Merge branch 'bind_unbind' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82 * - enable syscall per default because its emulated by KVM
83 * - enable LME and LMA per default on 64 bit KVM
84 */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32 __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64 __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 static bool __read_mostly backwards_tsc_observed = false;
138
139 #define KVM_NR_SHARED_MSRS 16
140
141 struct kvm_shared_msrs_global {
142 int nr;
143 u32 msrs[KVM_NR_SHARED_MSRS];
144 };
145
146 struct kvm_shared_msrs {
147 struct user_return_notifier urn;
148 bool registered;
149 struct kvm_shared_msr_values {
150 u64 host;
151 u64 curr;
152 } values[KVM_NR_SHARED_MSRS];
153 };
154
155 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
156 static struct kvm_shared_msrs __percpu *shared_msrs;
157
158 struct kvm_stats_debugfs_item debugfs_entries[] = {
159 { "pf_fixed", VCPU_STAT(pf_fixed) },
160 { "pf_guest", VCPU_STAT(pf_guest) },
161 { "tlb_flush", VCPU_STAT(tlb_flush) },
162 { "invlpg", VCPU_STAT(invlpg) },
163 { "exits", VCPU_STAT(exits) },
164 { "io_exits", VCPU_STAT(io_exits) },
165 { "mmio_exits", VCPU_STAT(mmio_exits) },
166 { "signal_exits", VCPU_STAT(signal_exits) },
167 { "irq_window", VCPU_STAT(irq_window_exits) },
168 { "nmi_window", VCPU_STAT(nmi_window_exits) },
169 { "halt_exits", VCPU_STAT(halt_exits) },
170 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
171 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
172 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
173 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
174 { "hypercalls", VCPU_STAT(hypercalls) },
175 { "request_irq", VCPU_STAT(request_irq_exits) },
176 { "irq_exits", VCPU_STAT(irq_exits) },
177 { "host_state_reload", VCPU_STAT(host_state_reload) },
178 { "efer_reload", VCPU_STAT(efer_reload) },
179 { "fpu_reload", VCPU_STAT(fpu_reload) },
180 { "insn_emulation", VCPU_STAT(insn_emulation) },
181 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
182 { "irq_injections", VCPU_STAT(irq_injections) },
183 { "nmi_injections", VCPU_STAT(nmi_injections) },
184 { "req_event", VCPU_STAT(req_event) },
185 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
186 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
187 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
188 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
189 { "mmu_flooded", VM_STAT(mmu_flooded) },
190 { "mmu_recycled", VM_STAT(mmu_recycled) },
191 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
192 { "mmu_unsync", VM_STAT(mmu_unsync) },
193 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
194 { "largepages", VM_STAT(lpages) },
195 { "max_mmu_page_hash_collisions",
196 VM_STAT(max_mmu_page_hash_collisions) },
197 { NULL }
198 };
199
200 u64 __read_mostly host_xcr0;
201
202 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
203
204 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
205 {
206 int i;
207 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
208 vcpu->arch.apf.gfns[i] = ~0;
209 }
210
211 static void kvm_on_user_return(struct user_return_notifier *urn)
212 {
213 unsigned slot;
214 struct kvm_shared_msrs *locals
215 = container_of(urn, struct kvm_shared_msrs, urn);
216 struct kvm_shared_msr_values *values;
217 unsigned long flags;
218
219 /*
220 * Disabling irqs at this point since the following code could be
221 * interrupted and executed through kvm_arch_hardware_disable()
222 */
223 local_irq_save(flags);
224 if (locals->registered) {
225 locals->registered = false;
226 user_return_notifier_unregister(urn);
227 }
228 local_irq_restore(flags);
229 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
230 values = &locals->values[slot];
231 if (values->host != values->curr) {
232 wrmsrl(shared_msrs_global.msrs[slot], values->host);
233 values->curr = values->host;
234 }
235 }
236 }
237
238 static void shared_msr_update(unsigned slot, u32 msr)
239 {
240 u64 value;
241 unsigned int cpu = smp_processor_id();
242 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
243
244 /* only read, and nobody should modify it at this time,
245 * so don't need lock */
246 if (slot >= shared_msrs_global.nr) {
247 printk(KERN_ERR "kvm: invalid MSR slot!");
248 return;
249 }
250 rdmsrl_safe(msr, &value);
251 smsr->values[slot].host = value;
252 smsr->values[slot].curr = value;
253 }
254
255 void kvm_define_shared_msr(unsigned slot, u32 msr)
256 {
257 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
258 shared_msrs_global.msrs[slot] = msr;
259 if (slot >= shared_msrs_global.nr)
260 shared_msrs_global.nr = slot + 1;
261 }
262 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
263
264 static void kvm_shared_msr_cpu_online(void)
265 {
266 unsigned i;
267
268 for (i = 0; i < shared_msrs_global.nr; ++i)
269 shared_msr_update(i, shared_msrs_global.msrs[i]);
270 }
271
272 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
273 {
274 unsigned int cpu = smp_processor_id();
275 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
276 int err;
277
278 if (((value ^ smsr->values[slot].curr) & mask) == 0)
279 return 0;
280 smsr->values[slot].curr = value;
281 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
282 if (err)
283 return 1;
284
285 if (!smsr->registered) {
286 smsr->urn.on_user_return = kvm_on_user_return;
287 user_return_notifier_register(&smsr->urn);
288 smsr->registered = true;
289 }
290 return 0;
291 }
292 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
293
294 static void drop_user_return_notifiers(void)
295 {
296 unsigned int cpu = smp_processor_id();
297 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
298
299 if (smsr->registered)
300 kvm_on_user_return(&smsr->urn);
301 }
302
303 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
304 {
305 return vcpu->arch.apic_base;
306 }
307 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
308
309 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
310 {
311 u64 old_state = vcpu->arch.apic_base &
312 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313 u64 new_state = msr_info->data &
314 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
315 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
316 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
317
318 if (!msr_info->host_initiated &&
319 ((msr_info->data & reserved_bits) != 0 ||
320 new_state == X2APIC_ENABLE ||
321 (new_state == MSR_IA32_APICBASE_ENABLE &&
322 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
323 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
324 old_state == 0)))
325 return 1;
326
327 kvm_lapic_set_base(vcpu, msr_info->data);
328 return 0;
329 }
330 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
331
332 asmlinkage __visible void kvm_spurious_fault(void)
333 {
334 /* Fault while not rebooting. We want the trace. */
335 BUG();
336 }
337 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
338
339 #define EXCPT_BENIGN 0
340 #define EXCPT_CONTRIBUTORY 1
341 #define EXCPT_PF 2
342
343 static int exception_class(int vector)
344 {
345 switch (vector) {
346 case PF_VECTOR:
347 return EXCPT_PF;
348 case DE_VECTOR:
349 case TS_VECTOR:
350 case NP_VECTOR:
351 case SS_VECTOR:
352 case GP_VECTOR:
353 return EXCPT_CONTRIBUTORY;
354 default:
355 break;
356 }
357 return EXCPT_BENIGN;
358 }
359
360 #define EXCPT_FAULT 0
361 #define EXCPT_TRAP 1
362 #define EXCPT_ABORT 2
363 #define EXCPT_INTERRUPT 3
364
365 static int exception_type(int vector)
366 {
367 unsigned int mask;
368
369 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
370 return EXCPT_INTERRUPT;
371
372 mask = 1 << vector;
373
374 /* #DB is trap, as instruction watchpoints are handled elsewhere */
375 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
376 return EXCPT_TRAP;
377
378 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
379 return EXCPT_ABORT;
380
381 /* Reserved exceptions will result in fault */
382 return EXCPT_FAULT;
383 }
384
385 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
386 unsigned nr, bool has_error, u32 error_code,
387 bool reinject)
388 {
389 u32 prev_nr;
390 int class1, class2;
391
392 kvm_make_request(KVM_REQ_EVENT, vcpu);
393
394 if (!vcpu->arch.exception.pending) {
395 queue:
396 if (has_error && !is_protmode(vcpu))
397 has_error = false;
398 vcpu->arch.exception.pending = true;
399 vcpu->arch.exception.has_error_code = has_error;
400 vcpu->arch.exception.nr = nr;
401 vcpu->arch.exception.error_code = error_code;
402 vcpu->arch.exception.reinject = reinject;
403 return;
404 }
405
406 /* to check exception */
407 prev_nr = vcpu->arch.exception.nr;
408 if (prev_nr == DF_VECTOR) {
409 /* triple fault -> shutdown */
410 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
411 return;
412 }
413 class1 = exception_class(prev_nr);
414 class2 = exception_class(nr);
415 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
416 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
417 /* generate double fault per SDM Table 5-5 */
418 vcpu->arch.exception.pending = true;
419 vcpu->arch.exception.has_error_code = true;
420 vcpu->arch.exception.nr = DF_VECTOR;
421 vcpu->arch.exception.error_code = 0;
422 } else
423 /* replace previous exception with a new one in a hope
424 that instruction re-execution will regenerate lost
425 exception */
426 goto queue;
427 }
428
429 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
430 {
431 kvm_multiple_exception(vcpu, nr, false, 0, false);
432 }
433 EXPORT_SYMBOL_GPL(kvm_queue_exception);
434
435 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
436 {
437 kvm_multiple_exception(vcpu, nr, false, 0, true);
438 }
439 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
440
441 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
442 {
443 if (err)
444 kvm_inject_gp(vcpu, 0);
445 else
446 return kvm_skip_emulated_instruction(vcpu);
447
448 return 1;
449 }
450 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
451
452 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
453 {
454 ++vcpu->stat.pf_guest;
455 vcpu->arch.cr2 = fault->address;
456 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
457 }
458 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
459
460 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
461 {
462 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
463 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
464 else
465 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
466
467 return fault->nested_page_fault;
468 }
469
470 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
471 {
472 atomic_inc(&vcpu->arch.nmi_queued);
473 kvm_make_request(KVM_REQ_NMI, vcpu);
474 }
475 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
476
477 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
478 {
479 kvm_multiple_exception(vcpu, nr, true, error_code, false);
480 }
481 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
482
483 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
484 {
485 kvm_multiple_exception(vcpu, nr, true, error_code, true);
486 }
487 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
488
489 /*
490 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
491 * a #GP and return false.
492 */
493 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
494 {
495 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
496 return true;
497 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
498 return false;
499 }
500 EXPORT_SYMBOL_GPL(kvm_require_cpl);
501
502 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
503 {
504 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
505 return true;
506
507 kvm_queue_exception(vcpu, UD_VECTOR);
508 return false;
509 }
510 EXPORT_SYMBOL_GPL(kvm_require_dr);
511
512 /*
513 * This function will be used to read from the physical memory of the currently
514 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
515 * can read from guest physical or from the guest's guest physical memory.
516 */
517 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
518 gfn_t ngfn, void *data, int offset, int len,
519 u32 access)
520 {
521 struct x86_exception exception;
522 gfn_t real_gfn;
523 gpa_t ngpa;
524
525 ngpa = gfn_to_gpa(ngfn);
526 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
527 if (real_gfn == UNMAPPED_GVA)
528 return -EFAULT;
529
530 real_gfn = gpa_to_gfn(real_gfn);
531
532 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
533 }
534 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
535
536 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
537 void *data, int offset, int len, u32 access)
538 {
539 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
540 data, offset, len, access);
541 }
542
543 /*
544 * Load the pae pdptrs. Return true is they are all valid.
545 */
546 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
547 {
548 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
549 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
550 int i;
551 int ret;
552 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
553
554 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
555 offset * sizeof(u64), sizeof(pdpte),
556 PFERR_USER_MASK|PFERR_WRITE_MASK);
557 if (ret < 0) {
558 ret = 0;
559 goto out;
560 }
561 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
562 if ((pdpte[i] & PT_PRESENT_MASK) &&
563 (pdpte[i] &
564 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
565 ret = 0;
566 goto out;
567 }
568 }
569 ret = 1;
570
571 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
572 __set_bit(VCPU_EXREG_PDPTR,
573 (unsigned long *)&vcpu->arch.regs_avail);
574 __set_bit(VCPU_EXREG_PDPTR,
575 (unsigned long *)&vcpu->arch.regs_dirty);
576 out:
577
578 return ret;
579 }
580 EXPORT_SYMBOL_GPL(load_pdptrs);
581
582 bool pdptrs_changed(struct kvm_vcpu *vcpu)
583 {
584 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
585 bool changed = true;
586 int offset;
587 gfn_t gfn;
588 int r;
589
590 if (is_long_mode(vcpu) || !is_pae(vcpu))
591 return false;
592
593 if (!test_bit(VCPU_EXREG_PDPTR,
594 (unsigned long *)&vcpu->arch.regs_avail))
595 return true;
596
597 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
598 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
599 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
600 PFERR_USER_MASK | PFERR_WRITE_MASK);
601 if (r < 0)
602 goto out;
603 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
604 out:
605
606 return changed;
607 }
608 EXPORT_SYMBOL_GPL(pdptrs_changed);
609
610 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
611 {
612 unsigned long old_cr0 = kvm_read_cr0(vcpu);
613 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
614
615 cr0 |= X86_CR0_ET;
616
617 #ifdef CONFIG_X86_64
618 if (cr0 & 0xffffffff00000000UL)
619 return 1;
620 #endif
621
622 cr0 &= ~CR0_RESERVED_BITS;
623
624 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
625 return 1;
626
627 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
628 return 1;
629
630 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
631 #ifdef CONFIG_X86_64
632 if ((vcpu->arch.efer & EFER_LME)) {
633 int cs_db, cs_l;
634
635 if (!is_pae(vcpu))
636 return 1;
637 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
638 if (cs_l)
639 return 1;
640 } else
641 #endif
642 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
643 kvm_read_cr3(vcpu)))
644 return 1;
645 }
646
647 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
648 return 1;
649
650 kvm_x86_ops->set_cr0(vcpu, cr0);
651
652 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
653 kvm_clear_async_pf_completion_queue(vcpu);
654 kvm_async_pf_hash_reset(vcpu);
655 }
656
657 if ((cr0 ^ old_cr0) & update_bits)
658 kvm_mmu_reset_context(vcpu);
659
660 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
661 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
662 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
663 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
664
665 return 0;
666 }
667 EXPORT_SYMBOL_GPL(kvm_set_cr0);
668
669 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
670 {
671 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
672 }
673 EXPORT_SYMBOL_GPL(kvm_lmsw);
674
675 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
676 {
677 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
678 !vcpu->guest_xcr0_loaded) {
679 /* kvm_set_xcr() also depends on this */
680 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
681 vcpu->guest_xcr0_loaded = 1;
682 }
683 }
684
685 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
686 {
687 if (vcpu->guest_xcr0_loaded) {
688 if (vcpu->arch.xcr0 != host_xcr0)
689 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
690 vcpu->guest_xcr0_loaded = 0;
691 }
692 }
693
694 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
695 {
696 u64 xcr0 = xcr;
697 u64 old_xcr0 = vcpu->arch.xcr0;
698 u64 valid_bits;
699
700 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
701 if (index != XCR_XFEATURE_ENABLED_MASK)
702 return 1;
703 if (!(xcr0 & XFEATURE_MASK_FP))
704 return 1;
705 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
706 return 1;
707
708 /*
709 * Do not allow the guest to set bits that we do not support
710 * saving. However, xcr0 bit 0 is always set, even if the
711 * emulated CPU does not support XSAVE (see fx_init).
712 */
713 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
714 if (xcr0 & ~valid_bits)
715 return 1;
716
717 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
718 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
719 return 1;
720
721 if (xcr0 & XFEATURE_MASK_AVX512) {
722 if (!(xcr0 & XFEATURE_MASK_YMM))
723 return 1;
724 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
725 return 1;
726 }
727 vcpu->arch.xcr0 = xcr0;
728
729 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
730 kvm_update_cpuid(vcpu);
731 return 0;
732 }
733
734 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
735 {
736 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
737 __kvm_set_xcr(vcpu, index, xcr)) {
738 kvm_inject_gp(vcpu, 0);
739 return 1;
740 }
741 return 0;
742 }
743 EXPORT_SYMBOL_GPL(kvm_set_xcr);
744
745 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
746 {
747 unsigned long old_cr4 = kvm_read_cr4(vcpu);
748 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
749 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
750
751 if (cr4 & CR4_RESERVED_BITS)
752 return 1;
753
754 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
755 return 1;
756
757 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
758 return 1;
759
760 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
761 return 1;
762
763 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
764 return 1;
765
766 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
767 return 1;
768
769 if (is_long_mode(vcpu)) {
770 if (!(cr4 & X86_CR4_PAE))
771 return 1;
772 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
773 && ((cr4 ^ old_cr4) & pdptr_bits)
774 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
775 kvm_read_cr3(vcpu)))
776 return 1;
777
778 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
779 if (!guest_cpuid_has_pcid(vcpu))
780 return 1;
781
782 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
783 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
784 return 1;
785 }
786
787 if (kvm_x86_ops->set_cr4(vcpu, cr4))
788 return 1;
789
790 if (((cr4 ^ old_cr4) & pdptr_bits) ||
791 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
792 kvm_mmu_reset_context(vcpu);
793
794 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
795 kvm_update_cpuid(vcpu);
796
797 return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr4);
800
801 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
802 {
803 #ifdef CONFIG_X86_64
804 cr3 &= ~CR3_PCID_INVD;
805 #endif
806
807 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
808 kvm_mmu_sync_roots(vcpu);
809 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
810 return 0;
811 }
812
813 if (is_long_mode(vcpu)) {
814 if (cr3 & CR3_L_MODE_RESERVED_BITS)
815 return 1;
816 } else if (is_pae(vcpu) && is_paging(vcpu) &&
817 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
818 return 1;
819
820 vcpu->arch.cr3 = cr3;
821 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
822 kvm_mmu_new_cr3(vcpu);
823 return 0;
824 }
825 EXPORT_SYMBOL_GPL(kvm_set_cr3);
826
827 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
828 {
829 if (cr8 & CR8_RESERVED_BITS)
830 return 1;
831 if (lapic_in_kernel(vcpu))
832 kvm_lapic_set_tpr(vcpu, cr8);
833 else
834 vcpu->arch.cr8 = cr8;
835 return 0;
836 }
837 EXPORT_SYMBOL_GPL(kvm_set_cr8);
838
839 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
840 {
841 if (lapic_in_kernel(vcpu))
842 return kvm_lapic_get_cr8(vcpu);
843 else
844 return vcpu->arch.cr8;
845 }
846 EXPORT_SYMBOL_GPL(kvm_get_cr8);
847
848 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
849 {
850 int i;
851
852 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
853 for (i = 0; i < KVM_NR_DB_REGS; i++)
854 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
855 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
856 }
857 }
858
859 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
860 {
861 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
862 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
863 }
864
865 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
866 {
867 unsigned long dr7;
868
869 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
870 dr7 = vcpu->arch.guest_debug_dr7;
871 else
872 dr7 = vcpu->arch.dr7;
873 kvm_x86_ops->set_dr7(vcpu, dr7);
874 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
875 if (dr7 & DR7_BP_EN_MASK)
876 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
877 }
878
879 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
880 {
881 u64 fixed = DR6_FIXED_1;
882
883 if (!guest_cpuid_has_rtm(vcpu))
884 fixed |= DR6_RTM;
885 return fixed;
886 }
887
888 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
889 {
890 switch (dr) {
891 case 0 ... 3:
892 vcpu->arch.db[dr] = val;
893 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
894 vcpu->arch.eff_db[dr] = val;
895 break;
896 case 4:
897 /* fall through */
898 case 6:
899 if (val & 0xffffffff00000000ULL)
900 return -1; /* #GP */
901 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
902 kvm_update_dr6(vcpu);
903 break;
904 case 5:
905 /* fall through */
906 default: /* 7 */
907 if (val & 0xffffffff00000000ULL)
908 return -1; /* #GP */
909 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
910 kvm_update_dr7(vcpu);
911 break;
912 }
913
914 return 0;
915 }
916
917 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
918 {
919 if (__kvm_set_dr(vcpu, dr, val)) {
920 kvm_inject_gp(vcpu, 0);
921 return 1;
922 }
923 return 0;
924 }
925 EXPORT_SYMBOL_GPL(kvm_set_dr);
926
927 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
928 {
929 switch (dr) {
930 case 0 ... 3:
931 *val = vcpu->arch.db[dr];
932 break;
933 case 4:
934 /* fall through */
935 case 6:
936 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
937 *val = vcpu->arch.dr6;
938 else
939 *val = kvm_x86_ops->get_dr6(vcpu);
940 break;
941 case 5:
942 /* fall through */
943 default: /* 7 */
944 *val = vcpu->arch.dr7;
945 break;
946 }
947 return 0;
948 }
949 EXPORT_SYMBOL_GPL(kvm_get_dr);
950
951 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
952 {
953 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
954 u64 data;
955 int err;
956
957 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
958 if (err)
959 return err;
960 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
961 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
962 return err;
963 }
964 EXPORT_SYMBOL_GPL(kvm_rdpmc);
965
966 /*
967 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
968 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
969 *
970 * This list is modified at module load time to reflect the
971 * capabilities of the host cpu. This capabilities test skips MSRs that are
972 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
973 * may depend on host virtualization features rather than host cpu features.
974 */
975
976 static u32 msrs_to_save[] = {
977 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
978 MSR_STAR,
979 #ifdef CONFIG_X86_64
980 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
981 #endif
982 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
983 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
984 };
985
986 static unsigned num_msrs_to_save;
987
988 static u32 emulated_msrs[] = {
989 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
990 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
991 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
992 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
993 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
994 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
995 HV_X64_MSR_RESET,
996 HV_X64_MSR_VP_INDEX,
997 HV_X64_MSR_VP_RUNTIME,
998 HV_X64_MSR_SCONTROL,
999 HV_X64_MSR_STIMER0_CONFIG,
1000 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1001 MSR_KVM_PV_EOI_EN,
1002
1003 MSR_IA32_TSC_ADJUST,
1004 MSR_IA32_TSCDEADLINE,
1005 MSR_IA32_MISC_ENABLE,
1006 MSR_IA32_MCG_STATUS,
1007 MSR_IA32_MCG_CTL,
1008 MSR_IA32_MCG_EXT_CTL,
1009 MSR_IA32_SMBASE,
1010 MSR_PLATFORM_INFO,
1011 MSR_MISC_FEATURES_ENABLES,
1012 };
1013
1014 static unsigned num_emulated_msrs;
1015
1016 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1017 {
1018 if (efer & efer_reserved_bits)
1019 return false;
1020
1021 if (efer & EFER_FFXSR) {
1022 struct kvm_cpuid_entry2 *feat;
1023
1024 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1025 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1026 return false;
1027 }
1028
1029 if (efer & EFER_SVME) {
1030 struct kvm_cpuid_entry2 *feat;
1031
1032 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1033 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1034 return false;
1035 }
1036
1037 return true;
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1040
1041 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1042 {
1043 u64 old_efer = vcpu->arch.efer;
1044
1045 if (!kvm_valid_efer(vcpu, efer))
1046 return 1;
1047
1048 if (is_paging(vcpu)
1049 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1050 return 1;
1051
1052 efer &= ~EFER_LMA;
1053 efer |= vcpu->arch.efer & EFER_LMA;
1054
1055 kvm_x86_ops->set_efer(vcpu, efer);
1056
1057 /* Update reserved bits */
1058 if ((efer ^ old_efer) & EFER_NX)
1059 kvm_mmu_reset_context(vcpu);
1060
1061 return 0;
1062 }
1063
1064 void kvm_enable_efer_bits(u64 mask)
1065 {
1066 efer_reserved_bits &= ~mask;
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1069
1070 /*
1071 * Writes msr value into into the appropriate "register".
1072 * Returns 0 on success, non-0 otherwise.
1073 * Assumes vcpu_load() was already called.
1074 */
1075 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1076 {
1077 switch (msr->index) {
1078 case MSR_FS_BASE:
1079 case MSR_GS_BASE:
1080 case MSR_KERNEL_GS_BASE:
1081 case MSR_CSTAR:
1082 case MSR_LSTAR:
1083 if (is_noncanonical_address(msr->data))
1084 return 1;
1085 break;
1086 case MSR_IA32_SYSENTER_EIP:
1087 case MSR_IA32_SYSENTER_ESP:
1088 /*
1089 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1090 * non-canonical address is written on Intel but not on
1091 * AMD (which ignores the top 32-bits, because it does
1092 * not implement 64-bit SYSENTER).
1093 *
1094 * 64-bit code should hence be able to write a non-canonical
1095 * value on AMD. Making the address canonical ensures that
1096 * vmentry does not fail on Intel after writing a non-canonical
1097 * value, and that something deterministic happens if the guest
1098 * invokes 64-bit SYSENTER.
1099 */
1100 msr->data = get_canonical(msr->data);
1101 }
1102 return kvm_x86_ops->set_msr(vcpu, msr);
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_set_msr);
1105
1106 /*
1107 * Adapt set_msr() to msr_io()'s calling convention
1108 */
1109 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1110 {
1111 struct msr_data msr;
1112 int r;
1113
1114 msr.index = index;
1115 msr.host_initiated = true;
1116 r = kvm_get_msr(vcpu, &msr);
1117 if (r)
1118 return r;
1119
1120 *data = msr.data;
1121 return 0;
1122 }
1123
1124 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1125 {
1126 struct msr_data msr;
1127
1128 msr.data = *data;
1129 msr.index = index;
1130 msr.host_initiated = true;
1131 return kvm_set_msr(vcpu, &msr);
1132 }
1133
1134 #ifdef CONFIG_X86_64
1135 struct pvclock_gtod_data {
1136 seqcount_t seq;
1137
1138 struct { /* extract of a clocksource struct */
1139 int vclock_mode;
1140 u64 cycle_last;
1141 u64 mask;
1142 u32 mult;
1143 u32 shift;
1144 } clock;
1145
1146 u64 boot_ns;
1147 u64 nsec_base;
1148 u64 wall_time_sec;
1149 };
1150
1151 static struct pvclock_gtod_data pvclock_gtod_data;
1152
1153 static void update_pvclock_gtod(struct timekeeper *tk)
1154 {
1155 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1156 u64 boot_ns;
1157
1158 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1159
1160 write_seqcount_begin(&vdata->seq);
1161
1162 /* copy pvclock gtod data */
1163 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1164 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1165 vdata->clock.mask = tk->tkr_mono.mask;
1166 vdata->clock.mult = tk->tkr_mono.mult;
1167 vdata->clock.shift = tk->tkr_mono.shift;
1168
1169 vdata->boot_ns = boot_ns;
1170 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1171
1172 vdata->wall_time_sec = tk->xtime_sec;
1173
1174 write_seqcount_end(&vdata->seq);
1175 }
1176 #endif
1177
1178 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1179 {
1180 /*
1181 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1182 * vcpu_enter_guest. This function is only called from
1183 * the physical CPU that is running vcpu.
1184 */
1185 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1186 }
1187
1188 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1189 {
1190 int version;
1191 int r;
1192 struct pvclock_wall_clock wc;
1193 struct timespec64 boot;
1194
1195 if (!wall_clock)
1196 return;
1197
1198 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1199 if (r)
1200 return;
1201
1202 if (version & 1)
1203 ++version; /* first time write, random junk */
1204
1205 ++version;
1206
1207 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1208 return;
1209
1210 /*
1211 * The guest calculates current wall clock time by adding
1212 * system time (updated by kvm_guest_time_update below) to the
1213 * wall clock specified here. guest system time equals host
1214 * system time for us, thus we must fill in host boot time here.
1215 */
1216 getboottime64(&boot);
1217
1218 if (kvm->arch.kvmclock_offset) {
1219 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1220 boot = timespec64_sub(boot, ts);
1221 }
1222 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1223 wc.nsec = boot.tv_nsec;
1224 wc.version = version;
1225
1226 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1227
1228 version++;
1229 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1230 }
1231
1232 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1233 {
1234 do_shl32_div32(dividend, divisor);
1235 return dividend;
1236 }
1237
1238 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1239 s8 *pshift, u32 *pmultiplier)
1240 {
1241 uint64_t scaled64;
1242 int32_t shift = 0;
1243 uint64_t tps64;
1244 uint32_t tps32;
1245
1246 tps64 = base_hz;
1247 scaled64 = scaled_hz;
1248 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1249 tps64 >>= 1;
1250 shift--;
1251 }
1252
1253 tps32 = (uint32_t)tps64;
1254 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1255 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1256 scaled64 >>= 1;
1257 else
1258 tps32 <<= 1;
1259 shift++;
1260 }
1261
1262 *pshift = shift;
1263 *pmultiplier = div_frac(scaled64, tps32);
1264
1265 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1266 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1267 }
1268
1269 #ifdef CONFIG_X86_64
1270 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1271 #endif
1272
1273 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1274 static unsigned long max_tsc_khz;
1275
1276 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1277 {
1278 u64 v = (u64)khz * (1000000 + ppm);
1279 do_div(v, 1000000);
1280 return v;
1281 }
1282
1283 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1284 {
1285 u64 ratio;
1286
1287 /* Guest TSC same frequency as host TSC? */
1288 if (!scale) {
1289 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1290 return 0;
1291 }
1292
1293 /* TSC scaling supported? */
1294 if (!kvm_has_tsc_control) {
1295 if (user_tsc_khz > tsc_khz) {
1296 vcpu->arch.tsc_catchup = 1;
1297 vcpu->arch.tsc_always_catchup = 1;
1298 return 0;
1299 } else {
1300 WARN(1, "user requested TSC rate below hardware speed\n");
1301 return -1;
1302 }
1303 }
1304
1305 /* TSC scaling required - calculate ratio */
1306 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1307 user_tsc_khz, tsc_khz);
1308
1309 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1310 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1311 user_tsc_khz);
1312 return -1;
1313 }
1314
1315 vcpu->arch.tsc_scaling_ratio = ratio;
1316 return 0;
1317 }
1318
1319 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1320 {
1321 u32 thresh_lo, thresh_hi;
1322 int use_scaling = 0;
1323
1324 /* tsc_khz can be zero if TSC calibration fails */
1325 if (user_tsc_khz == 0) {
1326 /* set tsc_scaling_ratio to a safe value */
1327 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1328 return -1;
1329 }
1330
1331 /* Compute a scale to convert nanoseconds in TSC cycles */
1332 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1333 &vcpu->arch.virtual_tsc_shift,
1334 &vcpu->arch.virtual_tsc_mult);
1335 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1336
1337 /*
1338 * Compute the variation in TSC rate which is acceptable
1339 * within the range of tolerance and decide if the
1340 * rate being applied is within that bounds of the hardware
1341 * rate. If so, no scaling or compensation need be done.
