163 }
3164 case KVM_GET_XSAVE: {
3165 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3166 r = -ENOMEM;
3167 if (!u.xsave)
3168 break;
3169
3170 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3171
3172 r = -EFAULT;
3173 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3174 break;
3175 r = 0;
3176 break;
3177 }
3178 case KVM_SET_XSAVE: {
3179 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3180 if (IS_ERR(u.xsave))
3181 return PTR_ERR(u.xsave);
3182
3183 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3184 break;
3185 }
3186 case KVM_GET_XCRS: {
3187 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3188 r = -ENOMEM;
3189 if (!u.xcrs)
3190 break;
3191
3192 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3193
3194 r = -EFAULT;
3195 if (copy_to_user(argp, u.xcrs,
3196 sizeof(struct kvm_xcrs)))
3197 break;
3198 r = 0;
3199 break;
3200 }
3201 case KVM_SET_XCRS: {
3202 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3203 if (IS_ERR(u.xcrs))
3204 return PTR_ERR(u.xcrs);
3205
3206 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3207 break;
3208 }
3209 case KVM_SET_TSC_KHZ: {
3210 u32 user_tsc_khz;
3211
3212 r = -EINVAL;
3213 user_tsc_khz = (u32)arg;
3214
3215 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3216 goto out;
3217
3218 if (user_tsc_khz == 0)
3219 user_tsc_khz = tsc_khz;
3220
3221 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3222
3223 r = 0;
3224 goto out;
3225 }
3226 case KVM_GET_TSC_KHZ: {
3227 r = vcpu->arch.virtual_tsc_khz;
3228 goto out;
3229 }
3230 case KVM_KVMCLOCK_CTRL: {
3231 r = kvm_set_guest_paused(vcpu);
3232 goto out;
3233 }
3234 default:
3235 r = -EINVAL;
3236 }
3237 out:
3238 kfree(u.buffer);
3239 return r;
3240 }
3241
3242 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3243 {
3244 return VM_FAULT_SIGBUS;
3245 }
3246
3247 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3248 {
3249 int ret;
3250
3251 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3252 return -EINVAL;
3253 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3254 return ret;
3255 }
3256
3257 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3258 u64 ident_addr)
3259 {
3260 kvm->arch.ept_identity_map_addr = ident_addr;
3261 return 0;
3262 }
3263
3264 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3265 u32 kvm_nr_mmu_pages)
3266 {
3267 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3268 return -EINVAL;
3269
3270 mutex_lock(&kvm->slots_lock);
3271
3272 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3273 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3274
3275 mutex_unlock(&kvm->slots_lock);
3276 return 0;
3277 }
3278
3279 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3280 {
3281 return kvm->arch.n_max_mmu_pages;
3282 }
3283
3284 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3285 {
3286 int r;
3287
3288 r = 0;
3289 switch (chip->chip_id) {
3290 case KVM_IRQCHIP_PIC_MASTER:
3291 memcpy(&chip->chip.pic,
3292 &pic_irqchip(kvm)->pics[0],
3293 sizeof(struct kvm_pic_state));
3294 break;
3295 case KVM_IRQCHIP_PIC_SLAVE:
3296 memcpy(&chip->chip.pic,
3297 &pic_irqchip(kvm)->pics[1],
3298 sizeof(struct kvm_pic_state));
3299 break;
3300 case KVM_IRQCHIP_IOAPIC:
3301 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3302 break;
3303 default:
3304 r = -EINVAL;
3305 break;
3306 }
3307 return r;
3308 }
3309
3310 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3311 {
3312 int r;
3313
3314 r = 0;
3315 switch (chip->chip_id) {
3316 case KVM_IRQCHIP_PIC_MASTER:
3317 spin_lock(&pic_irqchip(kvm)->lock);
3318 memcpy(&pic_irqchip(kvm)->pics[0],
3319 &chip->chip.pic,
3320 sizeof(struct kvm_pic_state));
3321 spin_unlock(&pic_irqchip(kvm)->lock);
3322 break;
3323 case KVM_IRQCHIP_PIC_SLAVE:
3324 spin_lock(&pic_irqchip(kvm)->lock);
3325 memcpy(&pic_irqchip(kvm)->pics[1],
3326 &chip->chip.pic,
3327 sizeof(struct kvm_pic_state));
3328 spin_unlock(&pic_irqchip(kvm)->lock);
3329 break;
3330 case KVM_IRQCHIP_IOAPIC:
3331 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3332 break;
3333 default:
3334 r = -EINVAL;
3335 break;
3336 }
3337 kvm_pic_update_irq(pic_irqchip(kvm));
3338 return r;
3339 }
3340
3341 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3342 {
3343 int r = 0;
3344
3345 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3346 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3347 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3348 return r;
3349 }
3350
3351 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3352 {
3353 int r = 0;
3354
3355 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3356 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3357 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3358 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3359 return r;
3360 }
3361
3362 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3363 {
3364 int r = 0;
3365
3366 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3367 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3368 sizeof(ps->channels));
3369 ps->flags = kvm->arch.vpit->pit_state.flags;
3370 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3371 memset(&ps->reserved, 0, sizeof(ps->reserved));
3372 return r;
3373 }
3374
3375 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3376 {
3377 int r = 0, start = 0;
3378 u32 prev_legacy, cur_legacy;
3379 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3380 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3381 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3382 if (!prev_legacy && cur_legacy)
3383 start = 1;
3384 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3385 sizeof(kvm->arch.vpit->pit_state.channels));
3386 kvm->arch.vpit->pit_state.flags = ps->flags;
3387 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3388 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3389 return r;
3390 }
3391
3392 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3393 struct kvm_reinject_control *control)
3394 {
3395 if (!kvm->arch.vpit)
3396 return -ENXIO;
3397 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3398 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3399 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3400 return 0;
3401 }
3402
3403 /**
3404 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3405 * @kvm: kvm instance
3406 * @log: slot id and address to which we copy the log
3407 *
3408 * We need to keep it in mind that VCPU threads can write to the bitmap
3409 * concurrently. So, to avoid losing data, we keep the following order for
3410 * each bit:
3411 *
3412 * 1. Take a snapshot of the bit and clear it if needed.
3413 * 2. Write protect the corresponding page.
3414 * 3. Flush TLB's if needed.
3415 * 4. Copy the snapshot to the userspace.
3416 *
3417 * Between 2 and 3, the guest may write to the page using the remaining TLB
3418 * entry. This is not a problem because the page will be reported dirty at
3419 * step 4 using the snapshot taken before and step 3 ensures that successive
3420 * writes will be logged for the next call.
3421 */
3422 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3423 {
3424 int r;
3425 struct kvm_memory_slot *memslot;
3426 unsigned long n, i;
3427 unsigned long *dirty_bitmap;
3428 unsigned long *dirty_bitmap_buffer;
3429 bool is_dirty = false;
3430
3431 mutex_lock(&kvm->slots_lock);
3432
3433 r = -EINVAL;
3434 if (log->slot >= KVM_USER_MEM_SLOTS)
3435 goto out;
3436
3437 memslot = id_to_memslot(kvm->memslots, log->slot);
3438
3439 dirty_bitmap = memslot->dirty_bitmap;
3440 r = -ENOENT;
3441 if (!dirty_bitmap)
3442 goto out;
3443
3444 n = kvm_dirty_bitmap_bytes(memslot);
3445
3446 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3447 memset(dirty_bitmap_buffer, 0, n);
3448
3449 spin_lock(&kvm->mmu_lock);
3450
3451 for (i = 0; i < n / sizeof(long); i++) {
3452 unsigned long mask;
3453 gfn_t offset;
3454
3455 if (!dirty_bitmap[i])
3456 continue;
3457
3458 is_dirty = true;
3459
3460 mask = xchg(&dirty_bitmap[i], 0);
3461 dirty_bitmap_buffer[i] = mask;
3462
3463 offset = i * BITS_PER_LONG;
3464 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3465 }
3466 if (is_dirty)
3467 kvm_flush_remote_tlbs(kvm);
3468
3469 spin_unlock(&kvm->mmu_lock);
3470
3471 r = -EFAULT;
3472 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3473 goto out;
3474
3475 r = 0;
3476 out:
3477 mutex_unlock(&kvm->slots_lock);
3478 return r;
3479 }
3480
3481 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3482 {
3483 if (!irqchip_in_kernel(kvm))
3484 return -ENXIO;
3485
3486 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3487 irq_event->irq, irq_event->level);
3488 return 0;
3489 }
3490
3491 long kvm_arch_vm_ioctl(struct file *filp,
3492 unsigned int ioctl, unsigned long arg)
3493 {
3494 struct kvm *kvm = filp->private_data;
3495 void __user *argp = (void __user *)arg;
3496 int r = -ENOTTY;
3497 /*
3498 * This union makes it completely explicit to gcc-3.x
3499 * that these two variables' stack usage should be
3500 * combined, not added together.
3501 */
3502 union {
3503 struct kvm_pit_state ps;
3504 struct kvm_pit_state2 ps2;
3505 struct kvm_pit_config pit_config;
3506 } u;
3507
3508 switch (ioctl) {
3509 case KVM_SET_TSS_ADDR:
3510 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3511 break;
3512 case KVM_SET_IDENTITY_MAP_ADDR: {
3513 u64 ident_addr;
3514
3515 r = -EFAULT;
3516 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3517 goto out;
3518 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3519 break;
3520 }
3521 case KVM_SET_NR_MMU_PAGES:
3522 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3523 break;
3524 case KVM_GET_NR_MMU_PAGES:
3525 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3526 break;
3527 case KVM_CREATE_IRQCHIP: {
3528 struct kvm_pic *vpic;
3529
3530 mutex_lock(&kvm->lock);
3531 r = -EEXIST;
3532 if (kvm->arch.vpic)
3533 goto create_irqchip_unlock;
3534 r = -EINVAL;
3535 if (atomic_read(&kvm->online_vcpus))
3536 goto create_irqchip_unlock;
3537 r = -ENOMEM;
3538 vpic = kvm_create_pic(kvm);
3539 if (vpic) {
3540 r = kvm_ioapic_init(kvm);
3541 if (r) {
3542 mutex_lock(&kvm->slots_lock);
3543 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3544 &vpic->dev_master);
3545 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3546 &vpic->dev_slave);
3547 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3548 &vpic->dev_eclr);
3549 mutex_unlock(&kvm->slots_lock);
3550 kfree(vpic);
3551 goto create_irqchip_unlock;
3552 }
3553 } else
3554 goto create_irqchip_unlock;
3555 smp_wmb();
3556 kvm->arch.vpic = vpic;
3557 smp_wmb();
3558 r = kvm_setup_default_irq_routing(kvm);
3559 if (r) {
3560 mutex_lock(&kvm->slots_lock);
3561 mutex_lock(&kvm->irq_lock);
3562 kvm_ioapic_destroy(kvm);
3563 kvm_destroy_pic(kvm);
3564 mutex_unlock(&kvm->irq_lock);
3565 mutex_unlock(&kvm->slots_lock);
3566 }
3567 create_irqchip_unlock:
3568 mutex_unlock(&kvm->lock);
3569 break;
3570 }
3571 case KVM_CREATE_PIT:
3572 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3573 goto create_pit;
3574 case KVM_CREATE_PIT2:
3575 r = -EFAULT;
3576 if (copy_from_user(&u.pit_config, argp,
3577 sizeof(struct kvm_pit_config)))
3578 goto out;
3579 create_pit:
3580 mutex_lock(&kvm->slots_lock);
3581 r = -EEXIST;
3582 if (kvm->arch.vpit)
3583 goto create_pit_unlock;
3584 r = -ENOMEM;
3585 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3586 if (kvm->arch.vpit)
3587 r = 0;
3588 create_pit_unlock:
3589 mutex_unlock(&kvm->slots_lock);
3590 break;
3591 case KVM_GET_IRQCHIP: {
3592 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3593 struct kvm_irqchip *chip;
3594
3595 chip = memdup_user(argp, sizeof(*chip));
3596 if (IS_ERR(chip)) {
3597 r = PTR_ERR(chip);
3598 goto out;
3599 }
3600
3601 r = -ENXIO;
3602 if (!irqchip_in_kernel(kvm))
3603 goto get_irqchip_out;
3604 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3605 if (r)
3606 goto get_irqchip_out;
3607 r = -EFAULT;
3608 if (copy_to_user(argp, chip, sizeof *chip))
3609 goto get_irqchip_out;
3610 r = 0;
3611 get_irqchip_out:
3612 kfree(chip);
3613 break;
3614 }
3615 case KVM_SET_IRQCHIP: {
3616 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3617 struct kvm_irqchip *chip;
3618
3619 chip = memdup_user(argp, sizeof(*chip));
3620 if (IS_ERR(chip)) {
3621 r = PTR_ERR(chip);
3622 goto out;
3623 }
3624
3625 r = -ENXIO;
3626 if (!irqchip_in_kernel(kvm))
3627 goto set_irqchip_out;
3628 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3629 if (r)
