Merge remote-tracking branch 'regmap/topic/lock' into regmap-next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45
46 #include "trace.h"
47
48 #define __ex(x) __kvm_handle_fault_on_reboot(x)
49 #define __ex_clear(x, reg) \
50 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
51
52 MODULE_AUTHOR("Qumranet");
53 MODULE_LICENSE("GPL");
54
55 static const struct x86_cpu_id vmx_cpu_id[] = {
56 X86_FEATURE_MATCH(X86_FEATURE_VMX),
57 {}
58 };
59 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
60
61 static bool __read_mostly enable_vpid = 1;
62 module_param_named(vpid, enable_vpid, bool, 0444);
63
64 static bool __read_mostly flexpriority_enabled = 1;
65 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
66
67 static bool __read_mostly enable_ept = 1;
68 module_param_named(ept, enable_ept, bool, S_IRUGO);
69
70 static bool __read_mostly enable_unrestricted_guest = 1;
71 module_param_named(unrestricted_guest,
72 enable_unrestricted_guest, bool, S_IRUGO);
73
74 static bool __read_mostly enable_ept_ad_bits = 1;
75 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
76
77 static bool __read_mostly emulate_invalid_guest_state = true;
78 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
79
80 static bool __read_mostly vmm_exclusive = 1;
81 module_param(vmm_exclusive, bool, S_IRUGO);
82
83 static bool __read_mostly fasteoi = 1;
84 module_param(fasteoi, bool, S_IRUGO);
85
86 /*
87 * If nested=1, nested virtualization is supported, i.e., guests may use
88 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
89 * use VMX instructions.
90 */
91 static bool __read_mostly nested = 0;
92 module_param(nested, bool, S_IRUGO);
93
94 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
95 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
96 #define KVM_GUEST_CR0_MASK \
97 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
98 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
99 (X86_CR0_WP | X86_CR0_NE)
100 #define KVM_VM_CR0_ALWAYS_ON \
101 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
102 #define KVM_CR4_GUEST_OWNED_BITS \
103 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
104 | X86_CR4_OSXMMEXCPT)
105
106 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
107 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
108
109 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
110
111 /*
112 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
113 * ple_gap: upper bound on the amount of time between two successive
114 * executions of PAUSE in a loop. Also indicate if ple enabled.
115 * According to test, this time is usually smaller than 128 cycles.
116 * ple_window: upper bound on the amount of time a guest is allowed to execute
117 * in a PAUSE loop. Tests indicate that most spinlocks are held for
118 * less than 2^12 cycles
119 * Time is measured based on a counter that runs at the same rate as the TSC,
120 * refer SDM volume 3b section 21.6.13 & 22.1.3.
121 */
122 #define KVM_VMX_DEFAULT_PLE_GAP 128
123 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
124 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
125 module_param(ple_gap, int, S_IRUGO);
126
127 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
128 module_param(ple_window, int, S_IRUGO);
129
130 extern const ulong vmx_return;
131
132 #define NR_AUTOLOAD_MSRS 8
133 #define VMCS02_POOL_SIZE 1
134
135 struct vmcs {
136 u32 revision_id;
137 u32 abort;
138 char data[0];
139 };
140
141 /*
142 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
143 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
144 * loaded on this CPU (so we can clear them if the CPU goes down).
145 */
146 struct loaded_vmcs {
147 struct vmcs *vmcs;
148 int cpu;
149 int launched;
150 struct list_head loaded_vmcss_on_cpu_link;
151 };
152
153 struct shared_msr_entry {
154 unsigned index;
155 u64 data;
156 u64 mask;
157 };
158
159 /*
160 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
161 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
162 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
163 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
164 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
165 * More than one of these structures may exist, if L1 runs multiple L2 guests.
166 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
167 * underlying hardware which will be used to run L2.
168 * This structure is packed to ensure that its layout is identical across
169 * machines (necessary for live migration).
170 * If there are changes in this struct, VMCS12_REVISION must be changed.
171 */
172 typedef u64 natural_width;
173 struct __packed vmcs12 {
174 /* According to the Intel spec, a VMCS region must start with the
175 * following two fields. Then follow implementation-specific data.
176 */
177 u32 revision_id;
178 u32 abort;
179
180 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
181 u32 padding[7]; /* room for future expansion */
182
183 u64 io_bitmap_a;
184 u64 io_bitmap_b;
185 u64 msr_bitmap;
186 u64 vm_exit_msr_store_addr;
187 u64 vm_exit_msr_load_addr;
188 u64 vm_entry_msr_load_addr;
189 u64 tsc_offset;
190 u64 virtual_apic_page_addr;
191 u64 apic_access_addr;
192 u64 ept_pointer;
193 u64 guest_physical_address;
194 u64 vmcs_link_pointer;
195 u64 guest_ia32_debugctl;
196 u64 guest_ia32_pat;
197 u64 guest_ia32_efer;
198 u64 guest_ia32_perf_global_ctrl;
199 u64 guest_pdptr0;
200 u64 guest_pdptr1;
201 u64 guest_pdptr2;
202 u64 guest_pdptr3;
203 u64 host_ia32_pat;
204 u64 host_ia32_efer;
205 u64 host_ia32_perf_global_ctrl;
206 u64 padding64[8]; /* room for future expansion */
207 /*
208 * To allow migration of L1 (complete with its L2 guests) between
209 * machines of different natural widths (32 or 64 bit), we cannot have
210 * unsigned long fields with no explict size. We use u64 (aliased
211 * natural_width) instead. Luckily, x86 is little-endian.
212 */
213 natural_width cr0_guest_host_mask;
214 natural_width cr4_guest_host_mask;
215 natural_width cr0_read_shadow;
216 natural_width cr4_read_shadow;
217 natural_width cr3_target_value0;
218 natural_width cr3_target_value1;
219 natural_width cr3_target_value2;
220 natural_width cr3_target_value3;
221 natural_width exit_qualification;
222 natural_width guest_linear_address;
223 natural_width guest_cr0;
224 natural_width guest_cr3;
225 natural_width guest_cr4;
226 natural_width guest_es_base;
227 natural_width guest_cs_base;
228 natural_width guest_ss_base;
229 natural_width guest_ds_base;
230 natural_width guest_fs_base;
231 natural_width guest_gs_base;
232 natural_width guest_ldtr_base;
233 natural_width guest_tr_base;
234 natural_width guest_gdtr_base;
235 natural_width guest_idtr_base;
236 natural_width guest_dr7;
237 natural_width guest_rsp;
238 natural_width guest_rip;
239 natural_width guest_rflags;
240 natural_width guest_pending_dbg_exceptions;
241 natural_width guest_sysenter_esp;
242 natural_width guest_sysenter_eip;
243 natural_width host_cr0;
244 natural_width host_cr3;
245 natural_width host_cr4;
246 natural_width host_fs_base;
247 natural_width host_gs_base;
248 natural_width host_tr_base;
249 natural_width host_gdtr_base;
250 natural_width host_idtr_base;
251 natural_width host_ia32_sysenter_esp;
252 natural_width host_ia32_sysenter_eip;
253 natural_width host_rsp;
254 natural_width host_rip;
255 natural_width paddingl[8]; /* room for future expansion */
256 u32 pin_based_vm_exec_control;
257 u32 cpu_based_vm_exec_control;
258 u32 exception_bitmap;
259 u32 page_fault_error_code_mask;
260 u32 page_fault_error_code_match;
261 u32 cr3_target_count;
262 u32 vm_exit_controls;
263 u32 vm_exit_msr_store_count;
264 u32 vm_exit_msr_load_count;
265 u32 vm_entry_controls;
266 u32 vm_entry_msr_load_count;
267 u32 vm_entry_intr_info_field;
268 u32 vm_entry_exception_error_code;
269 u32 vm_entry_instruction_len;
270 u32 tpr_threshold;
271 u32 secondary_vm_exec_control;
272 u32 vm_instruction_error;
273 u32 vm_exit_reason;
274 u32 vm_exit_intr_info;
275 u32 vm_exit_intr_error_code;
276 u32 idt_vectoring_info_field;
277 u32 idt_vectoring_error_code;
278 u32 vm_exit_instruction_len;
279 u32 vmx_instruction_info;
280 u32 guest_es_limit;
281 u32 guest_cs_limit;
282 u32 guest_ss_limit;
283 u32 guest_ds_limit;
284 u32 guest_fs_limit;
285 u32 guest_gs_limit;
286 u32 guest_ldtr_limit;
287 u32 guest_tr_limit;
288 u32 guest_gdtr_limit;
289 u32 guest_idtr_limit;
290 u32 guest_es_ar_bytes;
291 u32 guest_cs_ar_bytes;
292 u32 guest_ss_ar_bytes;
293 u32 guest_ds_ar_bytes;
294 u32 guest_fs_ar_bytes;
295 u32 guest_gs_ar_bytes;
296 u32 guest_ldtr_ar_bytes;
297 u32 guest_tr_ar_bytes;
298 u32 guest_interruptibility_info;
299 u32 guest_activity_state;
300 u32 guest_sysenter_cs;
301 u32 host_ia32_sysenter_cs;
302 u32 padding32[8]; /* room for future expansion */
303 u16 virtual_processor_id;
304 u16 guest_es_selector;
305 u16 guest_cs_selector;
306 u16 guest_ss_selector;
307 u16 guest_ds_selector;
308 u16 guest_fs_selector;
309 u16 guest_gs_selector;
310 u16 guest_ldtr_selector;
311 u16 guest_tr_selector;
312 u16 host_es_selector;
313 u16 host_cs_selector;
314 u16 host_ss_selector;
315 u16 host_ds_selector;
316 u16 host_fs_selector;
317 u16 host_gs_selector;
318 u16 host_tr_selector;
319 };
320
321 /*
322 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
323 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
324 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
325 */
326 #define VMCS12_REVISION 0x11e57ed0
327
328 /*
329 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
330 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
331 * current implementation, 4K are reserved to avoid future complications.