1342 */
1343 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1344 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1345 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1346 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1347 use_scaling = 1;
1348 }
1349 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1350 }
1351
1352 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1353 {
1354 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1355 vcpu->arch.virtual_tsc_mult,
1356 vcpu->arch.virtual_tsc_shift);
1357 tsc += vcpu->arch.this_tsc_write;
1358 return tsc;
1359 }
1360
1361 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1362 {
1363 #ifdef CONFIG_X86_64
1364 bool vcpus_matched;
1365 struct kvm_arch *ka = &vcpu->kvm->arch;
1366 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1367
1368 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1369 atomic_read(&vcpu->kvm->online_vcpus));
1370
1371 /*
1372 * Once the masterclock is enabled, always perform request in
1373 * order to update it.
1374 *
1375 * In order to enable masterclock, the host clocksource must be TSC
1376 * and the vcpus need to have matched TSCs. When that happens,
1377 * perform request to enable masterclock.
1378 */
1379 if (ka->use_master_clock ||
1380 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1381 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1382
1383 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1384 atomic_read(&vcpu->kvm->online_vcpus),
1385 ka->use_master_clock, gtod->clock.vclock_mode);
1386 #endif
1387 }
1388
1389 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1390 {
1391 u64 curr_offset = vcpu->arch.tsc_offset;
1392 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1393 }
1394
1395 /*
1396 * Multiply tsc by a fixed point number represented by ratio.
1397 *
1398 * The most significant 64-N bits (mult) of ratio represent the
1399 * integral part of the fixed point number; the remaining N bits
1400 * (frac) represent the fractional part, ie. ratio represents a fixed
1401 * point number (mult + frac * 2^(-N)).
1402 *
1403 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1404 */
1405 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1406 {
1407 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1408 }
1409
1410 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1411 {
1412 u64 _tsc = tsc;
1413 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1414
1415 if (ratio != kvm_default_tsc_scaling_ratio)
1416 _tsc = __scale_tsc(ratio, tsc);
1417
1418 return _tsc;
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1421
1422 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1423 {
1424 u64 tsc;
1425
1426 tsc = kvm_scale_tsc(vcpu, rdtsc());
1427
1428 return target_tsc - tsc;
1429 }
1430
1431 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1432 {
1433 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1434 }
1435 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1436
1437 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1438 {
1439 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1440 vcpu->arch.tsc_offset = offset;
1441 }
1442
1443 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1444 {
1445 struct kvm *kvm = vcpu->kvm;
1446 u64 offset, ns, elapsed;
1447 unsigned long flags;
1448 bool matched;
1449 bool already_matched;
1450 u64 data = msr->data;
1451 bool synchronizing = false;
1452
1453 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1454 offset = kvm_compute_tsc_offset(vcpu, data);
1455 ns = ktime_get_boot_ns();
1456 elapsed = ns - kvm->arch.last_tsc_nsec;
1457
1458 if (vcpu->arch.virtual_tsc_khz) {
1459 if (data == 0 && msr->host_initiated) {
1460 /*
1461 * detection of vcpu initialization -- need to sync
1462 * with other vCPUs. This particularly helps to keep
1463 * kvm_clock stable after CPU hotplug
1464 */
1465 synchronizing = true;
1466 } else {
1467 u64 tsc_exp = kvm->arch.last_tsc_write +
1468 nsec_to_cycles(vcpu, elapsed);
1469 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1470 /*
1471 * Special case: TSC write with a small delta (1 second)
1472 * of virtual cycle time against real time is
1473 * interpreted as an attempt to synchronize the CPU.
1474 */
1475 synchronizing = data < tsc_exp + tsc_hz &&
1476 data + tsc_hz > tsc_exp;
1477 }
1478 }
1479
1480 /*
1481 * For a reliable TSC, we can match TSC offsets, and for an unstable
1482 * TSC, we add elapsed time in this computation. We could let the
1483 * compensation code attempt to catch up if we fall behind, but
1484 * it's better to try to match offsets from the beginning.
1485 */
1486 if (synchronizing &&
1487 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1488 if (!check_tsc_unstable()) {
1489 offset = kvm->arch.cur_tsc_offset;
1490 pr_debug("kvm: matched tsc offset for %llu\n", data);
1491 } else {
1492 u64 delta = nsec_to_cycles(vcpu, elapsed);
1493 data += delta;
1494 offset = kvm_compute_tsc_offset(vcpu, data);
1495 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1496 }
1497 matched = true;
1498 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1499 } else {
1500 /*
1501 * We split periods of matched TSC writes into generations.
1502 * For each generation, we track the original measured
1503 * nanosecond time, offset, and write, so if TSCs are in
1504 * sync, we can match exact offset, and if not, we can match
1505 * exact software computation in compute_guest_tsc()
1506 *
1507 * These values are tracked in kvm->arch.cur_xxx variables.
1508 */
1509 kvm->arch.cur_tsc_generation++;
1510 kvm->arch.cur_tsc_nsec = ns;
1511 kvm->arch.cur_tsc_write = data;
1512 kvm->arch.cur_tsc_offset = offset;
1513 matched = false;
1514 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1515 kvm->arch.cur_tsc_generation, data);
1516 }
1517
1518 /*
1519 * We also track th most recent recorded KHZ, write and time to
1520 * allow the matching interval to be extended at each write.
1521 */
1522 kvm->arch.last_tsc_nsec = ns;
1523 kvm->arch.last_tsc_write = data;
1524 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1525
1526 vcpu->arch.last_guest_tsc = data;
1527
1528 /* Keep track of which generation this VCPU has synchronized to */
1529 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1530 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1531 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1532
1533 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1534 update_ia32_tsc_adjust_msr(vcpu, offset);
1535 kvm_vcpu_write_tsc_offset(vcpu, offset);
1536 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1537
1538 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1539 if (!matched) {
1540 kvm->arch.nr_vcpus_matched_tsc = 0;
1541 } else if (!already_matched) {
1542 kvm->arch.nr_vcpus_matched_tsc++;
1543 }
1544
1545 kvm_track_tsc_matching(vcpu);
1546 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1547 }
1548
1549 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1550
1551 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1552 s64 adjustment)
1553 {
1554 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1555 }
1556
1557 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1558 {
1559 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1560 WARN_ON(adjustment < 0);
1561 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1562 adjust_tsc_offset_guest(vcpu, adjustment);
1563 }
1564
1565 #ifdef CONFIG_X86_64
1566
1567 static u64 read_tsc(void)
1568 {
1569 u64 ret = (u64)rdtsc_ordered();
1570 u64 last = pvclock_gtod_data.clock.cycle_last;
1571
1572 if (likely(ret >= last))
1573 return ret;
1574
1575 /*
1576 * GCC likes to generate cmov here, but this branch is extremely
1577 * predictable (it's just a function of time and the likely is
1578 * very likely) and there's a data dependence, so force GCC
1579 * to generate a branch instead. I don't barrier() because
1580 * we don't actually need a barrier, and if this function
1581 * ever gets inlined it will generate worse code.
1582 */
1583 asm volatile ("");
1584 return last;
1585 }
1586
1587 static inline u64 vgettsc(u64 *cycle_now)
1588 {
1589 long v;
1590 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1591
1592 *cycle_now = read_tsc();
1593
1594 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1595 return v * gtod->clock.mult;
1596 }
1597
1598 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1599 {
1600 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1601 unsigned long seq;
1602 int mode;
1603 u64 ns;
1604
1605 do {
1606 seq = read_seqcount_begin(&gtod->seq);
1607 mode = gtod->clock.vclock_mode;
1608 ns = gtod->nsec_base;
1609 ns += vgettsc(cycle_now);
1610 ns >>= gtod->clock.shift;
1611 ns += gtod->boot_ns;
1612 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1613 *t = ns;
1614
1615 return mode;
1616 }
1617
1618 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1619 {
1620 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1621 unsigned long seq;
1622 int mode;
1623 u64 ns;
1624
1625 do {
1626 seq = read_seqcount_begin(&gtod->seq);
1627 mode = gtod->clock.vclock_mode;
1628 ts->tv_sec = gtod->wall_time_sec;
1629 ns = gtod->nsec_base;
1630 ns += vgettsc(cycle_now);
1631 ns >>= gtod->clock.shift;
1632 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1633
1634 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1635 ts->tv_nsec = ns;
1636
1637 return mode;
1638 }
1639
1640 /* returns true if host is using tsc clocksource */
1641 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1642 {
1643 /* checked again under seqlock below */
1644 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1645 return false;
1646
1647 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1648 }
1649
1650 /* returns true if host is using tsc clocksource */
1651 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1652 u64 *cycle_now)
1653 {
1654 /* checked again under seqlock below */
1655 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1656 return false;
1657
1658 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1659 }
1660 #endif
1661
1662 /*
1663 *
1664 * Assuming a stable TSC across physical CPUS, and a stable TSC
1665 * across virtual CPUs, the following condition is possible.
1666 * Each numbered line represents an event visible to both
1667 * CPUs at the next numbered event.
1668 *
1669 * "timespecX" represents host monotonic time. "tscX" represents
1670 * RDTSC value.
1671 *
1672 * VCPU0 on CPU0 | VCPU1 on CPU1
1673 *
1674 * 1. read timespec0,tsc0
1675 * 2. | timespec1 = timespec0 + N
1676 * | tsc1 = tsc0 + M
1677 * 3. transition to guest | transition to guest
1678 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1679 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1680 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1681 *
1682 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1683 *
1684 * - ret0 < ret1
1685 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1686 * ...
1687 * - 0 < N - M => M < N
1688 *
1689 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1690 * always the case (the difference between two distinct xtime instances
1691 * might be smaller then the difference between corresponding TSC reads,
1692 * when updating guest vcpus pvclock areas).
1693 *
1694 * To avoid that problem, do not allow visibility of distinct
1695 * system_timestamp/tsc_timestamp values simultaneously: use a master
1696 * copy of host monotonic time values. Update that master copy
1697 * in lockstep.
1698 *
1699 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1700 *
1701 */
1702
1703 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1704 {
1705 #ifdef CONFIG_X86_64
1706 struct kvm_arch *ka = &kvm->arch;
1707 int vclock_mode;
1708 bool host_tsc_clocksource, vcpus_matched;
1709
1710 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1711 atomic_read(&kvm->online_vcpus));
1712
1713 /*
1714 * If the host uses TSC clock, then passthrough TSC as stable
1715 * to the guest.
1716 */
1717 host_tsc_clocksource = kvm_get_time_and_clockread(
1718 &ka->master_kernel_ns,
1719 &ka->master_cycle_now);
1720
1721 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1722 && !backwards_tsc_observed
1723 && !ka->boot_vcpu_runs_old_kvmclock;
1724
1725 if (ka->use_master_clock)
1726 atomic_set(&kvm_guest_has_master_clock, 1);
1727
1728 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1729 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1730 vcpus_matched);
1731 #endif
1732 }
1733
1734 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1735 {
1736 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1737 }
1738
1739 static void kvm_gen_update_masterclock(struct kvm *kvm)
1740 {
1741 #ifdef CONFIG_X86_64
1742 int i;
1743 struct kvm_vcpu *vcpu;
1744 struct kvm_arch *ka = &kvm->arch;
1745
1746 spin_lock(&ka->pvclock_gtod_sync_lock);
1747 kvm_make_mclock_inprogress_request(kvm);
1748 /* no guest entries from this point */
1749 pvclock_update_vm_gtod_copy(kvm);
1750
1751 kvm_for_each_vcpu(i, vcpu, kvm)
1752 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1753
1754 /* guest entries allowed */
1755 kvm_for_each_vcpu(i, vcpu, kvm)
1756 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1757
1758 spin_unlock(&ka->pvclock_gtod_sync_lock);
1759 #endif
1760 }
1761
1762 u64 get_kvmclock_ns(struct kvm *kvm)
1763 {
1764 struct kvm_arch *ka = &kvm->arch;
1765 struct pvclock_vcpu_time_info hv_clock;
1766 u64 ret;
1767
1768 spin_lock(&ka->pvclock_gtod_sync_lock);
1769 if (!ka->use_master_clock) {
1770 spin_unlock(&ka->pvclock_gtod_sync_lock);
1771 return ktime_get_boot_ns() + ka->kvmclock_offset;
1772 }
1773
1774 hv_clock.tsc_timestamp = ka->master_cycle_now;
1775 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1776 spin_unlock(&ka->pvclock_gtod_sync_lock);
1777
1778 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1779 get_cpu();
1780
1781 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1782 &hv_clock.tsc_shift,
1783 &hv_clock.tsc_to_system_mul);
1784 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1785
1786 put_cpu();
1787
1788 return ret;
1789 }
1790
1791 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1792 {
1793 struct kvm_vcpu_arch *vcpu = &v->arch;
1794 struct pvclock_vcpu_time_info guest_hv_clock;
1795
1796 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1797 &guest_hv_clock, sizeof(guest_hv_clock))))
1798 return;
1799
1800 /* This VCPU is paused, but it's legal for a guest to read another
1801 * VCPU's kvmclock, so we really have to follow the specification where
1802 * it says that version is odd if data is being modified, and even after
1803 * it is consistent.
1804 *
1805 * Version field updates must be kept separate. This is because
1806 * kvm_write_guest_cached might use a "rep movs" instruction, and
1807 * writes within a string instruction are weakly ordered. So there
1808 * are three writes overall.
1809 *
1810 * As a small optimization, only write the version field in the first
1811 * and third write. The vcpu->pv_time cache is still valid, because the
1812 * version field is the first in the struct.
1813 */
1814 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1815
1816 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1817 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1818 &vcpu->hv_clock,
1819 sizeof(vcpu->hv_clock.version));
1820
1821 smp_wmb();
1822
1823 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1824 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1825
1826 if (vcpu->pvclock_set_guest_stopped_request) {
1827 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1828 vcpu->pvclock_set_guest_stopped_request = false;
1829 }
1830
1831 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1832
1833 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1834 &vcpu->hv_clock,
1835 sizeof(vcpu->hv_clock));
1836
1837 smp_wmb();
1838
1839 vcpu->hv_clock.version++;
1840 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1841 &vcpu->hv_clock,
1842 sizeof(vcpu->hv_clock.version));
1843 }
1844
1845 static int kvm_guest_time_update(struct kvm_vcpu *v)
1846 {
1847 unsigned long flags, tgt_tsc_khz;
1848 struct kvm_vcpu_arch *vcpu = &v->arch;
1849 struct kvm_arch *ka = &v->kvm->arch;
1850 s64 kernel_ns;
1851 u64 tsc_timestamp, host_tsc;
1852 u8 pvclock_flags;
1853 bool use_master_clock;
1854
1855 kernel_ns = 0;
1856 host_tsc = 0;
1857
1858 /*
1859 * If the host uses TSC clock, then passthrough TSC as stable
1860 * to the guest.
1861 */
1862 spin_lock(&ka->pvclock_gtod_sync_lock);
1863 use_master_clock = ka->use_master_clock;
1864 if (use_master_clock) {
1865 host_tsc = ka->master_cycle_now;
1866 kernel_ns = ka->master_kernel_ns;
1867 }
1868 spin_unlock(&ka->pvclock_gtod_sync_lock);
1869
1870 /* Keep irq disabled to prevent changes to the clock */
1871 local_irq_save(flags);
1872 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1873 if (unlikely(tgt_tsc_khz == 0)) {
1874 local_irq_restore(flags);
1875 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1876 return 1;
1877 }
1878 if (!use_master_clock) {
1879 host_tsc = rdtsc();
1880 kernel_ns = ktime_get_boot_ns();
1881 }
1882
1883 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1884
1885 /*
1886 * We may have to catch up the TSC to match elapsed wall clock
1887 * time for two reasons, even if kvmclock is used.
1888 * 1) CPU could have been running below the maximum TSC rate
1889 * 2) Broken TSC compensation resets the base at each VCPU
1890 * entry to avoid unknown leaps of TSC even when running
1891 * again on the same CPU. This may cause apparent elapsed
1892 * time to disappear, and the guest to stand still or run
1893 * very slowly.
1894 */
1895 if (vcpu->tsc_catchup) {
1896 u64 tsc = compute_guest_tsc(v, kernel_ns);
1897 if (tsc > tsc_timestamp) {
1898 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1899 tsc_timestamp = tsc;
1900 }
1901 }
1902
1903 local_irq_restore(flags);
1904
1905 /* With all the info we got, fill in the values */
1906
1907 if (kvm_has_tsc_control)
1908 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1909
1910 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1911 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1912 &vcpu->hv_clock.tsc_shift,
1913 &vcpu->hv_clock.tsc_to_system_mul);
1914 vcpu->hw_tsc_khz = tgt_tsc_khz;
1915 }
1916
1917 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1918 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1919 vcpu->last_guest_tsc = tsc_timestamp;
1920
1921 /* If the host uses TSC clocksource, then it is stable */
1922 pvclock_flags = 0;
1923 if (use_master_clock)
1924 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1925
1926 vcpu->hv_clock.flags = pvclock_flags;
1927
1928 if (vcpu->pv_time_enabled)
1929 kvm_setup_pvclock_page(v);
1930 if (v == kvm_get_vcpu(v->kvm, 0))
1931 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1932 return 0;
1933 }
1934
1935 /*
1936 * kvmclock updates which are isolated to a given vcpu, such as
1937 * vcpu->cpu migration, should not allow system_timestamp from
1938 * the rest of the vcpus to remain static. Otherwise ntp frequency
1939 * correction applies to one vcpu's system_timestamp but not
1940 * the others.
1941 *
1942 * So in those cases, request a kvmclock update for all vcpus.
1943 * We need to rate-limit these requests though, as they can
1944 * considerably slow guests that have a large number of vcpus.
1945 * The time for a remote vcpu to update its kvmclock is bound
1946 * by the delay we use to rate-limit the updates.
1947 */
1948
1949 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1950
1951 static void kvmclock_update_fn(struct work_struct *work)
1952 {
1953 int i;
1954 struct delayed_work *dwork = to_delayed_work(work);
1955 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1956 kvmclock_update_work);
1957 struct kvm *kvm = container_of(ka, struct kvm, arch);
1958 struct kvm_vcpu *vcpu;
1959
1960 kvm_for_each_vcpu(i, vcpu, kvm) {
1961 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1962 kvm_vcpu_kick(vcpu);
1963 }
1964 }
1965
1966 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1967 {
1968 struct kvm *kvm = v->kvm;
1969
1970 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1971 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1972 KVMCLOCK_UPDATE_DELAY);
1973 }
1974
1975 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1976
1977 static void kvmclock_sync_fn(struct work_struct *work)
1978 {
1979 struct delayed_work *dwork = to_delayed_work(work);
1980 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1981 kvmclock_sync_work);
1982 struct kvm *kvm = container_of(ka, struct kvm, arch);
1983
1984 if (!kvmclock_periodic_sync)
1985 return;
1986
1987 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1988 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1989 KVMCLOCK_SYNC_PERIOD);
1990 }
1991
1992 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1993 {
1994 u64 mcg_cap = vcpu->arch.mcg_cap;
1995 unsigned bank_num = mcg_cap & 0xff;
1996
1997 switch (msr) {
1998 case MSR_IA32_MCG_STATUS:
1999 vcpu->arch.mcg_status = data;
2000 break;
2001 case MSR_IA32_MCG_CTL:
2002 if (!(mcg_cap & MCG_CTL_P))
2003 return 1;
2004 if (data != 0 && data != ~(u64)0)
2005 return -1;
2006 vcpu->arch.mcg_ctl = data;
2007 break;
2008 default:
2009 if (msr >= MSR_IA32_MC0_CTL &&
2010 msr < MSR_IA32_MCx_CTL(bank_num)) {
2011 u32 offset = msr - MSR_IA32_MC0_CTL;
2012 /* only 0 or all 1s can be written to IA32_MCi_CTL
2013 * some Linux kernels though clear bit 10 in bank 4 to
2014 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2015 * this to avoid an uncatched #GP in the guest
2016 */
2017 if ((offset & 0x3) == 0 &&
2018 data != 0 && (data | (1 << 10)) != ~(u64)0)
2019 return -1;
2020 vcpu->arch.mce_banks[offset] = data;
2021 break;
2022 }
2023 return 1;
2024 }
2025 return 0;
2026 }
2027
2028 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2029 {
2030 struct kvm *kvm = vcpu->kvm;
2031 int lm = is_long_mode(vcpu);
2032 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2033 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2034 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2035 : kvm->arch.xen_hvm_config.blob_size_32;
2036 u32 page_num = data & ~PAGE_MASK;
2037 u64 page_addr = data & PAGE_MASK;
2038 u8 *page;
2039 int r;
2040
2041 r = -E2BIG;
2042 if (page_num >= blob_size)
2043 goto out;
2044 r = -ENOMEM;
2045 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2046 if (IS_ERR(page)) {
2047 r = PTR_ERR(page);
2048 goto out;
2049 }
2050 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2051 goto out_free;
2052 r = 0;
2053 out_free:
2054 kfree(page);
2055 out:
2056 return r;
2057 }
2058
2059 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2060 {
2061 gpa_t gpa = data & ~0x3f;
2062
2063 /* Bits 2:5 are reserved, Should be zero */
2064 if (data & 0x3c)
2065 return 1;
2066
2067 vcpu->arch.apf.msr_val = data;
2068
2069 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2070 kvm_clear_async_pf_completion_queue(vcpu);
2071 kvm_async_pf_hash_reset(vcpu);
2072 return 0;
2073 }
2074
2075 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2076 sizeof(u32)))
2077 return 1;
2078
2079 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2080 kvm_async_pf_wakeup_all(vcpu);
2081 return 0;
2082 }
2083
2084 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2085 {
2086 vcpu->arch.pv_time_enabled = false;
2087 }
2088
2089 static void record_steal_time(struct kvm_vcpu *vcpu)
2090 {
2091 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2092 return;
2093
2094 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2095 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2096 return;
2097
2098 vcpu->arch.st.steal.preempted = 0;
2099
2100 if (vcpu->arch.st.steal.version & 1)
2101 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2102
2103 vcpu->arch.st.steal.version += 1;
2104
2105 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2106 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2107
2108 smp_wmb();
2109
2110 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2111 vcpu->arch.st.last_steal;
2112 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2113
2114 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2115 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2116
2117 smp_wmb();
2118
2119 vcpu->arch.st.steal.version += 1;
2120
2121 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2122 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2123 }
2124
2125 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2126 {
2127 bool pr = false;
2128 u32 msr = msr_info->index;
2129 u64 data = msr_info->data;
2130
2131 switch (msr) {
2132 case MSR_AMD64_NB_CFG:
2133 case MSR_IA32_UCODE_REV:
2134 case MSR_IA32_UCODE_WRITE:
2135 case MSR_VM_HSAVE_PA:
2136 case MSR_AMD64_PATCH_LOADER:
2137 case MSR_AMD64_BU_CFG2:
2138 case MSR_AMD64_DC_CFG:
2139 break;
2140
2141 case MSR_EFER:
2142 return set_efer(vcpu, data);
2143 case MSR_K7_HWCR:
2144 data &= ~(u64)0x40; /* ignore flush filter disable */
2145 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2146 data &= ~(u64)0x8; /* ignore TLB cache disable */
2147 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2148 if (data != 0) {
2149 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2150 data);
2151 return 1;
2152 }
2153 break;
2154 case MSR_FAM10H_MMIO_CONF_BASE:
2155 if (data != 0) {
2156 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2157 "0x%llx\n", data);
2158 return 1;
2159 }
2160 break;
2161 case MSR_IA32_DEBUGCTLMSR:
2162 if (!data) {
2163 /* We support the non-activated case already */
2164 break;
2165 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2166 /* Values other than LBR and BTF are vendor-specific,
2167 thus reserved and should throw a #GP */
2168 return 1;
2169 }
2170 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2171 __func__, data);
2172 break;
2173 case 0x200 ... 0x2ff:
2174 return kvm_mtrr_set_msr(vcpu, msr, data);
2175 case MSR_IA32_APICBASE:
2176 return kvm_set_apic_base(vcpu, msr_info);
2177 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2178 return kvm_x2apic_msr_write(vcpu, msr, data);
2179 case MSR_IA32_TSCDEADLINE:
2180 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2181 break;
2182 case MSR_IA32_TSC_ADJUST:
2183 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2184 if (!msr_info->host_initiated) {
2185 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2186 adjust_tsc_offset_guest(vcpu, adj);
2187 }
2188 vcpu->arch.ia32_tsc_adjust_msr = data;
2189 }
2190 break;
2191 case MSR_IA32_MISC_ENABLE:
2192 vcpu->arch.ia32_misc_enable_msr = data;
2193 break;
2194 case MSR_IA32_SMBASE:
2195 if (!msr_info->host_initiated)
2196 return 1;
2197 vcpu->arch.smbase = data;
2198 break;
2199 case MSR_KVM_WALL_CLOCK_NEW:
2200 case MSR_KVM_WALL_CLOCK:
2201 vcpu->kvm->arch.wall_clock = data;
2202 kvm_write_wall_clock(vcpu->kvm, data);
2203 break;
2204 case MSR_KVM_SYSTEM_TIME_NEW:
2205 case MSR_KVM_SYSTEM_TIME: {
2206 struct kvm_arch *ka = &vcpu->kvm->arch;
2207
2208 kvmclock_reset(vcpu);
2209
2210 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2211 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2212
2213 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2214 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2215
2216 ka->boot_vcpu_runs_old_kvmclock = tmp;
2217 }
2218
2219 vcpu->arch.time = data;
2220 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2221
2222 /* we verify if the enable bit is set... */
2223 if (!(data & 1))
2224 break;
2225
2226 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2227 &vcpu->arch.pv_time, data & ~1ULL,
2228 sizeof(struct pvclock_vcpu_time_info)))
2229 vcpu->arch.pv_time_enabled = false;
2230 else
2231 vcpu->arch.pv_time_enabled = true;
2232
2233 break;
2234 }
2235 case MSR_KVM_ASYNC_PF_EN:
2236 if (kvm_pv_enable_async_pf(vcpu, data))
2237 return 1;
2238 break;
2239 case MSR_KVM_STEAL_TIME:
2240
2241 if (unlikely(!sched_info_on()))
2242 return 1;
2243
2244 if (data & KVM_STEAL_RESERVED_MASK)
2245 return 1;
2246
2247 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2248 data & KVM_STEAL_VALID_BITS,
2249 sizeof(struct kvm_steal_time)))
2250 return 1;
2251
2252 vcpu->arch.st.msr_val = data;
2253
2254 if (!(data & KVM_MSR_ENABLED))
2255 break;
2256
2257 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2258
2259 break;
2260 case MSR_KVM_PV_EOI_EN:
2261 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2262 return 1;
2263 break;
2264
2265 case MSR_IA32_MCG_CTL:
2266 case MSR_IA32_MCG_STATUS:
2267 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2268 return set_msr_mce(vcpu, msr, data);
2269
2270 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2271 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2272 pr = true; /* fall through */
2273 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2274 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2275 if (kvm_pmu_is_valid_msr(vcpu, msr))
2276 return kvm_pmu_set_msr(vcpu, msr_info);
2277
2278 if (pr || data != 0)
2279 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2280 "0x%x data 0x%llx\n", msr, data);
2281 break;
2282 case MSR_K7_CLK_CTL:
2283 /*
2284 * Ignore all writes to this no longer documented MSR.
2285 * Writes are only relevant for old K7 processors,
2286 * all pre-dating SVM, but a recommended workaround from
2287 * AMD for these chips. It is possible to specify the
2288 * affected processor models on the command line, hence
2289 * the need to ignore the workaround.
2290 */
2291 break;
2292 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2293 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2294 case HV_X64_MSR_CRASH_CTL:
2295 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2296 return kvm_hv_set_msr_common(vcpu, msr, data,
2297 msr_info->host_initiated);
2298 case MSR_IA32_BBL_CR_CTL3:
2299 /* Drop writes to this legacy MSR -- see rdmsr
2300 * counterpart for further detail.