3630 goto set_irqchip_out;
3631 r = 0;
3632 set_irqchip_out:
3633 kfree(chip);
3634 break;
3635 }
3636 case KVM_GET_PIT: {
3637 r = -EFAULT;
3638 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3639 goto out;
3640 r = -ENXIO;
3641 if (!kvm->arch.vpit)
3642 goto out;
3643 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3644 if (r)
3645 goto out;
3646 r = -EFAULT;
3647 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3648 goto out;
3649 r = 0;
3650 break;
3651 }
3652 case KVM_SET_PIT: {
3653 r = -EFAULT;
3654 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3655 goto out;
3656 r = -ENXIO;
3657 if (!kvm->arch.vpit)
3658 goto out;
3659 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3660 break;
3661 }
3662 case KVM_GET_PIT2: {
3663 r = -ENXIO;
3664 if (!kvm->arch.vpit)
3665 goto out;
3666 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3667 if (r)
3668 goto out;
3669 r = -EFAULT;
3670 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3671 goto out;
3672 r = 0;
3673 break;
3674 }
3675 case KVM_SET_PIT2: {
3676 r = -EFAULT;
3677 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3678 goto out;
3679 r = -ENXIO;
3680 if (!kvm->arch.vpit)
3681 goto out;
3682 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3683 break;
3684 }
3685 case KVM_REINJECT_CONTROL: {
3686 struct kvm_reinject_control control;
3687 r = -EFAULT;
3688 if (copy_from_user(&control, argp, sizeof(control)))
3689 goto out;
3690 r = kvm_vm_ioctl_reinject(kvm, &control);
3691 break;
3692 }
3693 case KVM_XEN_HVM_CONFIG: {
3694 r = -EFAULT;
3695 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3696 sizeof(struct kvm_xen_hvm_config)))
3697 goto out;
3698 r = -EINVAL;
3699 if (kvm->arch.xen_hvm_config.flags)
3700 goto out;
3701 r = 0;
3702 break;
3703 }
3704 case KVM_SET_CLOCK: {
3705 struct kvm_clock_data user_ns;
3706 u64 now_ns;
3707 s64 delta;
3708
3709 r = -EFAULT;
3710 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3711 goto out;
3712
3713 r = -EINVAL;
3714 if (user_ns.flags)
3715 goto out;
3716
3717 r = 0;
3718 local_irq_disable();
3719 now_ns = get_kernel_ns();
3720 delta = user_ns.clock - now_ns;
3721 local_irq_enable();
3722 kvm->arch.kvmclock_offset = delta;
3723 break;
3724 }
3725 case KVM_GET_CLOCK: {
3726 struct kvm_clock_data user_ns;
3727 u64 now_ns;
3728
3729 local_irq_disable();
3730 now_ns = get_kernel_ns();
3731 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3732 local_irq_enable();
3733 user_ns.flags = 0;
3734 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3735
3736 r = -EFAULT;
3737 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3738 goto out;
3739 r = 0;
3740 break;
3741 }
3742
3743 default:
3744 ;
3745 }
3746 out:
3747 return r;
3748 }
3749
3750 static void kvm_init_msr_list(void)
3751 {
3752 u32 dummy[2];
3753 unsigned i, j;
3754
3755 /* skip the first msrs in the list. KVM-specific */
3756 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3757 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3758 continue;
3759 if (j < i)
3760 msrs_to_save[j] = msrs_to_save[i];
3761 j++;
3762 }
3763 num_msrs_to_save = j;
3764 }
3765
3766 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3767 const void *v)
3768 {
3769 int handled = 0;
3770 int n;
3771
3772 do {
3773 n = min(len, 8);
3774 if (!(vcpu->arch.apic &&
3775 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3776 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3777 break;
3778 handled += n;
3779 addr += n;
3780 len -= n;
3781 v += n;
3782 } while (len);
3783
3784 return handled;
3785 }
3786
3787 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3788 {
3789 int handled = 0;
3790 int n;
3791
3792 do {
3793 n = min(len, 8);
3794 if (!(vcpu->arch.apic &&
3795 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3796 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3797 break;
3798 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3799 handled += n;
3800 addr += n;
3801 len -= n;
3802 v += n;
3803 } while (len);
3804
3805 return handled;
3806 }
3807
3808 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3809 struct kvm_segment *var, int seg)
3810 {
3811 kvm_x86_ops->set_segment(vcpu, var, seg);
3812 }
3813
3814 void kvm_get_segment(struct kvm_vcpu *vcpu,
3815 struct kvm_segment *var, int seg)
3816 {
3817 kvm_x86_ops->get_segment(vcpu, var, seg);
3818 }
3819
3820 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3821 {
3822 gpa_t t_gpa;
3823 struct x86_exception exception;
3824
3825 BUG_ON(!mmu_is_nested(vcpu));
3826
3827 /* NPT walks are always user-walks */
3828 access |= PFERR_USER_MASK;
3829 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3830
3831 return t_gpa;
3832 }
3833
3834 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3835 struct x86_exception *exception)
3836 {
3837 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3838 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3839 }
3840
3841 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3842 struct x86_exception *exception)
3843 {
3844 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3845 access |= PFERR_FETCH_MASK;
3846 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3847 }
3848
3849 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3850 struct x86_exception *exception)
3851 {
3852 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3853 access |= PFERR_WRITE_MASK;
3854 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3855 }
3856
3857 /* uses this to access any guest's mapped memory without checking CPL */
3858 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3859 struct x86_exception *exception)
3860 {
3861 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3862 }
3863
3864 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3865 struct kvm_vcpu *vcpu, u32 access,
3866 struct x86_exception *exception)
3867 {
3868 void *data = val;
3869 int r = X86EMUL_CONTINUE;
3870
3871 while (bytes) {
3872 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3873 exception);
3874 unsigned offset = addr & (PAGE_SIZE-1);
3875 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3876 int ret;
3877
3878 if (gpa == UNMAPPED_GVA)
3879 return X86EMUL_PROPAGATE_FAULT;
3880 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3881 if (ret < 0) {
3882 r = X86EMUL_IO_NEEDED;
3883 goto out;
3884 }
3885
3886 bytes -= toread;
3887 data += toread;
3888 addr += toread;
3889 }
3890 out:
3891 return r;
3892 }
3893
3894 /* used for instruction fetching */
3895 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3896 gva_t addr, void *val, unsigned int bytes,
3897 struct x86_exception *exception)
3898 {
3899 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3900 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3901
3902 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3903 access | PFERR_FETCH_MASK,
3904 exception);
3905 }
3906
3907 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3908 gva_t addr, void *val, unsigned int bytes,
3909 struct x86_exception *exception)
3910 {
3911 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3912 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3913
3914 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3915 exception);
3916 }
3917 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3918
3919 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3920 gva_t addr, void *val, unsigned int bytes,
3921 struct x86_exception *exception)
3922 {
3923 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3924 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3925 }
3926
3927 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3928 gva_t addr, void *val,
3929 unsigned int bytes,
3930 struct x86_exception *exception)
3931 {
3932 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3933 void *data = val;
3934 int r = X86EMUL_CONTINUE;
3935
3936 while (bytes) {
3937 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3938 PFERR_WRITE_MASK,
3939 exception);
3940 unsigned offset = addr & (PAGE_SIZE-1);
3941 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3942 int ret;
3943
3944 if (gpa == UNMAPPED_GVA)
3945 return X86EMUL_PROPAGATE_FAULT;
3946 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3947 if (ret < 0) {
3948 r = X86EMUL_IO_NEEDED;
3949 goto out;
3950 }
3951
3952 bytes -= towrite;
3953 data += towrite;
3954 addr += towrite;
3955 }
3956 out:
3957 return r;
3958 }
3959 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3960
3961 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3962 gpa_t *gpa, struct x86_exception *exception,
3963 bool write)
3964 {
3965 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3966 | (write ? PFERR_WRITE_MASK : 0);
3967
3968 if (vcpu_match_mmio_gva(vcpu, gva)
3969 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3970 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3971 (gva & (PAGE_SIZE - 1));
3972 trace_vcpu_match_mmio(gva, *gpa, write, false);
3973 return 1;
3974 }
3975
3976 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3977
3978 if (*gpa == UNMAPPED_GVA)
3979 return -1;
3980
3981 /* For APIC access vmexit */
3982 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3983 return 1;
3984
3985 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3986 trace_vcpu_match_mmio(gva, *gpa, write, true);
3987 return 1;
3988 }
3989
3990 return 0;
3991 }
3992
3993 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3994 const void *val, int bytes)
3995 {
3996 int ret;
3997
3998 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3999 if (ret < 0)
4000 return 0;
4001 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4002 return 1;
4003 }
4004
4005 struct read_write_emulator_ops {
4006 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4007 int bytes);
4008 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4009 void *val, int bytes);
4010 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4011 int bytes, void *val);
4012 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4013 void *val, int bytes);
4014 bool write;
4015 };
4016
4017 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4018 {
4019 if (vcpu->mmio_read_completed) {
4020 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4021 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4022 vcpu->mmio_read_completed = 0;
4023 return 1;
4024 }
4025
4026 return 0;
4027 }
4028
4029 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4030 void *val, int bytes)
4031 {
4032 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4033 }
4034
4035 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4036 void *val, int bytes)
4037 {
4038 return emulator_write_phys(vcpu, gpa, val, bytes);
4039 }
4040
4041 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4042 {
4043 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4044 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4045 }
4046
4047 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4048 void *val, int bytes)
4049 {
4050 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4051 return X86EMUL_IO_NEEDED;
4052 }
4053
4054 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4055 void *val, int bytes)
4056 {
4057 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4058
4059 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4060 return X86EMUL_CONTINUE;
4061 }
4062
4063 static const struct read_write_emulator_ops read_emultor = {
4064 .read_write_prepare = read_prepare,
4065 .read_write_emulate = read_emulate,
4066 .read_write_mmio = vcpu_mmio_read,
4067 .read_write_exit_mmio = read_exit_mmio,
4068 };
4069
4070 static const struct read_write_emulator_ops write_emultor = {
4071 .read_write_emulate = write_emulate,
4072 .read_write_mmio = write_mmio,
4073 .read_write_exit_mmio = write_exit_mmio,
4074 .write = true,
4075 };
4076
4077 static int emulator_read_write_onepage(unsigned long addr, void *val,
4078 unsigned int bytes,
4079 struct x86_exception *exception,
4080 struct kvm_vcpu *vcpu,
4081 const struct read_write_emulator_ops *ops)
4082 {
4083 gpa_t gpa;
4084 int handled, ret;
4085 bool write = ops->write;
4086 struct kvm_mmio_fragment *frag;
4087
4088 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4089
4090 if (ret < 0)
4091 return X86EMUL_PROPAGATE_FAULT;
4092
4093 /* For APIC access vmexit */
4094 if (ret)
4095 goto mmio;
4096
4097 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4098 return X86EMUL_CONTINUE;
4099
4100 mmio:
4101 /*
4102 * Is this MMIO handled locally?