332 */
333 #define VMCS12_SIZE 0x1000
334
335 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
336 struct vmcs02_list {
337 struct list_head list;
338 gpa_t vmptr;
339 struct loaded_vmcs vmcs02;
340 };
341
342 /*
343 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
344 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
345 */
346 struct nested_vmx {
347 /* Has the level1 guest done vmxon? */
348 bool vmxon;
349
350 /* The guest-physical address of the current VMCS L1 keeps for L2 */
351 gpa_t current_vmptr;
352 /* The host-usable pointer to the above */
353 struct page *current_vmcs12_page;
354 struct vmcs12 *current_vmcs12;
355
356 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
357 struct list_head vmcs02_pool;
358 int vmcs02_num;
359 u64 vmcs01_tsc_offset;
360 /* L2 must run next, and mustn't decide to exit to L1. */
361 bool nested_run_pending;
362 /*
363 * Guest pages referred to in vmcs02 with host-physical pointers, so
364 * we must keep them pinned while L2 runs.
365 */
366 struct page *apic_access_page;
367 };
368
369 struct vcpu_vmx {
370 struct kvm_vcpu vcpu;
371 unsigned long host_rsp;
372 u8 fail;
373 u8 cpl;
374 bool nmi_known_unmasked;
375 u32 exit_intr_info;
376 u32 idt_vectoring_info;
377 ulong rflags;
378 struct shared_msr_entry *guest_msrs;
379 int nmsrs;
380 int save_nmsrs;
381 #ifdef CONFIG_X86_64
382 u64 msr_host_kernel_gs_base;
383 u64 msr_guest_kernel_gs_base;
384 #endif
385 /*
386 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
387 * non-nested (L1) guest, it always points to vmcs01. For a nested
388 * guest (L2), it points to a different VMCS.
389 */
390 struct loaded_vmcs vmcs01;
391 struct loaded_vmcs *loaded_vmcs;
392 bool __launched; /* temporary, used in vmx_vcpu_run */
393 struct msr_autoload {
394 unsigned nr;
395 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
396 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
397 } msr_autoload;
398 struct {
399 int loaded;
400 u16 fs_sel, gs_sel, ldt_sel;
401 #ifdef CONFIG_X86_64
402 u16 ds_sel, es_sel;
403 #endif
404 int gs_ldt_reload_needed;
405 int fs_reload_needed;
406 } host_state;
407 struct {
408 int vm86_active;
409 ulong save_rflags;
410 struct kvm_segment segs[8];
411 } rmode;
412 struct {
413 u32 bitmask; /* 4 bits per segment (1 bit per field) */
414 struct kvm_save_segment {
415 u16 selector;
416 unsigned long base;
417 u32 limit;
418 u32 ar;
419 } seg[8];
420 } segment_cache;
421 int vpid;
422 bool emulation_required;
423
424 /* Support for vnmi-less CPUs */
425 int soft_vnmi_blocked;
426 ktime_t entry_time;
427 s64 vnmi_blocked_time;
428 u32 exit_reason;
429
430 bool rdtscp_enabled;
431
432 /* Support for a guest hypervisor (nested VMX) */
433 struct nested_vmx nested;
434 };
435
436 enum segment_cache_field {
437 SEG_FIELD_SEL = 0,
438 SEG_FIELD_BASE = 1,
439 SEG_FIELD_LIMIT = 2,
440 SEG_FIELD_AR = 3,
441
442 SEG_FIELD_NR = 4
443 };
444
445 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
446 {
447 return container_of(vcpu, struct vcpu_vmx, vcpu);
448 }
449
450 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
451 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
452 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
453 [number##_HIGH] = VMCS12_OFFSET(name)+4
454
455 static const unsigned short vmcs_field_to_offset_table[] = {
456 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
457 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
458 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
459 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
460 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
461 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
462 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
463 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
464 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
465 FIELD(HOST_ES_SELECTOR, host_es_selector),
466 FIELD(HOST_CS_SELECTOR, host_cs_selector),
467 FIELD(HOST_SS_SELECTOR, host_ss_selector),
468 FIELD(HOST_DS_SELECTOR, host_ds_selector),
469 FIELD(HOST_FS_SELECTOR, host_fs_selector),
470 FIELD(HOST_GS_SELECTOR, host_gs_selector),
471 FIELD(HOST_TR_SELECTOR, host_tr_selector),
472 FIELD64(IO_BITMAP_A, io_bitmap_a),
473 FIELD64(IO_BITMAP_B, io_bitmap_b),
474 FIELD64(MSR_BITMAP, msr_bitmap),
475 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
476 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
477 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
478 FIELD64(TSC_OFFSET, tsc_offset),
479 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
480 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
481 FIELD64(EPT_POINTER, ept_pointer),
482 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
483 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
484 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
485 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
486 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
487 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
488 FIELD64(GUEST_PDPTR0, guest_pdptr0),
489 FIELD64(GUEST_PDPTR1, guest_pdptr1),
490 FIELD64(GUEST_PDPTR2, guest_pdptr2),
491 FIELD64(GUEST_PDPTR3, guest_pdptr3),
492 FIELD64(HOST_IA32_PAT, host_ia32_pat),
493 FIELD64(HOST_IA32_EFER, host_ia32_efer),
494 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
495 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
496 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
497 FIELD(EXCEPTION_BITMAP, exception_bitmap),
498 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
499 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
500 FIELD(CR3_TARGET_COUNT, cr3_target_count),
501 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
502 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
503 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
504 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
505 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
506 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
507 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
508 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
509 FIELD(TPR_THRESHOLD, tpr_threshold),
510 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
511 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
512 FIELD(VM_EXIT_REASON, vm_exit_reason),
513 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
514 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
515 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
516 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
517 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
518 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
519 FIELD(GUEST_ES_LIMIT, guest_es_limit),
520 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
521 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
522 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
523 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
524 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
525 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
526 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
527 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
528 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
529 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
530 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
531 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
532 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
533 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
534 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
535 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
536 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
537 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
538 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
539 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
540 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
541 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
542 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
543 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
544 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
545 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
546 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
547 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
548 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
549 FIELD(EXIT_QUALIFICATION, exit_qualification),
550 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
551 FIELD(GUEST_CR0, guest_cr0),
552 FIELD(GUEST_CR3, guest_cr3),
553 FIELD(GUEST_CR4, guest_cr4),
554 FIELD(GUEST_ES_BASE, guest_es_base),
555 FIELD(GUEST_CS_BASE, guest_cs_base),
556 FIELD(GUEST_SS_BASE, guest_ss_base),
557 FIELD(GUEST_DS_BASE, guest_ds_base),
558 FIELD(GUEST_FS_BASE, guest_fs_base),
559 FIELD(GUEST_GS_BASE, guest_gs_base),
560 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
561 FIELD(GUEST_TR_BASE, guest_tr_base),
562 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
563 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
564 FIELD(GUEST_DR7, guest_dr7),
565 FIELD(GUEST_RSP, guest_rsp),
566 FIELD(GUEST_RIP, guest_rip),
567 FIELD(GUEST_RFLAGS, guest_rflags),
568 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
569 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
570 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
571 FIELD(HOST_CR0, host_cr0),
572 FIELD(HOST_CR3, host_cr3),
573 FIELD(HOST_CR4, host_cr4),
574 FIELD(HOST_FS_BASE, host_fs_base),
575 FIELD(HOST_GS_BASE, host_gs_base),
576 FIELD(HOST_TR_BASE, host_tr_base),
577 FIELD(HOST_GDTR_BASE, host_gdtr_base),
578 FIELD(HOST_IDTR_BASE, host_idtr_base),
579 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
580 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
581 FIELD(HOST_RSP, host_rsp),
582 FIELD(HOST_RIP, host_rip),
583 };
584 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
585
586 static inline short vmcs_field_to_offset(unsigned long field)
587 {
588 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
589 return -1;
590 return vmcs_field_to_offset_table[field];
591 }
592
593 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
594 {
595 return to_vmx(vcpu)->nested.current_vmcs12;
596 }
597
598 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
599 {
600 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
601 if (is_error_page(page))
602 return NULL;
603
604 return page;
605 }
606
607 static void nested_release_page(struct page *page)
608 {
609 kvm_release_page_dirty(page);
610 }
611
612 static void nested_release_page_clean(struct page *page)
613 {
614 kvm_release_page_clean(page);
615 }
616
617 static u64 construct_eptp(unsigned long root_hpa);
618 static void kvm_cpu_vmxon(u64 addr);
619 static void kvm_cpu_vmxoff(void);
620 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
621 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
622 static void vmx_set_segment(struct kvm_vcpu *vcpu,
623 struct kvm_segment *var, int seg);
624 static void vmx_get_segment(struct kvm_vcpu *vcpu,
625 struct kvm_segment *var, int seg);
626
627 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
628 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
629 /*
630 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
631 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
632 */
633 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
634 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
635
636 static unsigned long *vmx_io_bitmap_a;
637 static unsigned long *vmx_io_bitmap_b;
638 static unsigned long *vmx_msr_bitmap_legacy;
639 static unsigned long *vmx_msr_bitmap_longmode;
640
641 static bool cpu_has_load_ia32_efer;
642 static bool cpu_has_load_perf_global_ctrl;
643
644 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
645 static DEFINE_SPINLOCK(vmx_vpid_lock);
646
647 static struct vmcs_config {
648 int size;
649 int order;
650 u32 revision_id;
651 u32 pin_based_exec_ctrl;
652 u32 cpu_based_exec_ctrl;
653 u32 cpu_based_2nd_exec_ctrl;
654 u32 vmexit_ctrl;
655 u32 vmentry_ctrl;
656 } vmcs_config;
657
658 static struct vmx_capability {
659 u32 ept;
660 u32 vpid;
661 } vmx_capability;
662
663 #define VMX_SEGMENT_FIELD(seg) \
664 [VCPU_SREG_##seg] = { \
665 .selector = GUEST_##seg##_SELECTOR, \
666 .base = GUEST_##seg##_BASE, \
667 .limit = GUEST_##seg##_LIMIT, \
668 .ar_bytes = GUEST_##seg##_AR_BYTES, \
669 }
670
671 static const struct kvm_vmx_segment_field {
672 unsigned selector;
673 unsigned base;
674 unsigned limit;
675 unsigned ar_bytes;
676 } kvm_vmx_segment_fields[] = {
677 VMX_SEGMENT_FIELD(CS),
678 VMX_SEGMENT_FIELD(DS),
679 VMX_SEGMENT_FIELD(ES),
680 VMX_SEGMENT_FIELD(FS),
681 VMX_SEGMENT_FIELD(GS),
682 VMX_SEGMENT_FIELD(SS),
683 VMX_SEGMENT_FIELD(TR),
684 VMX_SEGMENT_FIELD(LDTR),
685 };
686
687 static u64 host_efer;
688
689 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
690
691 /*
692 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
693 * away by decrementing the array size.