2301 */
2302 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2303 break;
2304 case MSR_AMD64_OSVW_ID_LENGTH:
2305 if (!guest_cpuid_has_osvw(vcpu))
2306 return 1;
2307 vcpu->arch.osvw.length = data;
2308 break;
2309 case MSR_AMD64_OSVW_STATUS:
2310 if (!guest_cpuid_has_osvw(vcpu))
2311 return 1;
2312 vcpu->arch.osvw.status = data;
2313 break;
2314 case MSR_PLATFORM_INFO:
2315 if (!msr_info->host_initiated ||
2316 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2317 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2318 cpuid_fault_enabled(vcpu)))
2319 return 1;
2320 vcpu->arch.msr_platform_info = data;
2321 break;
2322 case MSR_MISC_FEATURES_ENABLES:
2323 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2324 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2325 !supports_cpuid_fault(vcpu)))
2326 return 1;
2327 vcpu->arch.msr_misc_features_enables = data;
2328 break;
2329 default:
2330 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2331 return xen_hvm_config(vcpu, data);
2332 if (kvm_pmu_is_valid_msr(vcpu, msr))
2333 return kvm_pmu_set_msr(vcpu, msr_info);
2334 if (!ignore_msrs) {
2335 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2336 msr, data);
2337 return 1;
2338 } else {
2339 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2340 msr, data);
2341 break;
2342 }
2343 }
2344 return 0;
2345 }
2346 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2347
2348
2349 /*
2350 * Reads an msr value (of 'msr_index') into 'pdata'.
2351 * Returns 0 on success, non-0 otherwise.
2352 * Assumes vcpu_load() was already called.
2353 */
2354 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2355 {
2356 return kvm_x86_ops->get_msr(vcpu, msr);
2357 }
2358 EXPORT_SYMBOL_GPL(kvm_get_msr);
2359
2360 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2361 {
2362 u64 data;
2363 u64 mcg_cap = vcpu->arch.mcg_cap;
2364 unsigned bank_num = mcg_cap & 0xff;
2365
2366 switch (msr) {
2367 case MSR_IA32_P5_MC_ADDR:
2368 case MSR_IA32_P5_MC_TYPE:
2369 data = 0;
2370 break;
2371 case MSR_IA32_MCG_CAP:
2372 data = vcpu->arch.mcg_cap;
2373 break;
2374 case MSR_IA32_MCG_CTL:
2375 if (!(mcg_cap & MCG_CTL_P))
2376 return 1;
2377 data = vcpu->arch.mcg_ctl;
2378 break;
2379 case MSR_IA32_MCG_STATUS:
2380 data = vcpu->arch.mcg_status;
2381 break;
2382 default:
2383 if (msr >= MSR_IA32_MC0_CTL &&
2384 msr < MSR_IA32_MCx_CTL(bank_num)) {
2385 u32 offset = msr - MSR_IA32_MC0_CTL;
2386 data = vcpu->arch.mce_banks[offset];
2387 break;
2388 }
2389 return 1;
2390 }
2391 *pdata = data;
2392 return 0;
2393 }
2394
2395 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2396 {
2397 switch (msr_info->index) {
2398 case MSR_IA32_PLATFORM_ID:
2399 case MSR_IA32_EBL_CR_POWERON:
2400 case MSR_IA32_DEBUGCTLMSR:
2401 case MSR_IA32_LASTBRANCHFROMIP:
2402 case MSR_IA32_LASTBRANCHTOIP:
2403 case MSR_IA32_LASTINTFROMIP:
2404 case MSR_IA32_LASTINTTOIP:
2405 case MSR_K8_SYSCFG:
2406 case MSR_K8_TSEG_ADDR:
2407 case MSR_K8_TSEG_MASK:
2408 case MSR_K7_HWCR:
2409 case MSR_VM_HSAVE_PA:
2410 case MSR_K8_INT_PENDING_MSG:
2411 case MSR_AMD64_NB_CFG:
2412 case MSR_FAM10H_MMIO_CONF_BASE:
2413 case MSR_AMD64_BU_CFG2:
2414 case MSR_IA32_PERF_CTL:
2415 case MSR_AMD64_DC_CFG:
2416 msr_info->data = 0;
2417 break;
2418 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2419 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2420 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2421 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2422 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2423 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2424 msr_info->data = 0;
2425 break;
2426 case MSR_IA32_UCODE_REV:
2427 msr_info->data = 0x100000000ULL;
2428 break;
2429 case MSR_MTRRcap:
2430 case 0x200 ... 0x2ff:
2431 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2432 case 0xcd: /* fsb frequency */
2433 msr_info->data = 3;
2434 break;
2435 /*
2436 * MSR_EBC_FREQUENCY_ID
2437 * Conservative value valid for even the basic CPU models.
2438 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2439 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2440 * and 266MHz for model 3, or 4. Set Core Clock
2441 * Frequency to System Bus Frequency Ratio to 1 (bits
2442 * 31:24) even though these are only valid for CPU
2443 * models > 2, however guests may end up dividing or
2444 * multiplying by zero otherwise.
2445 */
2446 case MSR_EBC_FREQUENCY_ID:
2447 msr_info->data = 1 << 24;
2448 break;
2449 case MSR_IA32_APICBASE:
2450 msr_info->data = kvm_get_apic_base(vcpu);
2451 break;
2452 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2453 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2454 break;
2455 case MSR_IA32_TSCDEADLINE:
2456 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2457 break;
2458 case MSR_IA32_TSC_ADJUST:
2459 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2460 break;
2461 case MSR_IA32_MISC_ENABLE:
2462 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2463 break;
2464 case MSR_IA32_SMBASE:
2465 if (!msr_info->host_initiated)
2466 return 1;
2467 msr_info->data = vcpu->arch.smbase;
2468 break;
2469 case MSR_IA32_PERF_STATUS:
2470 /* TSC increment by tick */
2471 msr_info->data = 1000ULL;
2472 /* CPU multiplier */
2473 msr_info->data |= (((uint64_t)4ULL) << 40);
2474 break;
2475 case MSR_EFER:
2476 msr_info->data = vcpu->arch.efer;
2477 break;
2478 case MSR_KVM_WALL_CLOCK:
2479 case MSR_KVM_WALL_CLOCK_NEW:
2480 msr_info->data = vcpu->kvm->arch.wall_clock;
2481 break;
2482 case MSR_KVM_SYSTEM_TIME:
2483 case MSR_KVM_SYSTEM_TIME_NEW:
2484 msr_info->data = vcpu->arch.time;
2485 break;
2486 case MSR_KVM_ASYNC_PF_EN:
2487 msr_info->data = vcpu->arch.apf.msr_val;
2488 break;
2489 case MSR_KVM_STEAL_TIME:
2490 msr_info->data = vcpu->arch.st.msr_val;
2491 break;
2492 case MSR_KVM_PV_EOI_EN:
2493 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2494 break;
2495 case MSR_IA32_P5_MC_ADDR:
2496 case MSR_IA32_P5_MC_TYPE:
2497 case MSR_IA32_MCG_CAP:
2498 case MSR_IA32_MCG_CTL:
2499 case MSR_IA32_MCG_STATUS:
2500 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2501 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2502 case MSR_K7_CLK_CTL:
2503 /*
2504 * Provide expected ramp-up count for K7. All other
2505 * are set to zero, indicating minimum divisors for
2506 * every field.
2507 *
2508 * This prevents guest kernels on AMD host with CPU
2509 * type 6, model 8 and higher from exploding due to
2510 * the rdmsr failing.
2511 */
2512 msr_info->data = 0x20000000;
2513 break;
2514 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2515 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2516 case HV_X64_MSR_CRASH_CTL:
2517 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2518 return kvm_hv_get_msr_common(vcpu,
2519 msr_info->index, &msr_info->data);
2520 break;
2521 case MSR_IA32_BBL_CR_CTL3:
2522 /* This legacy MSR exists but isn't fully documented in current
2523 * silicon. It is however accessed by winxp in very narrow
2524 * scenarios where it sets bit #19, itself documented as
2525 * a "reserved" bit. Best effort attempt to source coherent
2526 * read data here should the balance of the register be
2527 * interpreted by the guest:
2528 *
2529 * L2 cache control register 3: 64GB range, 256KB size,
2530 * enabled, latency 0x1, configured
2531 */
2532 msr_info->data = 0xbe702111;
2533 break;
2534 case MSR_AMD64_OSVW_ID_LENGTH:
2535 if (!guest_cpuid_has_osvw(vcpu))
2536 return 1;
2537 msr_info->data = vcpu->arch.osvw.length;
2538 break;
2539 case MSR_AMD64_OSVW_STATUS:
2540 if (!guest_cpuid_has_osvw(vcpu))
2541 return 1;
2542 msr_info->data = vcpu->arch.osvw.status;
2543 break;
2544 case MSR_PLATFORM_INFO:
2545 msr_info->data = vcpu->arch.msr_platform_info;
2546 break;
2547 case MSR_MISC_FEATURES_ENABLES:
2548 msr_info->data = vcpu->arch.msr_misc_features_enables;
2549 break;
2550 default:
2551 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2552 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2553 if (!ignore_msrs) {
2554 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2555 msr_info->index);
2556 return 1;
2557 } else {
2558 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2559 msr_info->data = 0;
2560 }
2561 break;
2562 }
2563 return 0;
2564 }
2565 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2566
2567 /*
2568 * Read or write a bunch of msrs. All parameters are kernel addresses.
2569 *
2570 * @return number of msrs set successfully.
2571 */
2572 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2573 struct kvm_msr_entry *entries,
2574 int (*do_msr)(struct kvm_vcpu *vcpu,
2575 unsigned index, u64 *data))
2576 {
2577 int i, idx;
2578
2579 idx = srcu_read_lock(&vcpu->kvm->srcu);
2580 for (i = 0; i < msrs->nmsrs; ++i)
2581 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2582 break;
2583 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2584
2585 return i;
2586 }
2587
2588 /*
2589 * Read or write a bunch of msrs. Parameters are user addresses.
2590 *
2591 * @return number of msrs set successfully.
2592 */
2593 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2594 int (*do_msr)(struct kvm_vcpu *vcpu,
2595 unsigned index, u64 *data),
2596 int writeback)
2597 {
2598 struct kvm_msrs msrs;
2599 struct kvm_msr_entry *entries;
2600 int r, n;
2601 unsigned size;
2602
2603 r = -EFAULT;
2604 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2605 goto out;
2606
2607 r = -E2BIG;
2608 if (msrs.nmsrs >= MAX_IO_MSRS)
2609 goto out;
2610
2611 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2612 entries = memdup_user(user_msrs->entries, size);
2613 if (IS_ERR(entries)) {
2614 r = PTR_ERR(entries);
2615 goto out;
2616 }
2617
2618 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2619 if (r < 0)
2620 goto out_free;
2621
2622 r = -EFAULT;
2623 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2624 goto out_free;
2625
2626 r = n;
2627
2628 out_free:
2629 kfree(entries);
2630 out:
2631 return r;
2632 }
2633
2634 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2635 {
2636 int r;
2637
2638 switch (ext) {
2639 case KVM_CAP_IRQCHIP:
2640 case KVM_CAP_HLT:
2641 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2642 case KVM_CAP_SET_TSS_ADDR:
2643 case KVM_CAP_EXT_CPUID:
2644 case KVM_CAP_EXT_EMUL_CPUID:
2645 case KVM_CAP_CLOCKSOURCE:
2646 case KVM_CAP_PIT:
2647 case KVM_CAP_NOP_IO_DELAY:
2648 case KVM_CAP_MP_STATE:
2649 case KVM_CAP_SYNC_MMU:
2650 case KVM_CAP_USER_NMI:
2651 case KVM_CAP_REINJECT_CONTROL:
2652 case KVM_CAP_IRQ_INJECT_STATUS:
2653 case KVM_CAP_IOEVENTFD:
2654 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2655 case KVM_CAP_PIT2:
2656 case KVM_CAP_PIT_STATE2:
2657 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2658 case KVM_CAP_XEN_HVM:
2659 case KVM_CAP_VCPU_EVENTS:
2660 case KVM_CAP_HYPERV:
2661 case KVM_CAP_HYPERV_VAPIC:
2662 case KVM_CAP_HYPERV_SPIN:
2663 case KVM_CAP_HYPERV_SYNIC:
2664 case KVM_CAP_PCI_SEGMENT:
2665 case KVM_CAP_DEBUGREGS:
2666 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2667 case KVM_CAP_XSAVE:
2668 case KVM_CAP_ASYNC_PF:
2669 case KVM_CAP_GET_TSC_KHZ:
2670 case KVM_CAP_KVMCLOCK_CTRL:
2671 case KVM_CAP_READONLY_MEM:
2672 case KVM_CAP_HYPERV_TIME:
2673 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2674 case KVM_CAP_TSC_DEADLINE_TIMER:
2675 case KVM_CAP_ENABLE_CAP_VM:
2676 case KVM_CAP_DISABLE_QUIRKS:
2677 case KVM_CAP_SET_BOOT_CPU_ID:
2678 case KVM_CAP_SPLIT_IRQCHIP:
2679 case KVM_CAP_IMMEDIATE_EXIT:
2680 r = 1;
2681 break;
2682 case KVM_CAP_ADJUST_CLOCK:
2683 r = KVM_CLOCK_TSC_STABLE;
2684 break;
2685 case KVM_CAP_X86_GUEST_MWAIT:
2686 r = kvm_mwait_in_guest();
2687 break;
2688 case KVM_CAP_X86_SMM:
2689 /* SMBASE is usually relocated above 1M on modern chipsets,
2690 * and SMM handlers might indeed rely on 4G segment limits,
2691 * so do not report SMM to be available if real mode is
2692 * emulated via vm86 mode. Still, do not go to great lengths
2693 * to avoid userspace's usage of the feature, because it is a
2694 * fringe case that is not enabled except via specific settings
2695 * of the module parameters.
2696 */
2697 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2698 break;
2699 case KVM_CAP_VAPIC:
2700 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2701 break;
2702 case KVM_CAP_NR_VCPUS:
2703 r = KVM_SOFT_MAX_VCPUS;
2704 break;
2705 case KVM_CAP_MAX_VCPUS:
2706 r = KVM_MAX_VCPUS;
2707 break;
2708 case KVM_CAP_NR_MEMSLOTS:
2709 r = KVM_USER_MEM_SLOTS;
2710 break;
2711 case KVM_CAP_PV_MMU: /* obsolete */
2712 r = 0;
2713 break;
2714 case KVM_CAP_MCE:
2715 r = KVM_MAX_MCE_BANKS;
2716 break;
2717 case KVM_CAP_XCRS:
2718 r = boot_cpu_has(X86_FEATURE_XSAVE);
2719 break;
2720 case KVM_CAP_TSC_CONTROL:
2721 r = kvm_has_tsc_control;
2722 break;
2723 case KVM_CAP_X2APIC_API:
2724 r = KVM_X2APIC_API_VALID_FLAGS;
2725 break;
2726 default:
2727 r = 0;
2728 break;
2729 }
2730 return r;
2731
2732 }
2733
2734 long kvm_arch_dev_ioctl(struct file *filp,
2735 unsigned int ioctl, unsigned long arg)
2736 {
2737 void __user *argp = (void __user *)arg;
2738 long r;
2739
2740 switch (ioctl) {
2741 case KVM_GET_MSR_INDEX_LIST: {
2742 struct kvm_msr_list __user *user_msr_list = argp;
2743 struct kvm_msr_list msr_list;
2744 unsigned n;
2745
2746 r = -EFAULT;
2747 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2748 goto out;
2749 n = msr_list.nmsrs;
2750 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2751 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2752 goto out;
2753 r = -E2BIG;
2754 if (n < msr_list.nmsrs)
2755 goto out;
2756 r = -EFAULT;
2757 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2758 num_msrs_to_save * sizeof(u32)))
2759 goto out;
2760 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2761 &emulated_msrs,
2762 num_emulated_msrs * sizeof(u32)))
2763 goto out;
2764 r = 0;
2765 break;
2766 }
2767 case KVM_GET_SUPPORTED_CPUID:
2768 case KVM_GET_EMULATED_CPUID: {
2769 struct kvm_cpuid2 __user *cpuid_arg = argp;
2770 struct kvm_cpuid2 cpuid;
2771
2772 r = -EFAULT;
2773 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2774 goto out;
2775
2776 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2777 ioctl);
2778 if (r)
2779 goto out;
2780
2781 r = -EFAULT;
2782 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2783 goto out;
2784 r = 0;
2785 break;
2786 }
2787 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2788 r = -EFAULT;
2789 if (copy_to_user(argp, &kvm_mce_cap_supported,
2790 sizeof(kvm_mce_cap_supported)))
2791 goto out;
2792 r = 0;
2793 break;
2794 }
2795 default:
2796 r = -EINVAL;
2797 }
2798 out:
2799 return r;
2800 }
2801
2802 static void wbinvd_ipi(void *garbage)
2803 {
2804 wbinvd();
2805 }
2806
2807 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2808 {
2809 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2810 }
2811
2812 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2813 {
2814 /* Address WBINVD may be executed by guest */
2815 if (need_emulate_wbinvd(vcpu)) {
2816 if (kvm_x86_ops->has_wbinvd_exit())
2817 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2818 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2819 smp_call_function_single(vcpu->cpu,
2820 wbinvd_ipi, NULL, 1);
2821 }
2822
2823 kvm_x86_ops->vcpu_load(vcpu, cpu);
2824
2825 /* Apply any externally detected TSC adjustments (due to suspend) */
2826 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2827 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2828 vcpu->arch.tsc_offset_adjustment = 0;
2829 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2830 }
2831
2832 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2833 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2834 rdtsc() - vcpu->arch.last_host_tsc;
2835 if (tsc_delta < 0)
2836 mark_tsc_unstable("KVM discovered backwards TSC");
2837
2838 if (check_tsc_unstable()) {
2839 u64 offset = kvm_compute_tsc_offset(vcpu,
2840 vcpu->arch.last_guest_tsc);
2841 kvm_vcpu_write_tsc_offset(vcpu, offset);
2842 vcpu->arch.tsc_catchup = 1;
2843 }
2844 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2845 kvm_x86_ops->set_hv_timer(vcpu,
2846 kvm_get_lapic_target_expiration_tsc(vcpu)))
2847 kvm_lapic_switch_to_sw_timer(vcpu);
2848 /*
2849 * On a host with synchronized TSC, there is no need to update
2850 * kvmclock on vcpu->cpu migration
2851 */
2852 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2853 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2854 if (vcpu->cpu != cpu)
2855 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2856 vcpu->cpu = cpu;
2857 }
2858
2859 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2860 }
2861
2862 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2863 {
2864 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2865 return;
2866
2867 vcpu->arch.st.steal.preempted = 1;
2868
2869 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2870 &vcpu->arch.st.steal.preempted,
2871 offsetof(struct kvm_steal_time, preempted),
2872 sizeof(vcpu->arch.st.steal.preempted));
2873 }
2874
2875 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2876 {
2877 int idx;
2878 /*
2879 * Disable page faults because we're in atomic context here.
2880 * kvm_write_guest_offset_cached() would call might_fault()
2881 * that relies on pagefault_disable() to tell if there's a
2882 * bug. NOTE: the write to guest memory may not go through if
2883 * during postcopy live migration or if there's heavy guest
2884 * paging.
2885 */
2886 pagefault_disable();
2887 /*
2888 * kvm_memslots() will be called by
2889 * kvm_write_guest_offset_cached() so take the srcu lock.
2890 */
2891 idx = srcu_read_lock(&vcpu->kvm->srcu);
2892 kvm_steal_time_set_preempted(vcpu);
2893 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2894 pagefault_enable();
2895 kvm_x86_ops->vcpu_put(vcpu);
2896 kvm_put_guest_fpu(vcpu);
2897 vcpu->arch.last_host_tsc = rdtsc();
2898 }
2899
2900 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2901 struct kvm_lapic_state *s)
2902 {
2903 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2904 kvm_x86_ops->sync_pir_to_irr(vcpu);
2905
2906 return kvm_apic_get_state(vcpu, s);
2907 }
2908
2909 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2910 struct kvm_lapic_state *s)
2911 {
2912 int r;
2913
2914 r = kvm_apic_set_state(vcpu, s);
2915 if (r)
2916 return r;
2917 update_cr8_intercept(vcpu);
2918
2919 return 0;
2920 }
2921
2922 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2923 {
2924 return (!lapic_in_kernel(vcpu) ||
2925 kvm_apic_accept_pic_intr(vcpu));
2926 }
2927
2928 /*
2929 * if userspace requested an interrupt window, check that the
2930 * interrupt window is open.
2931 *
2932 * No need to exit to userspace if we already have an interrupt queued.
2933 */
2934 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2935 {
2936 return kvm_arch_interrupt_allowed(vcpu) &&
2937 !kvm_cpu_has_interrupt(vcpu) &&
2938 !kvm_event_needs_reinjection(vcpu) &&
2939 kvm_cpu_accept_dm_intr(vcpu);
2940 }
2941
2942 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2943 struct kvm_interrupt *irq)
2944 {
2945 if (irq->irq >= KVM_NR_INTERRUPTS)
2946 return -EINVAL;
2947
2948 if (!irqchip_in_kernel(vcpu->kvm)) {
2949 kvm_queue_interrupt(vcpu, irq->irq, false);
2950 kvm_make_request(KVM_REQ_EVENT, vcpu);
2951 return 0;
2952 }
2953
2954 /*
2955 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2956 * fail for in-kernel 8259.
2957 */
2958 if (pic_in_kernel(vcpu->kvm))
2959 return -ENXIO;
2960
2961 if (vcpu->arch.pending_external_vector != -1)
2962 return -EEXIST;
2963
2964 vcpu->arch.pending_external_vector = irq->irq;
2965 kvm_make_request(KVM_REQ_EVENT, vcpu);
2966 return 0;
2967 }
2968
2969 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2970 {
2971 kvm_inject_nmi(vcpu);
2972
2973 return 0;
2974 }
2975
2976 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2977 {
2978 kvm_make_request(KVM_REQ_SMI, vcpu);
2979
2980 return 0;
2981 }
2982
2983 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2984 struct kvm_tpr_access_ctl *tac)
2985 {
2986 if (tac->flags)
2987 return -EINVAL;
2988 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2989 return 0;
2990 }
2991
2992 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2993 u64 mcg_cap)
2994 {
2995 int r;
2996 unsigned bank_num = mcg_cap & 0xff, bank;
2997
2998 r = -EINVAL;
2999 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3000 goto out;
3001 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3002 goto out;
3003 r = 0;
3004 vcpu->arch.mcg_cap = mcg_cap;
3005 /* Init IA32_MCG_CTL to all 1s */
3006 if (mcg_cap & MCG_CTL_P)
3007 vcpu->arch.mcg_ctl = ~(u64)0;
3008 /* Init IA32_MCi_CTL to all 1s */
3009 for (bank = 0; bank < bank_num; bank++)
3010 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3011
3012 if (kvm_x86_ops->setup_mce)
3013 kvm_x86_ops->setup_mce(vcpu);
3014 out:
3015 return r;
3016 }
3017
3018 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3019 struct kvm_x86_mce *mce)
3020 {
3021 u64 mcg_cap = vcpu->arch.mcg_cap;
3022 unsigned bank_num = mcg_cap & 0xff;
3023 u64 *banks = vcpu->arch.mce_banks;
3024
3025 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3026 return -EINVAL;
3027 /*
3028 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3029 * reporting is disabled
3030 */
3031 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3032 vcpu->arch.mcg_ctl != ~(u64)0)
3033 return 0;
3034 banks += 4 * mce->bank;
3035 /*
3036 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3037 * reporting is disabled for the bank
3038 */
3039 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3040 return 0;
3041 if (mce->status & MCI_STATUS_UC) {
3042 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3043 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3044 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3045 return 0;
3046 }
3047 if (banks[1] & MCI_STATUS_VAL)
3048 mce->status |= MCI_STATUS_OVER;
3049 banks[2] = mce->addr;
3050 banks[3] = mce->misc;
3051 vcpu->arch.mcg_status = mce->mcg_status;
3052 banks[1] = mce->status;
3053 kvm_queue_exception(vcpu, MC_VECTOR);
3054 } else if (!(banks[1] & MCI_STATUS_VAL)
3055 || !(banks[1] & MCI_STATUS_UC)) {
3056 if (banks[1] & MCI_STATUS_VAL)
3057 mce->status |= MCI_STATUS_OVER;
3058 banks[2] = mce->addr;
3059 banks[3] = mce->misc;
3060 banks[1] = mce->status;
3061 } else
3062 banks[1] |= MCI_STATUS_OVER;
3063 return 0;
3064 }
3065
3066 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3067 struct kvm_vcpu_events *events)
3068 {
3069 process_nmi(vcpu);
3070 events->exception.injected =
3071 vcpu->arch.exception.pending &&
3072 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3073 events->exception.nr = vcpu->arch.exception.nr;
3074 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3075 events->exception.pad = 0;
3076 events->exception.error_code = vcpu->arch.exception.error_code;
3077
3078 events->interrupt.injected =
3079 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3080 events->interrupt.nr = vcpu->arch.interrupt.nr;
3081 events->interrupt.soft = 0;
3082 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3083
3084 events->nmi.injected = vcpu->arch.nmi_injected;
3085 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3086 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3087 events->nmi.pad = 0;
3088
3089 events->sipi_vector = 0; /* never valid when reporting to user space */
3090
3091 events->smi.smm = is_smm(vcpu);
3092 events->smi.pending = vcpu->arch.smi_pending;
3093 events->smi.smm_inside_nmi =
3094 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3095 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3096
3097 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3098 | KVM_VCPUEVENT_VALID_SHADOW
3099 | KVM_VCPUEVENT_VALID_SMM);
3100 memset(&events->reserved, 0, sizeof(events->reserved));
3101 }
3102
3103 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3104
3105 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3106 struct kvm_vcpu_events *events)
3107 {
3108 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3109 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3110 | KVM_VCPUEVENT_VALID_SHADOW
3111 | KVM_VCPUEVENT_VALID_SMM))
3112 return -EINVAL;
3113
3114 if (events->exception.injected &&
3115 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3116 is_guest_mode(vcpu)))
3117 return -EINVAL;
3118
3119 /* INITs are latched while in SMM */
3120 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3121 (events->smi.smm || events->smi.pending) &&
3122 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3123 return -EINVAL;
3124
3125 process_nmi(vcpu);
3126 vcpu->arch.exception.pending = events->exception.injected;
3127 vcpu->arch.exception.nr = events->exception.nr;
3128 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3129 vcpu->arch.exception.error_code = events->exception.error_code;
3130
3131 vcpu->arch.interrupt.pending = events->interrupt.injected;
3132 vcpu->arch.interrupt.nr = events->interrupt.nr;
3133 vcpu->arch.interrupt.soft = events->interrupt.soft;
3134 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3135 kvm_x86_ops->set_interrupt_shadow(vcpu,
3136 events->interrupt.shadow);
3137
3138 vcpu->arch.nmi_injected = events->nmi.injected;
3139 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3140 vcpu->arch.nmi_pending = events->nmi.pending;
3141 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3142
3143 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3144 lapic_in_kernel(vcpu))
3145 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3146
3147 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3148 u32 hflags = vcpu->arch.hflags;
3149 if (events->smi.smm)
3150 hflags |= HF_SMM_MASK;
3151 else
3152 hflags &= ~HF_SMM_MASK;
3153 kvm_set_hflags(vcpu, hflags);
3154
3155 vcpu->arch.smi_pending = events->smi.pending;
3156 if (events->smi.smm_inside_nmi)
3157 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3158 else
3159 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3160 if (lapic_in_kernel(vcpu)) {
3161 if (events->smi.latched_init)
3162 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3163 else
3164 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3165 }
3166 }
3167
3168 kvm_make_request(KVM_REQ_EVENT, vcpu);
3169
3170 return 0;
3171 }
3172
3173 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3174 struct kvm_debugregs *dbgregs)
3175 {
3176 unsigned long val;
3177
3178 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3179 kvm_get_dr(vcpu, 6, &val);
3180 dbgregs->dr6 = val;
3181 dbgregs->dr7 = vcpu->arch.dr7;
3182 dbgregs->flags = 0;
3183 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3184 }
3185
3186 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3187 struct kvm_debugregs *dbgregs)
3188 {
3189 if (dbgregs->flags)
3190 return -EINVAL;
3191
3192 if (dbgregs->dr6 & ~0xffffffffull)
3193 return -EINVAL;
3194 if (dbgregs->dr7 & ~0xffffffffull)
3195 return -EINVAL;
3196
3197 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3198 kvm_update_dr0123(vcpu);
3199 vcpu->arch.dr6 = dbgregs->dr6;
3200 kvm_update_dr6(vcpu);
3201 vcpu->arch.dr7 = dbgregs->dr7;
3202 kvm_update_dr7(vcpu);
3203
3204 return 0;
3205 }
3206
3207 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3208
3209 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3210 {
3211 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3212 u64 xstate_bv = xsave->header.xfeatures;
3213 u64 valid;
3214
3215 /*
3216 * Copy legacy XSAVE area, to avoid complications with CPUID
3217 * leaves 0 and 1 in the loop below.