4103 */
4104 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4105 if (handled == bytes)
4106 return X86EMUL_CONTINUE;
4107
4108 gpa += handled;
4109 bytes -= handled;
4110 val += handled;
4111
4112 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4113 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4114 frag->gpa = gpa;
4115 frag->data = val;
4116 frag->len = bytes;
4117 return X86EMUL_CONTINUE;
4118 }
4119
4120 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4121 void *val, unsigned int bytes,
4122 struct x86_exception *exception,
4123 const struct read_write_emulator_ops *ops)
4124 {
4125 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4126 gpa_t gpa;
4127 int rc;
4128
4129 if (ops->read_write_prepare &&
4130 ops->read_write_prepare(vcpu, val, bytes))
4131 return X86EMUL_CONTINUE;
4132
4133 vcpu->mmio_nr_fragments = 0;
4134
4135 /* Crossing a page boundary? */
4136 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4137 int now;
4138
4139 now = -addr & ~PAGE_MASK;
4140 rc = emulator_read_write_onepage(addr, val, now, exception,
4141 vcpu, ops);
4142
4143 if (rc != X86EMUL_CONTINUE)
4144 return rc;
4145 addr += now;
4146 val += now;
4147 bytes -= now;
4148 }
4149
4150 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4151 vcpu, ops);
4152 if (rc != X86EMUL_CONTINUE)
4153 return rc;
4154
4155 if (!vcpu->mmio_nr_fragments)
4156 return rc;
4157
4158 gpa = vcpu->mmio_fragments[0].gpa;
4159
4160 vcpu->mmio_needed = 1;
4161 vcpu->mmio_cur_fragment = 0;
4162
4163 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4164 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4165 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4166 vcpu->run->mmio.phys_addr = gpa;
4167
4168 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4169 }
4170
4171 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4172 unsigned long addr,
4173 void *val,
4174 unsigned int bytes,
4175 struct x86_exception *exception)
4176 {
4177 return emulator_read_write(ctxt, addr, val, bytes,
4178 exception, &read_emultor);
4179 }
4180
4181 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4182 unsigned long addr,
4183 const void *val,
4184 unsigned int bytes,
4185 struct x86_exception *exception)
4186 {
4187 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4188 exception, &write_emultor);
4189 }
4190
4191 #define CMPXCHG_TYPE(t, ptr, old, new) \
4192 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4193
4194 #ifdef CONFIG_X86_64
4195 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4196 #else
4197 # define CMPXCHG64(ptr, old, new) \
4198 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4199 #endif
4200
4201 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4202 unsigned long addr,
4203 const void *old,
4204 const void *new,
4205 unsigned int bytes,
4206 struct x86_exception *exception)
4207 {
4208 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4209 gpa_t gpa;
4210 struct page *page;
4211 char *kaddr;
4212 bool exchanged;
4213
4214 /* guests cmpxchg8b have to be emulated atomically */
4215 if (bytes > 8 || (bytes & (bytes - 1)))
4216 goto emul_write;
4217
4218 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4219
4220 if (gpa == UNMAPPED_GVA ||
4221 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4222 goto emul_write;
4223
4224 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4225 goto emul_write;
4226
4227 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4228 if (is_error_page(page))
4229 goto emul_write;
4230
4231 kaddr = kmap_atomic(page);
4232 kaddr += offset_in_page(gpa);
4233 switch (bytes) {
4234 case 1:
4235 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4236 break;
4237 case 2:
4238 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4239 break;
4240 case 4:
4241 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4242 break;
4243 case 8:
4244 exchanged = CMPXCHG64(kaddr, old, new);
4245 break;
4246 default:
4247 BUG();
4248 }
4249 kunmap_atomic(kaddr);
4250 kvm_release_page_dirty(page);
4251
4252 if (!exchanged)
4253 return X86EMUL_CMPXCHG_FAILED;
4254
4255 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4256
4257 return X86EMUL_CONTINUE;
4258
4259 emul_write:
4260 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4261
4262 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4263 }
4264
4265 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4266 {
4267 /* TODO: String I/O for in kernel device */
4268 int r;
4269
4270 if (vcpu->arch.pio.in)
4271 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4272 vcpu->arch.pio.size, pd);
4273 else
4274 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4275 vcpu->arch.pio.port, vcpu->arch.pio.size,
4276 pd);
4277 return r;
4278 }
4279
4280 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4281 unsigned short port, void *val,
4282 unsigned int count, bool in)
4283 {
4284 trace_kvm_pio(!in, port, size, count);
4285
4286 vcpu->arch.pio.port = port;
4287 vcpu->arch.pio.in = in;
4288 vcpu->arch.pio.count = count;
4289 vcpu->arch.pio.size = size;
4290
4291 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4292 vcpu->arch.pio.count = 0;
4293 return 1;
4294 }
4295
4296 vcpu->run->exit_reason = KVM_EXIT_IO;
4297 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4298 vcpu->run->io.size = size;
4299 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4300 vcpu->run->io.count = count;
4301 vcpu->run->io.port = port;
4302
4303 return 0;
4304 }
4305
4306 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4307 int size, unsigned short port, void *val,
4308 unsigned int count)
4309 {
4310 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4311 int ret;
4312
4313 if (vcpu->arch.pio.count)
4314 goto data_avail;
4315
4316 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4317 if (ret) {
4318 data_avail:
4319 memcpy(val, vcpu->arch.pio_data, size * count);
4320 vcpu->arch.pio.count = 0;
4321 return 1;
4322 }
4323
4324 return 0;
4325 }
4326
4327 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4328 int size, unsigned short port,
4329 const void *val, unsigned int count)
4330 {
4331 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4332
4333 memcpy(vcpu->arch.pio_data, val, size * count);
4334 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4335 }
4336
4337 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4338 {
4339 return kvm_x86_ops->get_segment_base(vcpu, seg);
4340 }
4341
4342 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4343 {
4344 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4345 }
4346
4347 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4348 {
4349 if (!need_emulate_wbinvd(vcpu))
4350 return X86EMUL_CONTINUE;
4351
4352 if (kvm_x86_ops->has_wbinvd_exit()) {
4353 int cpu = get_cpu();
4354
4355 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4356 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4357 wbinvd_ipi, NULL, 1);
4358 put_cpu();
4359 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4360 } else
4361 wbinvd();
4362 return X86EMUL_CONTINUE;
4363 }
4364 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4365
4366 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4367 {
4368 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4369 }
4370
4371 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4372 {
4373 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4374 }
4375
4376 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4377 {
4378
4379 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4380 }
4381
4382 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4383 {
4384 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4385 }
4386
4387 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4388 {
4389 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4390 unsigned long value;
4391
4392 switch (cr) {
4393 case 0:
4394 value = kvm_read_cr0(vcpu);
4395 break;
4396 case 2:
4397 value = vcpu->arch.cr2;
4398 break;
4399 case 3:
4400 value = kvm_read_cr3(vcpu);
4401 break;
4402 case 4:
4403 value = kvm_read_cr4(vcpu);
4404 break;
4405 case 8:
4406 value = kvm_get_cr8(vcpu);
4407 break;
4408 default:
4409 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4410 return 0;
4411 }
4412
4413 return value;
4414 }
4415
4416 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4417 {
4418 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4419 int res = 0;
4420
4421 switch (cr) {
4422 case 0:
4423 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4424 break;
4425 case 2:
4426 vcpu->arch.cr2 = val;
4427 break;
4428 case 3:
4429 res = kvm_set_cr3(vcpu, val);
4430 break;
4431 case 4:
4432 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4433 break;
4434 case 8:
4435 res = kvm_set_cr8(vcpu, val);
4436 break;
4437 default:
4438 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4439 res = -1;
4440 }
4441
4442 return res;
4443 }
4444
4445 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4446 {
4447 kvm_set_rflags(emul_to_vcpu(ctxt), val);
4448 }
4449
4450 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4451 {
4452 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4453 }
4454
4455 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4456 {
4457 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4458 }
4459
4460 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4461 {
4462 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4463 }
4464
4465 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4466 {
4467 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4468 }
4469
4470 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4471 {
4472 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4473 }
4474
4475 static unsigned long emulator_get_cached_segment_base(
4476 struct x86_emulate_ctxt *ctxt, int seg)
4477 {
4478 return get_segment_base(emul_to_vcpu(ctxt), seg);
4479 }
4480
4481 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4482 struct desc_struct *desc, u32 *base3,
4483 int seg)
4484 {
4485 struct kvm_segment var;
4486
4487 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4488 *selector = var.selector;
4489
4490 if (var.unusable) {
4491 memset(desc, 0, sizeof(*desc));
4492 return false;
4493 }
4494
4495 if (var.g)
4496 var.limit >>= 12;
4497 set_desc_limit(desc, var.limit);
4498 set_desc_base(desc, (unsigned long)var.base);
4499 #ifdef CONFIG_X86_64
4500 if (base3)
4501 *base3 = var.base >> 32;
4502 #endif
4503 desc->type = var.type;
4504 desc->s = var.s;
4505 desc->dpl = var.dpl;
4506 desc->p = var.present;
4507 desc->avl = var.avl;
4508 desc->l = var.l;
4509 desc->d = var.db;
4510 desc->g = var.g;
4511
4512 return true;
4513 }
4514
4515 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4516 struct desc_struct *desc, u32 base3,
4517 int seg)
4518 {
4519 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4520 struct kvm_segment var;
4521
4522 var.selector = selector;
4523 var.base = get_desc_base(desc);
4524 #ifdef CONFIG_X86_64
4525 var.base |= ((u64)base3) << 32;
4526 #endif
4527 var.limit = get_desc_limit(desc);
4528 if (desc->g)
4529 var.limit = (var.limit << 12) | 0xfff;
4530 var.type = desc->type;
4531 var.present = desc->p;
4532 var.dpl = desc->dpl;
4533 var.db = desc->d;
4534 var.s = desc->s;
4535 var.l = desc->l;
4536 var.g = desc->g;
4537 var.avl = desc->avl;
4538 var.present = desc->p;
4539 var.unusable = !var.present;
4540 var.padding = 0;
4541
4542 kvm_set_segment(vcpu, &var, seg);
4543 return;
4544 }
4545
4546 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4547 u32 msr_index, u64 *pdata)
4548 {
4549 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4550 }
4551
4552 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4553 u32 msr_index, u64 data)
4554 {
4555 struct msr_data msr;
4556
4557 msr.data = data;
4558 msr.index = msr_index;
4559 msr.host_initiated = false;
4560 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4561 }
4562
4563 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4564 u32 pmc, u64 *pdata)
4565 {
4566 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4567 }
4568
4569 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4570 {
4571 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4572 }
4573
4574 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4575 {
4576 preempt_disable();
4577 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4578 /*
4579 * CR0.TS may reference the host fpu state, not the guest fpu state,
4580 * so it may be clear at this point.
4581 */
4582 clts();
4583 }
4584
4585 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4586 {
4587 preempt_enable();
4588 }
4589
4590 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4591 struct x86_instruction_info *info,
4592 enum x86_intercept_stage stage)
4593 {
4594 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4595 }
4596
4597 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4598 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4599 {
4600 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4601 }
4602
4603 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4604 {
4605 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4606 }
4607
4608 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4609 {
4610 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4611 }
4612
4613 static const struct x86_emulate_ops emulate_ops = {
4614 .read_gpr = emulator_read_gpr,
4615 .write_gpr = emulator_write_gpr,
4616 .read_std = kvm_read_guest_virt_system,
4617 .write_std = kvm_write_guest_virt_system,
4618 .fetch = kvm_fetch_guest_virt,
4619 .read_emulated = emulator_read_emulated,
4620 .write_emulated = emulator_write_emulated,
4621 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4622 .invlpg = emulator_invlpg,
4623 .pio_in_emulated = emulator_pio_in_emulated,
4624 .pio_out_emulated = emulator_pio_out_emulated,
4625 .get_segment = emulator_get_segment,
4626 .set_segment = emulator_set_segment,
4627 .get_cached_segment_base = emulator_get_cached_segment_base,
4628 .get_gdt = emulator_get_gdt,
4629 .get_idt = emulator_get_idt,
4630 .set_gdt = emulator_set_gdt,
4631 .set_idt = emulator_set_idt,
4632 .get_cr = emulator_get_cr,
4633 .set_cr = emulator_set_cr,
4634 .set_rflags = emulator_set_rflags,
4635 .cpl = emulator_get_cpl,
4636 .get_dr = emulator_get_dr,
4637 .set_dr = emulator_set_dr,
4638 .set_msr = emulator_set_msr,
4639 .get_msr = emulator_get_msr,
4640 .read_pmc = emulator_read_pmc,
4641 .halt = emulator_halt,
4642 .wbinvd = emulator_wbinvd,
4643 .fix_hypercall = emulator_fix_hypercall,
4644 .get_fpu = emulator_get_fpu,
4645 .put_fpu = emulator_put_fpu,
4646 .intercept = emulator_intercept,
4647 .get_cpuid = emulator_get_cpuid,
4648 };
4649
4650 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4651 {
4652 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4653 /*
4654 * an sti; sti; sequence only disable interrupts for the first
4655 * instruction. So, if the last instruction, be it emulated or
4656 * not, left the system with the INT_STI flag enabled, it
4657 * means that the last instruction is an sti. We should not
4658 * leave the flag on in this case. The same goes for mov ss
4659 */
4660 if (!(int_shadow & mask))
4661 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4662 }
4663
4664 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4665 {
4666 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4667 if (ctxt->exception.vector == PF_VECTOR)
4668 kvm_propagate_fault(vcpu, &ctxt->exception);
4669 else if (ctxt->exception.error_code_valid)
4670 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4671 ctxt->exception.error_code);
4672 else
4673 kvm_queue_exception(vcpu, ctxt->exception.vector);
4674 }
4675
4676 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4677 {
4678 memset(&ctxt->twobyte, 0,
4679 (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4680
4681 ctxt->fetch.start = 0;
4682 ctxt->fetch.end = 0;
4683 ctxt->io_read.pos = 0;
4684 ctxt->io_read.end = 0;
4685 ctxt->mem_read.pos = 0;
4686 ctxt->mem_read.end = 0;
4687 }
4688
4689 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4690 {
4691 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4692 int cs_db, cs_l;
4693
4694 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4695
4696 ctxt->eflags = kvm_get_rflags(vcpu);
4697 ctxt->eip = kvm_rip_read(vcpu);
4698 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4699 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4700 cs_l ? X86EMUL_MODE_PROT64 :
4701 cs_db ? X86EMUL_MODE_PROT32 :
4702 X86EMUL_MODE_PROT16;
4703 ctxt->guest_mode = is_guest_mode(vcpu);
4704
4705 init_decode_cache(ctxt);
4706 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4707 }
4708
4709 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4710 {
4711 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4712 int ret;
4713
4714 init_emulate_ctxt(vcpu);
4715
4716 ctxt->op_bytes = 2;
4717 ctxt->ad_bytes = 2;
4718 ctxt->_eip = ctxt->eip + inc_eip;
4719 ret = emulate_int_real(ctxt, irq);
4720
4721 if (ret != X86EMUL_CONTINUE)
4722 return EMULATE_FAIL;
4723
4724 ctxt->eip = ctxt->_eip;
4725 kvm_rip_write(vcpu, ctxt->eip);
4726 kvm_set_rflags(vcpu, ctxt->eflags);
4727
4728 if (irq == NMI_VECTOR)
4729 vcpu->arch.nmi_pending = 0;
4730 else
4731 vcpu->arch.interrupt.pending = false;
4732
4733 return EMULATE_DONE;
4734 }
4735 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4736
4737 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4738 {
4739 int r = EMULATE_DONE;
4740
4741 ++vcpu->stat.insn_emulation_fail;
4742 trace_kvm_emulate_insn_failed(vcpu);
4743 if (!is_guest_mode(vcpu)) {
4744 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4745 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4746 vcpu->run->internal.ndata = 0;
4747 r = EMULATE_FAIL;
4748 }
4749 kvm_queue_exception(vcpu, UD_VECTOR);
4750
4751 return r;
4752 }
4753
4754 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4755 bool write_fault_to_shadow_pgtable)
4756 {
4757 gpa_t gpa = cr2;
4758 pfn_t pfn;
4759
4760 if (!vcpu->arch.mmu.direct_map) {
4761 /*
4762 * Write permission should be allowed since only
4763 * write access need to be emulated.
4764 */
4765 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4766
4767 /*
4768 * If the mapping is invalid in guest, let cpu retry
4769 * it to generate fault.
4770 */
4771 if (gpa == UNMAPPED_GVA)
4772 return true;
4773 }
4774
4775 /*
4776 * Do not retry the unhandleable instruction if it faults on the
4777 * readonly host memory, otherwise it will goto a infinite loop:
4778 * retry instruction -> write #PF -> emulation fail -> retry
4779 * instruction -> ...