694 */
695 static const u32 vmx_msr_index[] = {
696 #ifdef CONFIG_X86_64
697 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
698 #endif
699 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
700 };
701 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
702
703 static inline bool is_page_fault(u32 intr_info)
704 {
705 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
706 INTR_INFO_VALID_MASK)) ==
707 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
708 }
709
710 static inline bool is_no_device(u32 intr_info)
711 {
712 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
713 INTR_INFO_VALID_MASK)) ==
714 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
715 }
716
717 static inline bool is_invalid_opcode(u32 intr_info)
718 {
719 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
720 INTR_INFO_VALID_MASK)) ==
721 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
722 }
723
724 static inline bool is_external_interrupt(u32 intr_info)
725 {
726 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
727 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
728 }
729
730 static inline bool is_machine_check(u32 intr_info)
731 {
732 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
733 INTR_INFO_VALID_MASK)) ==
734 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
735 }
736
737 static inline bool cpu_has_vmx_msr_bitmap(void)
738 {
739 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
740 }
741
742 static inline bool cpu_has_vmx_tpr_shadow(void)
743 {
744 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
745 }
746
747 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
748 {
749 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
750 }
751
752 static inline bool cpu_has_secondary_exec_ctrls(void)
753 {
754 return vmcs_config.cpu_based_exec_ctrl &
755 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
756 }
757
758 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
759 {
760 return vmcs_config.cpu_based_2nd_exec_ctrl &
761 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
762 }
763
764 static inline bool cpu_has_vmx_flexpriority(void)
765 {
766 return cpu_has_vmx_tpr_shadow() &&
767 cpu_has_vmx_virtualize_apic_accesses();
768 }
769
770 static inline bool cpu_has_vmx_ept_execute_only(void)
771 {
772 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
773 }
774
775 static inline bool cpu_has_vmx_eptp_uncacheable(void)
776 {
777 return vmx_capability.ept & VMX_EPTP_UC_BIT;
778 }
779
780 static inline bool cpu_has_vmx_eptp_writeback(void)
781 {
782 return vmx_capability.ept & VMX_EPTP_WB_BIT;
783 }
784
785 static inline bool cpu_has_vmx_ept_2m_page(void)
786 {
787 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
788 }
789
790 static inline bool cpu_has_vmx_ept_1g_page(void)
791 {
792 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
793 }
794
795 static inline bool cpu_has_vmx_ept_4levels(void)
796 {
797 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
798 }
799
800 static inline bool cpu_has_vmx_ept_ad_bits(void)
801 {
802 return vmx_capability.ept & VMX_EPT_AD_BIT;
803 }
804
805 static inline bool cpu_has_vmx_invept_individual_addr(void)
806 {
807 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
808 }
809
810 static inline bool cpu_has_vmx_invept_context(void)
811 {
812 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
813 }
814
815 static inline bool cpu_has_vmx_invept_global(void)
816 {
817 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
818 }
819
820 static inline bool cpu_has_vmx_invvpid_single(void)
821 {
822 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
823 }
824
825 static inline bool cpu_has_vmx_invvpid_global(void)
826 {
827 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
828 }
829
830 static inline bool cpu_has_vmx_ept(void)
831 {
832 return vmcs_config.cpu_based_2nd_exec_ctrl &
833 SECONDARY_EXEC_ENABLE_EPT;
834 }
835
836 static inline bool cpu_has_vmx_unrestricted_guest(void)
837 {
838 return vmcs_config.cpu_based_2nd_exec_ctrl &
839 SECONDARY_EXEC_UNRESTRICTED_GUEST;
840 }
841
842 static inline bool cpu_has_vmx_ple(void)
843 {
844 return vmcs_config.cpu_based_2nd_exec_ctrl &
845 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
846 }
847
848 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
849 {
850 return flexpriority_enabled && irqchip_in_kernel(kvm);
851 }
852
853 static inline bool cpu_has_vmx_vpid(void)
854 {
855 return vmcs_config.cpu_based_2nd_exec_ctrl &
856 SECONDARY_EXEC_ENABLE_VPID;
857 }
858
859 static inline bool cpu_has_vmx_rdtscp(void)
860 {
861 return vmcs_config.cpu_based_2nd_exec_ctrl &
862 SECONDARY_EXEC_RDTSCP;
863 }
864
865 static inline bool cpu_has_vmx_invpcid(void)
866 {
867 return vmcs_config.cpu_based_2nd_exec_ctrl &
868 SECONDARY_EXEC_ENABLE_INVPCID;
869 }
870
871 static inline bool cpu_has_virtual_nmis(void)
872 {
873 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
874 }
875
876 static inline bool cpu_has_vmx_wbinvd_exit(void)
877 {
878 return vmcs_config.cpu_based_2nd_exec_ctrl &
879 SECONDARY_EXEC_WBINVD_EXITING;
880 }
881
882 static inline bool report_flexpriority(void)
883 {
884 return flexpriority_enabled;
885 }
886
887 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
888 {
889 return vmcs12->cpu_based_vm_exec_control & bit;
890 }
891
892 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
893 {
894 return (vmcs12->cpu_based_vm_exec_control &
895 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
896 (vmcs12->secondary_vm_exec_control & bit);
897 }
898
899 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
900 struct kvm_vcpu *vcpu)
901 {
902 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
903 }
904
905 static inline bool is_exception(u32 intr_info)
906 {
907 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
908 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
909 }
910
911 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
912 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
913 struct vmcs12 *vmcs12,
914 u32 reason, unsigned long qualification);
915
916 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
917 {
918 int i;
919
920 for (i = 0; i < vmx->nmsrs; ++i)
921 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
922 return i;
923 return -1;
924 }
925
926 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
927 {
928 struct {
929 u64 vpid : 16;
930 u64 rsvd : 48;
931 u64 gva;
932 } operand = { vpid, 0, gva };
933
934 asm volatile (__ex(ASM_VMX_INVVPID)
935 /* CF==1 or ZF==1 --> rc = -1 */
936 "; ja 1f ; ud2 ; 1:"
937 : : "a"(&operand), "c"(ext) : "cc", "memory");
938 }
939
940 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
941 {
942 struct {
943 u64 eptp, gpa;
944 } operand = {eptp, gpa};
945
946 asm volatile (__ex(ASM_VMX_INVEPT)
947 /* CF==1 or ZF==1 --> rc = -1 */
948 "; ja 1f ; ud2 ; 1:\n"
949 : : "a" (&operand), "c" (ext) : "cc", "memory");
950 }
951
952 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
953 {
954 int i;
955
956 i = __find_msr_index(vmx, msr);
957 if (i >= 0)
958 return &vmx->guest_msrs[i];
959 return NULL;
960 }
961
962 static void vmcs_clear(struct vmcs *vmcs)
963 {
964 u64 phys_addr = __pa(vmcs);
965 u8 error;
966
967 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
968 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
969 : "cc", "memory");
970 if (error)
971 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
972 vmcs, phys_addr);
973 }
974
975 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
976 {
977 vmcs_clear(loaded_vmcs->vmcs);
978 loaded_vmcs->cpu = -1;
979 loaded_vmcs->launched = 0;
980 }
981
982 static void vmcs_load(struct vmcs *vmcs)
983 {
984 u64 phys_addr = __pa(vmcs);
985 u8 error;
986
987 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
988 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
989 : "cc", "memory");
990 if (error)
991 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
992 vmcs, phys_addr);
993 }
994
995 static void __loaded_vmcs_clear(void *arg)
996 {
997 struct loaded_vmcs *loaded_vmcs = arg;
998 int cpu = raw_smp_processor_id();
999
1000 if (loaded_vmcs->cpu != cpu)
1001 return; /* vcpu migration can race with cpu offline */
1002 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1003 per_cpu(current_vmcs, cpu) = NULL;
1004 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1005 loaded_vmcs_init(loaded_vmcs);
1006 }
1007
1008 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1009 {
1010 if (loaded_vmcs->cpu != -1)
1011 smp_call_function_single(
1012 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
1013 }
1014
1015 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1016 {
1017 if (vmx->vpid == 0)
1018 return;
1019
1020 if (cpu_has_vmx_invvpid_single())
1021 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1022 }
1023
1024 static inline void vpid_sync_vcpu_global(void)
1025 {
1026 if (cpu_has_vmx_invvpid_global())
1027 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1028 }
1029
1030 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1031 {
1032 if (cpu_has_vmx_invvpid_single())
1033 vpid_sync_vcpu_single(vmx);
1034 else
1035 vpid_sync_vcpu_global();
1036 }
1037
1038 static inline void ept_sync_global(void)
1039 {
1040 if (cpu_has_vmx_invept_global())
1041 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1042 }
1043
1044 static inline void ept_sync_context(u64 eptp)
1045 {
1046 if (enable_ept) {
1047 if (cpu_has_vmx_invept_context())
1048 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1049 else
1050 ept_sync_global();
1051 }
1052 }
1053
1054 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1055 {
1056 if (enable_ept) {
1057 if (cpu_has_vmx_invept_individual_addr())
1058 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1059 eptp, gpa);
1060 else
1061 ept_sync_context(eptp);
1062 }
1063 }
1064
1065 static __always_inline unsigned long vmcs_readl(unsigned long field)
1066 {
1067 unsigned long value;
1068