3218 */
3219 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3220
3221 /* Set XSTATE_BV */
3222 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3223 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3224
3225 /*
3226 * Copy each region from the possibly compacted offset to the
3227 * non-compacted offset.
3228 */
3229 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3230 while (valid) {
3231 u64 feature = valid & -valid;
3232 int index = fls64(feature) - 1;
3233 void *src = get_xsave_addr(xsave, feature);
3234
3235 if (src) {
3236 u32 size, offset, ecx, edx;
3237 cpuid_count(XSTATE_CPUID, index,
3238 &size, &offset, &ecx, &edx);
3239 memcpy(dest + offset, src, size);
3240 }
3241
3242 valid -= feature;
3243 }
3244 }
3245
3246 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3247 {
3248 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3249 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3250 u64 valid;
3251
3252 /*
3253 * Copy legacy XSAVE area, to avoid complications with CPUID
3254 * leaves 0 and 1 in the loop below.
3255 */
3256 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3257
3258 /* Set XSTATE_BV and possibly XCOMP_BV. */
3259 xsave->header.xfeatures = xstate_bv;
3260 if (boot_cpu_has(X86_FEATURE_XSAVES))
3261 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3262
3263 /*
3264 * Copy each region from the non-compacted offset to the
3265 * possibly compacted offset.
3266 */
3267 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3268 while (valid) {
3269 u64 feature = valid & -valid;
3270 int index = fls64(feature) - 1;
3271 void *dest = get_xsave_addr(xsave, feature);
3272
3273 if (dest) {
3274 u32 size, offset, ecx, edx;
3275 cpuid_count(XSTATE_CPUID, index,
3276 &size, &offset, &ecx, &edx);
3277 memcpy(dest, src + offset, size);
3278 }
3279
3280 valid -= feature;
3281 }
3282 }
3283
3284 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3285 struct kvm_xsave *guest_xsave)
3286 {
3287 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3288 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3289 fill_xsave((u8 *) guest_xsave->region, vcpu);
3290 } else {
3291 memcpy(guest_xsave->region,
3292 &vcpu->arch.guest_fpu.state.fxsave,
3293 sizeof(struct fxregs_state));
3294 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3295 XFEATURE_MASK_FPSSE;
3296 }
3297 }
3298
3299 #define XSAVE_MXCSR_OFFSET 24
3300
3301 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3302 struct kvm_xsave *guest_xsave)
3303 {
3304 u64 xstate_bv =
3305 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3306 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3307
3308 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3309 /*
3310 * Here we allow setting states that are not present in
3311 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3312 * with old userspace.
3313 */
3314 if (xstate_bv & ~kvm_supported_xcr0() ||
3315 mxcsr & ~mxcsr_feature_mask)
3316 return -EINVAL;
3317 load_xsave(vcpu, (u8 *)guest_xsave->region);
3318 } else {
3319 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3320 mxcsr & ~mxcsr_feature_mask)
3321 return -EINVAL;
3322 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3323 guest_xsave->region, sizeof(struct fxregs_state));
3324 }
3325 return 0;
3326 }
3327
3328 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3329 struct kvm_xcrs *guest_xcrs)
3330 {
3331 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3332 guest_xcrs->nr_xcrs = 0;
3333 return;
3334 }
3335
3336 guest_xcrs->nr_xcrs = 1;
3337 guest_xcrs->flags = 0;
3338 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3339 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3340 }
3341
3342 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3343 struct kvm_xcrs *guest_xcrs)
3344 {
3345 int i, r = 0;
3346
3347 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3348 return -EINVAL;
3349
3350 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3351 return -EINVAL;
3352
3353 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3354 /* Only support XCR0 currently */
3355 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3356 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3357 guest_xcrs->xcrs[i].value);
3358 break;
3359 }
3360 if (r)
3361 r = -EINVAL;
3362 return r;
3363 }
3364
3365 /*
3366 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3367 * stopped by the hypervisor. This function will be called from the host only.
3368 * EINVAL is returned when the host attempts to set the flag for a guest that
3369 * does not support pv clocks.
3370 */
3371 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3372 {
3373 if (!vcpu->arch.pv_time_enabled)
3374 return -EINVAL;
3375 vcpu->arch.pvclock_set_guest_stopped_request = true;
3376 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3377 return 0;
3378 }
3379
3380 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3381 struct kvm_enable_cap *cap)
3382 {
3383 if (cap->flags)
3384 return -EINVAL;
3385
3386 switch (cap->cap) {
3387 case KVM_CAP_HYPERV_SYNIC:
3388 if (!irqchip_in_kernel(vcpu->kvm))
3389 return -EINVAL;
3390 return kvm_hv_activate_synic(vcpu);
3391 default:
3392 return -EINVAL;
3393 }
3394 }
3395
3396 long kvm_arch_vcpu_ioctl(struct file *filp,
3397 unsigned int ioctl, unsigned long arg)
3398 {
3399 struct kvm_vcpu *vcpu = filp->private_data;
3400 void __user *argp = (void __user *)arg;
3401 int r;
3402 union {
3403 struct kvm_lapic_state *lapic;
3404 struct kvm_xsave *xsave;
3405 struct kvm_xcrs *xcrs;
3406 void *buffer;
3407 } u;
3408
3409 u.buffer = NULL;
3410 switch (ioctl) {
3411 case KVM_GET_LAPIC: {
3412 r = -EINVAL;
3413 if (!lapic_in_kernel(vcpu))
3414 goto out;
3415 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3416
3417 r = -ENOMEM;
3418 if (!u.lapic)
3419 goto out;
3420 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3421 if (r)
3422 goto out;
3423 r = -EFAULT;
3424 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3425 goto out;
3426 r = 0;
3427 break;
3428 }
3429 case KVM_SET_LAPIC: {
3430 r = -EINVAL;
3431 if (!lapic_in_kernel(vcpu))
3432 goto out;
3433 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3434 if (IS_ERR(u.lapic))
3435 return PTR_ERR(u.lapic);
3436
3437 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3438 break;
3439 }
3440 case KVM_INTERRUPT: {
3441 struct kvm_interrupt irq;
3442
3443 r = -EFAULT;
3444 if (copy_from_user(&irq, argp, sizeof irq))
3445 goto out;
3446 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3447 break;
3448 }
3449 case KVM_NMI: {
3450 r = kvm_vcpu_ioctl_nmi(vcpu);
3451 break;
3452 }
3453 case KVM_SMI: {
3454 r = kvm_vcpu_ioctl_smi(vcpu);
3455 break;
3456 }
3457 case KVM_SET_CPUID: {
3458 struct kvm_cpuid __user *cpuid_arg = argp;
3459 struct kvm_cpuid cpuid;
3460
3461 r = -EFAULT;
3462 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3463 goto out;
3464 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3465 break;
3466 }
3467 case KVM_SET_CPUID2: {
3468 struct kvm_cpuid2 __user *cpuid_arg = argp;
3469 struct kvm_cpuid2 cpuid;
3470
3471 r = -EFAULT;
3472 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3473 goto out;
3474 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3475 cpuid_arg->entries);
3476 break;
3477 }
3478 case KVM_GET_CPUID2: {
3479 struct kvm_cpuid2 __user *cpuid_arg = argp;
3480 struct kvm_cpuid2 cpuid;
3481
3482 r = -EFAULT;
3483 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3484 goto out;
3485 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3486 cpuid_arg->entries);
3487 if (r)
3488 goto out;
3489 r = -EFAULT;
3490 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3491 goto out;
3492 r = 0;
3493 break;
3494 }
3495 case KVM_GET_MSRS:
3496 r = msr_io(vcpu, argp, do_get_msr, 1);
3497 break;
3498 case KVM_SET_MSRS:
3499 r = msr_io(vcpu, argp, do_set_msr, 0);
3500 break;
3501 case KVM_TPR_ACCESS_REPORTING: {
3502 struct kvm_tpr_access_ctl tac;
3503
3504 r = -EFAULT;
3505 if (copy_from_user(&tac, argp, sizeof tac))
3506 goto out;
3507 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3508 if (r)
3509 goto out;
3510 r = -EFAULT;
3511 if (copy_to_user(argp, &tac, sizeof tac))
3512 goto out;
3513 r = 0;
3514 break;
3515 };
3516 case KVM_SET_VAPIC_ADDR: {
3517 struct kvm_vapic_addr va;
3518 int idx;
3519
3520 r = -EINVAL;
3521 if (!lapic_in_kernel(vcpu))
3522 goto out;
3523 r = -EFAULT;
3524 if (copy_from_user(&va, argp, sizeof va))
3525 goto out;
3526 idx = srcu_read_lock(&vcpu->kvm->srcu);
3527 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3528 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3529 break;
3530 }
3531 case KVM_X86_SETUP_MCE: {
3532 u64 mcg_cap;
3533
3534 r = -EFAULT;
3535 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3536 goto out;
3537 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3538 break;
3539 }
3540 case KVM_X86_SET_MCE: {
3541 struct kvm_x86_mce mce;
3542
3543 r = -EFAULT;
3544 if (copy_from_user(&mce, argp, sizeof mce))
3545 goto out;
3546 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3547 break;
3548 }
3549 case KVM_GET_VCPU_EVENTS: {
3550 struct kvm_vcpu_events events;
3551
3552 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3553
3554 r = -EFAULT;
3555 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3556 break;
3557 r = 0;
3558 break;
3559 }
3560 case KVM_SET_VCPU_EVENTS: {
3561 struct kvm_vcpu_events events;
3562
3563 r = -EFAULT;
3564 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3565 break;
3566
3567 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3568 break;
3569 }
3570 case KVM_GET_DEBUGREGS: {
3571 struct kvm_debugregs dbgregs;
3572
3573 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3574
3575 r = -EFAULT;
3576 if (copy_to_user(argp, &dbgregs,
3577 sizeof(struct kvm_debugregs)))
3578 break;
3579 r = 0;
3580 break;
3581 }
3582 case KVM_SET_DEBUGREGS: {
3583 struct kvm_debugregs dbgregs;
3584
3585 r = -EFAULT;
3586 if (copy_from_user(&dbgregs, argp,
3587 sizeof(struct kvm_debugregs)))
3588 break;
3589
3590 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3591 break;
3592 }
3593 case KVM_GET_XSAVE: {
3594 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3595 r = -ENOMEM;
3596 if (!u.xsave)
3597 break;
3598
3599 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3600
3601 r = -EFAULT;
3602 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3603 break;
3604 r = 0;
3605 break;
3606 }
3607 case KVM_SET_XSAVE: {
3608 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3609 if (IS_ERR(u.xsave))
3610 return PTR_ERR(u.xsave);
3611
3612 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3613 break;
3614 }
3615 case KVM_GET_XCRS: {
3616 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3617 r = -ENOMEM;
3618 if (!u.xcrs)
3619 break;
3620
3621 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3622
3623 r = -EFAULT;
3624 if (copy_to_user(argp, u.xcrs,
3625 sizeof(struct kvm_xcrs)))
3626 break;
3627 r = 0;
3628 break;
3629 }
3630 case KVM_SET_XCRS: {
3631 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3632 if (IS_ERR(u.xcrs))
3633 return PTR_ERR(u.xcrs);
3634
3635 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3636 break;
3637 }
3638 case KVM_SET_TSC_KHZ: {
3639 u32 user_tsc_khz;
3640
3641 r = -EINVAL;
3642 user_tsc_khz = (u32)arg;
3643
3644 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3645 goto out;
3646
3647 if (user_tsc_khz == 0)
3648 user_tsc_khz = tsc_khz;
3649
3650 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3651 r = 0;
3652
3653 goto out;
3654 }
3655 case KVM_GET_TSC_KHZ: {
3656 r = vcpu->arch.virtual_tsc_khz;
3657 goto out;
3658 }
3659 case KVM_KVMCLOCK_CTRL: {
3660 r = kvm_set_guest_paused(vcpu);
3661 goto out;
3662 }
3663 case KVM_ENABLE_CAP: {
3664 struct kvm_enable_cap cap;
3665
3666 r = -EFAULT;
3667 if (copy_from_user(&cap, argp, sizeof(cap)))
3668 goto out;
3669 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3670 break;
3671 }
3672 default:
3673 r = -EINVAL;
3674 }
3675 out:
3676 kfree(u.buffer);
3677 return r;
3678 }
3679
3680 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3681 {
3682 return VM_FAULT_SIGBUS;
3683 }
3684
3685 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3686 {
3687 int ret;
3688
3689 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3690 return -EINVAL;
3691 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3692 return ret;
3693 }
3694
3695 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3696 u64 ident_addr)
3697 {
3698 kvm->arch.ept_identity_map_addr = ident_addr;
3699 return 0;
3700 }
3701
3702 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3703 u32 kvm_nr_mmu_pages)
3704 {
3705 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3706 return -EINVAL;
3707
3708 mutex_lock(&kvm->slots_lock);
3709
3710 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3711 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3712
3713 mutex_unlock(&kvm->slots_lock);
3714 return 0;
3715 }
3716
3717 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3718 {
3719 return kvm->arch.n_max_mmu_pages;
3720 }
3721
3722 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3723 {
3724 struct kvm_pic *pic = kvm->arch.vpic;
3725 int r;
3726
3727 r = 0;
3728 switch (chip->chip_id) {
3729 case KVM_IRQCHIP_PIC_MASTER:
3730 memcpy(&chip->chip.pic, &pic->pics[0],
3731 sizeof(struct kvm_pic_state));
3732 break;
3733 case KVM_IRQCHIP_PIC_SLAVE:
3734 memcpy(&chip->chip.pic, &pic->pics[1],
3735 sizeof(struct kvm_pic_state));
3736 break;
3737 case KVM_IRQCHIP_IOAPIC:
3738 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3739 break;
3740 default:
3741 r = -EINVAL;
3742 break;
3743 }
3744 return r;
3745 }
3746
3747 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3748 {
3749 struct kvm_pic *pic = kvm->arch.vpic;
3750 int r;
3751
3752 r = 0;
3753 switch (chip->chip_id) {
3754 case KVM_IRQCHIP_PIC_MASTER:
3755 spin_lock(&pic->lock);
3756 memcpy(&pic->pics[0], &chip->chip.pic,
3757 sizeof(struct kvm_pic_state));
3758 spin_unlock(&pic->lock);
3759 break;
3760 case KVM_IRQCHIP_PIC_SLAVE:
3761 spin_lock(&pic->lock);
3762 memcpy(&pic->pics[1], &chip->chip.pic,
3763 sizeof(struct kvm_pic_state));
3764 spin_unlock(&pic->lock);
3765 break;
3766 case KVM_IRQCHIP_IOAPIC:
3767 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3768 break;
3769 default:
3770 r = -EINVAL;
3771 break;
3772 }
3773 kvm_pic_update_irq(pic);
3774 return r;
3775 }
3776
3777 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3778 {
3779 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3780
3781 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3782
3783 mutex_lock(&kps->lock);
3784 memcpy(ps, &kps->channels, sizeof(*ps));
3785 mutex_unlock(&kps->lock);
3786 return 0;
3787 }
3788
3789 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3790 {
3791 int i;
3792 struct kvm_pit *pit = kvm->arch.vpit;
3793
3794 mutex_lock(&pit->pit_state.lock);
3795 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3796 for (i = 0; i < 3; i++)
3797 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3798 mutex_unlock(&pit->pit_state.lock);
3799 return 0;
3800 }
3801
3802 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3803 {
3804 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3805 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3806 sizeof(ps->channels));
3807 ps->flags = kvm->arch.vpit->pit_state.flags;
3808 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3809 memset(&ps->reserved, 0, sizeof(ps->reserved));
3810 return 0;
3811 }
3812
3813 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3814 {
3815 int start = 0;
3816 int i;
3817 u32 prev_legacy, cur_legacy;
3818 struct kvm_pit *pit = kvm->arch.vpit;
3819
3820 mutex_lock(&pit->pit_state.lock);
3821 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3822 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3823 if (!prev_legacy && cur_legacy)
3824 start = 1;
3825 memcpy(&pit->pit_state.channels, &ps->channels,
3826 sizeof(pit->pit_state.channels));
3827 pit->pit_state.flags = ps->flags;
3828 for (i = 0; i < 3; i++)
3829 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3830 start && i == 0);
3831 mutex_unlock(&pit->pit_state.lock);
3832 return 0;
3833 }
3834
3835 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3836 struct kvm_reinject_control *control)
3837 {
3838 struct kvm_pit *pit = kvm->arch.vpit;
3839
3840 if (!pit)
3841 return -ENXIO;
3842
3843 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3844 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3845 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3846 */
3847 mutex_lock(&pit->pit_state.lock);
3848 kvm_pit_set_reinject(pit, control->pit_reinject);
3849 mutex_unlock(&pit->pit_state.lock);
3850
3851 return 0;
3852 }
3853
3854 /**
3855 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3856 * @kvm: kvm instance
3857 * @log: slot id and address to which we copy the log
3858 *
3859 * Steps 1-4 below provide general overview of dirty page logging. See
3860 * kvm_get_dirty_log_protect() function description for additional details.
3861 *
3862 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3863 * always flush the TLB (step 4) even if previous step failed and the dirty
3864 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3865 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3866 * writes will be marked dirty for next log read.
3867 *
3868 * 1. Take a snapshot of the bit and clear it if needed.
3869 * 2. Write protect the corresponding page.
3870 * 3. Copy the snapshot to the userspace.
3871 * 4. Flush TLB's if needed.
3872 */
3873 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3874 {
3875 bool is_dirty = false;
3876 int r;
3877
3878 mutex_lock(&kvm->slots_lock);
3879
3880 /*
3881 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3882 */
3883 if (kvm_x86_ops->flush_log_dirty)
3884 kvm_x86_ops->flush_log_dirty(kvm);
3885
3886 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3887
3888 /*
3889 * All the TLBs can be flushed out of mmu lock, see the comments in
3890 * kvm_mmu_slot_remove_write_access().
3891 */
3892 lockdep_assert_held(&kvm->slots_lock);
3893 if (is_dirty)
3894 kvm_flush_remote_tlbs(kvm);
3895
3896 mutex_unlock(&kvm->slots_lock);
3897 return r;
3898 }
3899
3900 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3901 bool line_status)
3902 {
3903 if (!irqchip_in_kernel(kvm))
3904 return -ENXIO;
3905
3906 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3907 irq_event->irq, irq_event->level,
3908 line_status);
3909 return 0;
3910 }
3911
3912 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3913 struct kvm_enable_cap *cap)
3914 {
3915 int r;
3916
3917 if (cap->flags)
3918 return -EINVAL;
3919
3920 switch (cap->cap) {
3921 case KVM_CAP_DISABLE_QUIRKS:
3922 kvm->arch.disabled_quirks = cap->args[0];
3923 r = 0;
3924 break;
3925 case KVM_CAP_SPLIT_IRQCHIP: {
3926 mutex_lock(&kvm->lock);
3927 r = -EINVAL;
3928 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3929 goto split_irqchip_unlock;
3930 r = -EEXIST;
3931 if (irqchip_in_kernel(kvm))
3932 goto split_irqchip_unlock;
3933 if (kvm->created_vcpus)
3934 goto split_irqchip_unlock;
3935 r = kvm_setup_empty_irq_routing(kvm);
3936 if (r)
3937 goto split_irqchip_unlock;
3938 /* Pairs with irqchip_in_kernel. */
3939 smp_wmb();
3940 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3941 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3942 r = 0;
3943 split_irqchip_unlock:
3944 mutex_unlock(&kvm->lock);
3945 break;
3946 }
3947 case KVM_CAP_X2APIC_API:
3948 r = -EINVAL;
3949 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3950 break;
3951
3952 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3953 kvm->arch.x2apic_format = true;
3954 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3955 kvm->arch.x2apic_broadcast_quirk_disabled = true;
3956
3957 r = 0;
3958 break;
3959 default:
3960 r = -EINVAL;
3961 break;
3962 }
3963 return r;
3964 }
3965
3966 long kvm_arch_vm_ioctl(struct file *filp,
3967 unsigned int ioctl, unsigned long arg)
3968 {
3969 struct kvm *kvm = filp->private_data;
3970 void __user *argp = (void __user *)arg;
3971 int r = -ENOTTY;
3972 /*
3973 * This union makes it completely explicit to gcc-3.x
3974 * that these two variables' stack usage should be
3975 * combined, not added together.
3976 */
3977 union {
3978 struct kvm_pit_state ps;
3979 struct kvm_pit_state2 ps2;
3980 struct kvm_pit_config pit_config;
3981 } u;
3982
3983 switch (ioctl) {
3984 case KVM_SET_TSS_ADDR:
3985 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3986 break;
3987 case KVM_SET_IDENTITY_MAP_ADDR: {
3988 u64 ident_addr;
3989
3990 r = -EFAULT;
3991 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3992 goto out;
3993 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3994 break;
3995 }
3996 case KVM_SET_NR_MMU_PAGES:
3997 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3998 break;
3999 case KVM_GET_NR_MMU_PAGES:
4000 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4001 break;
4002 case KVM_CREATE_IRQCHIP: {
4003 mutex_lock(&kvm->lock);
4004
4005 r = -EEXIST;
4006 if (irqchip_in_kernel(kvm))
4007 goto create_irqchip_unlock;
4008
4009 r = -EINVAL;
4010 if (kvm->created_vcpus)
4011 goto create_irqchip_unlock;
4012
4013 r = kvm_pic_init(kvm);
4014 if (r)
4015 goto create_irqchip_unlock;
4016
4017 r = kvm_ioapic_init(kvm);
4018 if (r) {
4019 kvm_pic_destroy(kvm);
4020 goto create_irqchip_unlock;
4021 }
4022
4023 r = kvm_setup_default_irq_routing(kvm);
4024 if (r) {
4025 kvm_ioapic_destroy(kvm);
4026 kvm_pic_destroy(kvm);
4027 goto create_irqchip_unlock;
4028 }
4029 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4030 smp_wmb();
4031 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4032 create_irqchip_unlock:
4033 mutex_unlock(&kvm->lock);
4034 break;
4035 }
4036 case KVM_CREATE_PIT:
4037 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4038 goto create_pit;
4039 case KVM_CREATE_PIT2:
4040 r = -EFAULT;
4041 if (copy_from_user(&u.pit_config, argp,
4042 sizeof(struct kvm_pit_config)))
4043 goto out;
4044 create_pit:
4045 mutex_lock(&kvm->lock);
4046 r = -EEXIST;
4047 if (kvm->arch.vpit)
4048 goto create_pit_unlock;
4049 r = -ENOMEM;
4050 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4051 if (kvm->arch.vpit)
4052 r = 0;
4053 create_pit_unlock:
4054 mutex_unlock(&kvm->lock);
4055 break;
4056 case KVM_GET_IRQCHIP: {
4057 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4058 struct kvm_irqchip *chip;
4059
4060 chip = memdup_user(argp, sizeof(*chip));
4061 if (IS_ERR(chip)) {
4062 r = PTR_ERR(chip);
4063 goto out;
4064 }
4065
4066 r = -ENXIO;
4067 if (!irqchip_kernel(kvm))
4068 goto get_irqchip_out;
4069 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4070 if (r)
4071 goto get_irqchip_out;
4072 r = -EFAULT;
4073 if (copy_to_user(argp, chip, sizeof *chip))
4074 goto get_irqchip_out;
4075 r = 0;
4076 get_irqchip_out:
4077 kfree(chip);
4078 break;
4079 }
4080 case KVM_SET_IRQCHIP: {
4081 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4082 struct kvm_irqchip *chip;
4083
4084 chip = memdup_user(argp, sizeof(*chip));
4085 if (IS_ERR(chip)) {
4086 r = PTR_ERR(chip);
4087 goto out;
4088 }
4089
4090 r = -ENXIO;
4091 if (!irqchip_kernel(kvm))
4092 goto set_irqchip_out;
4093 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4094 if (r)
4095 goto set_irqchip_out;
4096 r = 0;
4097 set_irqchip_out:
4098 kfree(chip);
4099 break;
4100 }
4101 case KVM_GET_PIT: {
4102 r = -EFAULT;
4103 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4104 goto out;
4105 r = -ENXIO;
4106 if (!kvm->arch.vpit)
4107 goto out;
4108 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4109 if (r)
4110 goto out;
4111 r = -EFAULT;
4112 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4113 goto out;
4114 r = 0;
4115 break;
4116 }
4117 case KVM_SET_PIT: {
4118 r = -EFAULT;
4119 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4120 goto out;
4121 r = -ENXIO;
4122 if (!kvm->arch.vpit)
4123 goto out;
4124 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4125 break;
4126 }
4127 case KVM_GET_PIT2: {
4128 r = -ENXIO;
4129 if (!kvm->arch.vpit)
4130 goto out;
4131 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4132 if (r)
4133 goto out;
4134 r = -EFAULT;
4135 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4136 goto out;
4137 r = 0;
4138 break;
4139 }
4140 case KVM_SET_PIT2: {
4141 r = -EFAULT;
4142 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4143 goto out;
4144 r = -ENXIO;
4145 if (!kvm->arch.vpit)
4146 goto out;
4147 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4148 break;
4149 }
4150 case KVM_REINJECT_CONTROL: {
4151 struct kvm_reinject_control control;
4152 r = -EFAULT;
4153 if (copy_from_user(&control, argp, sizeof(control)))
4154 goto out;
4155 r = kvm_vm_ioctl_reinject(kvm, &control);
4156 break;
4157 }
4158 case KVM_SET_BOOT_CPU_ID:
4159 r = 0;
4160 mutex_lock(&kvm->lock);
4161 if (kvm->created_vcpus)
4162 r = -EBUSY;
4163 else
4164 kvm->arch.bsp_vcpu_id = arg;
4165 mutex_unlock(&kvm->lock);
4166 break;
4167 case KVM_XEN_HVM_CONFIG: {
4168 r = -EFAULT;
4169 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4170 sizeof(struct kvm_xen_hvm_config)))
4171 goto out;
4172 r = -EINVAL;
4173 if (kvm->arch.xen_hvm_config.flags)
4174 goto out;
4175 r = 0;
4176 break;
4177 }
4178 case KVM_SET_CLOCK: {
4179 struct kvm_clock_data user_ns;
4180 u64 now_ns;
4181
4182 r = -EFAULT;
4183 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4184 goto out;
4185
4186 r = -EINVAL;
4187 if (user_ns.flags)
4188 goto out;
4189
4190 r = 0;
4191 now_ns = get_kvmclock_ns(kvm);
4192 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4193 kvm_gen_update_masterclock(kvm);
4194 break;
4195 }
4196 case KVM_GET_CLOCK: {
4197 struct kvm_clock_data user_ns;
4198 u64 now_ns;
4199
4200 now_ns = get_kvmclock_ns(kvm);
4201 user_ns.clock = now_ns;
4202 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4203 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4204
4205 r = -EFAULT;
4206 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4207 goto out;
4208 r = 0;
4209 break;
4210 }
4211 case KVM_ENABLE_CAP: {
4212 struct kvm_enable_cap cap;
4213
4214 r = -EFAULT;
4215 if (copy_from_user(&cap, argp, sizeof(cap)))
4216 goto out;
4217 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4218 break;
4219 }
4220 default:
4221 r = -ENOTTY;
4222 }
4223 out:
4224 return r;
4225 }
4226
4227 static void kvm_init_msr_list(void)
4228 {
4229 u32 dummy[2];
4230 unsigned i, j;
4231
4232 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4233 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4234 continue;
4235
4236 /*
4237 * Even MSRs that are valid in the host may not be exposed
4238 * to the guests in some cases.