4780 */
4781 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4782
4783 /*
4784 * If the instruction failed on the error pfn, it can not be fixed,
4785 * report the error to userspace.
4786 */
4787 if (is_error_noslot_pfn(pfn))
4788 return false;
4789
4790 kvm_release_pfn_clean(pfn);
4791
4792 /* The instructions are well-emulated on direct mmu. */
4793 if (vcpu->arch.mmu.direct_map) {
4794 unsigned int indirect_shadow_pages;
4795
4796 spin_lock(&vcpu->kvm->mmu_lock);
4797 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4798 spin_unlock(&vcpu->kvm->mmu_lock);
4799
4800 if (indirect_shadow_pages)
4801 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4802
4803 return true;
4804 }
4805
4806 /*
4807 * if emulation was due to access to shadowed page table
4808 * and it failed try to unshadow page and re-enter the
4809 * guest to let CPU execute the instruction.
4810 */
4811 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4812
4813 /*
4814 * If the access faults on its page table, it can not
4815 * be fixed by unprotecting shadow page and it should
4816 * be reported to userspace.
4817 */
4818 return !write_fault_to_shadow_pgtable;
4819 }
4820
4821 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4822 unsigned long cr2, int emulation_type)
4823 {
4824 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4825 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4826
4827 last_retry_eip = vcpu->arch.last_retry_eip;
4828 last_retry_addr = vcpu->arch.last_retry_addr;
4829
4830 /*
4831 * If the emulation is caused by #PF and it is non-page_table
4832 * writing instruction, it means the VM-EXIT is caused by shadow
4833 * page protected, we can zap the shadow page and retry this
4834 * instruction directly.
4835 *
4836 * Note: if the guest uses a non-page-table modifying instruction
4837 * on the PDE that points to the instruction, then we will unmap
4838 * the instruction and go to an infinite loop. So, we cache the
4839 * last retried eip and the last fault address, if we meet the eip
4840 * and the address again, we can break out of the potential infinite
4841 * loop.
4842 */
4843 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4844
4845 if (!(emulation_type & EMULTYPE_RETRY))
4846 return false;
4847
4848 if (x86_page_table_writing_insn(ctxt))
4849 return false;
4850
4851 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4852 return false;
4853
4854 vcpu->arch.last_retry_eip = ctxt->eip;
4855 vcpu->arch.last_retry_addr = cr2;
4856
4857 if (!vcpu->arch.mmu.direct_map)
4858 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4859
4860 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4861
4862 return true;
4863 }
4864
4865 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4866 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4867
4868 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4869 unsigned long cr2,
4870 int emulation_type,
4871 void *insn,
4872 int insn_len)
4873 {
4874 int r;
4875 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4876 bool writeback = true;
4877 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
4878
4879 /*
4880 * Clear write_fault_to_shadow_pgtable here to ensure it is
4881 * never reused.
4882 */
4883 vcpu->arch.write_fault_to_shadow_pgtable = false;
4884 kvm_clear_exception_queue(vcpu);
4885
4886 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4887 init_emulate_ctxt(vcpu);
4888 ctxt->interruptibility = 0;
4889 ctxt->have_exception = false;
4890 ctxt->perm_ok = false;
4891
4892 ctxt->only_vendor_specific_insn
4893 = emulation_type & EMULTYPE_TRAP_UD;
4894
4895 r = x86_decode_insn(ctxt, insn, insn_len);
4896
4897 trace_kvm_emulate_insn_start(vcpu);
4898 ++vcpu->stat.insn_emulation;
4899 if (r != EMULATION_OK) {
4900 if (emulation_type & EMULTYPE_TRAP_UD)
4901 return EMULATE_FAIL;
4902 if (reexecute_instruction(vcpu, cr2,
4903 write_fault_to_spt))
4904 return EMULATE_DONE;
4905 if (emulation_type & EMULTYPE_SKIP)
4906 return EMULATE_FAIL;
4907 return handle_emulation_failure(vcpu);
4908 }
4909 }
4910
4911 if (emulation_type & EMULTYPE_SKIP) {
4912 kvm_rip_write(vcpu, ctxt->_eip);
4913 return EMULATE_DONE;
4914 }
4915
4916 if (retry_instruction(ctxt, cr2, emulation_type))
4917 return EMULATE_DONE;
4918
4919 /* this is needed for vmware backdoor interface to work since it
4920 changes registers values during IO operation */
4921 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4922 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4923 emulator_invalidate_register_cache(ctxt);
4924 }
4925
4926 restart:
4927 r = x86_emulate_insn(ctxt);
4928
4929 if (r == EMULATION_INTERCEPTED)
4930 return EMULATE_DONE;
4931
4932 if (r == EMULATION_FAILED) {
4933 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt))
4934 return EMULATE_DONE;
4935
4936 return handle_emulation_failure(vcpu);
4937 }
4938
4939 if (ctxt->have_exception) {
4940 inject_emulated_exception(vcpu);
4941 r = EMULATE_DONE;
4942 } else if (vcpu->arch.pio.count) {
4943 if (!vcpu->arch.pio.in)
4944 vcpu->arch.pio.count = 0;
4945 else {
4946 writeback = false;
4947 vcpu->arch.complete_userspace_io = complete_emulated_pio;
4948 }
4949 r = EMULATE_DO_MMIO;
4950 } else if (vcpu->mmio_needed) {
4951 if (!vcpu->mmio_is_write)
4952 writeback = false;
4953 r = EMULATE_DO_MMIO;
4954 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4955 } else if (r == EMULATION_RESTART)
4956 goto restart;
4957 else
4958 r = EMULATE_DONE;
4959
4960 if (writeback) {
4961 toggle_interruptibility(vcpu, ctxt->interruptibility);
4962 kvm_set_rflags(vcpu, ctxt->eflags);
4963 kvm_make_request(KVM_REQ_EVENT, vcpu);
4964 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4965 kvm_rip_write(vcpu, ctxt->eip);
4966 } else
4967 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4968
4969 return r;
4970 }
4971 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4972
4973 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4974 {
4975 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4976 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4977 size, port, &val, 1);
4978 /* do not return to emulator after return from userspace */
4979 vcpu->arch.pio.count = 0;
4980 return ret;
4981 }
4982 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4983
4984 static void tsc_bad(void *info)
4985 {
4986 __this_cpu_write(cpu_tsc_khz, 0);
4987 }
4988
4989 static void tsc_khz_changed(void *data)
4990 {
4991 struct cpufreq_freqs *freq = data;
4992 unsigned long khz = 0;
4993
4994 if (data)
4995 khz = freq->new;
4996 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4997 khz = cpufreq_quick_get(raw_smp_processor_id());
4998 if (!khz)
4999 khz = tsc_khz;
5000 __this_cpu_write(cpu_tsc_khz, khz);
5001 }
5002
5003 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5004 void *data)
5005 {
5006 struct cpufreq_freqs *freq = data;
5007 struct kvm *kvm;
5008 struct kvm_vcpu *vcpu;
5009 int i, send_ipi = 0;
5010
5011 /*
5012 * We allow guests to temporarily run on slowing clocks,
5013 * provided we notify them after, or to run on accelerating
5014 * clocks, provided we notify them before. Thus time never
5015 * goes backwards.
5016 *
5017 * However, we have a problem. We can't atomically update
5018 * the frequency of a given CPU from this function; it is
5019 * merely a notifier, which can be called from any CPU.
5020 * Changing the TSC frequency at arbitrary points in time
5021 * requires a recomputation of local variables related to
5022 * the TSC for each VCPU. We must flag these local variables
5023 * to be updated and be sure the update takes place with the
5024 * new frequency before any guests proceed.
5025 *
5026 * Unfortunately, the combination of hotplug CPU and frequency
5027 * change creates an intractable locking scenario; the order
5028 * of when these callouts happen is undefined with respect to
5029 * CPU hotplug, and they can race with each other. As such,
5030 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5031 * undefined; you can actually have a CPU frequency change take
5032 * place in between the computation of X and the setting of the
5033 * variable. To protect against this problem, all updates of
5034 * the per_cpu tsc_khz variable are done in an interrupt
5035 * protected IPI, and all callers wishing to update the value
5036 * must wait for a synchronous IPI to complete (which is trivial
5037 * if the caller is on the CPU already). This establishes the
5038 * necessary total order on variable updates.
5039 *
5040 * Note that because a guest time update may take place
5041 * anytime after the setting of the VCPU's request bit, the
5042 * correct TSC value must be set before the request. However,
5043 * to ensure the update actually makes it to any guest which
5044 * starts running in hardware virtualization between the set
5045 * and the acquisition of the spinlock, we must also ping the
5046 * CPU after setting the request bit.
5047 *
5048 */
5049
5050 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5051 return 0;
5052 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5053 return 0;
5054
5055 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5056
5057 raw_spin_lock(&kvm_lock);
5058 list_for_each_entry(kvm, &vm_list, vm_list) {
5059 kvm_for_each_vcpu(i, vcpu, kvm) {
5060 if (vcpu->cpu != freq->cpu)
5061 continue;
5062 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5063 if (vcpu->cpu != smp_processor_id())
5064 send_ipi = 1;
5065 }
5066 }
5067 raw_spin_unlock(&kvm_lock);
5068
5069 if (freq->old < freq->new && send_ipi) {
5070 /*
5071 * We upscale the frequency. Must make the guest
5072 * doesn't see old kvmclock values while running with
5073 * the new frequency, otherwise we risk the guest sees
5074 * time go backwards.
5075 *
5076 * In case we update the frequency for another cpu
5077 * (which might be in guest context) send an interrupt
5078 * to kick the cpu out of guest context. Next time
5079 * guest context is entered kvmclock will be updated,
5080 * so the guest will not see stale values.
5081 */
5082 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5083 }
5084 return 0;
5085 }
5086
5087 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5088 .notifier_call = kvmclock_cpufreq_notifier
5089 };
5090
5091 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5092 unsigned long action, void *hcpu)
5093 {
5094 unsigned int cpu = (unsigned long)hcpu;
5095
5096 switch (action) {
5097 case CPU_ONLINE:
5098 case CPU_DOWN_FAILED:
5099 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5100 break;
5101 case CPU_DOWN_PREPARE:
5102 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5103 break;
5104 }
5105 return NOTIFY_OK;
5106 }
5107
5108 static struct notifier_block kvmclock_cpu_notifier_block = {
5109 .notifier_call = kvmclock_cpu_notifier,
5110 .priority = -INT_MAX
5111 };
5112
5113 static void kvm_timer_init(void)
5114 {
5115 int cpu;
5116
5117 max_tsc_khz = tsc_khz;
5118 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5119 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5120 #ifdef CONFIG_CPU_FREQ
5121 struct cpufreq_policy policy;
5122 memset(&policy, 0, sizeof(policy));
5123 cpu = get_cpu();
5124 cpufreq_get_policy(&policy, cpu);
5125 if (policy.cpuinfo.max_freq)
5126 max_tsc_khz = policy.cpuinfo.max_freq;
5127 put_cpu();
5128 #endif
5129 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5130 CPUFREQ_TRANSITION_NOTIFIER);
5131 }
5132 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5133 for_each_online_cpu(cpu)
5134 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5135 }
5136
5137 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5138
5139 int kvm_is_in_guest(void)
5140 {
5141 return __this_cpu_read(current_vcpu) != NULL;
5142 }
5143
5144 static int kvm_is_user_mode(void)
5145 {
5146 int user_mode = 3;
5147
5148 if (__this_cpu_read(current_vcpu))
5149 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5150
5151 return user_mode != 0;
5152 }
5153
5154 static unsigned long kvm_get_guest_ip(void)
5155 {
5156 unsigned long ip = 0;
5157
5158 if (__this_cpu_read(current_vcpu))
5159 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5160
5161 return ip;
5162 }
5163
5164 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5165 .is_in_guest = kvm_is_in_guest,
5166 .is_user_mode = kvm_is_user_mode,
5167 .get_guest_ip = kvm_get_guest_ip,
5168 };
5169
5170 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5171 {
5172 __this_cpu_write(current_vcpu, vcpu);
5173 }
5174 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5175
5176 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5177 {
5178 __this_cpu_write(current_vcpu, NULL);
5179 }
5180 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5181
5182 static void kvm_set_mmio_spte_mask(void)
5183 {
5184 u64 mask;
5185 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5186
5187 /*
5188 * Set the reserved bits and the present bit of an paging-structure
5189 * entry to generate page fault with PFER.RSV = 1.
5190 */
5191 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5192 mask |= 1ull;
5193
5194 #ifdef CONFIG_X86_64
5195 /*
5196 * If reserved bit is not supported, clear the present bit to disable
5197 * mmio page fault.
5198 */
5199 if (maxphyaddr == 52)
5200 mask &= ~1ull;
5201 #endif
5202
5203 kvm_mmu_set_mmio_spte_mask(mask);
5204 }
5205
5206 #ifdef CONFIG_X86_64
5207 static void pvclock_gtod_update_fn(struct work_struct *work)
5208 {
5209 struct kvm *kvm;
5210
5211 struct kvm_vcpu *vcpu;
5212 int i;
5213
5214 raw_spin_lock(&kvm_lock);
5215 list_for_each_entry(kvm, &vm_list, vm_list)
5216 kvm_for_each_vcpu(i, vcpu, kvm)
5217 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5218 atomic_set(&kvm_guest_has_master_clock, 0);
5219 raw_spin_unlock(&kvm_lock);
5220 }
5221
5222 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5223
5224 /*
5225 * Notification about pvclock gtod data update.