1069 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1070 : "=a"(value) : "d"(field) : "cc");
1071 return value;
1072 }
1073
1074 static __always_inline u16 vmcs_read16(unsigned long field)
1075 {
1076 return vmcs_readl(field);
1077 }
1078
1079 static __always_inline u32 vmcs_read32(unsigned long field)
1080 {
1081 return vmcs_readl(field);
1082 }
1083
1084 static __always_inline u64 vmcs_read64(unsigned long field)
1085 {
1086 #ifdef CONFIG_X86_64
1087 return vmcs_readl(field);
1088 #else
1089 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1090 #endif
1091 }
1092
1093 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1094 {
1095 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1096 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1097 dump_stack();
1098 }
1099
1100 static void vmcs_writel(unsigned long field, unsigned long value)
1101 {
1102 u8 error;
1103
1104 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1105 : "=q"(error) : "a"(value), "d"(field) : "cc");
1106 if (unlikely(error))
1107 vmwrite_error(field, value);
1108 }
1109
1110 static void vmcs_write16(unsigned long field, u16 value)
1111 {
1112 vmcs_writel(field, value);
1113 }
1114
1115 static void vmcs_write32(unsigned long field, u32 value)
1116 {
1117 vmcs_writel(field, value);
1118 }
1119
1120 static void vmcs_write64(unsigned long field, u64 value)
1121 {
1122 vmcs_writel(field, value);
1123 #ifndef CONFIG_X86_64
1124 asm volatile ("");
1125 vmcs_writel(field+1, value >> 32);
1126 #endif
1127 }
1128
1129 static void vmcs_clear_bits(unsigned long field, u32 mask)
1130 {
1131 vmcs_writel(field, vmcs_readl(field) & ~mask);
1132 }
1133
1134 static void vmcs_set_bits(unsigned long field, u32 mask)
1135 {
1136 vmcs_writel(field, vmcs_readl(field) | mask);
1137 }
1138
1139 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1140 {
1141 vmx->segment_cache.bitmask = 0;
1142 }
1143
1144 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1145 unsigned field)
1146 {
1147 bool ret;
1148 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1149
1150 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1151 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1152 vmx->segment_cache.bitmask = 0;
1153 }
1154 ret = vmx->segment_cache.bitmask & mask;
1155 vmx->segment_cache.bitmask |= mask;
1156 return ret;
1157 }
1158
1159 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1160 {
1161 u16 *p = &vmx->segment_cache.seg[seg].selector;
1162
1163 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1164 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1165 return *p;
1166 }
1167
1168 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1169 {
1170 ulong *p = &vmx->segment_cache.seg[seg].base;
1171
1172 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1173 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1174 return *p;
1175 }
1176
1177 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1178 {
1179 u32 *p = &vmx->segment_cache.seg[seg].limit;
1180
1181 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1182 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1183 return *p;
1184 }
1185
1186 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1187 {
1188 u32 *p = &vmx->segment_cache.seg[seg].ar;
1189
1190 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1191 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1192 return *p;
1193 }
1194
1195 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1196 {
1197 u32 eb;
1198
1199 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1200 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1201 if ((vcpu->guest_debug &
1202 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1203 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1204 eb |= 1u << BP_VECTOR;
1205 if (to_vmx(vcpu)->rmode.vm86_active)
1206 eb = ~0;
1207 if (enable_ept)
1208 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1209 if (vcpu->fpu_active)
1210 eb &= ~(1u << NM_VECTOR);
1211
1212 /* When we are running a nested L2 guest and L1 specified for it a
1213 * certain exception bitmap, we must trap the same exceptions and pass
1214 * them to L1. When running L2, we will only handle the exceptions
1215 * specified above if L1 did not want them.
1216 */
1217 if (is_guest_mode(vcpu))
1218 eb |= get_vmcs12(vcpu)->exception_bitmap;
1219
1220 vmcs_write32(EXCEPTION_BITMAP, eb);
1221 }
1222
1223 static void clear_atomic_switch_msr_special(unsigned long entry,
1224 unsigned long exit)
1225 {
1226 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1227 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1228 }
1229
1230 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1231 {
1232 unsigned i;
1233 struct msr_autoload *m = &vmx->msr_autoload;
1234
1235 switch (msr) {
1236 case MSR_EFER:
1237 if (cpu_has_load_ia32_efer) {
1238 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1239 VM_EXIT_LOAD_IA32_EFER);
1240 return;
1241 }
1242 break;
1243 case MSR_CORE_PERF_GLOBAL_CTRL:
1244 if (cpu_has_load_perf_global_ctrl) {
1245 clear_atomic_switch_msr_special(
1246 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1247 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1248 return;
1249 }
1250 break;
1251 }
1252
1253 for (i = 0; i < m->nr; ++i)
1254 if (m->guest[i].index == msr)
1255 break;
1256
1257 if (i == m->nr)
1258 return;
1259 --m->nr;
1260 m->guest[i] = m->guest[m->nr];
1261 m->host[i] = m->host[m->nr];
1262 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1263 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1264 }
1265
1266 static void add_atomic_switch_msr_special(unsigned long entry,
1267 unsigned long exit, unsigned long guest_val_vmcs,
1268 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1269 {
1270 vmcs_write64(guest_val_vmcs, guest_val);
1271 vmcs_write64(host_val_vmcs, host_val);
1272 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1273 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1274 }
1275
1276 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1277 u64 guest_val, u64 host_val)
1278 {
1279 unsigned i;
1280 struct msr_autoload *m = &vmx->msr_autoload;
1281
1282 switch (msr) {
1283 case MSR_EFER:
1284 if (cpu_has_load_ia32_efer) {
1285 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1286 VM_EXIT_LOAD_IA32_EFER,
1287 GUEST_IA32_EFER,
1288 HOST_IA32_EFER,
1289 guest_val, host_val);
1290 return;
1291 }
1292 break;
1293 case MSR_CORE_PERF_GLOBAL_CTRL:
1294 if (cpu_has_load_perf_global_ctrl) {
1295 add_atomic_switch_msr_special(
1296 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1297 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1298 GUEST_IA32_PERF_GLOBAL_CTRL,
1299 HOST_IA32_PERF_GLOBAL_CTRL,
1300 guest_val, host_val);
1301 return;
1302 }
1303 break;
1304 }
1305
1306 for (i = 0; i < m->nr; ++i)
1307 if (m->guest[i].index == msr)
1308 break;
1309
1310 if (i == NR_AUTOLOAD_MSRS) {
1311 printk_once(KERN_WARNING"Not enough mst switch entries. "
1312 "Can't add msr %x\n", msr);
1313 return;
1314 } else if (i == m->nr) {
1315 ++m->nr;
1316 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1317 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1318 }
1319
1320 m->guest[i].index = msr;
1321 m->guest[i].value = guest_val;
1322 m->host[i].index = msr;
1323 m->host[i].value = host_val;
1324 }
1325
1326 static void reload_tss(void)
1327 {
1328 /*
1329 * VT restores TR but not its size. Useless.
1330 */
1331 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1332 struct desc_struct *descs;
1333
1334 descs = (void *)gdt->address;
1335 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1336 load_TR_desc();
1337 }
1338
1339 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1340 {
1341 u64 guest_efer;
1342 u64 ignore_bits;
1343
1344 guest_efer = vmx->vcpu.arch.efer;
1345
1346 /*
1347 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1348 * outside long mode
1349 */
1350 ignore_bits = EFER_NX | EFER_SCE;
1351 #ifdef CONFIG_X86_64
1352 ignore_bits |= EFER_LMA | EFER_LME;
1353 /* SCE is meaningful only in long mode on Intel */
1354 if (guest_efer & EFER_LMA)
1355 ignore_bits &= ~(u64)EFER_SCE;
1356 #endif
1357 guest_efer &= ~ignore_bits;
1358 guest_efer |= host_efer & ignore_bits;
1359 vmx->guest_msrs[efer_offset].data = guest_efer;
1360 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1361
1362 clear_atomic_switch_msr(vmx, MSR_EFER);
1363 /* On ept, can't emulate nx, and must switch nx atomically */
1364 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1365 guest_efer = vmx->vcpu.arch.efer;
1366 if (!(guest_efer & EFER_LMA))
1367 guest_efer &= ~EFER_LME;
1368 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1369 return false;
1370 }
1371
1372 return true;
1373 }
1374
1375 static unsigned long segment_base(u16 selector)
1376 {
1377 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1378 struct desc_struct *d;
1379 unsigned long table_base;
1380 unsigned long v;
1381
1382 if (!(selector & ~3))
1383 return 0;
1384
1385 table_base = gdt->address;
1386
1387 if (selector & 4) { /* from ldt */
1388 u16 ldt_selector = kvm_read_ldt();
1389
1390 if (!(ldt_selector & ~3))
1391 return 0;
1392
1393 table_base = segment_base(ldt_selector);
1394 }
1395 d = (struct desc_struct *)(table_base + (selector & ~7));
1396 v = get_desc_base(d);
1397 #ifdef CONFIG_X86_64
1398 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1399 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1400 #endif
1401 return v;
1402 }
1403
1404 static inline unsigned long kvm_read_tr_base(void)
1405 {
1406 u16 tr;
1407 asm("str %0" : "=g"(tr));
1408 return segment_base(tr);
1409 }
1410
1411 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1412 {
1413 struct vcpu_vmx *vmx = to_vmx(vcpu);
1414 int i;
1415
1416 if (vmx->host_state.loaded)
1417 return;
1418
1419 vmx->host_state.loaded = 1;
1420 /*
1421 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1422 * allow segment selectors with cpl > 0 or ti == 1.