4239 */
4240 switch (msrs_to_save[i]) {
4241 case MSR_IA32_BNDCFGS:
4242 if (!kvm_x86_ops->mpx_supported())
4243 continue;
4244 break;
4245 case MSR_TSC_AUX:
4246 if (!kvm_x86_ops->rdtscp_supported())
4247 continue;
4248 break;
4249 default:
4250 break;
4251 }
4252
4253 if (j < i)
4254 msrs_to_save[j] = msrs_to_save[i];
4255 j++;
4256 }
4257 num_msrs_to_save = j;
4258
4259 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4260 switch (emulated_msrs[i]) {
4261 case MSR_IA32_SMBASE:
4262 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4263 continue;
4264 break;
4265 default:
4266 break;
4267 }
4268
4269 if (j < i)
4270 emulated_msrs[j] = emulated_msrs[i];
4271 j++;
4272 }
4273 num_emulated_msrs = j;
4274 }
4275
4276 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4277 const void *v)
4278 {
4279 int handled = 0;
4280 int n;
4281
4282 do {
4283 n = min(len, 8);
4284 if (!(lapic_in_kernel(vcpu) &&
4285 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4286 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4287 break;
4288 handled += n;
4289 addr += n;
4290 len -= n;
4291 v += n;
4292 } while (len);
4293
4294 return handled;
4295 }
4296
4297 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4298 {
4299 int handled = 0;
4300 int n;
4301
4302 do {
4303 n = min(len, 8);
4304 if (!(lapic_in_kernel(vcpu) &&
4305 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4306 addr, n, v))
4307 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4308 break;
4309 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4310 handled += n;
4311 addr += n;
4312 len -= n;
4313 v += n;
4314 } while (len);
4315
4316 return handled;
4317 }
4318
4319 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4320 struct kvm_segment *var, int seg)
4321 {
4322 kvm_x86_ops->set_segment(vcpu, var, seg);
4323 }
4324
4325 void kvm_get_segment(struct kvm_vcpu *vcpu,
4326 struct kvm_segment *var, int seg)
4327 {
4328 kvm_x86_ops->get_segment(vcpu, var, seg);
4329 }
4330
4331 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4332 struct x86_exception *exception)
4333 {
4334 gpa_t t_gpa;
4335
4336 BUG_ON(!mmu_is_nested(vcpu));
4337
4338 /* NPT walks are always user-walks */
4339 access |= PFERR_USER_MASK;
4340 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4341
4342 return t_gpa;
4343 }
4344
4345 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4346 struct x86_exception *exception)
4347 {
4348 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4349 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4350 }
4351
4352 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4353 struct x86_exception *exception)
4354 {
4355 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4356 access |= PFERR_FETCH_MASK;
4357 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4358 }
4359
4360 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4361 struct x86_exception *exception)
4362 {
4363 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4364 access |= PFERR_WRITE_MASK;
4365 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4366 }
4367
4368 /* uses this to access any guest's mapped memory without checking CPL */
4369 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4370 struct x86_exception *exception)
4371 {
4372 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4373 }
4374
4375 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4376 struct kvm_vcpu *vcpu, u32 access,
4377 struct x86_exception *exception)
4378 {
4379 void *data = val;
4380 int r = X86EMUL_CONTINUE;
4381
4382 while (bytes) {
4383 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4384 exception);
4385 unsigned offset = addr & (PAGE_SIZE-1);
4386 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4387 int ret;
4388
4389 if (gpa == UNMAPPED_GVA)
4390 return X86EMUL_PROPAGATE_FAULT;
4391 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4392 offset, toread);
4393 if (ret < 0) {
4394 r = X86EMUL_IO_NEEDED;
4395 goto out;
4396 }
4397
4398 bytes -= toread;
4399 data += toread;
4400 addr += toread;
4401 }
4402 out:
4403 return r;
4404 }
4405
4406 /* used for instruction fetching */
4407 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4408 gva_t addr, void *val, unsigned int bytes,
4409 struct x86_exception *exception)
4410 {
4411 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4412 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4413 unsigned offset;
4414 int ret;
4415
4416 /* Inline kvm_read_guest_virt_helper for speed. */
4417 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4418 exception);
4419 if (unlikely(gpa == UNMAPPED_GVA))
4420 return X86EMUL_PROPAGATE_FAULT;
4421
4422 offset = addr & (PAGE_SIZE-1);
4423 if (WARN_ON(offset + bytes > PAGE_SIZE))
4424 bytes = (unsigned)PAGE_SIZE - offset;
4425 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4426 offset, bytes);
4427 if (unlikely(ret < 0))
4428 return X86EMUL_IO_NEEDED;
4429
4430 return X86EMUL_CONTINUE;
4431 }
4432
4433 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4434 gva_t addr, void *val, unsigned int bytes,
4435 struct x86_exception *exception)
4436 {
4437 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4438 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4439
4440 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4441 exception);
4442 }
4443 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4444
4445 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4446 gva_t addr, void *val, unsigned int bytes,
4447 struct x86_exception *exception)
4448 {
4449 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4450 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4451 }
4452
4453 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4454 unsigned long addr, void *val, unsigned int bytes)
4455 {
4456 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4457 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4458
4459 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4460 }
4461
4462 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4463 gva_t addr, void *val,
4464 unsigned int bytes,
4465 struct x86_exception *exception)
4466 {
4467 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4468 void *data = val;
4469 int r = X86EMUL_CONTINUE;
4470
4471 while (bytes) {
4472 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4473 PFERR_WRITE_MASK,
4474 exception);
4475 unsigned offset = addr & (PAGE_SIZE-1);
4476 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4477 int ret;
4478
4479 if (gpa == UNMAPPED_GVA)
4480 return X86EMUL_PROPAGATE_FAULT;
4481 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4482 if (ret < 0) {
4483 r = X86EMUL_IO_NEEDED;
4484 goto out;
4485 }
4486
4487 bytes -= towrite;
4488 data += towrite;
4489 addr += towrite;
4490 }
4491 out:
4492 return r;
4493 }
4494 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4495
4496 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4497 gpa_t gpa, bool write)
4498 {
4499 /* For APIC access vmexit */
4500 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4501 return 1;
4502
4503 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4504 trace_vcpu_match_mmio(gva, gpa, write, true);
4505 return 1;
4506 }
4507
4508 return 0;
4509 }
4510
4511 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4512 gpa_t *gpa, struct x86_exception *exception,
4513 bool write)
4514 {
4515 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4516 | (write ? PFERR_WRITE_MASK : 0);
4517
4518 /*
4519 * currently PKRU is only applied to ept enabled guest so
4520 * there is no pkey in EPT page table for L1 guest or EPT
4521 * shadow page table for L2 guest.
4522 */
4523 if (vcpu_match_mmio_gva(vcpu, gva)
4524 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4525 vcpu->arch.access, 0, access)) {
4526 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4527 (gva & (PAGE_SIZE - 1));
4528 trace_vcpu_match_mmio(gva, *gpa, write, false);
4529 return 1;
4530 }
4531
4532 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4533
4534 if (*gpa == UNMAPPED_GVA)
4535 return -1;
4536
4537 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4538 }
4539
4540 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4541 const void *val, int bytes)
4542 {
4543 int ret;
4544
4545 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4546 if (ret < 0)
4547 return 0;
4548 kvm_page_track_write(vcpu, gpa, val, bytes);
4549 return 1;
4550 }
4551
4552 struct read_write_emulator_ops {
4553 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4554 int bytes);
4555 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4556 void *val, int bytes);
4557 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4558 int bytes, void *val);
4559 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4560 void *val, int bytes);
4561 bool write;
4562 };
4563
4564 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4565 {
4566 if (vcpu->mmio_read_completed) {
4567 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4568 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4569 vcpu->mmio_read_completed = 0;
4570 return 1;
4571 }
4572
4573 return 0;
4574 }
4575
4576 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4577 void *val, int bytes)
4578 {
4579 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4580 }
4581
4582 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4583 void *val, int bytes)
4584 {
4585 return emulator_write_phys(vcpu, gpa, val, bytes);
4586 }
4587
4588 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4589 {
4590 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4591 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4592 }
4593
4594 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4595 void *val, int bytes)
4596 {
4597 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4598 return X86EMUL_IO_NEEDED;
4599 }
4600
4601 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4602 void *val, int bytes)
4603 {
4604 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4605
4606 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4607 return X86EMUL_CONTINUE;
4608 }
4609
4610 static const struct read_write_emulator_ops read_emultor = {
4611 .read_write_prepare = read_prepare,
4612 .read_write_emulate = read_emulate,
4613 .read_write_mmio = vcpu_mmio_read,
4614 .read_write_exit_mmio = read_exit_mmio,
4615 };
4616
4617 static const struct read_write_emulator_ops write_emultor = {
4618 .read_write_emulate = write_emulate,
4619 .read_write_mmio = write_mmio,
4620 .read_write_exit_mmio = write_exit_mmio,
4621 .write = true,
4622 };
4623
4624 static int emulator_read_write_onepage(unsigned long addr, void *val,
4625 unsigned int bytes,
4626 struct x86_exception *exception,
4627 struct kvm_vcpu *vcpu,
4628 const struct read_write_emulator_ops *ops)
4629 {
4630 gpa_t gpa;
4631 int handled, ret;
4632 bool write = ops->write;
4633 struct kvm_mmio_fragment *frag;
4634 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4635
4636 /*
4637 * If the exit was due to a NPF we may already have a GPA.
4638 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4639 * Note, this cannot be used on string operations since string
4640 * operation using rep will only have the initial GPA from the NPF
4641 * occurred.
4642 */
4643 if (vcpu->arch.gpa_available &&
4644 emulator_can_use_gpa(ctxt) &&
4645 vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4646 (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4647 gpa = exception->address;
4648 goto mmio;
4649 }
4650
4651 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4652
4653 if (ret < 0)
4654 return X86EMUL_PROPAGATE_FAULT;
4655
4656 /* For APIC access vmexit */
4657 if (ret)
4658 goto mmio;
4659
4660 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4661 return X86EMUL_CONTINUE;
4662
4663 mmio:
4664 /*
4665 * Is this MMIO handled locally?
4666 */
4667 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4668 if (handled == bytes)
4669 return X86EMUL_CONTINUE;
4670
4671 gpa += handled;
4672 bytes -= handled;
4673 val += handled;
4674
4675 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4676 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4677 frag->gpa = gpa;
4678 frag->data = val;
4679 frag->len = bytes;
4680 return X86EMUL_CONTINUE;
4681 }
4682
4683 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4684 unsigned long addr,
4685 void *val, unsigned int bytes,
4686 struct x86_exception *exception,
4687 const struct read_write_emulator_ops *ops)
4688 {
4689 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4690 gpa_t gpa;
4691 int rc;
4692
4693 if (ops->read_write_prepare &&
4694 ops->read_write_prepare(vcpu, val, bytes))
4695 return X86EMUL_CONTINUE;
4696
4697 vcpu->mmio_nr_fragments = 0;
4698
4699 /* Crossing a page boundary? */
4700 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4701 int now;
4702
4703 now = -addr & ~PAGE_MASK;
4704 rc = emulator_read_write_onepage(addr, val, now, exception,
4705 vcpu, ops);
4706
4707 if (rc != X86EMUL_CONTINUE)
4708 return rc;
4709 addr += now;
4710 if (ctxt->mode != X86EMUL_MODE_PROT64)
4711 addr = (u32)addr;
4712 val += now;
4713 bytes -= now;
4714 }
4715
4716 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4717 vcpu, ops);
4718 if (rc != X86EMUL_CONTINUE)
4719 return rc;
4720
4721 if (!vcpu->mmio_nr_fragments)
4722 return rc;
4723
4724 gpa = vcpu->mmio_fragments[0].gpa;
4725
4726 vcpu->mmio_needed = 1;
4727 vcpu->mmio_cur_fragment = 0;
4728
4729 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4730 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4731 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4732 vcpu->run->mmio.phys_addr = gpa;
4733
4734 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4735 }
4736
4737 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4738 unsigned long addr,
4739 void *val,
4740 unsigned int bytes,
4741 struct x86_exception *exception)
4742 {
4743 return emulator_read_write(ctxt, addr, val, bytes,
4744 exception, &read_emultor);
4745 }
4746
4747 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4748 unsigned long addr,
4749 const void *val,
4750 unsigned int bytes,
4751 struct x86_exception *exception)
4752 {
4753 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4754 exception, &write_emultor);
4755 }
4756
4757 #define CMPXCHG_TYPE(t, ptr, old, new) \
4758 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4759
4760 #ifdef CONFIG_X86_64
4761 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4762 #else
4763 # define CMPXCHG64(ptr, old, new) \
4764 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4765 #endif
4766
4767 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4768 unsigned long addr,
4769 const void *old,
4770 const void *new,
4771 unsigned int bytes,
4772 struct x86_exception *exception)
4773 {
4774 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4775 gpa_t gpa;
4776 struct page *page;
4777 char *kaddr;
4778 bool exchanged;
4779
4780 /* guests cmpxchg8b have to be emulated atomically */
4781 if (bytes > 8 || (bytes & (bytes - 1)))
4782 goto emul_write;
4783
4784 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4785
4786 if (gpa == UNMAPPED_GVA ||
4787 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4788 goto emul_write;
4789
4790 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4791 goto emul_write;
4792
4793 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4794 if (is_error_page(page))
4795 goto emul_write;
4796
4797 kaddr = kmap_atomic(page);
4798 kaddr += offset_in_page(gpa);
4799 switch (bytes) {
4800 case 1:
4801 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4802 break;
4803 case 2:
4804 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4805 break;
4806 case 4:
4807 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4808 break;
4809 case 8:
4810 exchanged = CMPXCHG64(kaddr, old, new);
4811 break;
4812 default:
4813 BUG();
4814 }
4815 kunmap_atomic(kaddr);
4816 kvm_release_page_dirty(page);
4817
4818 if (!exchanged)
4819 return X86EMUL_CMPXCHG_FAILED;
4820
4821 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4822 kvm_page_track_write(vcpu, gpa, new, bytes);
4823
4824 return X86EMUL_CONTINUE;
4825
4826 emul_write:
4827 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4828
4829 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4830 }
4831
4832 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4833 {
4834 int r = 0, i;
4835
4836 for (i = 0; i < vcpu->arch.pio.count; i++) {
4837 if (vcpu->arch.pio.in)
4838 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4839 vcpu->arch.pio.size, pd);
4840 else
4841 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4842 vcpu->arch.pio.port, vcpu->arch.pio.size,
4843 pd);
4844 if (r)
4845 break;
4846 pd += vcpu->arch.pio.size;
4847 }
4848 return r;
4849 }
4850
4851 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4852 unsigned short port, void *val,
4853 unsigned int count, bool in)
4854 {
4855 vcpu->arch.pio.port = port;
4856 vcpu->arch.pio.in = in;
4857 vcpu->arch.pio.count = count;
4858 vcpu->arch.pio.size = size;
4859
4860 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4861 vcpu->arch.pio.count = 0;
4862 return 1;
4863 }
4864
4865 vcpu->run->exit_reason = KVM_EXIT_IO;
4866 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4867 vcpu->run->io.size = size;
4868 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4869 vcpu->run->io.count = count;
4870 vcpu->run->io.port = port;
4871
4872 return 0;
4873 }
4874
4875 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4876 int size, unsigned short port, void *val,
4877 unsigned int count)
4878 {
4879 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4880 int ret;
4881
4882 if (vcpu->arch.pio.count)
4883 goto data_avail;
4884
4885 memset(vcpu->arch.pio_data, 0, size * count);
4886
4887 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4888 if (ret) {
4889 data_avail:
4890 memcpy(val, vcpu->arch.pio_data, size * count);
4891 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4892 vcpu->arch.pio.count = 0;
4893 return 1;
4894 }
4895
4896 return 0;
4897 }
4898
4899 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4900 int size, unsigned short port,
4901 const void *val, unsigned int count)
4902 {
4903 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4904
4905 memcpy(vcpu->arch.pio_data, val, size * count);
4906 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4907 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4908 }
4909
4910 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4911 {
4912 return kvm_x86_ops->get_segment_base(vcpu, seg);
4913 }
4914
4915 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4916 {
4917 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4918 }
4919
4920 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4921 {
4922 if (!need_emulate_wbinvd(vcpu))
4923 return X86EMUL_CONTINUE;
4924
4925 if (kvm_x86_ops->has_wbinvd_exit()) {
4926 int cpu = get_cpu();
4927
4928 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4929 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4930 wbinvd_ipi, NULL, 1);
4931 put_cpu();
4932 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4933 } else
4934 wbinvd();
4935 return X86EMUL_CONTINUE;
4936 }
4937
4938 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4939 {
4940 kvm_emulate_wbinvd_noskip(vcpu);
4941 return kvm_skip_emulated_instruction(vcpu);
4942 }
4943 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4944
4945
4946
4947 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4948 {
4949 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4950 }
4951
4952 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4953 unsigned long *dest)
4954 {
4955 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4956 }
4957
4958 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4959 unsigned long value)
4960 {
4961
4962 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4963 }
4964
4965 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4966 {
4967 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4968 }
4969
4970 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4971 {
4972 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4973 unsigned long value;
4974
4975 switch (cr) {
4976 case 0:
4977 value = kvm_read_cr0(vcpu);
4978 break;
4979 case 2:
4980 value = vcpu->arch.cr2;
4981 break;
4982 case 3:
4983 value = kvm_read_cr3(vcpu);
4984 break;
4985 case 4:
4986 value = kvm_read_cr4(vcpu);
4987 break;
4988 case 8:
4989 value = kvm_get_cr8(vcpu);
4990 break;
4991 default:
4992 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4993 return 0;
4994 }
4995
4996 return value;
4997 }
4998
4999 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5000 {
5001 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5002 int res = 0;
5003
5004 switch (cr) {
5005 case 0:
5006 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5007 break;
5008 case 2:
5009 vcpu->arch.cr2 = val;
5010 break;
5011 case 3:
5012 res = kvm_set_cr3(vcpu, val);
5013 break;
5014 case 4:
5015 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5016 break;
5017 case 8:
5018 res = kvm_set_cr8(vcpu, val);
5019 break;
5020 default:
5021 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5022 res = -1;
5023 }
5024
5025 return res;
5026 }
5027
5028 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5029 {
5030 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5031 }
5032
5033 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5034 {
5035 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5036 }
5037
5038 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5039 {
5040 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5041 }
5042
5043 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5044 {
5045 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5046 }
5047
5048 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5049 {
5050 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5051 }
5052
5053 static unsigned long emulator_get_cached_segment_base(
5054 struct x86_emulate_ctxt *ctxt, int seg)
5055 {
5056 return get_segment_base(emul_to_vcpu(ctxt), seg);
5057 }
5058
5059 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5060 struct desc_struct *desc, u32 *base3,
5061 int seg)
5062 {
5063 struct kvm_segment var;
5064
5065 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5066 *selector = var.selector;
5067
5068 if (var.unusable) {
5069 memset(desc, 0, sizeof(*desc));
5070 if (base3)
5071 *base3 = 0;
5072 return false;
5073 }
5074
5075 if (var.g)
5076 var.limit >>= 12;
5077 set_desc_limit(desc, var.limit);
5078 set_desc_base(desc, (unsigned long)var.base);
5079 #ifdef CONFIG_X86_64
5080 if (base3)
5081 *base3 = var.base >> 32;
5082 #endif
5083 desc->type = var.type;
5084 desc->s = var.s;
5085 desc->dpl = var.dpl;
5086 desc->p = var.present;
5087 desc->avl = var.avl;
5088 desc->l = var.l;
5089 desc->d = var.db;
5090 desc->g = var.g;
5091
5092 return true;
5093 }
5094
5095 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5096 struct desc_struct *desc, u32 base3,
5097 int seg)
5098 {
5099 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5100 struct kvm_segment var;
5101
5102 var.selector = selector;
5103 var.base = get_desc_base(desc);
5104 #ifdef CONFIG_X86_64
5105 var.base |= ((u64)base3) << 32;
5106 #endif
5107 var.limit = get_desc_limit(desc);
5108 if (desc->g)
5109 var.limit = (var.limit << 12) | 0xfff;
5110 var.type = desc->type;
5111 var.dpl = desc->dpl;
5112 var.db = desc->d;
5113 var.s = desc->s;
5114 var.l = desc->l;
5115 var.g = desc->g;
5116 var.avl = desc->avl;
5117 var.present = desc->p;
5118 var.unusable = !var.present;
5119 var.padding = 0;
5120
5121 kvm_set_segment(vcpu, &var, seg);
5122 return;
5123 }
5124
5125 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5126 u32 msr_index, u64 *pdata)
5127 {
5128 struct msr_data msr;
5129 int r;
5130
5131 msr.index = msr_index;
5132 msr.host_initiated = false;
5133 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5134 if (r)
5135 return r;
5136
5137 *pdata = msr.data;
5138 return 0;
5139 }
5140
5141 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5142 u32 msr_index, u64 data)
5143 {
5144 struct msr_data msr;
5145
5146 msr.data = data;
5147 msr.index = msr_index;
5148 msr.host_initiated = false;
5149 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5150 }
5151
5152 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5153 {
5154 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5155
5156 return vcpu->arch.smbase;
5157 }
5158
5159 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5160 {
5161 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5162
5163 vcpu->arch.smbase = smbase;
5164 }
5165
5166 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5167 u32 pmc)
5168 {
5169 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5170 }
5171
5172 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5173 u32 pmc, u64 *pdata)
5174 {
5175 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5176 }
5177
5178 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5179 {
5180 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5181 }
5182
5183 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5184 {
5185 preempt_disable();
5186 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5187 }
5188
5189 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5190 {
5191 preempt_enable();
5192 }
5193
5194 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5195 struct x86_instruction_info *info,
5196 enum x86_intercept_stage stage)
5197 {
5198 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5199 }
5200
5201 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5202 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5203 {
5204 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5205 }
5206
5207 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5208 {
5209 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5210 }
5211
5212 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5213 {
5214 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5215 }
5216
5217 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5218 {
5219 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5220 }
5221
5222 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5223 {
5224 return emul_to_vcpu(ctxt)->arch.hflags;
5225 }
5226
5227 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5228 {
5229 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5230 }
5231
5232 static const struct x86_emulate_ops emulate_ops = {
5233 .read_gpr = emulator_read_gpr,
5234 .write_gpr = emulator_write_gpr,
5235 .read_std = kvm_read_guest_virt_system,
5236 .write_std = kvm_write_guest_virt_system,
5237 .read_phys = kvm_read_guest_phys_system,
5238 .fetch = kvm_fetch_guest_virt,
5239 .read_emulated = emulator_read_emulated,
5240 .write_emulated = emulator_write_emulated,
5241 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5242 .invlpg = emulator_invlpg,
5243 .pio_in_emulated = emulator_pio_in_emulated,
5244 .pio_out_emulated = emulator_pio_out_emulated,
5245 .get_segment = emulator_get_segment,
5246 .set_segment = emulator_set_segment,
5247 .get_cached_segment_base = emulator_get_cached_segment_base,
5248 .get_gdt = emulator_get_gdt,
5249 .get_idt = emulator_get_idt,
5250 .set_gdt = emulator_set_gdt,
5251 .set_idt = emulator_set_idt,
5252 .get_cr = emulator_get_cr,
5253 .set_cr = emulator_set_cr,
5254 .cpl = emulator_get_cpl,
5255 .get_dr = emulator_get_dr,
5256 .set_dr = emulator_set_dr,
5257 .get_smbase = emulator_get_smbase,
5258 .set_smbase = emulator_set_smbase,
5259 .set_msr = emulator_set_msr,
5260 .get_msr = emulator_get_msr,
5261 .check_pmc = emulator_check_pmc,
5262 .read_pmc = emulator_read_pmc,
5263 .halt = emulator_halt,
5264 .wbinvd = emulator_wbinvd,
5265 .fix_hypercall = emulator_fix_hypercall,
5266 .get_fpu = emulator_get_fpu,
5267 .put_fpu = emulator_put_fpu,
5268 .intercept = emulator_intercept,
5269 .get_cpuid = emulator_get_cpuid,
5270 .set_nmi_mask = emulator_set_nmi_mask,
5271 .get_hflags = emulator_get_hflags,
5272 .set_hflags = emulator_set_hflags,
5273 };
5274
5275 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5276 {
5277 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5278 /*
5279 * an sti; sti; sequence only disable interrupts for the first
5280 * instruction. So, if the last instruction, be it emulated or
5281 * not, left the system with the INT_STI flag enabled, it
5282 * means that the last instruction is an sti. We should not
5283 * leave the flag on in this case. The same goes for mov ss
5284 */
5285 if (int_shadow & mask)
5286 mask = 0;
5287 if (unlikely(int_shadow || mask)) {
5288 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5289 if (!mask)
5290 kvm_make_request(KVM_REQ_EVENT, vcpu);
5291 }
5292 }
5293
5294 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5295 {
5296 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5297 if (ctxt->exception.vector == PF_VECTOR)
5298 return kvm_propagate_fault(vcpu, &ctxt->exception);
5299
5300 if (ctxt->exception.error_code_valid)
5301 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5302 ctxt->exception.error_code);
5303 else
5304 kvm_queue_exception(vcpu, ctxt->exception.vector);
5305 return false;
5306 }
5307
5308 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5309 {
5310 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5311 int cs_db, cs_l;
5312
5313 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5314
5315 ctxt->eflags = kvm_get_rflags(vcpu);
5316 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5317
5318 ctxt->eip = kvm_rip_read(vcpu);
5319 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5320 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5321 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5322 cs_db ? X86EMUL_MODE_PROT32 :
5323 X86EMUL_MODE_PROT16;
5324 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5325 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5326 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5327
5328 init_decode_cache(ctxt);
5329 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5330 }
5331
5332 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5333 {
5334 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5335 int ret;
5336
5337 init_emulate_ctxt(vcpu);
5338
5339 ctxt->op_bytes = 2;
5340 ctxt->ad_bytes = 2;
5341 ctxt->_eip = ctxt->eip + inc_eip;
5342 ret = emulate_int_real(ctxt, irq);
5343
5344 if (ret != X86EMUL_CONTINUE)
5345 return EMULATE_FAIL;
5346
5347 ctxt->eip = ctxt->_eip;
5348 kvm_rip_write(vcpu, ctxt->eip);
5349 kvm_set_rflags(vcpu, ctxt->eflags);
5350
5351 if (irq == NMI_VECTOR)
5352 vcpu->arch.nmi_pending = 0;
5353 else
5354 vcpu->arch.interrupt.pending = false;
5355
5356 return EMULATE_DONE;
5357 }
5358 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5359
5360 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5361 {
5362 int r = EMULATE_DONE;
5363
5364 ++vcpu->stat.insn_emulation_fail;
5365 trace_kvm_emulate_insn_failed(vcpu);
5366 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5367 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5368 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5369 vcpu->run->internal.ndata = 0;
5370 r = EMULATE_FAIL;
5371 }
5372 kvm_queue_exception(vcpu, UD_VECTOR);
5373
5374 return r;
5375 }
5376
5377 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5378 bool write_fault_to_shadow_pgtable,
5379 int emulation_type)
5380 {
5381 gpa_t gpa = cr2;
5382 kvm_pfn_t pfn;
5383
5384 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5385 return false;
5386
5387 if (!vcpu->arch.mmu.direct_map) {
5388 /*
5389 * Write permission should be allowed since only
5390 * write access need to be emulated.
5391 */
5392 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5393
5394 /*
5395 * If the mapping is invalid in guest, let cpu retry
5396 * it to generate fault.
5397 */
5398 if (gpa == UNMAPPED_GVA)
5399 return true;
5400 }
5401
5402 /*
5403 * Do not retry the unhandleable instruction if it faults on the
5404 * readonly host memory, otherwise it will goto a infinite loop:
5405 * retry instruction -> write #PF -> emulation fail -> retry
5406 * instruction -> ...
5407 */
5408 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5409
5410 /*
5411 * If the instruction failed on the error pfn, it can not be fixed,
5412 * report the error to userspace.
5413 */
5414 if (is_error_noslot_pfn(pfn))
5415 return false;
5416
5417 kvm_release_pfn_clean(pfn);
5418
5419 /* The instructions are well-emulated on direct mmu. */
5420 if (vcpu->arch.mmu.direct_map) {
5421 unsigned int indirect_shadow_pages;
5422
5423 spin_lock(&vcpu->kvm->mmu_lock);
5424 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5425 spin_unlock(&vcpu->kvm->mmu_lock);
5426
5427 if (indirect_shadow_pages)
5428 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5429
5430 return true;
5431 }
5432
5433 /*
5434 * if emulation was due to access to shadowed page table
5435 * and it failed try to unshadow page and re-enter the
5436 * guest to let CPU execute the instruction.
5437 */
5438 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5439
5440 /*
5441 * If the access faults on its page table, it can not
5442 * be fixed by unprotecting shadow page and it should
5443 * be reported to userspace.
5444 */
5445 return !write_fault_to_shadow_pgtable;
5446 }
5447
5448 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5449 unsigned long cr2, int emulation_type)
5450 {
5451 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5452 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5453
5454 last_retry_eip = vcpu->arch.last_retry_eip;
5455 last_retry_addr = vcpu->arch.last_retry_addr;
5456
5457 /*
5458 * If the emulation is caused by #PF and it is non-page_table
5459 * writing instruction, it means the VM-EXIT is caused by shadow
5460 * page protected, we can zap the shadow page and retry this
5461 * instruction directly.
5462 *
5463 * Note: if the guest uses a non-page-table modifying instruction
5464 * on the PDE that points to the instruction, then we will unmap
5465 * the instruction and go to an infinite loop. So, we cache the
5466 * last retried eip and the last fault address, if we meet the eip
5467 * and the address again, we can break out of the potential infinite
5468 * loop.
5469 */
5470 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5471
5472 if (!(emulation_type & EMULTYPE_RETRY))
5473 return false;
5474
5475 if (x86_page_table_writing_insn(ctxt))
5476 return false;
5477
5478 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5479 return false;
5480
5481 vcpu->arch.last_retry_eip = ctxt->eip;
5482 vcpu->arch.last_retry_addr = cr2;
5483
5484 if (!vcpu->arch.mmu.direct_map)
5485 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5486
5487 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5488
5489 return true;
5490 }
5491
5492 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5493 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5494
5495 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5496 {
5497 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5498 /* This is a good place to trace that we are exiting SMM. */
5499 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5500
5501 /* Process a latched INIT or SMI, if any. */
5502 kvm_make_request(KVM_REQ_EVENT, vcpu);
5503 }
5504
5505 kvm_mmu_reset_context(vcpu);
5506 }
5507
5508 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5509 {
5510 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5511
5512 vcpu->arch.hflags = emul_flags;
5513
5514 if (changed & HF_SMM_MASK)
5515 kvm_smm_changed(vcpu);
5516 }
5517
5518 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5519 unsigned long *db)
5520 {
5521 u32 dr6 = 0;
5522 int i;
5523 u32 enable, rwlen;
5524
5525 enable = dr7;
5526 rwlen = dr7 >> 16;
5527 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5528 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5529 dr6 |= (1 << i);
5530 return dr6;
5531 }
5532
5533 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5534 {
5535 struct kvm_run *kvm_run = vcpu->run;
5536
5537 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5538 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5539 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5540 kvm_run->debug.arch.exception = DB_VECTOR;
5541 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5542 *r = EMULATE_USER_EXIT;
5543 } else {
5544 /*
5545 * "Certain debug exceptions may clear bit 0-3. The
5546 * remaining contents of the DR6 register are never
5547 * cleared by the processor".