5226 */
5227 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5228 void *priv)
5229 {
5230 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5231 struct timekeeper *tk = priv;
5232
5233 update_pvclock_gtod(tk);
5234
5235 /* disable master clock if host does not trust, or does not
5236 * use, TSC clocksource
5237 */
5238 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5239 atomic_read(&kvm_guest_has_master_clock) != 0)
5240 queue_work(system_long_wq, &pvclock_gtod_work);
5241
5242 return 0;
5243 }
5244
5245 static struct notifier_block pvclock_gtod_notifier = {
5246 .notifier_call = pvclock_gtod_notify,
5247 };
5248 #endif
5249
5250 int kvm_arch_init(void *opaque)
5251 {
5252 int r;
5253 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5254
5255 if (kvm_x86_ops) {
5256 printk(KERN_ERR "kvm: already loaded the other module\n");
5257 r = -EEXIST;
5258 goto out;
5259 }
5260
5261 if (!ops->cpu_has_kvm_support()) {
5262 printk(KERN_ERR "kvm: no hardware support\n");
5263 r = -EOPNOTSUPP;
5264 goto out;
5265 }
5266 if (ops->disabled_by_bios()) {
5267 printk(KERN_ERR "kvm: disabled by bios\n");
5268 r = -EOPNOTSUPP;
5269 goto out;
5270 }
5271
5272 r = kvm_mmu_module_init();
5273 if (r)
5274 goto out;
5275
5276 kvm_set_mmio_spte_mask();
5277 kvm_init_msr_list();
5278
5279 kvm_x86_ops = ops;
5280 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5281 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5282
5283 kvm_timer_init();
5284
5285 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5286
5287 if (cpu_has_xsave)
5288 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5289
5290 kvm_lapic_init();
5291 #ifdef CONFIG_X86_64
5292 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5293 #endif
5294
5295 return 0;
5296
5297 out:
5298 return r;
5299 }
5300
5301 void kvm_arch_exit(void)
5302 {
5303 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5304
5305 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5306 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5307 CPUFREQ_TRANSITION_NOTIFIER);
5308 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5309 #ifdef CONFIG_X86_64
5310 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5311 #endif
5312 kvm_x86_ops = NULL;
5313 kvm_mmu_module_exit();
5314 }
5315
5316 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5317 {
5318 ++vcpu->stat.halt_exits;
5319 if (irqchip_in_kernel(vcpu->kvm)) {
5320 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5321 return 1;
5322 } else {
5323 vcpu->run->exit_reason = KVM_EXIT_HLT;
5324 return 0;
5325 }
5326 }
5327 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5328
5329 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5330 {
5331 u64 param, ingpa, outgpa, ret;
5332 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5333 bool fast, longmode;
5334 int cs_db, cs_l;
5335
5336 /*
5337 * hypercall generates UD from non zero cpl and real mode
5338 * per HYPER-V spec
5339 */
5340 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5341 kvm_queue_exception(vcpu, UD_VECTOR);
5342 return 0;
5343 }
5344
5345 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5346 longmode = is_long_mode(vcpu) && cs_l == 1;
5347
5348 if (!longmode) {
5349 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5350 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5351 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5352 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5353 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5354 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5355 }
5356 #ifdef CONFIG_X86_64
5357 else {
5358 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5359 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5360 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5361 }
5362 #endif
5363
5364 code = param & 0xffff;
5365 fast = (param >> 16) & 0x1;
5366 rep_cnt = (param >> 32) & 0xfff;
5367 rep_idx = (param >> 48) & 0xfff;
5368
5369 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5370
5371 switch (code) {
5372 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5373 kvm_vcpu_on_spin(vcpu);
5374 break;
5375 default:
5376 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5377 break;
5378 }
5379
5380 ret = res | (((u64)rep_done & 0xfff) << 32);
5381 if (longmode) {
5382 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5383 } else {
5384 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5385 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5386 }
5387
5388 return 1;
5389 }
5390
5391 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5392 {
5393 unsigned long nr, a0, a1, a2, a3, ret;
5394 int r = 1;
5395
5396 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5397 return kvm_hv_hypercall(vcpu);
5398
5399 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5400 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5401 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5402 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5403 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5404
5405 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5406
5407 if (!is_long_mode(vcpu)) {
5408 nr &= 0xFFFFFFFF;
5409 a0 &= 0xFFFFFFFF;
5410 a1 &= 0xFFFFFFFF;
5411 a2 &= 0xFFFFFFFF;
5412 a3 &= 0xFFFFFFFF;
5413 }
5414
5415 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5416 ret = -KVM_EPERM;
5417 goto out;
5418 }
5419
5420 switch (nr) {
5421 case KVM_HC_VAPIC_POLL_IRQ:
5422 ret = 0;
5423 break;
5424 default:
5425 ret = -KVM_ENOSYS;
5426 break;
5427 }
5428 out:
5429 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5430 ++vcpu->stat.hypercalls;
5431 return r;
5432 }
5433 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5434
5435 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5436 {
5437 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5438 char instruction[3];
5439 unsigned long rip = kvm_rip_read(vcpu);
5440
5441 /*
5442 * Blow out the MMU to ensure that no other VCPU has an active mapping
5443 * to ensure that the updated hypercall appears atomically across all
5444 * VCPUs.
5445 */
5446 kvm_mmu_zap_all(vcpu->kvm);
5447
5448 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5449
5450 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5451 }
5452
5453 /*
5454 * Check if userspace requested an interrupt window, and that the
5455 * interrupt window is open.
5456 *
5457 * No need to exit to userspace if we already have an interrupt queued.
5458 */
5459 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5460 {
5461 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5462 vcpu->run->request_interrupt_window &&
5463 kvm_arch_interrupt_allowed(vcpu));
5464 }
5465
5466 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5467 {
5468 struct kvm_run *kvm_run = vcpu->run;
5469
5470 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5471 kvm_run->cr8 = kvm_get_cr8(vcpu);
5472 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5473 if (irqchip_in_kernel(vcpu->kvm))
5474 kvm_run->ready_for_interrupt_injection = 1;
5475 else
5476 kvm_run->ready_for_interrupt_injection =
5477 kvm_arch_interrupt_allowed(vcpu) &&
5478 !kvm_cpu_has_interrupt(vcpu) &&
5479 !kvm_event_needs_reinjection(vcpu);
5480 }
5481
5482 static int vapic_enter(struct kvm_vcpu *vcpu)
5483 {
5484 struct kvm_lapic *apic = vcpu->arch.apic;
5485 struct page *page;
5486
5487 if (!apic || !apic->vapic_addr)
5488 return 0;
5489
5490 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5491 if (is_error_page(page))
5492 return -EFAULT;
5493
5494 vcpu->arch.apic->vapic_page = page;
5495 return 0;
5496 }
5497
5498 static void vapic_exit(struct kvm_vcpu *vcpu)
5499 {
5500 struct kvm_lapic *apic = vcpu->arch.apic;
5501 int idx;
5502
5503 if (!apic || !apic->vapic_addr)
5504 return;
5505
5506 idx = srcu_read_lock(&vcpu->kvm->srcu);
5507 kvm_release_page_dirty(apic->vapic_page);
5508 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5509 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5510 }
5511
5512 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5513 {
5514 int max_irr, tpr;
5515
5516 if (!kvm_x86_ops->update_cr8_intercept)
5517 return;
5518
5519 if (!vcpu->arch.apic)
5520 return;
5521
5522 if (!vcpu->arch.apic->vapic_addr)
5523 max_irr = kvm_lapic_find_highest_irr(vcpu);
5524 else
5525 max_irr = -1;
5526
5527 if (max_irr != -1)
5528 max_irr >>= 4;
5529
5530 tpr = kvm_lapic_get_cr8(vcpu);
5531
5532 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5533 }
5534
5535 static void inject_pending_event(struct kvm_vcpu *vcpu)
5536 {
5537 /* try to reinject previous events if any */
5538 if (vcpu->arch.exception.pending) {
5539 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5540 vcpu->arch.exception.has_error_code,
5541 vcpu->arch.exception.error_code);
5542 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5543 vcpu->arch.exception.has_error_code,
5544 vcpu->arch.exception.error_code,
5545 vcpu->arch.exception.reinject);
5546 return;
5547 }
5548
5549 if (vcpu->arch.nmi_injected) {
5550 kvm_x86_ops->set_nmi(vcpu);
5551 return;
5552 }
5553
5554 if (vcpu->arch.interrupt.pending) {
5555 kvm_x86_ops->set_irq(vcpu);
5556 return;
5557 }
5558
5559 /* try to inject new event if pending */
5560 if (vcpu->arch.nmi_pending) {
5561 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5562 --vcpu->arch.nmi_pending;
5563 vcpu->arch.nmi_injected = true;
5564 kvm_x86_ops->set_nmi(vcpu);
5565 }
5566 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5567 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5568 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5569 false);
5570 kvm_x86_ops->set_irq(vcpu);
5571 }
5572 }
5573 }
5574
5575 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5576 {
5577 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5578 !vcpu->guest_xcr0_loaded) {
5579 /* kvm_set_xcr() also depends on this */
5580 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5581 vcpu->guest_xcr0_loaded = 1;
5582 }
5583 }
5584
5585 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5586 {
5587 if (vcpu->guest_xcr0_loaded) {
5588 if (vcpu->arch.xcr0 != host_xcr0)
5589 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5590 vcpu->guest_xcr0_loaded = 0;
5591 }
5592 }
5593
5594 static void process_nmi(struct kvm_vcpu *vcpu)
5595 {
5596 unsigned limit = 2;
5597
5598 /*
5599 * x86 is limited to one NMI running, and one NMI pending after it.
5600 * If an NMI is already in progress, limit further NMIs to just one.
5601 * Otherwise, allow two (and we'll inject the first one immediately).
5602 */
5603 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5604 limit = 1;
5605
5606 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5607 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5608 kvm_make_request(KVM_REQ_EVENT, vcpu);
5609 }
5610
5611 static void kvm_gen_update_masterclock(struct kvm *kvm)
5612 {
5613 #ifdef CONFIG_X86_64
5614 int i;
5615 struct kvm_vcpu *vcpu;
5616 struct kvm_arch *ka = &kvm->arch;
5617
5618 spin_lock(&ka->pvclock_gtod_sync_lock);
5619 kvm_make_mclock_inprogress_request(kvm);
5620 /* no guest entries from this point */
5621 pvclock_update_vm_gtod_copy(kvm);
5622
5623 kvm_for_each_vcpu(i, vcpu, kvm)
5624 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5625
5626 /* guest entries allowed */
5627 kvm_for_each_vcpu(i, vcpu, kvm)
5628 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5629
5630 spin_unlock(&ka->pvclock_gtod_sync_lock);
5631 #endif
5632 }
5633
5634 static void update_eoi_exitmap(struct kvm_vcpu *vcpu)
5635 {
5636 u64 eoi_exit_bitmap[4];
5637
5638 memset(eoi_exit_bitmap, 0, 32);
5639
5640 kvm_ioapic_calculate_eoi_exitmap(vcpu, eoi_exit_bitmap);
5641 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5642 }
5643
5644 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5645 {
5646 int r;
5647 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5648 vcpu->run->request_interrupt_window;
5649 bool req_immediate_exit = 0;
5650
5651 if (vcpu->requests) {
5652 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5653 kvm_mmu_unload(vcpu);
5654 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5655 __kvm_migrate_timers(vcpu);
5656 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5657 kvm_gen_update_masterclock(vcpu->kvm);
5658 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5659 r = kvm_guest_time_update(vcpu);
5660 if (unlikely(r))
5661 goto out;
5662 }
5663 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5664 kvm_mmu_sync_roots(vcpu);
5665 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5666 kvm_x86_ops->tlb_flush(vcpu);
5667 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5668 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5669 r = 0;
5670 goto out;
5671 }
5672 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5673 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5674 r = 0;
5675 goto out;
5676 }
5677 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5678 vcpu->fpu_active = 0;
5679 kvm_x86_ops->fpu_deactivate(vcpu);
5680 }
5681 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5682 /* Page is swapped out. Do synthetic halt */
5683 vcpu->arch.apf.halted = true;
5684 r = 1;
5685 goto out;
5686 }
5687 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5688 record_steal_time(vcpu);
5689 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5690 process_nmi(vcpu);
5691 req_immediate_exit =
5692 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5693 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5694 kvm_handle_pmu_event(vcpu);
5695 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5696 kvm_deliver_pmi(vcpu);
5697 if (kvm_check_request(KVM_REQ_EOIBITMAP, vcpu))
5698 update_eoi_exitmap(vcpu);
5699 }
5700
5701 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5702 inject_pending_event(vcpu);
5703
5704 /* enable NMI/IRQ window open exits if needed */
5705 if (vcpu->arch.nmi_pending)
5706 kvm_x86_ops->enable_nmi_window(vcpu);
5707 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5708 kvm_x86_ops->enable_irq_window(vcpu);
5709
5710 if (kvm_lapic_enabled(vcpu)) {
5711 /*
5712 * Update architecture specific hints for APIC
5713 * virtual interrupt delivery.
5714 */
5715 if (kvm_x86_ops->hwapic_irr_update)
5716 kvm_x86_ops->hwapic_irr_update(vcpu,
5717 kvm_lapic_find_highest_irr(vcpu));
5718 update_cr8_intercept(vcpu);
5719 kvm_lapic_sync_to_vapic(vcpu);
5720 }
5721 }
5722
5723 r = kvm_mmu_reload(vcpu);
5724 if (unlikely(r)) {
5725 goto cancel_injection;
5726 }
5727
5728 preempt_disable();
5729
5730 kvm_x86_ops->prepare_guest_switch(vcpu);
5731 if (vcpu->fpu_active)
5732 kvm_load_guest_fpu(vcpu);
5733 kvm_load_guest_xcr0(vcpu);
5734
5735 vcpu->mode = IN_GUEST_MODE;
5736
5737 /* We should set ->mode before check ->requests,
5738 * see the comment in make_all_cpus_request.