1423 */
1424 vmx->host_state.ldt_sel = kvm_read_ldt();
1425 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1426 savesegment(fs, vmx->host_state.fs_sel);
1427 if (!(vmx->host_state.fs_sel & 7)) {
1428 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1429 vmx->host_state.fs_reload_needed = 0;
1430 } else {
1431 vmcs_write16(HOST_FS_SELECTOR, 0);
1432 vmx->host_state.fs_reload_needed = 1;
1433 }
1434 savesegment(gs, vmx->host_state.gs_sel);
1435 if (!(vmx->host_state.gs_sel & 7))
1436 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1437 else {
1438 vmcs_write16(HOST_GS_SELECTOR, 0);
1439 vmx->host_state.gs_ldt_reload_needed = 1;
1440 }
1441
1442 #ifdef CONFIG_X86_64
1443 savesegment(ds, vmx->host_state.ds_sel);
1444 savesegment(es, vmx->host_state.es_sel);
1445 #endif
1446
1447 #ifdef CONFIG_X86_64
1448 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1449 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1450 #else
1451 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1452 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1453 #endif
1454
1455 #ifdef CONFIG_X86_64
1456 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1457 if (is_long_mode(&vmx->vcpu))
1458 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1459 #endif
1460 for (i = 0; i < vmx->save_nmsrs; ++i)
1461 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1462 vmx->guest_msrs[i].data,
1463 vmx->guest_msrs[i].mask);
1464 }
1465
1466 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1467 {
1468 if (!vmx->host_state.loaded)
1469 return;
1470
1471 ++vmx->vcpu.stat.host_state_reload;
1472 vmx->host_state.loaded = 0;
1473 #ifdef CONFIG_X86_64
1474 if (is_long_mode(&vmx->vcpu))
1475 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1476 #endif
1477 if (vmx->host_state.gs_ldt_reload_needed) {
1478 kvm_load_ldt(vmx->host_state.ldt_sel);
1479 #ifdef CONFIG_X86_64
1480 load_gs_index(vmx->host_state.gs_sel);
1481 #else
1482 loadsegment(gs, vmx->host_state.gs_sel);
1483 #endif
1484 }
1485 if (vmx->host_state.fs_reload_needed)
1486 loadsegment(fs, vmx->host_state.fs_sel);
1487 #ifdef CONFIG_X86_64
1488 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1489 loadsegment(ds, vmx->host_state.ds_sel);
1490 loadsegment(es, vmx->host_state.es_sel);
1491 }
1492 #endif
1493 reload_tss();
1494 #ifdef CONFIG_X86_64
1495 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1496 #endif
1497 /*
1498 * If the FPU is not active (through the host task or
1499 * the guest vcpu), then restore the cr0.TS bit.
1500 */
1501 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1502 stts();
1503 load_gdt(&__get_cpu_var(host_gdt));
1504 }
1505
1506 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1507 {
1508 preempt_disable();
1509 __vmx_load_host_state(vmx);
1510 preempt_enable();
1511 }
1512
1513 /*
1514 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1515 * vcpu mutex is already taken.
1516 */
1517 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1518 {
1519 struct vcpu_vmx *vmx = to_vmx(vcpu);
1520 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1521
1522 if (!vmm_exclusive)
1523 kvm_cpu_vmxon(phys_addr);
1524 else if (vmx->loaded_vmcs->cpu != cpu)
1525 loaded_vmcs_clear(vmx->loaded_vmcs);
1526
1527 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1528 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1529 vmcs_load(vmx->loaded_vmcs->vmcs);
1530 }
1531
1532 if (vmx->loaded_vmcs->cpu != cpu) {
1533 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1534 unsigned long sysenter_esp;
1535
1536 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1537 local_irq_disable();
1538 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1539 &per_cpu(loaded_vmcss_on_cpu, cpu));
1540 local_irq_enable();
1541
1542 /*
1543 * Linux uses per-cpu TSS and GDT, so set these when switching
1544 * processors.
1545 */
1546 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1547 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1548
1549 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1550 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1551 vmx->loaded_vmcs->cpu = cpu;
1552 }
1553 }
1554
1555 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1556 {
1557 __vmx_load_host_state(to_vmx(vcpu));
1558 if (!vmm_exclusive) {
1559 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1560 vcpu->cpu = -1;
1561 kvm_cpu_vmxoff();
1562 }
1563 }
1564
1565 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1566 {
1567 ulong cr0;
1568
1569 if (vcpu->fpu_active)
1570 return;
1571 vcpu->fpu_active = 1;
1572 cr0 = vmcs_readl(GUEST_CR0);
1573 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1574 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1575 vmcs_writel(GUEST_CR0, cr0);
1576 update_exception_bitmap(vcpu);
1577 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1578 if (is_guest_mode(vcpu))
1579 vcpu->arch.cr0_guest_owned_bits &=
1580 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1581 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1582 }
1583
1584 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1585
1586 /*
1587 * Return the cr0 value that a nested guest would read. This is a combination
1588 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1589 * its hypervisor (cr0_read_shadow).
1590 */
1591 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1592 {
1593 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1594 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1595 }
1596 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1597 {
1598 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1599 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1600 }
1601
1602 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1603 {
1604 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1605 * set this *before* calling this function.
1606 */
1607 vmx_decache_cr0_guest_bits(vcpu);
1608 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1609 update_exception_bitmap(vcpu);
1610 vcpu->arch.cr0_guest_owned_bits = 0;
1611 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1612 if (is_guest_mode(vcpu)) {
1613 /*
1614 * L1's specified read shadow might not contain the TS bit,
1615 * so now that we turned on shadowing of this bit, we need to
1616 * set this bit of the shadow. Like in nested_vmx_run we need
1617 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1618 * up-to-date here because we just decached cr0.TS (and we'll
1619 * only update vmcs12->guest_cr0 on nested exit).
1620 */
1621 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1622 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1623 (vcpu->arch.cr0 & X86_CR0_TS);
1624 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1625 } else
1626 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1627 }
1628
1629 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1630 {
1631 unsigned long rflags, save_rflags;
1632
1633 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1634 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1635 rflags = vmcs_readl(GUEST_RFLAGS);
1636 if (to_vmx(vcpu)->rmode.vm86_active) {
1637 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1638 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1639 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1640 }
1641 to_vmx(vcpu)->rflags = rflags;
1642 }
1643 return to_vmx(vcpu)->rflags;
1644 }
1645
1646 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1647 {
1648 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1649 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1650 to_vmx(vcpu)->rflags = rflags;
1651 if (to_vmx(vcpu)->rmode.vm86_active) {
1652 to_vmx(vcpu)->rmode.save_rflags = rflags;
1653 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1654 }
1655 vmcs_writel(GUEST_RFLAGS, rflags);
1656 }
1657
1658 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1659 {
1660 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1661 int ret = 0;
1662
1663 if (interruptibility & GUEST_INTR_STATE_STI)
1664 ret |= KVM_X86_SHADOW_INT_STI;
1665 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1666 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1667
1668 return ret & mask;
1669 }
1670
1671 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1672 {
1673 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1674 u32 interruptibility = interruptibility_old;
1675
1676 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1677
1678 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1679 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1680 else if (mask & KVM_X86_SHADOW_INT_STI)
1681 interruptibility |= GUEST_INTR_STATE_STI;
1682
1683 if ((interruptibility != interruptibility_old))
1684 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1685 }
1686
1687 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1688 {
1689 unsigned long rip;
1690
1691 rip = kvm_rip_read(vcpu);
1692 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1693 kvm_rip_write(vcpu, rip);
1694
1695 /* skipping an emulated instruction also counts */
1696 vmx_set_interrupt_shadow(vcpu, 0);
1697 }
1698
1699 /*
1700 * KVM wants to inject page-faults which it got to the guest. This function
1701 * checks whether in a nested guest, we need to inject them to L1 or L2.
1702 * This function assumes it is called with the exit reason in vmcs02 being
1703 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1704 * is running).
1705 */
1706 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1707 {
1708 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1709
1710 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1711 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1712 return 0;
1713
1714 nested_vmx_vmexit(vcpu);
1715 return 1;
1716 }
1717
1718 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1719 bool has_error_code, u32 error_code,
1720 bool reinject)
1721 {
1722 struct vcpu_vmx *vmx = to_vmx(vcpu);
1723 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1724
1725 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1726 nested_pf_handled(vcpu))
1727 return;
1728
1729 if (has_error_code) {
1730 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1731 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1732 }
1733
1734 if (vmx->rmode.vm86_active) {
1735 int inc_eip = 0;
1736 if (kvm_exception_is_soft(nr))
1737 inc_eip = vcpu->arch.event_exit_inst_len;
1738 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1739 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1740 return;
1741 }
1742
1743 if (kvm_exception_is_soft(nr)) {
1744 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1745 vmx->vcpu.arch.event_exit_inst_len);
1746 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1747 } else
1748 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1749
1750 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1751 }
1752
1753 static bool vmx_rdtscp_supported(void)
1754 {
1755 return cpu_has_vmx_rdtscp();
1756 }
1757
1758 static bool vmx_invpcid_supported(void)
1759 {
1760 return cpu_has_vmx_invpcid() && enable_ept;
1761 }
1762
1763 /*
1764 * Swap MSR entry in host/guest MSR entry array.