5548 */
5549 vcpu->arch.dr6 &= ~15;
5550 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5551 kvm_queue_exception(vcpu, DB_VECTOR);
5552 }
5553 }
5554
5555 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5556 {
5557 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5558 int r = EMULATE_DONE;
5559
5560 kvm_x86_ops->skip_emulated_instruction(vcpu);
5561
5562 /*
5563 * rflags is the old, "raw" value of the flags. The new value has
5564 * not been saved yet.
5565 *
5566 * This is correct even for TF set by the guest, because "the
5567 * processor will not generate this exception after the instruction
5568 * that sets the TF flag".
5569 */
5570 if (unlikely(rflags & X86_EFLAGS_TF))
5571 kvm_vcpu_do_singlestep(vcpu, &r);
5572 return r == EMULATE_DONE;
5573 }
5574 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5575
5576 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5577 {
5578 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5579 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5580 struct kvm_run *kvm_run = vcpu->run;
5581 unsigned long eip = kvm_get_linear_rip(vcpu);
5582 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5583 vcpu->arch.guest_debug_dr7,
5584 vcpu->arch.eff_db);
5585
5586 if (dr6 != 0) {
5587 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5588 kvm_run->debug.arch.pc = eip;
5589 kvm_run->debug.arch.exception = DB_VECTOR;
5590 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5591 *r = EMULATE_USER_EXIT;
5592 return true;
5593 }
5594 }
5595
5596 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5597 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5598 unsigned long eip = kvm_get_linear_rip(vcpu);
5599 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5600 vcpu->arch.dr7,
5601 vcpu->arch.db);
5602
5603 if (dr6 != 0) {
5604 vcpu->arch.dr6 &= ~15;
5605 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5606 kvm_queue_exception(vcpu, DB_VECTOR);
5607 *r = EMULATE_DONE;
5608 return true;
5609 }
5610 }
5611
5612 return false;
5613 }
5614
5615 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5616 unsigned long cr2,
5617 int emulation_type,
5618 void *insn,
5619 int insn_len)
5620 {
5621 int r;
5622 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5623 bool writeback = true;
5624 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5625
5626 /*
5627 * Clear write_fault_to_shadow_pgtable here to ensure it is
5628 * never reused.
5629 */
5630 vcpu->arch.write_fault_to_shadow_pgtable = false;
5631 kvm_clear_exception_queue(vcpu);
5632
5633 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5634 init_emulate_ctxt(vcpu);
5635
5636 /*
5637 * We will reenter on the same instruction since
5638 * we do not set complete_userspace_io. This does not
5639 * handle watchpoints yet, those would be handled in
5640 * the emulate_ops.
5641 */
5642 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5643 return r;
5644
5645 ctxt->interruptibility = 0;
5646 ctxt->have_exception = false;
5647 ctxt->exception.vector = -1;
5648 ctxt->perm_ok = false;
5649
5650 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5651
5652 r = x86_decode_insn(ctxt, insn, insn_len);
5653
5654 trace_kvm_emulate_insn_start(vcpu);
5655 ++vcpu->stat.insn_emulation;
5656 if (r != EMULATION_OK) {
5657 if (emulation_type & EMULTYPE_TRAP_UD)
5658 return EMULATE_FAIL;
5659 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5660 emulation_type))
5661 return EMULATE_DONE;
5662 if (emulation_type & EMULTYPE_SKIP)
5663 return EMULATE_FAIL;
5664 return handle_emulation_failure(vcpu);
5665 }
5666 }
5667
5668 if (emulation_type & EMULTYPE_SKIP) {
5669 kvm_rip_write(vcpu, ctxt->_eip);
5670 if (ctxt->eflags & X86_EFLAGS_RF)
5671 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5672 return EMULATE_DONE;
5673 }
5674
5675 if (retry_instruction(ctxt, cr2, emulation_type))
5676 return EMULATE_DONE;
5677
5678 /* this is needed for vmware backdoor interface to work since it
5679 changes registers values during IO operation */
5680 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5681 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5682 emulator_invalidate_register_cache(ctxt);
5683 }
5684
5685 restart:
5686 /* Save the faulting GPA (cr2) in the address field */
5687 ctxt->exception.address = cr2;
5688
5689 r = x86_emulate_insn(ctxt);
5690
5691 if (r == EMULATION_INTERCEPTED)
5692 return EMULATE_DONE;
5693
5694 if (r == EMULATION_FAILED) {
5695 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5696 emulation_type))
5697 return EMULATE_DONE;
5698
5699 return handle_emulation_failure(vcpu);
5700 }
5701
5702 if (ctxt->have_exception) {
5703 r = EMULATE_DONE;
5704 if (inject_emulated_exception(vcpu))
5705 return r;
5706 } else if (vcpu->arch.pio.count) {
5707 if (!vcpu->arch.pio.in) {
5708 /* FIXME: return into emulator if single-stepping. */
5709 vcpu->arch.pio.count = 0;
5710 } else {
5711 writeback = false;
5712 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5713 }
5714 r = EMULATE_USER_EXIT;
5715 } else if (vcpu->mmio_needed) {
5716 if (!vcpu->mmio_is_write)
5717 writeback = false;
5718 r = EMULATE_USER_EXIT;
5719 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5720 } else if (r == EMULATION_RESTART)
5721 goto restart;
5722 else
5723 r = EMULATE_DONE;
5724
5725 if (writeback) {
5726 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5727 toggle_interruptibility(vcpu, ctxt->interruptibility);
5728 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5729 kvm_rip_write(vcpu, ctxt->eip);
5730 if (r == EMULATE_DONE &&
5731 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5732 kvm_vcpu_do_singlestep(vcpu, &r);
5733 if (!ctxt->have_exception ||
5734 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5735 __kvm_set_rflags(vcpu, ctxt->eflags);
5736
5737 /*
5738 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5739 * do nothing, and it will be requested again as soon as
5740 * the shadow expires. But we still need to check here,
5741 * because POPF has no interrupt shadow.
5742 */
5743 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5744 kvm_make_request(KVM_REQ_EVENT, vcpu);
5745 } else
5746 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5747
5748 return r;
5749 }
5750 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5751
5752 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5753 {
5754 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5755 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5756 size, port, &val, 1);
5757 /* do not return to emulator after return from userspace */
5758 vcpu->arch.pio.count = 0;
5759 return ret;
5760 }
5761 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5762
5763 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5764 {
5765 unsigned long val;
5766
5767 /* We should only ever be called with arch.pio.count equal to 1 */
5768 BUG_ON(vcpu->arch.pio.count != 1);
5769
5770 /* For size less than 4 we merge, else we zero extend */
5771 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5772 : 0;
5773
5774 /*
5775 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5776 * the copy and tracing
5777 */
5778 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5779 vcpu->arch.pio.port, &val, 1);
5780 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5781
5782 return 1;
5783 }
5784
5785 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5786 {
5787 unsigned long val;
5788 int ret;
5789
5790 /* For size less than 4 we merge, else we zero extend */
5791 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5792
5793 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5794 &val, 1);
5795 if (ret) {
5796 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5797 return ret;
5798 }
5799
5800 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5801
5802 return 0;
5803 }
5804 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5805
5806 static int kvmclock_cpu_down_prep(unsigned int cpu)
5807 {
5808 __this_cpu_write(cpu_tsc_khz, 0);
5809 return 0;
5810 }
5811
5812 static void tsc_khz_changed(void *data)
5813 {
5814 struct cpufreq_freqs *freq = data;
5815 unsigned long khz = 0;
5816
5817 if (data)
5818 khz = freq->new;
5819 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5820 khz = cpufreq_quick_get(raw_smp_processor_id());
5821 if (!khz)
5822 khz = tsc_khz;
5823 __this_cpu_write(cpu_tsc_khz, khz);
5824 }
5825
5826 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5827 void *data)
5828 {
5829 struct cpufreq_freqs *freq = data;
5830 struct kvm *kvm;
5831 struct kvm_vcpu *vcpu;
5832 int i, send_ipi = 0;
5833
5834 /*
5835 * We allow guests to temporarily run on slowing clocks,
5836 * provided we notify them after, or to run on accelerating
5837 * clocks, provided we notify them before. Thus time never
5838 * goes backwards.
5839 *
5840 * However, we have a problem. We can't atomically update
5841 * the frequency of a given CPU from this function; it is
5842 * merely a notifier, which can be called from any CPU.
5843 * Changing the TSC frequency at arbitrary points in time
5844 * requires a recomputation of local variables related to
5845 * the TSC for each VCPU. We must flag these local variables
5846 * to be updated and be sure the update takes place with the
5847 * new frequency before any guests proceed.
5848 *
5849 * Unfortunately, the combination of hotplug CPU and frequency
5850 * change creates an intractable locking scenario; the order
5851 * of when these callouts happen is undefined with respect to
5852 * CPU hotplug, and they can race with each other. As such,
5853 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5854 * undefined; you can actually have a CPU frequency change take
5855 * place in between the computation of X and the setting of the
5856 * variable. To protect against this problem, all updates of
5857 * the per_cpu tsc_khz variable are done in an interrupt
5858 * protected IPI, and all callers wishing to update the value
5859 * must wait for a synchronous IPI to complete (which is trivial
5860 * if the caller is on the CPU already). This establishes the
5861 * necessary total order on variable updates.
5862 *
5863 * Note that because a guest time update may take place
5864 * anytime after the setting of the VCPU's request bit, the
5865 * correct TSC value must be set before the request. However,
5866 * to ensure the update actually makes it to any guest which
5867 * starts running in hardware virtualization between the set
5868 * and the acquisition of the spinlock, we must also ping the
5869 * CPU after setting the request bit.
5870 *
5871 */
5872
5873 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5874 return 0;
5875 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5876 return 0;
5877
5878 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5879
5880 spin_lock(&kvm_lock);
5881 list_for_each_entry(kvm, &vm_list, vm_list) {
5882 kvm_for_each_vcpu(i, vcpu, kvm) {
5883 if (vcpu->cpu != freq->cpu)
5884 continue;
5885 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5886 if (vcpu->cpu != smp_processor_id())
5887 send_ipi = 1;
5888 }
5889 }
5890 spin_unlock(&kvm_lock);
5891
5892 if (freq->old < freq->new && send_ipi) {
5893 /*
5894 * We upscale the frequency. Must make the guest
5895 * doesn't see old kvmclock values while running with
5896 * the new frequency, otherwise we risk the guest sees
5897 * time go backwards.
5898 *
5899 * In case we update the frequency for another cpu
5900 * (which might be in guest context) send an interrupt
5901 * to kick the cpu out of guest context. Next time
5902 * guest context is entered kvmclock will be updated,
5903 * so the guest will not see stale values.
5904 */
5905 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5906 }
5907 return 0;
5908 }
5909
5910 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5911 .notifier_call = kvmclock_cpufreq_notifier
5912 };
5913
5914 static int kvmclock_cpu_online(unsigned int cpu)
5915 {
5916 tsc_khz_changed(NULL);
5917 return 0;
5918 }
5919
5920 static void kvm_timer_init(void)
5921 {
5922 max_tsc_khz = tsc_khz;
5923
5924 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5925 #ifdef CONFIG_CPU_FREQ
5926 struct cpufreq_policy policy;
5927 int cpu;
5928
5929 memset(&policy, 0, sizeof(policy));
5930 cpu = get_cpu();
5931 cpufreq_get_policy(&policy, cpu);
5932 if (policy.cpuinfo.max_freq)
5933 max_tsc_khz = policy.cpuinfo.max_freq;
5934 put_cpu();
5935 #endif
5936 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5937 CPUFREQ_TRANSITION_NOTIFIER);
5938 }
5939 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5940
5941 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5942 kvmclock_cpu_online, kvmclock_cpu_down_prep);
5943 }
5944
5945 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5946
5947 int kvm_is_in_guest(void)
5948 {
5949 return __this_cpu_read(current_vcpu) != NULL;
5950 }
5951
5952 static int kvm_is_user_mode(void)
5953 {
5954 int user_mode = 3;
5955
5956 if (__this_cpu_read(current_vcpu))
5957 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5958
5959 return user_mode != 0;
5960 }
5961
5962 static unsigned long kvm_get_guest_ip(void)
5963 {
5964 unsigned long ip = 0;
5965
5966 if (__this_cpu_read(current_vcpu))
5967 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5968
5969 return ip;
5970 }
5971
5972 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5973 .is_in_guest = kvm_is_in_guest,
5974 .is_user_mode = kvm_is_user_mode,
5975 .get_guest_ip = kvm_get_guest_ip,
5976 };
5977
5978 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5979 {
5980 __this_cpu_write(current_vcpu, vcpu);
5981 }
5982 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5983
5984 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5985 {
5986 __this_cpu_write(current_vcpu, NULL);
5987 }
5988 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5989
5990 static void kvm_set_mmio_spte_mask(void)
5991 {
5992 u64 mask;
5993 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5994
5995 /*
5996 * Set the reserved bits and the present bit of an paging-structure
5997 * entry to generate page fault with PFER.RSV = 1.
5998 */
5999 /* Mask the reserved physical address bits. */
6000 mask = rsvd_bits(maxphyaddr, 51);
6001
6002 /* Set the present bit. */
6003 mask |= 1ull;
6004
6005 #ifdef CONFIG_X86_64
6006 /*
6007 * If reserved bit is not supported, clear the present bit to disable
6008 * mmio page fault.
6009 */
6010 if (maxphyaddr == 52)
6011 mask &= ~1ull;
6012 #endif
6013
6014 kvm_mmu_set_mmio_spte_mask(mask);
6015 }
6016
6017 #ifdef CONFIG_X86_64
6018 static void pvclock_gtod_update_fn(struct work_struct *work)
6019 {
6020 struct kvm *kvm;
6021
6022 struct kvm_vcpu *vcpu;
6023 int i;
6024
6025 spin_lock(&kvm_lock);
6026 list_for_each_entry(kvm, &vm_list, vm_list)
6027 kvm_for_each_vcpu(i, vcpu, kvm)
6028 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6029 atomic_set(&kvm_guest_has_master_clock, 0);
6030 spin_unlock(&kvm_lock);
6031 }
6032
6033 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6034
6035 /*
6036 * Notification about pvclock gtod data update.
6037 */
6038 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6039 void *priv)
6040 {
6041 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6042 struct timekeeper *tk = priv;
6043
6044 update_pvclock_gtod(tk);
6045
6046 /* disable master clock if host does not trust, or does not
6047 * use, TSC clocksource
6048 */
6049 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6050 atomic_read(&kvm_guest_has_master_clock) != 0)
6051 queue_work(system_long_wq, &pvclock_gtod_work);
6052
6053 return 0;
6054 }
6055
6056 static struct notifier_block pvclock_gtod_notifier = {
6057 .notifier_call = pvclock_gtod_notify,
6058 };
6059 #endif
6060
6061 int kvm_arch_init(void *opaque)
6062 {
6063 int r;
6064 struct kvm_x86_ops *ops = opaque;
6065
6066 if (kvm_x86_ops) {
6067 printk(KERN_ERR "kvm: already loaded the other module\n");
6068 r = -EEXIST;
6069 goto out;
6070 }
6071
6072 if (!ops->cpu_has_kvm_support()) {
6073 printk(KERN_ERR "kvm: no hardware support\n");
6074 r = -EOPNOTSUPP;
6075 goto out;
6076 }
6077 if (ops->disabled_by_bios()) {
6078 printk(KERN_ERR "kvm: disabled by bios\n");
6079 r = -EOPNOTSUPP;
6080 goto out;
6081 }
6082
6083 r = -ENOMEM;
6084 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6085 if (!shared_msrs) {
6086 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6087 goto out;
6088 }
6089
6090 r = kvm_mmu_module_init();
6091 if (r)
6092 goto out_free_percpu;
6093
6094 kvm_set_mmio_spte_mask();
6095
6096 kvm_x86_ops = ops;
6097
6098 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6099 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6100 PT_PRESENT_MASK, 0);
6101 kvm_timer_init();
6102
6103 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6104
6105 if (boot_cpu_has(X86_FEATURE_XSAVE))
6106 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6107
6108 kvm_lapic_init();
6109 #ifdef CONFIG_X86_64
6110 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6111 #endif
6112
6113 return 0;
6114
6115 out_free_percpu:
6116 free_percpu(shared_msrs);
6117 out:
6118 return r;
6119 }
6120
6121 void kvm_arch_exit(void)
6122 {
6123 kvm_lapic_exit();
6124 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6125
6126 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6127 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6128 CPUFREQ_TRANSITION_NOTIFIER);
6129 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6130 #ifdef CONFIG_X86_64
6131 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6132 #endif
6133 kvm_x86_ops = NULL;
6134 kvm_mmu_module_exit();
6135 free_percpu(shared_msrs);
6136 }
6137
6138 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6139 {
6140 ++vcpu->stat.halt_exits;
6141 if (lapic_in_kernel(vcpu)) {
6142 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6143 return 1;
6144 } else {
6145 vcpu->run->exit_reason = KVM_EXIT_HLT;
6146 return 0;
6147 }
6148 }
6149 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6150
6151 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6152 {
6153 int ret = kvm_skip_emulated_instruction(vcpu);
6154 /*
6155 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6156 * KVM_EXIT_DEBUG here.
6157 */
6158 return kvm_vcpu_halt(vcpu) && ret;
6159 }
6160 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6161
6162 #ifdef CONFIG_X86_64
6163 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6164 unsigned long clock_type)
6165 {
6166 struct kvm_clock_pairing clock_pairing;
6167 struct timespec ts;
6168 u64 cycle;
6169 int ret;
6170
6171 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6172 return -KVM_EOPNOTSUPP;
6173
6174 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6175 return -KVM_EOPNOTSUPP;
6176
6177 clock_pairing.sec = ts.tv_sec;
6178 clock_pairing.nsec = ts.tv_nsec;
6179 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6180 clock_pairing.flags = 0;
6181
6182 ret = 0;
6183 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6184 sizeof(struct kvm_clock_pairing)))
6185 ret = -KVM_EFAULT;
6186
6187 return ret;
6188 }
6189 #endif
6190
6191 /*
6192 * kvm_pv_kick_cpu_op: Kick a vcpu.
6193 *
6194 * @apicid - apicid of vcpu to be kicked.
6195 */
6196 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6197 {
6198 struct kvm_lapic_irq lapic_irq;
6199
6200 lapic_irq.shorthand = 0;
6201 lapic_irq.dest_mode = 0;
6202 lapic_irq.dest_id = apicid;
6203 lapic_irq.msi_redir_hint = false;
6204
6205 lapic_irq.delivery_mode = APIC_DM_REMRD;
6206 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6207 }
6208
6209 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6210 {
6211 vcpu->arch.apicv_active = false;
6212 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6213 }
6214
6215 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6216 {
6217 unsigned long nr, a0, a1, a2, a3, ret;
6218 int op_64_bit, r;
6219
6220 r = kvm_skip_emulated_instruction(vcpu);
6221
6222 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6223 return kvm_hv_hypercall(vcpu);
6224
6225 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6226 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6227 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6228 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6229 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6230
6231 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6232
6233 op_64_bit = is_64_bit_mode(vcpu);
6234 if (!op_64_bit) {
6235 nr &= 0xFFFFFFFF;
6236 a0 &= 0xFFFFFFFF;
6237 a1 &= 0xFFFFFFFF;
6238 a2 &= 0xFFFFFFFF;
6239 a3 &= 0xFFFFFFFF;
6240 }
6241
6242 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6243 ret = -KVM_EPERM;
6244 goto out;
6245 }
6246
6247 switch (nr) {
6248 case KVM_HC_VAPIC_POLL_IRQ:
6249 ret = 0;
6250 break;
6251 case KVM_HC_KICK_CPU:
6252 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6253 ret = 0;
6254 break;
6255 #ifdef CONFIG_X86_64
6256 case KVM_HC_CLOCK_PAIRING:
6257 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6258 break;
6259 #endif
6260 default:
6261 ret = -KVM_ENOSYS;
6262 break;
6263 }
6264 out:
6265 if (!op_64_bit)
6266 ret = (u32)ret;
6267 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6268 ++vcpu->stat.hypercalls;
6269 return r;
6270 }
6271 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6272
6273 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6274 {
6275 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6276 char instruction[3];
6277 unsigned long rip = kvm_rip_read(vcpu);
6278
6279 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6280
6281 return emulator_write_emulated(ctxt, rip, instruction, 3,
6282 &ctxt->exception);
6283 }
6284
6285 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6286 {
6287 return vcpu->run->request_interrupt_window &&
6288 likely(!pic_in_kernel(vcpu->kvm));
6289 }
6290
6291 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6292 {
6293 struct kvm_run *kvm_run = vcpu->run;
6294
6295 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6296 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6297 kvm_run->cr8 = kvm_get_cr8(vcpu);
6298 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6299 kvm_run->ready_for_interrupt_injection =
6300 pic_in_kernel(vcpu->kvm) ||
6301 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6302 }
6303
6304 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6305 {
6306 int max_irr, tpr;
6307
6308 if (!kvm_x86_ops->update_cr8_intercept)
6309 return;
6310
6311 if (!lapic_in_kernel(vcpu))
6312 return;
6313
6314 if (vcpu->arch.apicv_active)
6315 return;
6316
6317 if (!vcpu->arch.apic->vapic_addr)
6318 max_irr = kvm_lapic_find_highest_irr(vcpu);
6319 else
6320 max_irr = -1;
6321
6322 if (max_irr != -1)
6323 max_irr >>= 4;
6324
6325 tpr = kvm_lapic_get_cr8(vcpu);
6326
6327 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6328 }
6329
6330 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6331 {
6332 int r;
6333
6334 /* try to reinject previous events if any */
6335 if (vcpu->arch.exception.pending) {
6336 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6337 vcpu->arch.exception.has_error_code,
6338 vcpu->arch.exception.error_code);
6339
6340 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6341 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6342 X86_EFLAGS_RF);
6343
6344 if (vcpu->arch.exception.nr == DB_VECTOR &&
6345 (vcpu->arch.dr7 & DR7_GD)) {
6346 vcpu->arch.dr7 &= ~DR7_GD;
6347 kvm_update_dr7(vcpu);
6348 }
6349
6350 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6351 vcpu->arch.exception.has_error_code,
6352 vcpu->arch.exception.error_code,
6353 vcpu->arch.exception.reinject);
6354 return 0;
6355 }
6356
6357 if (vcpu->arch.nmi_injected) {
6358 kvm_x86_ops->set_nmi(vcpu);
6359 return 0;
6360 }
6361
6362 if (vcpu->arch.interrupt.pending) {
6363 kvm_x86_ops->set_irq(vcpu);
6364 return 0;
6365 }
6366
6367 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6368 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6369 if (r != 0)
6370 return r;
6371 }
6372
6373 /* try to inject new event if pending */
6374 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6375 vcpu->arch.smi_pending = false;
6376 enter_smm(vcpu);
6377 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6378 --vcpu->arch.nmi_pending;
6379 vcpu->arch.nmi_injected = true;
6380 kvm_x86_ops->set_nmi(vcpu);
6381 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6382 /*
6383 * Because interrupts can be injected asynchronously, we are
6384 * calling check_nested_events again here to avoid a race condition.
6385 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6386 * proposal and current concerns. Perhaps we should be setting
6387 * KVM_REQ_EVENT only on certain events and not unconditionally?
6388 */
6389 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6390 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6391 if (r != 0)
6392 return r;
6393 }
6394 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6395 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6396 false);
6397 kvm_x86_ops->set_irq(vcpu);
6398 }
6399 }
6400
6401 return 0;
6402 }
6403
6404 static void process_nmi(struct kvm_vcpu *vcpu)
6405 {
6406 unsigned limit = 2;
6407
6408 /*
6409 * x86 is limited to one NMI running, and one NMI pending after it.
6410 * If an NMI is already in progress, limit further NMIs to just one.
6411 * Otherwise, allow two (and we'll inject the first one immediately).
6412 */
6413 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6414 limit = 1;
6415
6416 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6417 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6418 kvm_make_request(KVM_REQ_EVENT, vcpu);
6419 }
6420
6421 #define put_smstate(type, buf, offset, val) \
6422 *(type *)((buf) + (offset) - 0x7e00) = val
6423
6424 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6425 {
6426 u32 flags = 0;
6427 flags |= seg->g << 23;
6428 flags |= seg->db << 22;
6429 flags |= seg->l << 21;
6430 flags |= seg->avl << 20;
6431 flags |= seg->present << 15;
6432 flags |= seg->dpl << 13;
6433 flags |= seg->s << 12;
6434 flags |= seg->type << 8;
6435 return flags;
6436 }
6437
6438 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6439 {
6440 struct kvm_segment seg;
6441 int offset;
6442
6443 kvm_get_segment(vcpu, &seg, n);
6444 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6445
6446 if (n < 3)
6447 offset = 0x7f84 + n * 12;
6448 else
6449 offset = 0x7f2c + (n - 3) * 12;
6450
6451 put_smstate(u32, buf, offset + 8, seg.base);
6452 put_smstate(u32, buf, offset + 4, seg.limit);
6453 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6454 }
6455
6456 #ifdef CONFIG_X86_64
6457 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6458 {
6459 struct kvm_segment seg;
6460 int offset;
6461 u16 flags;
6462
6463 kvm_get_segment(vcpu, &seg, n);
6464 offset = 0x7e00 + n * 16;
6465
6466 flags = enter_smm_get_segment_flags(&seg) >> 8;
6467 put_smstate(u16, buf, offset, seg.selector);
6468 put_smstate(u16, buf, offset + 2, flags);
6469 put_smstate(u32, buf, offset + 4, seg.limit);
6470 put_smstate(u64, buf, offset + 8, seg.base);
6471 }
6472 #endif
6473
6474 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6475 {
6476 struct desc_ptr dt;
6477 struct kvm_segment seg;
6478 unsigned long val;
6479 int i;
6480
6481 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6482 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6483 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6484 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6485
6486 for (i = 0; i < 8; i++)
6487 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6488
6489 kvm_get_dr(vcpu, 6, &val);
6490 put_smstate(u32, buf, 0x7fcc, (u32)val);
6491 kvm_get_dr(vcpu, 7, &val);
6492 put_smstate(u32, buf, 0x7fc8, (u32)val);
6493
6494 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6495 put_smstate(u32, buf, 0x7fc4, seg.selector);
6496 put_smstate(u32, buf, 0x7f64, seg.base);
6497 put_smstate(u32, buf, 0x7f60, seg.limit);
6498 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6499
6500 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6501 put_smstate(u32, buf, 0x7fc0, seg.selector);
6502 put_smstate(u32, buf, 0x7f80, seg.base);
6503 put_smstate(u32, buf, 0x7f7c, seg.limit);
6504 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6505
6506 kvm_x86_ops->get_gdt(vcpu, &dt);
6507 put_smstate(u32, buf, 0x7f74, dt.address);
6508 put_smstate(u32, buf, 0x7f70, dt.size);
6509
6510 kvm_x86_ops->get_idt(vcpu, &dt);
6511 put_smstate(u32, buf, 0x7f58, dt.address);
6512 put_smstate(u32, buf, 0x7f54, dt.size);
6513
6514 for (i = 0; i < 6; i++)
6515 enter_smm_save_seg_32(vcpu, buf, i);
6516
6517 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6518
6519 /* revision id */
6520 put_smstate(u32, buf, 0x7efc, 0x00020000);
6521 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6522 }
6523
6524 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6525 {
6526 #ifdef CONFIG_X86_64
6527 struct desc_ptr dt;
6528 struct kvm_segment seg;
6529 unsigned long val;
6530 int i;
6531
6532 for (i = 0; i < 16; i++)
6533 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6534
6535 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6536 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6537
6538 kvm_get_dr(vcpu, 6, &val);
6539 put_smstate(u64, buf, 0x7f68, val);
6540 kvm_get_dr(vcpu, 7, &val);
6541 put_smstate(u64, buf, 0x7f60, val);
6542
6543 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6544 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6545 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6546
6547 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6548
6549 /* revision id */
6550 put_smstate(u32, buf, 0x7efc, 0x00020064);
6551
6552 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6553
6554 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6555 put_smstate(u16, buf, 0x7e90, seg.selector);
6556 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6557 put_smstate(u32, buf, 0x7e94, seg.limit);
6558 put_smstate(u64, buf, 0x7e98, seg.base);
6559
6560 kvm_x86_ops->get_idt(vcpu, &dt);
6561 put_smstate(u32, buf, 0x7e84, dt.size);
6562 put_smstate(u64, buf, 0x7e88, dt.address);
6563
6564 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6565 put_smstate(u16, buf, 0x7e70, seg.selector);
6566 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6567 put_smstate(u32, buf, 0x7e74, seg.limit);
6568 put_smstate(u64, buf, 0x7e78, seg.base);
6569
6570 kvm_x86_ops->get_gdt(vcpu, &dt);
6571 put_smstate(u32, buf, 0x7e64, dt.size);
6572 put_smstate(u64, buf, 0x7e68, dt.address);
6573
6574 for (i = 0; i < 6; i++)
6575 enter_smm_save_seg_64(vcpu, buf, i);
6576 #else
6577 WARN_ON_ONCE(1);
6578 #endif
6579 }
6580
6581 static void enter_smm(struct kvm_vcpu *vcpu)
6582 {
6583 struct kvm_segment cs, ds;
6584 struct desc_ptr dt;
6585 char buf[512];
6586 u32 cr0;
6587
6588 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6589 vcpu->arch.hflags |= HF_SMM_MASK;
6590 memset(buf, 0, 512);
6591 if (guest_cpuid_has_longmode(vcpu))
6592 enter_smm_save_state_64(vcpu, buf);
6593 else
6594 enter_smm_save_state_32(vcpu, buf);
6595
6596 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6597
6598 if (kvm_x86_ops->get_nmi_mask(vcpu))
6599 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6600 else
6601 kvm_x86_ops->set_nmi_mask(vcpu, true);
6602
6603 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6604 kvm_rip_write(vcpu, 0x8000);
6605
6606 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6607 kvm_x86_ops->set_cr0(vcpu, cr0);
6608 vcpu->arch.cr0 = cr0;
6609
6610 kvm_x86_ops->set_cr4(vcpu, 0);
6611
6612 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6613 dt.address = dt.size = 0;
6614 kvm_x86_ops->set_idt(vcpu, &dt);
6615
6616 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6617
6618 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6619 cs.base = vcpu->arch.smbase;
6620
6621 ds.selector = 0;
6622 ds.base = 0;
6623
6624 cs.limit = ds.limit = 0xffffffff;
6625 cs.type = ds.type = 0x3;
6626 cs.dpl = ds.dpl = 0;
6627 cs.db = ds.db = 0;
6628 cs.s = ds.s = 1;
6629 cs.l = ds.l = 0;
6630 cs.g = ds.g = 1;
6631 cs.avl = ds.avl = 0;
6632 cs.present = ds.present = 1;
6633 cs.unusable = ds.unusable = 0;
6634 cs.padding = ds.padding = 0;
6635
6636 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6637 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6638 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6639 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6640 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6641 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6642
6643 if (guest_cpuid_has_longmode(vcpu))
6644 kvm_x86_ops->set_efer(vcpu, 0);
6645
6646 kvm_update_cpuid(vcpu);
6647 kvm_mmu_reset_context(vcpu);
6648 }
6649
6650 static void process_smi(struct kvm_vcpu *vcpu)
6651 {
6652 vcpu->arch.smi_pending = true;
6653 kvm_make_request(KVM_REQ_EVENT, vcpu);
6654 }
6655
6656 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6657 {
6658 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6659 }
6660
6661 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6662 {
6663 u64 eoi_exit_bitmap[4];
6664
6665 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6666 return;
6667
6668 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6669
6670 if (irqchip_split(vcpu->kvm))
6671 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6672 else {
6673 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6674 kvm_x86_ops->sync_pir_to_irr(vcpu);
6675 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6676 }
6677 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6678 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6679 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6680 }
6681
6682 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6683 {
6684 ++vcpu->stat.tlb_flush;
6685 kvm_x86_ops->tlb_flush(vcpu);
6686 }
6687
6688 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6689 {
6690 struct page *page = NULL;
6691
6692 if (!lapic_in_kernel(vcpu))
6693 return;
6694
6695 if (!kvm_x86_ops->set_apic_access_page_addr)
6696 return;
6697
6698 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6699 if (is_error_page(page))
6700 return;
6701 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6702
6703 /*
6704 * Do not pin apic access page in memory, the MMU notifier
6705 * will call us again if it is migrated or swapped out.