5739 */
5740 smp_mb();
5741
5742 local_irq_disable();
5743
5744 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5745 || need_resched() || signal_pending(current)) {
5746 vcpu->mode = OUTSIDE_GUEST_MODE;
5747 smp_wmb();
5748 local_irq_enable();
5749 preempt_enable();
5750 r = 1;
5751 goto cancel_injection;
5752 }
5753
5754 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5755
5756 if (req_immediate_exit)
5757 smp_send_reschedule(vcpu->cpu);
5758
5759 kvm_guest_enter();
5760
5761 if (unlikely(vcpu->arch.switch_db_regs)) {
5762 set_debugreg(0, 7);
5763 set_debugreg(vcpu->arch.eff_db[0], 0);
5764 set_debugreg(vcpu->arch.eff_db[1], 1);
5765 set_debugreg(vcpu->arch.eff_db[2], 2);
5766 set_debugreg(vcpu->arch.eff_db[3], 3);
5767 }
5768
5769 trace_kvm_entry(vcpu->vcpu_id);
5770 kvm_x86_ops->run(vcpu);
5771
5772 /*
5773 * If the guest has used debug registers, at least dr7
5774 * will be disabled while returning to the host.
5775 * If we don't have active breakpoints in the host, we don't
5776 * care about the messed up debug address registers. But if
5777 * we have some of them active, restore the old state.
5778 */
5779 if (hw_breakpoint_active())
5780 hw_breakpoint_restore();
5781
5782 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5783 native_read_tsc());
5784
5785 vcpu->mode = OUTSIDE_GUEST_MODE;
5786 smp_wmb();
5787 local_irq_enable();
5788
5789 ++vcpu->stat.exits;
5790
5791 /*
5792 * We must have an instruction between local_irq_enable() and
5793 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5794 * the interrupt shadow. The stat.exits increment will do nicely.
5795 * But we need to prevent reordering, hence this barrier():
5796 */
5797 barrier();
5798
5799 kvm_guest_exit();
5800
5801 preempt_enable();
5802
5803 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5804
5805 /*
5806 * Profile KVM exit RIPs:
5807 */
5808 if (unlikely(prof_on == KVM_PROFILING)) {
5809 unsigned long rip = kvm_rip_read(vcpu);
5810 profile_hit(KVM_PROFILING, (void *)rip);
5811 }
5812
5813 if (unlikely(vcpu->arch.tsc_always_catchup))
5814 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5815
5816 if (vcpu->arch.apic_attention)
5817 kvm_lapic_sync_from_vapic(vcpu);
5818
5819 r = kvm_x86_ops->handle_exit(vcpu);
5820 return r;
5821
5822 cancel_injection:
5823 kvm_x86_ops->cancel_injection(vcpu);
5824 if (unlikely(vcpu->arch.apic_attention))
5825 kvm_lapic_sync_from_vapic(vcpu);
5826 out:
5827 return r;
5828 }
5829
5830
5831 static int __vcpu_run(struct kvm_vcpu *vcpu)
5832 {
5833 int r;
5834 struct kvm *kvm = vcpu->kvm;
5835
5836 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5837 pr_debug("vcpu %d received sipi with vector # %x\n",
5838 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5839 kvm_lapic_reset(vcpu);
5840 r = kvm_vcpu_reset(vcpu);
5841 if (r)
5842 return r;
5843 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5844 }
5845
5846 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5847 r = vapic_enter(vcpu);
5848 if (r) {
5849 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5850 return r;
5851 }
5852
5853 r = 1;
5854 while (r > 0) {
5855 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5856 !vcpu->arch.apf.halted)
5857 r = vcpu_enter_guest(vcpu);
5858 else {
5859 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5860 kvm_vcpu_block(vcpu);
5861 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5862 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5863 {
5864 switch(vcpu->arch.mp_state) {
5865 case KVM_MP_STATE_HALTED:
5866 vcpu->arch.mp_state =
5867 KVM_MP_STATE_RUNNABLE;
5868 case KVM_MP_STATE_RUNNABLE:
5869 vcpu->arch.apf.halted = false;
5870 break;
5871 case KVM_MP_STATE_SIPI_RECEIVED:
5872 default:
5873 r = -EINTR;
5874 break;
5875 }
5876 }
5877 }
5878
5879 if (r <= 0)
5880 break;
5881
5882 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5883 if (kvm_cpu_has_pending_timer(vcpu))
5884 kvm_inject_pending_timer_irqs(vcpu);
5885
5886 if (dm_request_for_irq_injection(vcpu)) {
5887 r = -EINTR;
5888 vcpu->run->exit_reason = KVM_EXIT_INTR;
5889 ++vcpu->stat.request_irq_exits;
5890 }
5891
5892 kvm_check_async_pf_completion(vcpu);
5893
5894 if (signal_pending(current)) {
5895 r = -EINTR;
5896 vcpu->run->exit_reason = KVM_EXIT_INTR;
5897 ++vcpu->stat.signal_exits;
5898 }
5899 if (need_resched()) {
5900 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5901 kvm_resched(vcpu);
5902 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5903 }
5904 }
5905
5906 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5907
5908 vapic_exit(vcpu);
5909
5910 return r;
5911 }
5912
5913 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5914 {
5915 int r;
5916 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5917 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5918 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5919 if (r != EMULATE_DONE)
5920 return 0;
5921 return 1;
5922 }
5923
5924 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5925 {
5926 BUG_ON(!vcpu->arch.pio.count);
5927
5928 return complete_emulated_io(vcpu);
5929 }
5930
5931 /*
5932 * Implements the following, as a state machine:
5933 *
5934 * read:
5935 * for each fragment
5936 * for each mmio piece in the fragment
5937 * write gpa, len
5938 * exit
5939 * copy data
5940 * execute insn
5941 *
5942 * write:
5943 * for each fragment
5944 * for each mmio piece in the fragment
5945 * write gpa, len
5946 * copy data
5947 * exit
5948 */
5949 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5950 {
5951 struct kvm_run *run = vcpu->run;
5952 struct kvm_mmio_fragment *frag;
5953 unsigned len;
5954
5955 BUG_ON(!vcpu->mmio_needed);
5956
5957 /* Complete previous fragment */
5958 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
5959 len = min(8u, frag->len);
5960 if (!vcpu->mmio_is_write)
5961 memcpy(frag->data, run->mmio.data, len);
5962
5963 if (frag->len <= 8) {
5964 /* Switch to the next fragment. */
5965 frag++;
5966 vcpu->mmio_cur_fragment++;
5967 } else {
5968 /* Go forward to the next mmio piece. */
5969 frag->data += len;
5970 frag->gpa += len;
5971 frag->len -= len;
5972 }
5973
5974 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5975 vcpu->mmio_needed = 0;
5976 if (vcpu->mmio_is_write)
5977 return 1;
5978 vcpu->mmio_read_completed = 1;
5979 return complete_emulated_io(vcpu);
5980 }
5981
5982 run->exit_reason = KVM_EXIT_MMIO;
5983 run->mmio.phys_addr = frag->gpa;
5984 if (vcpu->mmio_is_write)
5985 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
5986 run->mmio.len = min(8u, frag->len);
5987 run->mmio.is_write = vcpu->mmio_is_write;
5988 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5989 return 0;
5990 }
5991
5992
5993 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5994 {
5995 int r;
5996 sigset_t sigsaved;
5997
5998 if (!tsk_used_math(current) && init_fpu(current))
5999 return -ENOMEM;
6000
6001 if (vcpu->sigset_active)
6002 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6003
6004 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6005 kvm_vcpu_block(vcpu);
6006 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6007 r = -EAGAIN;
6008 goto out;
6009 }
6010
6011 /* re-sync apic's tpr */
6012 if (!irqchip_in_kernel(vcpu->kvm)) {
6013 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6014 r = -EINVAL;
6015 goto out;
6016 }
6017 }
6018
6019 if (unlikely(vcpu->arch.complete_userspace_io)) {
6020 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6021 vcpu->arch.complete_userspace_io = NULL;
6022 r = cui(vcpu);
6023 if (r <= 0)
6024 goto out;
6025 } else
6026 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6027
6028 r = __vcpu_run(vcpu);
6029
6030 out:
6031 post_kvm_run_save(vcpu);
6032 if (vcpu->sigset_active)
6033 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6034
6035 return r;
6036 }
6037
6038 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6039 {
6040 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6041 /*
6042 * We are here if userspace calls get_regs() in the middle of
6043 * instruction emulation. Registers state needs to be copied
6044 * back from emulation context to vcpu. Userspace shouldn't do
6045 * that usually, but some bad designed PV devices (vmware
6046 * backdoor interface) need this to work
6047 */
6048 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6049 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6050 }
6051 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6052 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6053 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6054 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6055 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6056 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6057 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6058 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6059 #ifdef CONFIG_X86_64
6060 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6061 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6062 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6063 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6064 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6065 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6066 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6067 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6068 #endif
6069
6070 regs->rip = kvm_rip_read(vcpu);
6071 regs->rflags = kvm_get_rflags(vcpu);
6072
6073 return 0;
6074 }
6075
6076 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6077 {
6078 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6079 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6080
6081 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6082 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6083 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6084 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6085 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6086 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6087 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6088 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6089 #ifdef CONFIG_X86_64
6090 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6091 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6092 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6093 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6094 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6095 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6096 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6097 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6098 #endif
6099
6100 kvm_rip_write(vcpu, regs->rip);
6101 kvm_set_rflags(vcpu, regs->rflags);
6102
6103 vcpu->arch.exception.pending = false;
6104
6105 kvm_make_request(KVM_REQ_EVENT, vcpu);
6106
6107 return 0;
6108 }
6109
6110 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6111 {
6112 struct kvm_segment cs;
6113
6114 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6115 *db = cs.db;
6116 *l = cs.l;
6117 }
6118 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6119
6120 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6121 struct kvm_sregs *sregs)
6122 {
6123 struct desc_ptr dt;
6124
6125 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6126 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6127 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6128 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6129 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6130 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6131
6132 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6133 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6134
6135 kvm_x86_ops->get_idt(vcpu, &dt);
6136 sregs->idt.limit = dt.size;
6137 sregs->idt.base = dt.address;
6138 kvm_x86_ops->get_gdt(vcpu, &dt);
6139 sregs->gdt.limit = dt.size;
6140 sregs->gdt.base = dt.address;
6141
6142 sregs->cr0 = kvm_read_cr0(vcpu);
6143 sregs->cr2 = vcpu->arch.cr2;
6144 sregs->cr3 = kvm_read_cr3(vcpu);
6145 sregs->cr4 = kvm_read_cr4(vcpu);
6146 sregs->cr8 = kvm_get_cr8(vcpu);
6147 sregs->efer = vcpu->arch.efer;
6148 sregs->apic_base = kvm_get_apic_base(vcpu);
6149
6150 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6151
6152 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6153 set_bit(vcpu->arch.interrupt.nr,
6154 (unsigned long *)sregs->interrupt_bitmap);
6155
6156 return 0;
6157 }
6158
6159 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6160 struct kvm_mp_state *mp_state)
6161 {
6162 mp_state->mp_state = vcpu->arch.mp_state;
6163 return 0;
6164 }
6165
6166 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6167 struct kvm_mp_state *mp_state)
6168 {
6169 vcpu->arch.mp_state = mp_state->mp_state;
6170 kvm_make_request(KVM_REQ_EVENT, vcpu);
6171 return 0;
6172 }
6173
6174 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6175 int reason, bool has_error_code, u32 error_code)
6176 {
6177 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6178 int ret;
6179
6180 init_emulate_ctxt(vcpu);
6181
6182 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6183 has_error_code, error_code);
6184
6185 if (ret)
6186 return EMULATE_FAIL;
6187
6188 kvm_rip_write(vcpu, ctxt->eip);
6189 kvm_set_rflags(vcpu, ctxt->eflags);
6190 kvm_make_request(KVM_REQ_EVENT, vcpu);
6191 return EMULATE_DONE;
6192 }
6193 EXPORT_SYMBOL_GPL(kvm_task_switch);
6194
6195 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6196 struct kvm_sregs *sregs)
6197 {
6198 int mmu_reset_needed = 0;
6199 int pending_vec, max_bits, idx;
6200 struct desc_ptr dt;
6201
6202 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6203 return -EINVAL;
6204
6205 dt.size = sregs->idt.limit;
6206 dt.address = sregs->idt.base;
6207 kvm_x86_ops->set_idt(vcpu, &dt);
6208 dt.size = sregs->gdt.limit;
6209 dt.address = sregs->gdt.base;
6210 kvm_x86_ops->set_gdt(vcpu, &dt);
6211
6212 vcpu->arch.cr2 = sregs->cr2;
6213 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6214 vcpu->arch.cr3 = sregs->cr3;
6215 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6216
6217 kvm_set_cr8(vcpu, sregs->cr8);
6218
6219 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6220 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6221 kvm_set_apic_base(vcpu, sregs->apic_base);
6222
6223 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6224 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6225 vcpu->arch.cr0 = sregs->cr0;
6226
6227 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6228 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6229 if (sregs->cr4 & X86_CR4_OSXSAVE)
6230 kvm_update_cpuid(vcpu);
6231
6232 idx = srcu_read_lock(&vcpu->kvm->srcu);
6233 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6234 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6235 mmu_reset_needed = 1;
6236 }
6237 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6238
6239 if (mmu_reset_needed)
6240 kvm_mmu_reset_context(vcpu);
6241
6242 max_bits = KVM_NR_INTERRUPTS;
6243 pending_vec = find_first_bit(
6244 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6245 if (pending_vec < max_bits) {
6246 kvm_queue_interrupt(vcpu, pending_vec, false);
6247 pr_debug("Set back pending irq %d\n", pending_vec);
6248 }
6249
6250 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6251 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6252 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6253 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6254 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6255 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6256
6257 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6258 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6259
6260 update_cr8_intercept(vcpu);
6261
6262 /* Older userspace won't unhalt the vcpu on reset. */
6263 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6264 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6265 !is_protmode(vcpu))
6266 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6267
6268 kvm_make_request(KVM_REQ_EVENT, vcpu);
6269
6270 return 0;
6271 }
6272
6273 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6274 struct kvm_guest_debug *dbg)
6275 {
6276 unsigned long rflags;
6277 int i, r;
6278
6279 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6280 r = -EBUSY;
6281 if (vcpu->arch.exception.pending)
6282 goto out;
6283 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6284 kvm_queue_exception(vcpu, DB_VECTOR);
6285 else
6286 kvm_queue_exception(vcpu, BP_VECTOR);
6287 }
6288
6289 /*
6290 * Read rflags as long as potentially injected trace flags are still
6291 * filtered out.