1765 */
1766 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1767 {
1768 struct shared_msr_entry tmp;
1769
1770 tmp = vmx->guest_msrs[to];
1771 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1772 vmx->guest_msrs[from] = tmp;
1773 }
1774
1775 /*
1776 * Set up the vmcs to automatically save and restore system
1777 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1778 * mode, as fiddling with msrs is very expensive.
1779 */
1780 static void setup_msrs(struct vcpu_vmx *vmx)
1781 {
1782 int save_nmsrs, index;
1783 unsigned long *msr_bitmap;
1784
1785 save_nmsrs = 0;
1786 #ifdef CONFIG_X86_64
1787 if (is_long_mode(&vmx->vcpu)) {
1788 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1789 if (index >= 0)
1790 move_msr_up(vmx, index, save_nmsrs++);
1791 index = __find_msr_index(vmx, MSR_LSTAR);
1792 if (index >= 0)
1793 move_msr_up(vmx, index, save_nmsrs++);
1794 index = __find_msr_index(vmx, MSR_CSTAR);
1795 if (index >= 0)
1796 move_msr_up(vmx, index, save_nmsrs++);
1797 index = __find_msr_index(vmx, MSR_TSC_AUX);
1798 if (index >= 0 && vmx->rdtscp_enabled)
1799 move_msr_up(vmx, index, save_nmsrs++);
1800 /*
1801 * MSR_STAR is only needed on long mode guests, and only
1802 * if efer.sce is enabled.
1803 */
1804 index = __find_msr_index(vmx, MSR_STAR);
1805 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1806 move_msr_up(vmx, index, save_nmsrs++);
1807 }
1808 #endif
1809 index = __find_msr_index(vmx, MSR_EFER);
1810 if (index >= 0 && update_transition_efer(vmx, index))
1811 move_msr_up(vmx, index, save_nmsrs++);
1812
1813 vmx->save_nmsrs = save_nmsrs;
1814
1815 if (cpu_has_vmx_msr_bitmap()) {
1816 if (is_long_mode(&vmx->vcpu))
1817 msr_bitmap = vmx_msr_bitmap_longmode;
1818 else
1819 msr_bitmap = vmx_msr_bitmap_legacy;
1820
1821 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1822 }
1823 }
1824
1825 /*
1826 * reads and returns guest's timestamp counter "register"
1827 * guest_tsc = host_tsc + tsc_offset -- 21.3
1828 */
1829 static u64 guest_read_tsc(void)
1830 {
1831 u64 host_tsc, tsc_offset;
1832
1833 rdtscll(host_tsc);
1834 tsc_offset = vmcs_read64(TSC_OFFSET);
1835 return host_tsc + tsc_offset;
1836 }
1837
1838 /*
1839 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1840 * counter, even if a nested guest (L2) is currently running.
1841 */
1842 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1843 {
1844 u64 host_tsc, tsc_offset;
1845
1846 rdtscll(host_tsc);
1847 tsc_offset = is_guest_mode(vcpu) ?
1848 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1849 vmcs_read64(TSC_OFFSET);
1850 return host_tsc + tsc_offset;
1851 }
1852
1853 /*
1854 * Engage any workarounds for mis-matched TSC rates. Currently limited to
1855 * software catchup for faster rates on slower CPUs.
1856 */
1857 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1858 {
1859 if (!scale)
1860 return;
1861
1862 if (user_tsc_khz > tsc_khz) {
1863 vcpu->arch.tsc_catchup = 1;
1864 vcpu->arch.tsc_always_catchup = 1;
1865 } else
1866 WARN(1, "user requested TSC rate below hardware speed\n");
1867 }
1868
1869 /*
1870 * writes 'offset' into guest's timestamp counter offset register
1871 */
1872 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1873 {
1874 if (is_guest_mode(vcpu)) {
1875 /*
1876 * We're here if L1 chose not to trap WRMSR to TSC. According
1877 * to the spec, this should set L1's TSC; The offset that L1
1878 * set for L2 remains unchanged, and still needs to be added
1879 * to the newly set TSC to get L2's TSC.
1880 */
1881 struct vmcs12 *vmcs12;
1882 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1883 /* recalculate vmcs02.TSC_OFFSET: */
1884 vmcs12 = get_vmcs12(vcpu);
1885 vmcs_write64(TSC_OFFSET, offset +
1886 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1887 vmcs12->tsc_offset : 0));
1888 } else {
1889 vmcs_write64(TSC_OFFSET, offset);
1890 }
1891 }
1892
1893 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1894 {
1895 u64 offset = vmcs_read64(TSC_OFFSET);
1896 vmcs_write64(TSC_OFFSET, offset + adjustment);
1897 if (is_guest_mode(vcpu)) {
1898 /* Even when running L2, the adjustment needs to apply to L1 */
1899 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1900 }
1901 }
1902
1903 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1904 {
1905 return target_tsc - native_read_tsc();
1906 }
1907
1908 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1909 {
1910 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1911 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1912 }
1913
1914 /*
1915 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1916 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1917 * all guests if the "nested" module option is off, and can also be disabled
1918 * for a single guest by disabling its VMX cpuid bit.
1919 */
1920 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1921 {
1922 return nested && guest_cpuid_has_vmx(vcpu);
1923 }
1924
1925 /*
1926 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1927 * returned for the various VMX controls MSRs when nested VMX is enabled.
1928 * The same values should also be used to verify that vmcs12 control fields are
1929 * valid during nested entry from L1 to L2.
1930 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1931 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1932 * bit in the high half is on if the corresponding bit in the control field
1933 * may be on. See also vmx_control_verify().
1934 * TODO: allow these variables to be modified (downgraded) by module options
1935 * or other means.
1936 */
1937 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1938 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1939 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1940 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1941 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1942 static __init void nested_vmx_setup_ctls_msrs(void)
1943 {
1944 /*
1945 * Note that as a general rule, the high half of the MSRs (bits in
1946 * the control fields which may be 1) should be initialized by the
1947 * intersection of the underlying hardware's MSR (i.e., features which
1948 * can be supported) and the list of features we want to expose -
1949 * because they are known to be properly supported in our code.
1950 * Also, usually, the low half of the MSRs (bits which must be 1) can
1951 * be set to 0, meaning that L1 may turn off any of these bits. The
1952 * reason is that if one of these bits is necessary, it will appear
1953 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1954 * fields of vmcs01 and vmcs02, will turn these bits off - and
1955 * nested_vmx_exit_handled() will not pass related exits to L1.
1956 * These rules have exceptions below.
1957 */
1958
1959 /* pin-based controls */
1960 /*
1961 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1962 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1963 */
1964 nested_vmx_pinbased_ctls_low = 0x16 ;
1965 nested_vmx_pinbased_ctls_high = 0x16 |
1966 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1967 PIN_BASED_VIRTUAL_NMIS;
1968
1969 /* exit controls */
1970 nested_vmx_exit_ctls_low = 0;
1971 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1972 #ifdef CONFIG_X86_64
1973 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1974 #else
1975 nested_vmx_exit_ctls_high = 0;
1976 #endif
1977
1978 /* entry controls */
1979 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1980 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1981 nested_vmx_entry_ctls_low = 0;
1982 nested_vmx_entry_ctls_high &=
1983 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1984
1985 /* cpu-based controls */
1986 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1987 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1988 nested_vmx_procbased_ctls_low = 0;
1989 nested_vmx_procbased_ctls_high &=
1990 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1991 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1992 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1993 CPU_BASED_CR3_STORE_EXITING |
1994 #ifdef CONFIG_X86_64
1995 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1996 #endif
1997 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1998 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1999 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2000 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2001 /*
2002 * We can allow some features even when not supported by the
2003 * hardware. For example, L1 can specify an MSR bitmap - and we
2004 * can use it to avoid exits to L1 - even when L0 runs L2
2005 * without MSR bitmaps.
2006 */
2007 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2008
2009 /* secondary cpu-based controls */
2010 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2011 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2012 nested_vmx_secondary_ctls_low = 0;
2013 nested_vmx_secondary_ctls_high &=
2014 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2015 }
2016
2017 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2018 {
2019 /*
2020 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2021 */
2022 return ((control & high) | low) == control;
2023 }
2024
2025 static inline u64 vmx_control_msr(u32 low, u32 high)
2026 {
2027 return low | ((u64)high << 32);
2028 }
2029
2030 /*
2031 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2032 * also let it use VMX-specific MSRs.
2033 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2034 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2035 * like all other MSRs).
2036 */
2037 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2038 {
2039 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2040 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2041 /*
2042 * According to the spec, processors which do not support VMX
2043 * should throw a #GP(0) when VMX capability MSRs are read.
2044 */
2045 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2046 return 1;
2047 }
2048
2049 switch (msr_index) {
2050 case MSR_IA32_FEATURE_CONTROL:
2051 *pdata = 0;
2052 break;
2053 case MSR_IA32_VMX_BASIC:
2054 /*
2055 * This MSR reports some information about VMX support. We
2056 * should return information about the VMX we emulate for the
2057 * guest, and the VMCS structure we give it - not about the
2058 * VMX support of the underlying hardware.