6706 */
6707 put_page(page);
6708 }
6709 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6710
6711 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6712 unsigned long address)
6713 {
6714 /*
6715 * The physical address of apic access page is stored in the VMCS.
6716 * Update it when it becomes invalid.
6717 */
6718 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6719 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6720 }
6721
6722 /*
6723 * Returns 1 to let vcpu_run() continue the guest execution loop without
6724 * exiting to the userspace. Otherwise, the value will be returned to the
6725 * userspace.
6726 */
6727 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6728 {
6729 int r;
6730 bool req_int_win =
6731 dm_request_for_irq_injection(vcpu) &&
6732 kvm_cpu_accept_dm_intr(vcpu);
6733
6734 bool req_immediate_exit = false;
6735
6736 if (vcpu->requests) {
6737 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6738 kvm_mmu_unload(vcpu);
6739 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6740 __kvm_migrate_timers(vcpu);
6741 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6742 kvm_gen_update_masterclock(vcpu->kvm);
6743 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6744 kvm_gen_kvmclock_update(vcpu);
6745 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6746 r = kvm_guest_time_update(vcpu);
6747 if (unlikely(r))
6748 goto out;
6749 }
6750 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6751 kvm_mmu_sync_roots(vcpu);
6752 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6753 kvm_vcpu_flush_tlb(vcpu);
6754 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6755 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6756 r = 0;
6757 goto out;
6758 }
6759 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6760 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6761 r = 0;
6762 goto out;
6763 }
6764 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6765 /* Page is swapped out. Do synthetic halt */
6766 vcpu->arch.apf.halted = true;
6767 r = 1;
6768 goto out;
6769 }
6770 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6771 record_steal_time(vcpu);
6772 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6773 process_smi(vcpu);
6774 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6775 process_nmi(vcpu);
6776 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6777 kvm_pmu_handle_event(vcpu);
6778 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6779 kvm_pmu_deliver_pmi(vcpu);
6780 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6781 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6782 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6783 vcpu->arch.ioapic_handled_vectors)) {
6784 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6785 vcpu->run->eoi.vector =
6786 vcpu->arch.pending_ioapic_eoi;
6787 r = 0;
6788 goto out;
6789 }
6790 }
6791 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6792 vcpu_scan_ioapic(vcpu);
6793 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6794 kvm_vcpu_reload_apic_access_page(vcpu);
6795 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6796 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6797 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6798 r = 0;
6799 goto out;
6800 }
6801 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6802 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6803 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6804 r = 0;
6805 goto out;
6806 }
6807 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6808 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6809 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6810 r = 0;
6811 goto out;
6812 }
6813
6814 /*
6815 * KVM_REQ_HV_STIMER has to be processed after
6816 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6817 * depend on the guest clock being up-to-date
6818 */
6819 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6820 kvm_hv_process_stimers(vcpu);
6821 }
6822
6823 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6824 ++vcpu->stat.req_event;
6825 kvm_apic_accept_events(vcpu);
6826 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6827 r = 1;
6828 goto out;
6829 }
6830
6831 if (inject_pending_event(vcpu, req_int_win) != 0)
6832 req_immediate_exit = true;
6833 else {
6834 /* Enable NMI/IRQ window open exits if needed.
6835 *
6836 * SMIs have two cases: 1) they can be nested, and
6837 * then there is nothing to do here because RSM will
6838 * cause a vmexit anyway; 2) or the SMI can be pending
6839 * because inject_pending_event has completed the
6840 * injection of an IRQ or NMI from the previous vmexit,
6841 * and then we request an immediate exit to inject the SMI.
6842 */
6843 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6844 req_immediate_exit = true;
6845 if (vcpu->arch.nmi_pending)
6846 kvm_x86_ops->enable_nmi_window(vcpu);
6847 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6848 kvm_x86_ops->enable_irq_window(vcpu);
6849 }
6850
6851 if (kvm_lapic_enabled(vcpu)) {
6852 update_cr8_intercept(vcpu);
6853 kvm_lapic_sync_to_vapic(vcpu);
6854 }
6855 }
6856
6857 r = kvm_mmu_reload(vcpu);
6858 if (unlikely(r)) {
6859 goto cancel_injection;
6860 }
6861
6862 preempt_disable();
6863
6864 kvm_x86_ops->prepare_guest_switch(vcpu);
6865 kvm_load_guest_fpu(vcpu);
6866
6867 /*
6868 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
6869 * IPI are then delayed after guest entry, which ensures that they
6870 * result in virtual interrupt delivery.
6871 */
6872 local_irq_disable();
6873 vcpu->mode = IN_GUEST_MODE;
6874
6875 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6876
6877 /*
6878 * 1) We should set ->mode before checking ->requests. Please see
6879 * the comment in kvm_vcpu_exiting_guest_mode().
6880 *
6881 * 2) For APICv, we should set ->mode before checking PIR.ON. This
6882 * pairs with the memory barrier implicit in pi_test_and_set_on
6883 * (see vmx_deliver_posted_interrupt).
6884 *
6885 * 3) This also orders the write to mode from any reads to the page
6886 * tables done while the VCPU is running. Please see the comment
6887 * in kvm_flush_remote_tlbs.
6888 */
6889 smp_mb__after_srcu_read_unlock();
6890
6891 /*
6892 * This handles the case where a posted interrupt was
6893 * notified with kvm_vcpu_kick.
6894 */
6895 if (kvm_lapic_enabled(vcpu)) {
6896 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6897 kvm_x86_ops->sync_pir_to_irr(vcpu);
6898 }
6899
6900 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6901 || need_resched() || signal_pending(current)) {
6902 vcpu->mode = OUTSIDE_GUEST_MODE;
6903 smp_wmb();
6904 local_irq_enable();
6905 preempt_enable();
6906 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6907 r = 1;
6908 goto cancel_injection;
6909 }
6910
6911 kvm_load_guest_xcr0(vcpu);
6912
6913 if (req_immediate_exit) {
6914 kvm_make_request(KVM_REQ_EVENT, vcpu);
6915 smp_send_reschedule(vcpu->cpu);
6916 }
6917
6918 trace_kvm_entry(vcpu->vcpu_id);
6919 wait_lapic_expire(vcpu);
6920 guest_enter_irqoff();
6921
6922 if (unlikely(vcpu->arch.switch_db_regs)) {
6923 set_debugreg(0, 7);
6924 set_debugreg(vcpu->arch.eff_db[0], 0);
6925 set_debugreg(vcpu->arch.eff_db[1], 1);
6926 set_debugreg(vcpu->arch.eff_db[2], 2);
6927 set_debugreg(vcpu->arch.eff_db[3], 3);
6928 set_debugreg(vcpu->arch.dr6, 6);
6929 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6930 }
6931
6932 kvm_x86_ops->run(vcpu);
6933
6934 /*
6935 * Do this here before restoring debug registers on the host. And
6936 * since we do this before handling the vmexit, a DR access vmexit
6937 * can (a) read the correct value of the debug registers, (b) set
6938 * KVM_DEBUGREG_WONT_EXIT again.
6939 */
6940 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6941 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6942 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6943 kvm_update_dr0123(vcpu);
6944 kvm_update_dr6(vcpu);
6945 kvm_update_dr7(vcpu);
6946 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6947 }
6948
6949 /*
6950 * If the guest has used debug registers, at least dr7
6951 * will be disabled while returning to the host.
6952 * If we don't have active breakpoints in the host, we don't
6953 * care about the messed up debug address registers. But if
6954 * we have some of them active, restore the old state.
6955 */
6956 if (hw_breakpoint_active())
6957 hw_breakpoint_restore();
6958
6959 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6960
6961 vcpu->mode = OUTSIDE_GUEST_MODE;
6962 smp_wmb();
6963
6964 kvm_put_guest_xcr0(vcpu);
6965
6966 kvm_x86_ops->handle_external_intr(vcpu);
6967
6968 ++vcpu->stat.exits;
6969
6970 guest_exit_irqoff();
6971
6972 local_irq_enable();
6973 preempt_enable();
6974
6975 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6976
6977 /*
6978 * Profile KVM exit RIPs:
6979 */
6980 if (unlikely(prof_on == KVM_PROFILING)) {
6981 unsigned long rip = kvm_rip_read(vcpu);
6982 profile_hit(KVM_PROFILING, (void *)rip);
6983 }
6984
6985 if (unlikely(vcpu->arch.tsc_always_catchup))
6986 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6987
6988 if (vcpu->arch.apic_attention)
6989 kvm_lapic_sync_from_vapic(vcpu);
6990
6991 r = kvm_x86_ops->handle_exit(vcpu);
6992 return r;
6993
6994 cancel_injection:
6995 kvm_x86_ops->cancel_injection(vcpu);
6996 if (unlikely(vcpu->arch.apic_attention))
6997 kvm_lapic_sync_from_vapic(vcpu);
6998 out:
6999 return r;
7000 }
7001
7002 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7003 {
7004 if (!kvm_arch_vcpu_runnable(vcpu) &&
7005 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7006 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7007 kvm_vcpu_block(vcpu);
7008 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7009
7010 if (kvm_x86_ops->post_block)
7011 kvm_x86_ops->post_block(vcpu);
7012
7013 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7014 return 1;
7015 }
7016
7017 kvm_apic_accept_events(vcpu);
7018 switch(vcpu->arch.mp_state) {
7019 case KVM_MP_STATE_HALTED:
7020 vcpu->arch.pv.pv_unhalted = false;
7021 vcpu->arch.mp_state =
7022 KVM_MP_STATE_RUNNABLE;
7023 case KVM_MP_STATE_RUNNABLE:
7024 vcpu->arch.apf.halted = false;
7025 break;
7026 case KVM_MP_STATE_INIT_RECEIVED:
7027 break;
7028 default:
7029 return -EINTR;
7030 break;
7031 }
7032 return 1;
7033 }
7034
7035 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7036 {
7037 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7038 kvm_x86_ops->check_nested_events(vcpu, false);
7039
7040 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7041 !vcpu->arch.apf.halted);
7042 }
7043
7044 static int vcpu_run(struct kvm_vcpu *vcpu)
7045 {
7046 int r;
7047 struct kvm *kvm = vcpu->kvm;
7048
7049 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7050
7051 for (;;) {
7052 if (kvm_vcpu_running(vcpu)) {
7053 r = vcpu_enter_guest(vcpu);
7054 } else {
7055 r = vcpu_block(kvm, vcpu);
7056 }
7057
7058 if (r <= 0)
7059 break;
7060
7061 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7062 if (kvm_cpu_has_pending_timer(vcpu))
7063 kvm_inject_pending_timer_irqs(vcpu);
7064
7065 if (dm_request_for_irq_injection(vcpu) &&
7066 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7067 r = 0;
7068 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7069 ++vcpu->stat.request_irq_exits;
7070 break;
7071 }
7072
7073 kvm_check_async_pf_completion(vcpu);
7074
7075 if (signal_pending(current)) {
7076 r = -EINTR;
7077 vcpu->run->exit_reason = KVM_EXIT_INTR;
7078 ++vcpu->stat.signal_exits;
7079 break;
7080 }
7081 if (need_resched()) {
7082 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7083 cond_resched();
7084 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7085 }
7086 }
7087
7088 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7089
7090 return r;
7091 }
7092
7093 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7094 {
7095 int r;
7096 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7097 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7098 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7099 if (r != EMULATE_DONE)
7100 return 0;
7101 return 1;
7102 }
7103
7104 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7105 {
7106 BUG_ON(!vcpu->arch.pio.count);
7107
7108 return complete_emulated_io(vcpu);
7109 }
7110
7111 /*
7112 * Implements the following, as a state machine:
7113 *
7114 * read:
7115 * for each fragment
7116 * for each mmio piece in the fragment
7117 * write gpa, len
7118 * exit
7119 * copy data
7120 * execute insn
7121 *
7122 * write:
7123 * for each fragment
7124 * for each mmio piece in the fragment
7125 * write gpa, len
7126 * copy data
7127 * exit
7128 */
7129 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7130 {
7131 struct kvm_run *run = vcpu->run;
7132 struct kvm_mmio_fragment *frag;
7133 unsigned len;
7134
7135 BUG_ON(!vcpu->mmio_needed);
7136
7137 /* Complete previous fragment */
7138 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7139 len = min(8u, frag->len);
7140 if (!vcpu->mmio_is_write)
7141 memcpy(frag->data, run->mmio.data, len);
7142
7143 if (frag->len <= 8) {
7144 /* Switch to the next fragment. */
7145 frag++;
7146 vcpu->mmio_cur_fragment++;
7147 } else {
7148 /* Go forward to the next mmio piece. */
7149 frag->data += len;
7150 frag->gpa += len;
7151 frag->len -= len;
7152 }
7153
7154 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7155 vcpu->mmio_needed = 0;
7156
7157 /* FIXME: return into emulator if single-stepping. */
7158 if (vcpu->mmio_is_write)
7159 return 1;
7160 vcpu->mmio_read_completed = 1;
7161 return complete_emulated_io(vcpu);
7162 }
7163
7164 run->exit_reason = KVM_EXIT_MMIO;
7165 run->mmio.phys_addr = frag->gpa;
7166 if (vcpu->mmio_is_write)
7167 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7168 run->mmio.len = min(8u, frag->len);
7169 run->mmio.is_write = vcpu->mmio_is_write;
7170 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7171 return 0;
7172 }
7173
7174
7175 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7176 {
7177 struct fpu *fpu = &current->thread.fpu;
7178 int r;
7179 sigset_t sigsaved;
7180
7181 fpu__activate_curr(fpu);
7182
7183 if (vcpu->sigset_active)
7184 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7185
7186 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7187 kvm_vcpu_block(vcpu);
7188 kvm_apic_accept_events(vcpu);
7189 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7190 r = -EAGAIN;
7191 goto out;
7192 }
7193
7194 /* re-sync apic's tpr */
7195 if (!lapic_in_kernel(vcpu)) {
7196 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7197 r = -EINVAL;
7198 goto out;
7199 }
7200 }
7201
7202 if (unlikely(vcpu->arch.complete_userspace_io)) {
7203 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7204 vcpu->arch.complete_userspace_io = NULL;
7205 r = cui(vcpu);
7206 if (r <= 0)
7207 goto out;
7208 } else
7209 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7210
7211 if (kvm_run->immediate_exit)
7212 r = -EINTR;
7213 else
7214 r = vcpu_run(vcpu);
7215
7216 out:
7217 post_kvm_run_save(vcpu);
7218 if (vcpu->sigset_active)
7219 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7220
7221 return r;
7222 }
7223
7224 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7225 {
7226 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7227 /*
7228 * We are here if userspace calls get_regs() in the middle of
7229 * instruction emulation. Registers state needs to be copied
7230 * back from emulation context to vcpu. Userspace shouldn't do
7231 * that usually, but some bad designed PV devices (vmware
7232 * backdoor interface) need this to work
7233 */
7234 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7235 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7236 }
7237 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7238 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7239 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7240 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7241 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7242 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7243 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7244 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7245 #ifdef CONFIG_X86_64
7246 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7247 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7248 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7249 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7250 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7251 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7252 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7253 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7254 #endif
7255
7256 regs->rip = kvm_rip_read(vcpu);
7257 regs->rflags = kvm_get_rflags(vcpu);
7258
7259 return 0;
7260 }
7261
7262 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7263 {
7264 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7265 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7266
7267 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7268 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7269 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7270 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7271 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7272 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7273 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7274 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7275 #ifdef CONFIG_X86_64
7276 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7277 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7278 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7279 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7280 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7281 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7282 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7283 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7284 #endif
7285
7286 kvm_rip_write(vcpu, regs->rip);
7287 kvm_set_rflags(vcpu, regs->rflags);
7288
7289 vcpu->arch.exception.pending = false;
7290
7291 kvm_make_request(KVM_REQ_EVENT, vcpu);
7292
7293 return 0;
7294 }
7295
7296 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7297 {
7298 struct kvm_segment cs;
7299
7300 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7301 *db = cs.db;
7302 *l = cs.l;
7303 }
7304 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7305
7306 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7307 struct kvm_sregs *sregs)
7308 {
7309 struct desc_ptr dt;
7310
7311 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7312 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7313 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7314 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7315 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7316 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7317
7318 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7319 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7320
7321 kvm_x86_ops->get_idt(vcpu, &dt);
7322 sregs->idt.limit = dt.size;
7323 sregs->idt.base = dt.address;
7324 kvm_x86_ops->get_gdt(vcpu, &dt);
7325 sregs->gdt.limit = dt.size;
7326 sregs->gdt.base = dt.address;
7327
7328 sregs->cr0 = kvm_read_cr0(vcpu);
7329 sregs->cr2 = vcpu->arch.cr2;
7330 sregs->cr3 = kvm_read_cr3(vcpu);
7331 sregs->cr4 = kvm_read_cr4(vcpu);
7332 sregs->cr8 = kvm_get_cr8(vcpu);
7333 sregs->efer = vcpu->arch.efer;
7334 sregs->apic_base = kvm_get_apic_base(vcpu);
7335
7336 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7337
7338 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7339 set_bit(vcpu->arch.interrupt.nr,
7340 (unsigned long *)sregs->interrupt_bitmap);
7341
7342 return 0;
7343 }
7344
7345 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7346 struct kvm_mp_state *mp_state)
7347 {
7348 kvm_apic_accept_events(vcpu);
7349 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7350 vcpu->arch.pv.pv_unhalted)
7351 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7352 else
7353 mp_state->mp_state = vcpu->arch.mp_state;
7354
7355 return 0;
7356 }
7357
7358 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7359 struct kvm_mp_state *mp_state)
7360 {
7361 if (!lapic_in_kernel(vcpu) &&
7362 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7363 return -EINVAL;
7364
7365 /* INITs are latched while in SMM */
7366 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7367 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7368 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7369 return -EINVAL;
7370
7371 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7372 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7373 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7374 } else
7375 vcpu->arch.mp_state = mp_state->mp_state;
7376 kvm_make_request(KVM_REQ_EVENT, vcpu);
7377 return 0;
7378 }
7379
7380 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7381 int reason, bool has_error_code, u32 error_code)
7382 {
7383 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7384 int ret;
7385
7386 init_emulate_ctxt(vcpu);
7387
7388 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7389 has_error_code, error_code);
7390
7391 if (ret)
7392 return EMULATE_FAIL;
7393
7394 kvm_rip_write(vcpu, ctxt->eip);
7395 kvm_set_rflags(vcpu, ctxt->eflags);
7396 kvm_make_request(KVM_REQ_EVENT, vcpu);
7397 return EMULATE_DONE;
7398 }
7399 EXPORT_SYMBOL_GPL(kvm_task_switch);
7400
7401 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7402 struct kvm_sregs *sregs)
7403 {
7404 struct msr_data apic_base_msr;
7405 int mmu_reset_needed = 0;
7406 int pending_vec, max_bits, idx;
7407 struct desc_ptr dt;
7408
7409 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7410 return -EINVAL;
7411
7412 dt.size = sregs->idt.limit;
7413 dt.address = sregs->idt.base;
7414 kvm_x86_ops->set_idt(vcpu, &dt);
7415 dt.size = sregs->gdt.limit;
7416 dt.address = sregs->gdt.base;
7417 kvm_x86_ops->set_gdt(vcpu, &dt);
7418
7419 vcpu->arch.cr2 = sregs->cr2;
7420 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7421 vcpu->arch.cr3 = sregs->cr3;
7422 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7423
7424 kvm_set_cr8(vcpu, sregs->cr8);
7425
7426 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7427 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7428 apic_base_msr.data = sregs->apic_base;
7429 apic_base_msr.host_initiated = true;
7430 kvm_set_apic_base(vcpu, &apic_base_msr);
7431
7432 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7433 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7434 vcpu->arch.cr0 = sregs->cr0;
7435
7436 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7437 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7438 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7439 kvm_update_cpuid(vcpu);
7440
7441 idx = srcu_read_lock(&vcpu->kvm->srcu);
7442 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7443 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7444 mmu_reset_needed = 1;
7445 }
7446 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7447
7448 if (mmu_reset_needed)
7449 kvm_mmu_reset_context(vcpu);
7450
7451 max_bits = KVM_NR_INTERRUPTS;
7452 pending_vec = find_first_bit(
7453 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7454 if (pending_vec < max_bits) {
7455 kvm_queue_interrupt(vcpu, pending_vec, false);
7456 pr_debug("Set back pending irq %d\n", pending_vec);
7457 }
7458
7459 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7460 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7461 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7462 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7463 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7464 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7465
7466 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7467 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7468
7469 update_cr8_intercept(vcpu);
7470
7471 /* Older userspace won't unhalt the vcpu on reset. */
7472 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7473 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7474 !is_protmode(vcpu))
7475 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7476
7477 kvm_make_request(KVM_REQ_EVENT, vcpu);
7478
7479 return 0;
7480 }
7481
7482 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7483 struct kvm_guest_debug *dbg)
7484 {
7485 unsigned long rflags;
7486 int i, r;
7487
7488 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7489 r = -EBUSY;
7490 if (vcpu->arch.exception.pending)
7491 goto out;
7492 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7493 kvm_queue_exception(vcpu, DB_VECTOR);
7494 else
7495 kvm_queue_exception(vcpu, BP_VECTOR);
7496 }
7497
7498 /*
7499 * Read rflags as long as potentially injected trace flags are still
7500 * filtered out.
7501 */
7502 rflags = kvm_get_rflags(vcpu);
7503
7504 vcpu->guest_debug = dbg->control;
7505 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7506 vcpu->guest_debug = 0;
7507
7508 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7509 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7510 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7511 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7512 } else {
7513 for (i = 0; i < KVM_NR_DB_REGS; i++)
7514 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7515 }
7516 kvm_update_dr7(vcpu);
7517
7518 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7519 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7520 get_segment_base(vcpu, VCPU_SREG_CS);
7521
7522 /*
7523 * Trigger an rflags update that will inject or remove the trace
7524 * flags.
7525 */
7526 kvm_set_rflags(vcpu, rflags);
7527
7528 kvm_x86_ops->update_bp_intercept(vcpu);
7529
7530 r = 0;
7531
7532 out:
7533
7534 return r;
7535 }
7536
7537 /*
7538 * Translate a guest virtual address to a guest physical address.
7539 */
7540 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7541 struct kvm_translation *tr)
7542 {
7543 unsigned long vaddr = tr->linear_address;
7544 gpa_t gpa;
7545 int idx;
7546
7547 idx = srcu_read_lock(&vcpu->kvm->srcu);
7548 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7549 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7550 tr->physical_address = gpa;
7551 tr->valid = gpa != UNMAPPED_GVA;
7552 tr->writeable = 1;
7553 tr->usermode = 0;
7554
7555 return 0;
7556 }
7557
7558 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7559 {
7560 struct fxregs_state *fxsave =
7561 &vcpu->arch.guest_fpu.state.fxsave;
7562
7563 memcpy(fpu->fpr, fxsave->st_space, 128);
7564 fpu->fcw = fxsave->cwd;
7565 fpu->fsw = fxsave->swd;
7566 fpu->ftwx = fxsave->twd;
7567 fpu->last_opcode = fxsave->fop;
7568 fpu->last_ip = fxsave->rip;
7569 fpu->last_dp = fxsave->rdp;
7570 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7571
7572 return 0;
7573 }
7574
7575 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7576 {
7577 struct fxregs_state *fxsave =
7578 &vcpu->arch.guest_fpu.state.fxsave;
7579
7580 memcpy(fxsave->st_space, fpu->fpr, 128);
7581 fxsave->cwd = fpu->fcw;
7582 fxsave->swd = fpu->fsw;
7583 fxsave->twd = fpu->ftwx;
7584 fxsave->fop = fpu->last_opcode;
7585 fxsave->rip = fpu->last_ip;
7586 fxsave->rdp = fpu->last_dp;
7587 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7588
7589 return 0;
7590 }
7591
7592 static void fx_init(struct kvm_vcpu *vcpu)
7593 {
7594 fpstate_init(&vcpu->arch.guest_fpu.state);
7595 if (boot_cpu_has(X86_FEATURE_XSAVES))
7596 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7597 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7598
7599 /*
7600 * Ensure guest xcr0 is valid for loading
7601 */
7602 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7603
7604 vcpu->arch.cr0 |= X86_CR0_ET;
7605 }
7606
7607 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7608 {
7609 if (vcpu->guest_fpu_loaded)
7610 return;
7611
7612 /*
7613 * Restore all possible states in the guest,
7614 * and assume host would use all available bits.
7615 * Guest xcr0 would be loaded later.