6292 */
6293 rflags = kvm_get_rflags(vcpu);
6294
6295 vcpu->guest_debug = dbg->control;
6296 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6297 vcpu->guest_debug = 0;
6298
6299 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6300 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6301 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6302 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6303 } else {
6304 for (i = 0; i < KVM_NR_DB_REGS; i++)
6305 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6306 }
6307 kvm_update_dr7(vcpu);
6308
6309 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6310 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6311 get_segment_base(vcpu, VCPU_SREG_CS);
6312
6313 /*
6314 * Trigger an rflags update that will inject or remove the trace
6315 * flags.
6316 */
6317 kvm_set_rflags(vcpu, rflags);
6318
6319 kvm_x86_ops->update_db_bp_intercept(vcpu);
6320
6321 r = 0;
6322
6323 out:
6324
6325 return r;
6326 }
6327
6328 /*
6329 * Translate a guest virtual address to a guest physical address.
6330 */
6331 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6332 struct kvm_translation *tr)
6333 {
6334 unsigned long vaddr = tr->linear_address;
6335 gpa_t gpa;
6336 int idx;
6337
6338 idx = srcu_read_lock(&vcpu->kvm->srcu);
6339 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6340 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6341 tr->physical_address = gpa;
6342 tr->valid = gpa != UNMAPPED_GVA;
6343 tr->writeable = 1;
6344 tr->usermode = 0;
6345
6346 return 0;
6347 }
6348
6349 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6350 {
6351 struct i387_fxsave_struct *fxsave =
6352 &vcpu->arch.guest_fpu.state->fxsave;
6353
6354 memcpy(fpu->fpr, fxsave->st_space, 128);
6355 fpu->fcw = fxsave->cwd;
6356 fpu->fsw = fxsave->swd;
6357 fpu->ftwx = fxsave->twd;
6358 fpu->last_opcode = fxsave->fop;
6359 fpu->last_ip = fxsave->rip;
6360 fpu->last_dp = fxsave->rdp;
6361 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6362
6363 return 0;
6364 }
6365
6366 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6367 {
6368 struct i387_fxsave_struct *fxsave =
6369 &vcpu->arch.guest_fpu.state->fxsave;
6370
6371 memcpy(fxsave->st_space, fpu->fpr, 128);
6372 fxsave->cwd = fpu->fcw;
6373 fxsave->swd = fpu->fsw;
6374 fxsave->twd = fpu->ftwx;
6375 fxsave->fop = fpu->last_opcode;
6376 fxsave->rip = fpu->last_ip;
6377 fxsave->rdp = fpu->last_dp;
6378 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6379
6380 return 0;
6381 }
6382
6383 int fx_init(struct kvm_vcpu *vcpu)
6384 {
6385 int err;
6386
6387 err = fpu_alloc(&vcpu->arch.guest_fpu);
6388 if (err)
6389 return err;
6390
6391 fpu_finit(&vcpu->arch.guest_fpu);
6392
6393 /*
6394 * Ensure guest xcr0 is valid for loading
6395 */
6396 vcpu->arch.xcr0 = XSTATE_FP;
6397
6398 vcpu->arch.cr0 |= X86_CR0_ET;
6399
6400 return 0;
6401 }
6402 EXPORT_SYMBOL_GPL(fx_init);
6403
6404 static void fx_free(struct kvm_vcpu *vcpu)
6405 {
6406 fpu_free(&vcpu->arch.guest_fpu);
6407 }
6408
6409 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6410 {
6411 if (vcpu->guest_fpu_loaded)
6412 return;
6413
6414 /*
6415 * Restore all possible states in the guest,
6416 * and assume host would use all available bits.
6417 * Guest xcr0 would be loaded later.
6418 */
6419 kvm_put_guest_xcr0(vcpu);
6420 vcpu->guest_fpu_loaded = 1;
6421 __kernel_fpu_begin();
6422 fpu_restore_checking(&vcpu->arch.guest_fpu);
6423 trace_kvm_fpu(1);
6424 }
6425
6426 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6427 {
6428 kvm_put_guest_xcr0(vcpu);
6429
6430 if (!vcpu->guest_fpu_loaded)
6431 return;
6432
6433 vcpu->guest_fpu_loaded = 0;
6434 fpu_save_init(&vcpu->arch.guest_fpu);
6435 __kernel_fpu_end();
6436 ++vcpu->stat.fpu_reload;
6437 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6438 trace_kvm_fpu(0);
6439 }
6440
6441 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6442 {
6443 kvmclock_reset(vcpu);
6444
6445 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6446 fx_free(vcpu);
6447 kvm_x86_ops->vcpu_free(vcpu);
6448 }
6449
6450 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6451 unsigned int id)
6452 {
6453 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6454 printk_once(KERN_WARNING
6455 "kvm: SMP vm created on host with unstable TSC; "
6456 "guest TSC will not be reliable\n");
6457 return kvm_x86_ops->vcpu_create(kvm, id);
6458 }
6459
6460 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6461 {
6462 int r;
6463
6464 vcpu->arch.mtrr_state.have_fixed = 1;
6465 r = vcpu_load(vcpu);
6466 if (r)
6467 return r;
6468 r = kvm_vcpu_reset(vcpu);
6469 if (r == 0)
6470 r = kvm_mmu_setup(vcpu);
6471 vcpu_put(vcpu);
6472
6473 return r;
6474 }
6475
6476 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6477 {
6478 int r;
6479 struct msr_data msr;
6480
6481 r = vcpu_load(vcpu);
6482 if (r)
6483 return r;
6484 msr.data = 0x0;
6485 msr.index = MSR_IA32_TSC;
6486 msr.host_initiated = true;
6487 kvm_write_tsc(vcpu, &msr);
6488 vcpu_put(vcpu);
6489
6490 return r;
6491 }
6492
6493 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6494 {
6495 int r;
6496 vcpu->arch.apf.msr_val = 0;
6497
6498 r = vcpu_load(vcpu);
6499 BUG_ON(r);
6500 kvm_mmu_unload(vcpu);
6501 vcpu_put(vcpu);
6502
6503 fx_free(vcpu);
6504 kvm_x86_ops->vcpu_free(vcpu);
6505 }
6506
6507 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6508 {
6509 atomic_set(&vcpu->arch.nmi_queued, 0);
6510 vcpu->arch.nmi_pending = 0;
6511 vcpu->arch.nmi_injected = false;
6512
6513 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6514 vcpu->arch.dr6 = DR6_FIXED_1;
6515 vcpu->arch.dr7 = DR7_FIXED_1;
6516 kvm_update_dr7(vcpu);
6517
6518 kvm_make_request(KVM_REQ_EVENT, vcpu);
6519 vcpu->arch.apf.msr_val = 0;
6520 vcpu->arch.st.msr_val = 0;
6521
6522 kvmclock_reset(vcpu);
6523
6524 kvm_clear_async_pf_completion_queue(vcpu);
6525 kvm_async_pf_hash_reset(vcpu);
6526 vcpu->arch.apf.halted = false;
6527
6528 kvm_pmu_reset(vcpu);
6529
6530 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6531 vcpu->arch.regs_avail = ~0;
6532 vcpu->arch.regs_dirty = ~0;
6533
6534 return kvm_x86_ops->vcpu_reset(vcpu);
6535 }
6536
6537 int kvm_arch_hardware_enable(void *garbage)
6538 {
6539 struct kvm *kvm;
6540 struct kvm_vcpu *vcpu;
6541 int i;
6542 int ret;
6543 u64 local_tsc;
6544 u64 max_tsc = 0;
6545 bool stable, backwards_tsc = false;
6546
6547 kvm_shared_msr_cpu_online();
6548 ret = kvm_x86_ops->hardware_enable(garbage);
6549 if (ret != 0)
6550 return ret;
6551
6552 local_tsc = native_read_tsc();
6553 stable = !check_tsc_unstable();
6554 list_for_each_entry(kvm, &vm_list, vm_list) {
6555 kvm_for_each_vcpu(i, vcpu, kvm) {
6556 if (!stable && vcpu->cpu == smp_processor_id())
6557 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6558 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6559 backwards_tsc = true;
6560 if (vcpu->arch.last_host_tsc > max_tsc)
6561 max_tsc = vcpu->arch.last_host_tsc;
6562 }
6563 }
6564 }
6565
6566 /*
6567 * Sometimes, even reliable TSCs go backwards. This happens on
6568 * platforms that reset TSC during suspend or hibernate actions, but
6569 * maintain synchronization. We must compensate. Fortunately, we can
6570 * detect that condition here, which happens early in CPU bringup,
6571 * before any KVM threads can be running. Unfortunately, we can't
6572 * bring the TSCs fully up to date with real time, as we aren't yet far
6573 * enough into CPU bringup that we know how much real time has actually
6574 * elapsed; our helper function, get_kernel_ns() will be using boot
6575 * variables that haven't been updated yet.
6576 *
6577 * So we simply find the maximum observed TSC above, then record the
6578 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6579 * the adjustment will be applied. Note that we accumulate
6580 * adjustments, in case multiple suspend cycles happen before some VCPU
6581 * gets a chance to run again. In the event that no KVM threads get a
6582 * chance to run, we will miss the entire elapsed period, as we'll have
6583 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6584 * loose cycle time. This isn't too big a deal, since the loss will be
6585 * uniform across all VCPUs (not to mention the scenario is extremely
6586 * unlikely). It is possible that a second hibernate recovery happens
6587 * much faster than a first, causing the observed TSC here to be
6588 * smaller; this would require additional padding adjustment, which is
6589 * why we set last_host_tsc to the local tsc observed here.
6590 *
6591 * N.B. - this code below runs only on platforms with reliable TSC,
6592 * as that is the only way backwards_tsc is set above. Also note
6593 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6594 * have the same delta_cyc adjustment applied if backwards_tsc
6595 * is detected. Note further, this adjustment is only done once,
6596 * as we reset last_host_tsc on all VCPUs to stop this from being
6597 * called multiple times (one for each physical CPU bringup).
6598 *
6599 * Platforms with unreliable TSCs don't have to deal with this, they
6600 * will be compensated by the logic in vcpu_load, which sets the TSC to
6601 * catchup mode. This will catchup all VCPUs to real time, but cannot
6602 * guarantee that they stay in perfect synchronization.
6603 */
6604 if (backwards_tsc) {
6605 u64 delta_cyc = max_tsc - local_tsc;
6606 list_for_each_entry(kvm, &vm_list, vm_list) {
6607 kvm_for_each_vcpu(i, vcpu, kvm) {
6608 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6609 vcpu->arch.last_host_tsc = local_tsc;
6610 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6611 &vcpu->requests);
6612 }
6613
6614 /*
6615 * We have to disable TSC offset matching.. if you were
6616 * booting a VM while issuing an S4 host suspend....
6617 * you may have some problem. Solving this issue is
6618 * left as an exercise to the reader.