2059 */
2060 *pdata = VMCS12_REVISION |
2061 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2062 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2063 break;
2064 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2065 case MSR_IA32_VMX_PINBASED_CTLS:
2066 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2067 nested_vmx_pinbased_ctls_high);
2068 break;
2069 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2070 case MSR_IA32_VMX_PROCBASED_CTLS:
2071 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2072 nested_vmx_procbased_ctls_high);
2073 break;
2074 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2075 case MSR_IA32_VMX_EXIT_CTLS:
2076 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2077 nested_vmx_exit_ctls_high);
2078 break;
2079 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2080 case MSR_IA32_VMX_ENTRY_CTLS:
2081 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2082 nested_vmx_entry_ctls_high);
2083 break;
2084 case MSR_IA32_VMX_MISC:
2085 *pdata = 0;
2086 break;
2087 /*
2088 * These MSRs specify bits which the guest must keep fixed (on or off)
2089 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2090 * We picked the standard core2 setting.
2091 */
2092 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2093 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2094 case MSR_IA32_VMX_CR0_FIXED0:
2095 *pdata = VMXON_CR0_ALWAYSON;
2096 break;
2097 case MSR_IA32_VMX_CR0_FIXED1:
2098 *pdata = -1ULL;
2099 break;
2100 case MSR_IA32_VMX_CR4_FIXED0:
2101 *pdata = VMXON_CR4_ALWAYSON;
2102 break;
2103 case MSR_IA32_VMX_CR4_FIXED1:
2104 *pdata = -1ULL;
2105 break;
2106 case MSR_IA32_VMX_VMCS_ENUM:
2107 *pdata = 0x1f;
2108 break;
2109 case MSR_IA32_VMX_PROCBASED_CTLS2:
2110 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2111 nested_vmx_secondary_ctls_high);
2112 break;
2113 case MSR_IA32_VMX_EPT_VPID_CAP:
2114 /* Currently, no nested ept or nested vpid */
2115 *pdata = 0;
2116 break;
2117 default:
2118 return 0;
2119 }
2120
2121 return 1;
2122 }
2123
2124 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2125 {
2126 if (!nested_vmx_allowed(vcpu))
2127 return 0;
2128
2129 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2130 /* TODO: the right thing. */
2131 return 1;
2132 /*
2133 * No need to treat VMX capability MSRs specially: If we don't handle
2134 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2135 */
2136 return 0;
2137 }
2138
2139 /*
2140 * Reads an msr value (of 'msr_index') into 'pdata'.
2141 * Returns 0 on success, non-0 otherwise.
2142 * Assumes vcpu_load() was already called.
2143 */
2144 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2145 {
2146 u64 data;
2147 struct shared_msr_entry *msr;
2148
2149 if (!pdata) {
2150 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2151 return -EINVAL;
2152 }
2153
2154 switch (msr_index) {
2155 #ifdef CONFIG_X86_64
2156 case MSR_FS_BASE:
2157 data = vmcs_readl(GUEST_FS_BASE);
2158 break;
2159 case MSR_GS_BASE:
2160 data = vmcs_readl(GUEST_GS_BASE);
2161 break;
2162 case MSR_KERNEL_GS_BASE:
2163 vmx_load_host_state(to_vmx(vcpu));
2164 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2165 break;
2166 #endif
2167 case MSR_EFER:
2168 return kvm_get_msr_common(vcpu, msr_index, pdata);
2169 case MSR_IA32_TSC:
2170 data = guest_read_tsc();
2171 break;
2172 case MSR_IA32_SYSENTER_CS:
2173 data = vmcs_read32(GUEST_SYSENTER_CS);
2174 break;
2175 case MSR_IA32_SYSENTER_EIP:
2176 data = vmcs_readl(GUEST_SYSENTER_EIP);
2177 break;
2178 case MSR_IA32_SYSENTER_ESP:
2179 data = vmcs_readl(GUEST_SYSENTER_ESP);
2180 break;
2181 case MSR_TSC_AUX:
2182 if (!to_vmx(vcpu)->rdtscp_enabled)
2183 return 1;
2184 /* Otherwise falls through */
2185 default:
2186 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2187 return 0;
2188 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2189 if (msr) {
2190 data = msr->data;
2191 break;
2192 }
2193 return kvm_get_msr_common(vcpu, msr_index, pdata);
2194 }
2195
2196 *pdata = data;
2197 return 0;
2198 }
2199
2200 /*
2201 * Writes msr value into into the appropriate "register".
2202 * Returns 0 on success, non-0 otherwise.
2203 * Assumes vcpu_load() was already called.
2204 */
2205 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2206 {
2207 struct vcpu_vmx *vmx = to_vmx(vcpu);
2208 struct shared_msr_entry *msr;
2209 int ret = 0;
2210
2211 switch (msr_index) {
2212 case MSR_EFER:
2213 ret = kvm_set_msr_common(vcpu, msr_index, data);
2214 break;
2215 #ifdef CONFIG_X86_64
2216 case MSR_FS_BASE:
2217 vmx_segment_cache_clear(vmx);
2218 vmcs_writel(GUEST_FS_BASE, data);
2219 break;
2220 case MSR_GS_BASE:
2221 vmx_segment_cache_clear(vmx);
2222 vmcs_writel(GUEST_GS_BASE, data);
2223 break;
2224 case MSR_KERNEL_GS_BASE:
2225 vmx_load_host_state(vmx);
2226 vmx->msr_guest_kernel_gs_base = data;
2227 break;
2228 #endif
2229 case MSR_IA32_SYSENTER_CS:
2230 vmcs_write32(GUEST_SYSENTER_CS, data);
2231 break;
2232 case MSR_IA32_SYSENTER_EIP:
2233 vmcs_writel(GUEST_SYSENTER_EIP, data);
2234 break;
2235 case MSR_IA32_SYSENTER_ESP:
2236 vmcs_writel(GUEST_SYSENTER_ESP, data);
2237 break;
2238 case MSR_IA32_TSC:
2239 kvm_write_tsc(vcpu, data);
2240 break;
2241 case MSR_IA32_CR_PAT:
2242 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2243 vmcs_write64(GUEST_IA32_PAT, data);
2244 vcpu->arch.pat = data;
2245 break;
2246 }
2247 ret = kvm_set_msr_common(vcpu, msr_index, data);
2248 break;
2249 case MSR_TSC_AUX:
2250 if (!vmx->rdtscp_enabled)
2251 return 1;
2252 /* Check reserved bit, higher 32 bits should be zero */
2253 if ((data >> 32) != 0)
2254 return 1;
2255 /* Otherwise falls through */
2256 default:
2257 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2258 break;
2259 msr = find_msr_entry(vmx, msr_index);
2260 if (msr) {
2261 msr->data = data;
2262 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2263 preempt_disable();
2264 kvm_set_shared_msr(msr->index, msr->data,
2265 msr->mask);
2266 preempt_enable();
2267 }
2268 break;
2269 }
2270 ret = kvm_set_msr_common(vcpu, msr_index, data);
2271 }
2272
2273 return ret;
2274 }
2275
2276 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2277 {
2278 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2279 switch (reg) {
2280 case VCPU_REGS_RSP:
2281 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2282 break;
2283 case VCPU_REGS_RIP:
2284 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2285 break;
2286 case VCPU_EXREG_PDPTR:
2287 if (enable_ept)
2288 ept_save_pdptrs(vcpu);
2289 break;
2290 default:
2291 break;
2292 }
2293 }
2294
2295 static __init int cpu_has_kvm_support(void)
2296 {
2297 return cpu_has_vmx();
2298 }
2299
2300 static __init int vmx_disabled_by_bios(void)
2301 {
2302 u64 msr;
2303
2304 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2305 if (msr & FEATURE_CONTROL_LOCKED) {
2306 /* launched w/ TXT and VMX disabled */
2307 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2308 && tboot_enabled())
2309 return 1;
2310 /* launched w/o TXT and VMX only enabled w/ TXT */
2311 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2312 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2313 && !tboot_enabled()) {
2314 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2315 "activate TXT before enabling KVM\n");
2316 return 1;
2317 }
2318 /* launched w/o TXT and VMX disabled */
2319 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2320 && !tboot_enabled())
2321 return 1;
2322 }
2323
2324 return 0;
2325 }
2326
2327 static void kvm_cpu_vmxon(u64 addr)
2328 {
2329 asm volatile (ASM_VMX_VMXON_RAX
2330 : : "a"(&addr), "m"(addr)
2331 : "memory", "cc");
2332 }
2333
2334 static int hardware_enable(void *garbage)
2335 {
2336 int cpu = raw_smp_processor_id();
2337 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2338 u64 old, test_bits;
2339
2340 if (read_cr4() & X86_CR4_VMXE)
2341 return -EBUSY;
2342
2343 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2344 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2345
2346 test_bits = FEATURE_CONTROL_LOCKED;
2347 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2348 if (tboot_enabled())
2349 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2350
2351 if ((old & test_bits) != test_bits) {
2352 /* enable and lock */
2353 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2354 }
2355 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2356
2357 if (vmm_exclusive) {
2358 kvm_cpu_vmxon(phys_addr);
2359 ept_sync_global();
2360 }
2361
2362 store_gdt(&__get_cpu_var(host_gdt));
2363
2364 return 0;
2365 }
2366
2367 static void vmclear_local_loaded_vmcss(void)
2368 {
2369 int cpu = raw_smp_processor_id();
2370 struct loaded_vmcs *v, *n;
2371
2372 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2373 loaded_vmcss_on_cpu_link)
2374 __loaded_vmcs_clear(v);
2375 }
2376
2377
2378 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2379 * tricks.