7616 */
7617 vcpu->guest_fpu_loaded = 1;
7618 __kernel_fpu_begin();
7619 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7620 trace_kvm_fpu(1);
7621 }
7622
7623 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7624 {
7625 if (!vcpu->guest_fpu_loaded)
7626 return;
7627
7628 vcpu->guest_fpu_loaded = 0;
7629 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7630 __kernel_fpu_end();
7631 ++vcpu->stat.fpu_reload;
7632 trace_kvm_fpu(0);
7633 }
7634
7635 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7636 {
7637 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7638
7639 kvmclock_reset(vcpu);
7640
7641 kvm_x86_ops->vcpu_free(vcpu);
7642 free_cpumask_var(wbinvd_dirty_mask);
7643 }
7644
7645 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7646 unsigned int id)
7647 {
7648 struct kvm_vcpu *vcpu;
7649
7650 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7651 printk_once(KERN_WARNING
7652 "kvm: SMP vm created on host with unstable TSC; "
7653 "guest TSC will not be reliable\n");
7654
7655 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7656
7657 return vcpu;
7658 }
7659
7660 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7661 {
7662 int r;
7663
7664 kvm_vcpu_mtrr_init(vcpu);
7665 r = vcpu_load(vcpu);
7666 if (r)
7667 return r;
7668 kvm_vcpu_reset(vcpu, false);
7669 kvm_mmu_setup(vcpu);
7670 vcpu_put(vcpu);
7671 return r;
7672 }
7673
7674 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7675 {
7676 struct msr_data msr;
7677 struct kvm *kvm = vcpu->kvm;
7678
7679 if (vcpu_load(vcpu))
7680 return;
7681 msr.data = 0x0;
7682 msr.index = MSR_IA32_TSC;
7683 msr.host_initiated = true;
7684 kvm_write_tsc(vcpu, &msr);
7685 vcpu_put(vcpu);
7686
7687 if (!kvmclock_periodic_sync)
7688 return;
7689
7690 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7691 KVMCLOCK_SYNC_PERIOD);
7692 }
7693
7694 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7695 {
7696 int r;
7697 vcpu->arch.apf.msr_val = 0;
7698
7699 r = vcpu_load(vcpu);
7700 BUG_ON(r);
7701 kvm_mmu_unload(vcpu);
7702 vcpu_put(vcpu);
7703
7704 kvm_x86_ops->vcpu_free(vcpu);
7705 }
7706
7707 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7708 {
7709 vcpu->arch.hflags = 0;
7710
7711 vcpu->arch.smi_pending = 0;
7712 atomic_set(&vcpu->arch.nmi_queued, 0);
7713 vcpu->arch.nmi_pending = 0;
7714 vcpu->arch.nmi_injected = false;
7715 kvm_clear_interrupt_queue(vcpu);
7716 kvm_clear_exception_queue(vcpu);
7717
7718 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7719 kvm_update_dr0123(vcpu);
7720 vcpu->arch.dr6 = DR6_INIT;
7721 kvm_update_dr6(vcpu);
7722 vcpu->arch.dr7 = DR7_FIXED_1;
7723 kvm_update_dr7(vcpu);
7724
7725 vcpu->arch.cr2 = 0;
7726
7727 kvm_make_request(KVM_REQ_EVENT, vcpu);
7728 vcpu->arch.apf.msr_val = 0;
7729 vcpu->arch.st.msr_val = 0;
7730
7731 kvmclock_reset(vcpu);
7732
7733 kvm_clear_async_pf_completion_queue(vcpu);
7734 kvm_async_pf_hash_reset(vcpu);
7735 vcpu->arch.apf.halted = false;
7736
7737 if (!init_event) {
7738 kvm_pmu_reset(vcpu);
7739 vcpu->arch.smbase = 0x30000;
7740
7741 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7742 vcpu->arch.msr_misc_features_enables = 0;
7743 }
7744
7745 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7746 vcpu->arch.regs_avail = ~0;
7747 vcpu->arch.regs_dirty = ~0;
7748
7749 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7750 }
7751
7752 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7753 {
7754 struct kvm_segment cs;
7755
7756 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7757 cs.selector = vector << 8;
7758 cs.base = vector << 12;
7759 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7760 kvm_rip_write(vcpu, 0);
7761 }
7762
7763 int kvm_arch_hardware_enable(void)
7764 {
7765 struct kvm *kvm;
7766 struct kvm_vcpu *vcpu;
7767 int i;
7768 int ret;
7769 u64 local_tsc;
7770 u64 max_tsc = 0;
7771 bool stable, backwards_tsc = false;
7772
7773 kvm_shared_msr_cpu_online();
7774 ret = kvm_x86_ops->hardware_enable();
7775 if (ret != 0)
7776 return ret;
7777
7778 local_tsc = rdtsc();
7779 stable = !check_tsc_unstable();
7780 list_for_each_entry(kvm, &vm_list, vm_list) {
7781 kvm_for_each_vcpu(i, vcpu, kvm) {
7782 if (!stable && vcpu->cpu == smp_processor_id())
7783 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7784 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7785 backwards_tsc = true;
7786 if (vcpu->arch.last_host_tsc > max_tsc)
7787 max_tsc = vcpu->arch.last_host_tsc;
7788 }
7789 }
7790 }
7791
7792 /*
7793 * Sometimes, even reliable TSCs go backwards. This happens on
7794 * platforms that reset TSC during suspend or hibernate actions, but
7795 * maintain synchronization. We must compensate. Fortunately, we can
7796 * detect that condition here, which happens early in CPU bringup,
7797 * before any KVM threads can be running. Unfortunately, we can't
7798 * bring the TSCs fully up to date with real time, as we aren't yet far
7799 * enough into CPU bringup that we know how much real time has actually
7800 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7801 * variables that haven't been updated yet.
7802 *
7803 * So we simply find the maximum observed TSC above, then record the
7804 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7805 * the adjustment will be applied. Note that we accumulate
7806 * adjustments, in case multiple suspend cycles happen before some VCPU
7807 * gets a chance to run again. In the event that no KVM threads get a
7808 * chance to run, we will miss the entire elapsed period, as we'll have
7809 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7810 * loose cycle time. This isn't too big a deal, since the loss will be
7811 * uniform across all VCPUs (not to mention the scenario is extremely
7812 * unlikely). It is possible that a second hibernate recovery happens
7813 * much faster than a first, causing the observed TSC here to be
7814 * smaller; this would require additional padding adjustment, which is
7815 * why we set last_host_tsc to the local tsc observed here.
7816 *
7817 * N.B. - this code below runs only on platforms with reliable TSC,
7818 * as that is the only way backwards_tsc is set above. Also note
7819 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7820 * have the same delta_cyc adjustment applied if backwards_tsc
7821 * is detected. Note further, this adjustment is only done once,
7822 * as we reset last_host_tsc on all VCPUs to stop this from being
7823 * called multiple times (one for each physical CPU bringup).
7824 *
7825 * Platforms with unreliable TSCs don't have to deal with this, they
7826 * will be compensated by the logic in vcpu_load, which sets the TSC to
7827 * catchup mode. This will catchup all VCPUs to real time, but cannot
7828 * guarantee that they stay in perfect synchronization.
7829 */
7830 if (backwards_tsc) {
7831 u64 delta_cyc = max_tsc - local_tsc;
7832 backwards_tsc_observed = true;
7833 list_for_each_entry(kvm, &vm_list, vm_list) {
7834 kvm_for_each_vcpu(i, vcpu, kvm) {
7835 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7836 vcpu->arch.last_host_tsc = local_tsc;
7837 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7838 }
7839
7840 /*
7841 * We have to disable TSC offset matching.. if you were
7842 * booting a VM while issuing an S4 host suspend....
7843 * you may have some problem. Solving this issue is
7844 * left as an exercise to the reader.
7845 */
7846 kvm->arch.last_tsc_nsec = 0;
7847 kvm->arch.last_tsc_write = 0;
7848 }
7849
7850 }
7851 return 0;
7852 }
7853
7854 void kvm_arch_hardware_disable(void)
7855 {
7856 kvm_x86_ops->hardware_disable();
7857 drop_user_return_notifiers();
7858 }
7859
7860 int kvm_arch_hardware_setup(void)
7861 {
7862 int r;
7863
7864 r = kvm_x86_ops->hardware_setup();
7865 if (r != 0)
7866 return r;
7867
7868 if (kvm_has_tsc_control) {
7869 /*
7870 * Make sure the user can only configure tsc_khz values that
7871 * fit into a signed integer.
7872 * A min value is not calculated needed because it will always
7873 * be 1 on all machines.
7874 */
7875 u64 max = min(0x7fffffffULL,
7876 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7877 kvm_max_guest_tsc_khz = max;
7878
7879 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7880 }
7881
7882 kvm_init_msr_list();
7883 return 0;
7884 }
7885
7886 void kvm_arch_hardware_unsetup(void)
7887 {
7888 kvm_x86_ops->hardware_unsetup();
7889 }
7890
7891 void kvm_arch_check_processor_compat(void *rtn)
7892 {
7893 kvm_x86_ops->check_processor_compatibility(rtn);
7894 }
7895
7896 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7897 {
7898 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7899 }
7900 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7901
7902 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7903 {
7904 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7905 }
7906
7907 struct static_key kvm_no_apic_vcpu __read_mostly;
7908 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7909
7910 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7911 {
7912 struct page *page;
7913 struct kvm *kvm;
7914 int r;
7915
7916 BUG_ON(vcpu->kvm == NULL);
7917 kvm = vcpu->kvm;
7918
7919 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7920 vcpu->arch.pv.pv_unhalted = false;
7921 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7922 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7923 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7924 else
7925 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7926
7927 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7928 if (!page) {
7929 r = -ENOMEM;
7930 goto fail;
7931 }
7932 vcpu->arch.pio_data = page_address(page);
7933
7934 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7935
7936 r = kvm_mmu_create(vcpu);
7937 if (r < 0)
7938 goto fail_free_pio_data;
7939
7940 if (irqchip_in_kernel(kvm)) {
7941 r = kvm_create_lapic(vcpu);
7942 if (r < 0)
7943 goto fail_mmu_destroy;
7944 } else
7945 static_key_slow_inc(&kvm_no_apic_vcpu);
7946
7947 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7948 GFP_KERNEL);
7949 if (!vcpu->arch.mce_banks) {
7950 r = -ENOMEM;
7951 goto fail_free_lapic;
7952 }
7953 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7954
7955 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7956 r = -ENOMEM;
7957 goto fail_free_mce_banks;
7958 }
7959
7960 fx_init(vcpu);
7961
7962 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7963 vcpu->arch.pv_time_enabled = false;
7964
7965 vcpu->arch.guest_supported_xcr0 = 0;
7966 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7967
7968 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7969
7970 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7971
7972 kvm_async_pf_hash_reset(vcpu);
7973 kvm_pmu_init(vcpu);
7974
7975 vcpu->arch.pending_external_vector = -1;
7976
7977 kvm_hv_vcpu_init(vcpu);
7978
7979 return 0;
7980
7981 fail_free_mce_banks:
7982 kfree(vcpu->arch.mce_banks);
7983 fail_free_lapic:
7984 kvm_free_lapic(vcpu);
7985 fail_mmu_destroy:
7986 kvm_mmu_destroy(vcpu);
7987 fail_free_pio_data:
7988 free_page((unsigned long)vcpu->arch.pio_data);
7989 fail:
7990 return r;
7991 }
7992
7993 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7994 {
7995 int idx;
7996
7997 kvm_hv_vcpu_uninit(vcpu);
7998 kvm_pmu_destroy(vcpu);
7999 kfree(vcpu->arch.mce_banks);
8000 kvm_free_lapic(vcpu);
8001 idx = srcu_read_lock(&vcpu->kvm->srcu);
8002 kvm_mmu_destroy(vcpu);
8003 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8004 free_page((unsigned long)vcpu->arch.pio_data);
8005 if (!lapic_in_kernel(vcpu))
8006 static_key_slow_dec(&kvm_no_apic_vcpu);
8007 }
8008
8009 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8010 {
8011 kvm_x86_ops->sched_in(vcpu, cpu);
8012 }
8013
8014 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8015 {
8016 if (type)
8017 return -EINVAL;
8018
8019 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8020 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8021 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8022 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8023 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8024
8025 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8026 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8027 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8028 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8029 &kvm->arch.irq_sources_bitmap);
8030
8031 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8032 mutex_init(&kvm->arch.apic_map_lock);
8033 mutex_init(&kvm->arch.hyperv.hv_lock);
8034 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8035
8036 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8037 pvclock_update_vm_gtod_copy(kvm);
8038
8039 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8040 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8041
8042 kvm_page_track_init(kvm);
8043 kvm_mmu_init_vm(kvm);
8044
8045 if (kvm_x86_ops->vm_init)
8046 return kvm_x86_ops->vm_init(kvm);
8047
8048 return 0;
8049 }
8050
8051 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8052 {
8053 int r;
8054 r = vcpu_load(vcpu);
8055 BUG_ON(r);
8056 kvm_mmu_unload(vcpu);
8057 vcpu_put(vcpu);
8058 }
8059
8060 static void kvm_free_vcpus(struct kvm *kvm)
8061 {
8062 unsigned int i;
8063 struct kvm_vcpu *vcpu;
8064
8065 /*
8066 * Unpin any mmu pages first.
8067 */
8068 kvm_for_each_vcpu(i, vcpu, kvm) {
8069 kvm_clear_async_pf_completion_queue(vcpu);
8070 kvm_unload_vcpu_mmu(vcpu);
8071 }
8072 kvm_for_each_vcpu(i, vcpu, kvm)
8073 kvm_arch_vcpu_free(vcpu);
8074
8075 mutex_lock(&kvm->lock);
8076 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8077 kvm->vcpus[i] = NULL;
8078
8079 atomic_set(&kvm->online_vcpus, 0);
8080 mutex_unlock(&kvm->lock);
8081 }
8082
8083 void kvm_arch_sync_events(struct kvm *kvm)
8084 {
8085 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8086 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8087 kvm_free_pit(kvm);
8088 }
8089
8090 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8091 {
8092 int i, r;
8093 unsigned long hva;
8094 struct kvm_memslots *slots = kvm_memslots(kvm);
8095 struct kvm_memory_slot *slot, old;
8096
8097 /* Called with kvm->slots_lock held. */
8098 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8099 return -EINVAL;
8100
8101 slot = id_to_memslot(slots, id);
8102 if (size) {
8103 if (slot->npages)
8104 return -EEXIST;
8105
8106 /*
8107 * MAP_SHARED to prevent internal slot pages from being moved
8108 * by fork()/COW.
8109 */
8110 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8111 MAP_SHARED | MAP_ANONYMOUS, 0);
8112 if (IS_ERR((void *)hva))
8113 return PTR_ERR((void *)hva);
8114 } else {
8115 if (!slot->npages)
8116 return 0;
8117
8118 hva = 0;
8119 }
8120
8121 old = *slot;
8122 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8123 struct kvm_userspace_memory_region m;
8124
8125 m.slot = id | (i << 16);
8126 m.flags = 0;
8127 m.guest_phys_addr = gpa;
8128 m.userspace_addr = hva;
8129 m.memory_size = size;
8130 r = __kvm_set_memory_region(kvm, &m);
8131 if (r < 0)
8132 return r;
8133 }
8134
8135 if (!size) {
8136 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8137 WARN_ON(r < 0);
8138 }
8139
8140 return 0;
8141 }
8142 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8143
8144 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8145 {
8146 int r;
8147
8148 mutex_lock(&kvm->slots_lock);
8149 r = __x86_set_memory_region(kvm, id, gpa, size);
8150 mutex_unlock(&kvm->slots_lock);
8151
8152 return r;
8153 }
8154 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8155
8156 void kvm_arch_destroy_vm(struct kvm *kvm)
8157 {
8158 if (current->mm == kvm->mm) {
8159 /*
8160 * Free memory regions allocated on behalf of userspace,
8161 * unless the the memory map has changed due to process exit
8162 * or fd copying.
8163 */
8164 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8165 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8166 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8167 }
8168 if (kvm_x86_ops->vm_destroy)
8169 kvm_x86_ops->vm_destroy(kvm);
8170 kvm_pic_destroy(kvm);
8171 kvm_ioapic_destroy(kvm);
8172 kvm_free_vcpus(kvm);
8173 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8174 kvm_mmu_uninit_vm(kvm);
8175 kvm_page_track_cleanup(kvm);
8176 }
8177
8178 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8179 struct kvm_memory_slot *dont)
8180 {
8181 int i;
8182
8183 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8184 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8185 kvfree(free->arch.rmap[i]);
8186 free->arch.rmap[i] = NULL;
8187 }
8188 if (i == 0)
8189 continue;
8190
8191 if (!dont || free->arch.lpage_info[i - 1] !=
8192 dont->arch.lpage_info[i - 1]) {
8193 kvfree(free->arch.lpage_info[i - 1]);
8194 free->arch.lpage_info[i - 1] = NULL;
8195 }
8196 }
8197
8198 kvm_page_track_free_memslot(free, dont);
8199 }
8200
8201 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8202 unsigned long npages)
8203 {
8204 int i;
8205
8206 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8207 struct kvm_lpage_info *linfo;
8208 unsigned long ugfn;
8209 int lpages;
8210 int level = i + 1;
8211
8212 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8213 slot->base_gfn, level) + 1;
8214
8215 slot->arch.rmap[i] =
8216 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8217 if (!slot->arch.rmap[i])
8218 goto out_free;
8219 if (i == 0)
8220 continue;
8221
8222 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8223 if (!linfo)
8224 goto out_free;
8225
8226 slot->arch.lpage_info[i - 1] = linfo;
8227
8228 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8229 linfo[0].disallow_lpage = 1;
8230 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8231 linfo[lpages - 1].disallow_lpage = 1;
8232 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8233 /*
8234 * If the gfn and userspace address are not aligned wrt each
8235 * other, or if explicitly asked to, disable large page
8236 * support for this slot
8237 */
8238 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8239 !kvm_largepages_enabled()) {
8240 unsigned long j;
8241
8242 for (j = 0; j < lpages; ++j)
8243 linfo[j].disallow_lpage = 1;
8244 }
8245 }
8246
8247 if (kvm_page_track_create_memslot(slot, npages))
8248 goto out_free;
8249
8250 return 0;
8251
8252 out_free:
8253 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8254 kvfree(slot->arch.rmap[i]);
8255 slot->arch.rmap[i] = NULL;
8256 if (i == 0)
8257 continue;
8258
8259 kvfree(slot->arch.lpage_info[i - 1]);
8260 slot->arch.lpage_info[i - 1] = NULL;
8261 }
8262 return -ENOMEM;
8263 }
8264
8265 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8266 {
8267 /*
8268 * memslots->generation has been incremented.
8269 * mmio generation may have reached its maximum value.
8270 */
8271 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8272 }
8273
8274 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8275 struct kvm_memory_slot *memslot,
8276 const struct kvm_userspace_memory_region *mem,
8277 enum kvm_mr_change change)
8278 {
8279 return 0;
8280 }
8281
8282 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8283 struct kvm_memory_slot *new)
8284 {
8285 /* Still write protect RO slot */
8286 if (new->flags & KVM_MEM_READONLY) {
8287 kvm_mmu_slot_remove_write_access(kvm, new);
8288 return;
8289 }
8290
8291 /*
8292 * Call kvm_x86_ops dirty logging hooks when they are valid.
8293 *
8294 * kvm_x86_ops->slot_disable_log_dirty is called when:
8295 *
8296 * - KVM_MR_CREATE with dirty logging is disabled
8297 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8298 *
8299 * The reason is, in case of PML, we need to set D-bit for any slots
8300 * with dirty logging disabled in order to eliminate unnecessary GPA
8301 * logging in PML buffer (and potential PML buffer full VMEXT). This
8302 * guarantees leaving PML enabled during guest's lifetime won't have
8303 * any additonal overhead from PML when guest is running with dirty
8304 * logging disabled for memory slots.
8305 *
8306 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8307 * to dirty logging mode.
8308 *
8309 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8310 *
8311 * In case of write protect:
8312 *
8313 * Write protect all pages for dirty logging.
8314 *
8315 * All the sptes including the large sptes which point to this
8316 * slot are set to readonly. We can not create any new large
8317 * spte on this slot until the end of the logging.
8318 *
8319 * See the comments in fast_page_fault().
8320 */
8321 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8322 if (kvm_x86_ops->slot_enable_log_dirty)
8323 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8324 else
8325 kvm_mmu_slot_remove_write_access(kvm, new);
8326 } else {
8327 if (kvm_x86_ops->slot_disable_log_dirty)
8328 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8329 }
8330 }
8331
8332 void kvm_arch_commit_memory_region(struct kvm *kvm,
8333 const struct kvm_userspace_memory_region *mem,
8334 const struct kvm_memory_slot *old,
8335 const struct kvm_memory_slot *new,
8336 enum kvm_mr_change change)
8337 {
8338 int nr_mmu_pages = 0;
8339
8340 if (!kvm->arch.n_requested_mmu_pages)
8341 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8342
8343 if (nr_mmu_pages)
8344 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8345
8346 /*
8347 * Dirty logging tracks sptes in 4k granularity, meaning that large
8348 * sptes have to be split. If live migration is successful, the guest
8349 * in the source machine will be destroyed and large sptes will be
8350 * created in the destination. However, if the guest continues to run
8351 * in the source machine (for example if live migration fails), small
8352 * sptes will remain around and cause bad performance.
8353 *
8354 * Scan sptes if dirty logging has been stopped, dropping those
8355 * which can be collapsed into a single large-page spte. Later
8356 * page faults will create the large-page sptes.
8357 */
8358 if ((change != KVM_MR_DELETE) &&
8359 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8360 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8361 kvm_mmu_zap_collapsible_sptes(kvm, new);
8362
8363 /*
8364 * Set up write protection and/or dirty logging for the new slot.
8365 *
8366 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8367 * been zapped so no dirty logging staff is needed for old slot. For
8368 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8369 * new and it's also covered when dealing with the new slot.
8370 *
8371 * FIXME: const-ify all uses of struct kvm_memory_slot.
8372 */
8373 if (change != KVM_MR_DELETE)
8374 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8375 }
8376
8377 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8378 {
8379 kvm_mmu_invalidate_zap_all_pages(kvm);
8380 }
8381
8382 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8383 struct kvm_memory_slot *slot)
8384 {
8385 kvm_page_track_flush_slot(kvm, slot);
8386 }
8387
8388 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8389 {
8390 if (!list_empty_careful(&vcpu->async_pf.done))
8391 return true;
8392
8393 if (kvm_apic_has_events(vcpu))
8394 return true;
8395
8396 if (vcpu->arch.pv.pv_unhalted)
8397 return true;
8398
8399 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8400 (vcpu->arch.nmi_pending &&
8401 kvm_x86_ops->nmi_allowed(vcpu)))
8402 return true;
8403
8404 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8405 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8406 return true;
8407
8408 if (kvm_arch_interrupt_allowed(vcpu) &&
8409 kvm_cpu_has_interrupt(vcpu))
8410 return true;
8411
8412 if (kvm_hv_has_stimer_pending(vcpu))
8413 return true;
8414
8415 return false;
8416 }
8417
8418 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8419 {
8420 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8421 }
8422
8423 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8424 {
8425 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8426 }
8427
8428 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8429 {
8430 return kvm_x86_ops->interrupt_allowed(vcpu);
8431 }
8432
8433 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8434 {
8435 if (is_64_bit_mode(vcpu))
8436 return kvm_rip_read(vcpu);
8437 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8438 kvm_rip_read(vcpu));
8439 }
8440 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8441
8442 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8443 {
8444 return kvm_get_linear_rip(vcpu) == linear_rip;
8445 }
8446 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8447
8448 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8449 {
8450 unsigned long rflags;
8451
8452 rflags = kvm_x86_ops->get_rflags(vcpu);
8453 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8454 rflags &= ~X86_EFLAGS_TF;
8455 return rflags;
8456 }
8457 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8458
8459 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8460 {
8461 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8462 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8463 rflags |= X86_EFLAGS_TF;
8464 kvm_x86_ops->set_rflags(vcpu, rflags);
8465 }
8466
8467 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8468 {
8469 __kvm_set_rflags(vcpu, rflags);
8470 kvm_make_request(KVM_REQ_EVENT, vcpu);
8471 }
8472 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8473
8474 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8475 {
8476 int r;
8477
8478 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8479 work->wakeup_all)
8480 return;
8481
8482 r = kvm_mmu_reload(vcpu);
8483 if (unlikely(r))
8484 return;
8485
8486 if (!vcpu->arch.mmu.direct_map &&
8487 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8488 return;
8489
8490 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8491 }
8492
8493 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8494 {
8495 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8496 }
8497
8498 static inline u32 kvm_async_pf_next_probe(u32 key)
8499 {
8500 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8501 }
8502
8503 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8504 {
8505 u32 key = kvm_async_pf_hash_fn(gfn);
8506
8507 while (vcpu->arch.apf.gfns[key] != ~0)
8508 key = kvm_async_pf_next_probe(key);
8509
8510 vcpu->arch.apf.gfns[key] = gfn;
8511 }
8512
8513 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8514 {
8515 int i;
8516 u32 key = kvm_async_pf_hash_fn(gfn);
8517
8518 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8519 (vcpu->arch.apf.gfns[key] != gfn &&
8520 vcpu->arch.apf.gfns[key] != ~0); i++)
8521 key = kvm_async_pf_next_probe(key);
8522
8523 return key;
8524 }
8525
8526 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8527 {
8528 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8529 }
8530
8531 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8532 {
8533 u32 i, j, k;
8534
8535 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8536 while (true) {
8537 vcpu->arch.apf.gfns[i] = ~0;
8538 do {
8539 j = kvm_async_pf_next_probe(j);
8540 if (vcpu->arch.apf.gfns[j] == ~0)
8541 return;
8542 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8543 /*
8544 * k lies cyclically in ]i,j]
8545 * | i.k.j |
8546 * |....j i.k.| or |.k..j i...|
8547 */
8548 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8549 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8550 i = j;
8551 }
8552 }
8553
8554 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8555 {
8556
8557 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8558 sizeof(val));
8559 }
8560
8561 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8562 struct kvm_async_pf *work)
8563 {
8564 struct x86_exception fault;
8565
8566 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8567 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8568
8569 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8570 (vcpu->arch.apf.send_user_only &&
8571 kvm_x86_ops->get_cpl(vcpu) == 0))
8572 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8573 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8574 fault.vector = PF_VECTOR;
8575 fault.error_code_valid = true;
8576 fault.error_code = 0;
8577 fault.nested_page_fault = false;
8578 fault.address = work->arch.token;
8579 kvm_inject_page_fault(vcpu, &fault);
8580 }
8581 }
8582
8583 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8584 struct kvm_async_pf *work)
8585 {
8586 struct x86_exception fault;
8587
8588 if (work->wakeup_all)
8589 work->arch.token = ~0; /* broadcast wakeup */
8590 else
8591 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8592 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8593
8594 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8595 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8596 fault.vector = PF_VECTOR;
8597 fault.error_code_valid = true;
8598 fault.error_code = 0;
8599 fault.nested_page_fault = false;
8600 fault.address = work->arch.token;
8601 kvm_inject_page_fault(vcpu, &fault);
8602 }
8603 vcpu->arch.apf.halted = false;
8604 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8605 }
8606
8607 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8608 {
8609 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8610 return true;
8611 else
8612 return kvm_can_do_async_pf(vcpu);
8613 }
8614
8615 void kvm_arch_start_assignment(struct kvm *kvm)
8616 {
8617 atomic_inc(&kvm->arch.assigned_device_count);
8618 }
8619 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8620
8621 void kvm_arch_end_assignment(struct kvm *kvm)
8622 {
8623 atomic_dec(&kvm->arch.assigned_device_count);
8624 }
8625 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8626
8627 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8628 {
8629 return atomic_read(&kvm->arch.assigned_device_count);
8630 }
8631 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8632
8633 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8634 {
8635 atomic_inc(&kvm->arch.noncoherent_dma_count);
8636 }
8637 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8638
8639 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8640 {
8641 atomic_dec(&kvm->arch.noncoherent_dma_count);
8642 }
8643 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8644
8645 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8646 {
8647 return atomic_read(&kvm->arch.noncoherent_dma_count);
8648 }
8649 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8650
8651 bool kvm_arch_has_irq_bypass(void)
8652 {
8653 return kvm_x86_ops->update_pi_irte != NULL;
8654 }
8655
8656 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8657 struct irq_bypass_producer *prod)
8658 {
8659 struct kvm_kernel_irqfd *irqfd =
8660 container_of(cons, struct kvm_kernel_irqfd, consumer);
8661
8662 irqfd->producer = prod;
8663
8664 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8665 prod->irq, irqfd->gsi, 1);
8666 }
8667
8668 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8669 struct irq_bypass_producer *prod)
8670 {
8671 int ret;
8672 struct kvm_kernel_irqfd *irqfd =
8673 container_of(cons, struct kvm_kernel_irqfd, consumer);
8674
8675 WARN_ON(irqfd->producer != prod);
8676 irqfd->producer = NULL;
8677
8678 /*
8679 * When producer of consumer is unregistered, we change back to
8680 * remapped mode, so we can re-use the current implementation
8681 * when the irq is masked/disabled or the consumer side (KVM
8682 * int this case doesn't want to receive the interrupts.
8683 */
8684 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8685 if (ret)
8686 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8687 " fails: %d\n", irqfd->consumer.token, ret);
8688 }
8689
8690 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8691 uint32_t guest_irq, bool set)
8692 {
8693 if (!kvm_x86_ops->update_pi_irte)
8694 return -EINVAL;
8695
8696 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8697 }
8698
8699 bool kvm_vector_hashing_enabled(void)
8700 {
8701 return vector_hashing;
8702 }
8703 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8704
8705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);