6619 */
6620 kvm->arch.last_tsc_nsec = 0;
6621 kvm->arch.last_tsc_write = 0;
6622 }
6623
6624 }
6625 return 0;
6626 }
6627
6628 void kvm_arch_hardware_disable(void *garbage)
6629 {
6630 kvm_x86_ops->hardware_disable(garbage);
6631 drop_user_return_notifiers(garbage);
6632 }
6633
6634 int kvm_arch_hardware_setup(void)
6635 {
6636 return kvm_x86_ops->hardware_setup();
6637 }
6638
6639 void kvm_arch_hardware_unsetup(void)
6640 {
6641 kvm_x86_ops->hardware_unsetup();
6642 }
6643
6644 void kvm_arch_check_processor_compat(void *rtn)
6645 {
6646 kvm_x86_ops->check_processor_compatibility(rtn);
6647 }
6648
6649 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6650 {
6651 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6652 }
6653
6654 struct static_key kvm_no_apic_vcpu __read_mostly;
6655
6656 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6657 {
6658 struct page *page;
6659 struct kvm *kvm;
6660 int r;
6661
6662 BUG_ON(vcpu->kvm == NULL);
6663 kvm = vcpu->kvm;
6664
6665 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6666 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6667 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6668 else
6669 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6670
6671 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6672 if (!page) {
6673 r = -ENOMEM;
6674 goto fail;
6675 }
6676 vcpu->arch.pio_data = page_address(page);
6677
6678 kvm_set_tsc_khz(vcpu, max_tsc_khz);
6679
6680 r = kvm_mmu_create(vcpu);
6681 if (r < 0)
6682 goto fail_free_pio_data;
6683
6684 if (irqchip_in_kernel(kvm)) {
6685 r = kvm_create_lapic(vcpu);
6686 if (r < 0)
6687 goto fail_mmu_destroy;
6688 } else
6689 static_key_slow_inc(&kvm_no_apic_vcpu);
6690
6691 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6692 GFP_KERNEL);
6693 if (!vcpu->arch.mce_banks) {
6694 r = -ENOMEM;
6695 goto fail_free_lapic;
6696 }
6697 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6698
6699 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6700 goto fail_free_mce_banks;
6701
6702 r = fx_init(vcpu);
6703 if (r)
6704 goto fail_free_wbinvd_dirty_mask;
6705
6706 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6707 kvm_async_pf_hash_reset(vcpu);
6708 kvm_pmu_init(vcpu);
6709
6710 return 0;
6711 fail_free_wbinvd_dirty_mask:
6712 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6713 fail_free_mce_banks:
6714 kfree(vcpu->arch.mce_banks);
6715 fail_free_lapic:
6716 kvm_free_lapic(vcpu);
6717 fail_mmu_destroy:
6718 kvm_mmu_destroy(vcpu);
6719 fail_free_pio_data:
6720 free_page((unsigned long)vcpu->arch.pio_data);
6721 fail:
6722 return r;
6723 }
6724
6725 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6726 {
6727 int idx;
6728
6729 kvm_pmu_destroy(vcpu);
6730 kfree(vcpu->arch.mce_banks);
6731 kvm_free_lapic(vcpu);
6732 idx = srcu_read_lock(&vcpu->kvm->srcu);
6733 kvm_mmu_destroy(vcpu);
6734 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6735 free_page((unsigned long)vcpu->arch.pio_data);
6736 if (!irqchip_in_kernel(vcpu->kvm))
6737 static_key_slow_dec(&kvm_no_apic_vcpu);
6738 }
6739
6740 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6741 {
6742 if (type)
6743 return -EINVAL;
6744
6745 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6746 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6747
6748 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6749 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6750 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6751 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6752 &kvm->arch.irq_sources_bitmap);
6753
6754 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6755 mutex_init(&kvm->arch.apic_map_lock);
6756 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6757
6758 pvclock_update_vm_gtod_copy(kvm);
6759
6760 return 0;
6761 }
6762
6763 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6764 {
6765 int r;
6766 r = vcpu_load(vcpu);
6767 BUG_ON(r);
6768 kvm_mmu_unload(vcpu);
6769 vcpu_put(vcpu);
6770 }
6771
6772 static void kvm_free_vcpus(struct kvm *kvm)
6773 {
6774 unsigned int i;
6775 struct kvm_vcpu *vcpu;
6776
6777 /*
6778 * Unpin any mmu pages first.
6779 */
6780 kvm_for_each_vcpu(i, vcpu, kvm) {
6781 kvm_clear_async_pf_completion_queue(vcpu);
6782 kvm_unload_vcpu_mmu(vcpu);
6783 }
6784 kvm_for_each_vcpu(i, vcpu, kvm)
6785 kvm_arch_vcpu_free(vcpu);
6786
6787 mutex_lock(&kvm->lock);
6788 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6789 kvm->vcpus[i] = NULL;
6790
6791 atomic_set(&kvm->online_vcpus, 0);
6792 mutex_unlock(&kvm->lock);
6793 }
6794
6795 void kvm_arch_sync_events(struct kvm *kvm)
6796 {
6797 kvm_free_all_assigned_devices(kvm);
6798 kvm_free_pit(kvm);
6799 }
6800
6801 void kvm_arch_destroy_vm(struct kvm *kvm)
6802 {
6803 kvm_iommu_unmap_guest(kvm);
6804 kfree(kvm->arch.vpic);
6805 kfree(kvm->arch.vioapic);
6806 kvm_free_vcpus(kvm);
6807 if (kvm->arch.apic_access_page)
6808 put_page(kvm->arch.apic_access_page);
6809 if (kvm->arch.ept_identity_pagetable)
6810 put_page(kvm->arch.ept_identity_pagetable);
6811 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6812 }
6813
6814 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6815 struct kvm_memory_slot *dont)
6816 {
6817 int i;
6818
6819 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6820 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6821 kvm_kvfree(free->arch.rmap[i]);
6822 free->arch.rmap[i] = NULL;
6823 }
6824 if (i == 0)
6825 continue;
6826
6827 if (!dont || free->arch.lpage_info[i - 1] !=
6828 dont->arch.lpage_info[i - 1]) {
6829 kvm_kvfree(free->arch.lpage_info[i - 1]);
6830 free->arch.lpage_info[i - 1] = NULL;
6831 }
6832 }
6833 }
6834
6835 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6836 {
6837 int i;
6838
6839 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6840 unsigned long ugfn;
6841 int lpages;
6842 int level = i + 1;
6843
6844 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6845 slot->base_gfn, level) + 1;
6846
6847 slot->arch.rmap[i] =
6848 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6849 if (!slot->arch.rmap[i])
6850 goto out_free;
6851 if (i == 0)
6852 continue;
6853
6854 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6855 sizeof(*slot->arch.lpage_info[i - 1]));
6856 if (!slot->arch.lpage_info[i - 1])
6857 goto out_free;
6858
6859 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6860 slot->arch.lpage_info[i - 1][0].write_count = 1;
6861 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6862 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6863 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6864 /*
6865 * If the gfn and userspace address are not aligned wrt each
6866 * other, or if explicitly asked to, disable large page
6867 * support for this slot
6868 */
6869 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6870 !kvm_largepages_enabled()) {
6871 unsigned long j;
6872
6873 for (j = 0; j < lpages; ++j)
6874 slot->arch.lpage_info[i - 1][j].write_count = 1;
6875 }
6876 }
6877
6878 return 0;
6879
6880 out_free:
6881 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6882 kvm_kvfree(slot->arch.rmap[i]);
6883 slot->arch.rmap[i] = NULL;
6884 if (i == 0)
6885 continue;
6886
6887 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6888 slot->arch.lpage_info[i - 1] = NULL;
6889 }
6890 return -ENOMEM;
6891 }
6892
6893 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6894 struct kvm_memory_slot *memslot,
6895 struct kvm_memory_slot old,
6896 struct kvm_userspace_memory_region *mem,
6897 bool user_alloc)
6898 {
6899 int npages = memslot->npages;
6900 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6901
6902 /* Prevent internal slot pages from being moved by fork()/COW. */
6903 if (memslot->id >= KVM_USER_MEM_SLOTS)
6904 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6905
6906 /*To keep backward compatibility with older userspace,
6907 *x86 needs to handle !user_alloc case.
6908 */
6909 if (!user_alloc) {
6910 if (npages && !old.npages) {
6911 unsigned long userspace_addr;
6912
6913 userspace_addr = vm_mmap(NULL, 0,
6914 npages * PAGE_SIZE,
6915 PROT_READ | PROT_WRITE,
6916 map_flags,
6917 0);
6918
6919 if (IS_ERR((void *)userspace_addr))
6920 return PTR_ERR((void *)userspace_addr);
6921
6922 memslot->userspace_addr = userspace_addr;
6923 }
6924 }
6925
6926
6927 return 0;
6928 }
6929
6930 void kvm_arch_commit_memory_region(struct kvm *kvm,
6931 struct kvm_userspace_memory_region *mem,
6932 struct kvm_memory_slot old,
6933 bool user_alloc)
6934 {
6935
6936 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6937
6938 if (!user_alloc && !old.user_alloc && old.npages && !npages) {
6939 int ret;
6940
6941 ret = vm_munmap(old.userspace_addr,
6942 old.npages * PAGE_SIZE);
6943 if (ret < 0)
6944 printk(KERN_WARNING
6945 "kvm_vm_ioctl_set_memory_region: "
6946 "failed to munmap memory\n");
6947 }
6948
6949 if (!kvm->arch.n_requested_mmu_pages)
6950 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6951
6952 if (nr_mmu_pages)
6953 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6954 /*
6955 * Write protect all pages for dirty logging.
6956 * Existing largepage mappings are destroyed here and new ones will
6957 * not be created until the end of the logging.
6958 */
6959 if (npages && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
6960 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6961 /*
6962 * If memory slot is created, or moved, we need to clear all
6963 * mmio sptes.
6964 */
6965 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
6966 kvm_mmu_zap_all(kvm);
6967 kvm_reload_remote_mmus(kvm);
6968 }
6969 }
6970
6971 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6972 {
6973 kvm_mmu_zap_all(kvm);
6974 kvm_reload_remote_mmus(kvm);
6975 }
6976
6977 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6978 struct kvm_memory_slot *slot)
6979 {
6980 kvm_arch_flush_shadow_all(kvm);
6981 }
6982
6983 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6984 {
6985 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6986 !vcpu->arch.apf.halted)
6987 || !list_empty_careful(&vcpu->async_pf.done)
6988 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6989 || atomic_read(&vcpu->arch.nmi_queued) ||
6990 (kvm_arch_interrupt_allowed(vcpu) &&
6991 kvm_cpu_has_interrupt(vcpu));
6992 }
6993
6994 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6995 {
6996 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6997 }
6998
6999 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7000 {
7001 return kvm_x86_ops->interrupt_allowed(vcpu);
7002 }
7003
7004 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7005 {
7006 unsigned long current_rip = kvm_rip_read(vcpu) +
7007 get_segment_base(vcpu, VCPU_SREG_CS);
7008
7009 return current_rip == linear_rip;
7010 }
7011 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7012
7013 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7014 {
7015 unsigned long rflags;
7016
7017 rflags = kvm_x86_ops->get_rflags(vcpu);
7018 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7019 rflags &= ~X86_EFLAGS_TF;
7020 return rflags;
7021 }
7022 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7023
7024 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7025 {
7026 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7027 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7028 rflags |= X86_EFLAGS_TF;
7029 kvm_x86_ops->set_rflags(vcpu, rflags);
7030 kvm_make_request(KVM_REQ_EVENT, vcpu);
7031 }
7032 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7033
7034 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7035 {
7036 int r;
7037
7038 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7039 is_error_page(work->page))
7040 return;
7041
7042 r = kvm_mmu_reload(vcpu);
7043 if (unlikely(r))
7044 return;
7045
7046 if (!vcpu->arch.mmu.direct_map &&
7047 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7048 return;
7049
7050 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7051 }
7052
7053 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7054 {
7055 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7056 }
7057
7058 static inline u32 kvm_async_pf_next_probe(u32 key)
7059 {
7060 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7061 }
7062
7063 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7064 {
7065 u32 key = kvm_async_pf_hash_fn(gfn);
7066
7067 while (vcpu->arch.apf.gfns[key] != ~0)
7068 key = kvm_async_pf_next_probe(key);
7069
7070 vcpu->arch.apf.gfns[key] = gfn;
7071 }
7072
7073 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7074 {
7075 int i;
7076 u32 key = kvm_async_pf_hash_fn(gfn);
7077
7078 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7079 (vcpu->arch.apf.gfns[key] != gfn &&
7080 vcpu->arch.apf.gfns[key] != ~0); i++)
7081 key = kvm_async_pf_next_probe(key);
7082
7083 return key;
7084 }
7085
7086 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7087 {
7088 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7089 }
7090
7091 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7092 {
7093 u32 i, j, k;
7094
7095 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7096 while (true) {
7097 vcpu->arch.apf.gfns[i] = ~0;
7098 do {
7099 j = kvm_async_pf_next_probe(j);
7100 if (vcpu->arch.apf.gfns[j] == ~0)
7101 return;
7102 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7103 /*
7104 * k lies cyclically in ]i,j]
7105 * | i.k.j |
7106 * |....j i.k.| or |.k..j i...|
7107 */
7108 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7109 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7110 i = j;
7111 }
7112 }
7113
7114 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7115 {
7116
7117 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7118 sizeof(val));
7119 }
7120
7121 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7122 struct kvm_async_pf *work)
7123 {
7124 struct x86_exception fault;
7125
7126 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7127 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7128
7129 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7130 (vcpu->arch.apf.send_user_only &&
7131 kvm_x86_ops->get_cpl(vcpu) == 0))
7132 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7133 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7134 fault.vector = PF_VECTOR;
7135 fault.error_code_valid = true;
7136 fault.error_code = 0;
7137 fault.nested_page_fault = false;
7138 fault.address = work->arch.token;
7139 kvm_inject_page_fault(vcpu, &fault);
7140 }
7141 }
7142
7143 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7144 struct kvm_async_pf *work)
7145 {
7146 struct x86_exception fault;
7147
7148 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7149 if (is_error_page(work->page))
7150 work->arch.token = ~0; /* broadcast wakeup */
7151 else
7152 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7153
7154 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7155 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7156 fault.vector = PF_VECTOR;
7157 fault.error_code_valid = true;
7158 fault.error_code = 0;
7159 fault.nested_page_fault = false;
7160 fault.address = work->arch.token;
7161 kvm_inject_page_fault(vcpu, &fault);
7162 }
7163 vcpu->arch.apf.halted = false;
7164 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7165 }
7166
7167 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7168 {
7169 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7170 return true;
7171 else
7172 return !kvm_event_needs_reinjection(vcpu) &&
7173 kvm_x86_ops->interrupt_allowed(vcpu);
7174 }
7175
7176 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7177 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7178 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7179 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7180 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7181 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7182 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7183 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7184 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7185 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7186 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7187 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);