2380 */
2381 static void kvm_cpu_vmxoff(void)
2382 {
2383 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2384 }
2385
2386 static void hardware_disable(void *garbage)
2387 {
2388 if (vmm_exclusive) {
2389 vmclear_local_loaded_vmcss();
2390 kvm_cpu_vmxoff();
2391 }
2392 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2393 }
2394
2395 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2396 u32 msr, u32 *result)
2397 {
2398 u32 vmx_msr_low, vmx_msr_high;
2399 u32 ctl = ctl_min | ctl_opt;
2400
2401 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2402
2403 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2404 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2405
2406 /* Ensure minimum (required) set of control bits are supported. */
2407 if (ctl_min & ~ctl)
2408 return -EIO;
2409
2410 *result = ctl;
2411 return 0;
2412 }
2413
2414 static __init bool allow_1_setting(u32 msr, u32 ctl)
2415 {
2416 u32 vmx_msr_low, vmx_msr_high;
2417
2418 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2419 return vmx_msr_high & ctl;
2420 }
2421
2422 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2423 {
2424 u32 vmx_msr_low, vmx_msr_high;
2425 u32 min, opt, min2, opt2;
2426 u32 _pin_based_exec_control = 0;
2427 u32 _cpu_based_exec_control = 0;
2428 u32 _cpu_based_2nd_exec_control = 0;
2429 u32 _vmexit_control = 0;
2430 u32 _vmentry_control = 0;
2431
2432 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2433 opt = PIN_BASED_VIRTUAL_NMIS;
2434 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2435 &_pin_based_exec_control) < 0)
2436 return -EIO;
2437
2438 min = CPU_BASED_HLT_EXITING |
2439 #ifdef CONFIG_X86_64
2440 CPU_BASED_CR8_LOAD_EXITING |
2441 CPU_BASED_CR8_STORE_EXITING |
2442 #endif
2443 CPU_BASED_CR3_LOAD_EXITING |
2444 CPU_BASED_CR3_STORE_EXITING |
2445 CPU_BASED_USE_IO_BITMAPS |
2446 CPU_BASED_MOV_DR_EXITING |
2447 CPU_BASED_USE_TSC_OFFSETING |
2448 CPU_BASED_MWAIT_EXITING |
2449 CPU_BASED_MONITOR_EXITING |
2450 CPU_BASED_INVLPG_EXITING |
2451 CPU_BASED_RDPMC_EXITING;
2452
2453 opt = CPU_BASED_TPR_SHADOW |
2454 CPU_BASED_USE_MSR_BITMAPS |
2455 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2456 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2457 &_cpu_based_exec_control) < 0)
2458 return -EIO;
2459 #ifdef CONFIG_X86_64
2460 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2461 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2462 ~CPU_BASED_CR8_STORE_EXITING;
2463 #endif
2464 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2465 min2 = 0;
2466 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2467 SECONDARY_EXEC_WBINVD_EXITING |
2468 SECONDARY_EXEC_ENABLE_VPID |
2469 SECONDARY_EXEC_ENABLE_EPT |
2470 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2471 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2472 SECONDARY_EXEC_RDTSCP |
2473 SECONDARY_EXEC_ENABLE_INVPCID;
2474 if (adjust_vmx_controls(min2, opt2,
2475 MSR_IA32_VMX_PROCBASED_CTLS2,
2476 &_cpu_based_2nd_exec_control) < 0)
2477 return -EIO;
2478 }
2479 #ifndef CONFIG_X86_64
2480 if (!(_cpu_based_2nd_exec_control &
2481 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2482 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2483 #endif
2484 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2485 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2486 enabled */
2487 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2488 CPU_BASED_CR3_STORE_EXITING |
2489 CPU_BASED_INVLPG_EXITING);
2490 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2491 vmx_capability.ept, vmx_capability.vpid);
2492 }
2493
2494 min = 0;
2495 #ifdef CONFIG_X86_64
2496 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2497 #endif
2498 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2499 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2500 &_vmexit_control) < 0)
2501 return -EIO;
2502
2503 min = 0;
2504 opt = VM_ENTRY_LOAD_IA32_PAT;
2505 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2506 &_vmentry_control) < 0)
2507 return -EIO;
2508
2509 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2510
2511 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2512 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2513 return -EIO;
2514
2515 #ifdef CONFIG_X86_64
2516 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2517 if (vmx_msr_high & (1u<<16))
2518 return -EIO;
2519 #endif
2520
2521 /* Require Write-Back (WB) memory type for VMCS accesses. */
2522 if (((vmx_msr_high >> 18) & 15) != 6)
2523 return -EIO;
2524
2525 vmcs_conf->size = vmx_msr_high & 0x1fff;
2526 vmcs_conf->order = get_order(vmcs_config.size);
2527 vmcs_conf->revision_id = vmx_msr_low;
2528
2529 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2530 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2531 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2532 vmcs_conf->vmexit_ctrl = _vmexit_control;
2533 vmcs_conf->vmentry_ctrl = _vmentry_control;
2534
2535 cpu_has_load_ia32_efer =
2536 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2537 VM_ENTRY_LOAD_IA32_EFER)
2538 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2539 VM_EXIT_LOAD_IA32_EFER);
2540
2541 cpu_has_load_perf_global_ctrl =
2542 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2543 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2544 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2545 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2546
2547 /*
2548 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2549 * but due to arrata below it can't be used. Workaround is to use
2550 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2551 *
2552 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2553 *
2554 * AAK155 (model 26)
2555 * AAP115 (model 30)
2556 * AAT100 (model 37)
2557 * BC86,AAY89,BD102 (model 44)
2558 * BA97 (model 46)
2559 *
2560 */
2561 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2562 switch (boot_cpu_data.x86_model) {
2563 case 26:
2564 case 30:
2565 case 37:
2566 case 44:
2567 case 46:
2568 cpu_has_load_perf_global_ctrl = false;
2569 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2570 "does not work properly. Using workaround\n");
2571 break;
2572 default:
2573 break;
2574 }
2575 }
2576
2577 return 0;
2578 }
2579
2580 static struct vmcs *alloc_vmcs_cpu(int cpu)
2581 {
2582 int node = cpu_to_node(cpu);
2583 struct page *pages;
2584 struct vmcs *vmcs;
2585
2586 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2587 if (!pages)
2588 return NULL;
2589 vmcs = page_address(pages);
2590 memset(vmcs, 0, vmcs_config.size);
2591 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2592 return vmcs;
2593 }
2594
2595 static struct vmcs *alloc_vmcs(void)
2596 {
2597 return alloc_vmcs_cpu(raw_smp_processor_id());
2598 }
2599
2600 static void free_vmcs(struct vmcs *vmcs)
2601 {
2602 free_pages((unsigned long)vmcs, vmcs_config.order);
2603 }
2604
2605 /*
2606 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2607 */
2608 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2609 {
2610 if (!loaded_vmcs->vmcs)
2611 return;
2612 loaded_vmcs_clear(loaded_vmcs);
2613 free_vmcs(loaded_vmcs->vmcs);
2614 loaded_vmcs->vmcs = NULL;
2615 }
2616
2617 static void free_kvm_area(void)
2618 {
2619 int cpu;
2620
2621 for_each_possible_cpu(cpu) {
2622 free_vmcs(per_cpu(vmxarea, cpu));
2623 per_cpu(vmxarea, cpu) = NULL;
2624 }
2625 }
2626
2627 static __init int alloc_kvm_area(void)
2628 {
2629 int cpu;
2630
2631 for_each_possible_cpu(cpu) {
2632 struct vmcs *vmcs;
2633
2634 vmcs = alloc_vmcs_cpu(cpu);
2635 if (!vmcs) {
2636 free_kvm_area();
2637 return -ENOMEM;
2638 }
2639
2640 per_cpu(vmxarea, cpu) = vmcs;
2641 }
2642 return 0;
2643 }
2644
2645 static __init int hardware_setup(void)
2646 {
2647 if (setup_vmcs_config(&vmcs_config) < 0)
2648 return -EIO;
2649
2650 if (boot_cpu_has(X86_FEATURE_NX))
2651 kvm_enable_efer_bits(EFER_NX);
2652
2653 if (!cpu_has_vmx_vpid())
2654 enable_vpid = 0;
2655
2656 if (!cpu_has_vmx_ept() ||
2657 !cpu_has_vmx_ept_4levels()) {
2658 enable_ept = 0;
2659 enable_unrestricted_guest = 0;
2660 enable_ept_ad_bits = 0;
2661 }
2662
2663 if (!cpu_has_vmx_ept_ad_bits())
2664 enable_ept_ad_bits = 0;
2665
2666 if (!cpu_has_vmx_unrestricted_guest())
2667 enable_unrestricted_guest = 0;
2668
2669 if (!cpu_has_vmx_flexpriority())
2670 flexpriority_enabled = 0;
2671
2672 if (!cpu_has_vmx_tpr_shadow())
2673 kvm_x86_ops->update_cr8_intercept = NULL;
2674
2675 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2676 kvm_disable_largepages();
2677
2678 if (!cpu_has_vmx_ple())
2679 ple_gap = 0;
2680
2681 if (nested)
2682 nested_vmx_setup_ctls_msrs();
2683
2684 return alloc_kvm_area();
2685 }
2686
2687 static __exit void hardware_unsetup(void)
2688 {
2689 free_kvm_area();
2690 }
2691
2692 static void fix_pmode_dataseg(struct kvm_vcpu *vcpu, int seg, struct kvm_segment *save)
2693 {
2694 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2695 struct kvm_segment tmp = *save;
2696
2697 if (!(vmcs_readl(sf->base) == tmp.base && tmp.s)) {
2698 tmp.base = vmcs_readl(sf->base);
2699 tmp.selector = vmcs_read16(sf->selector);
2700 tmp.s = 1;
2701 }
2702 vmx_set_segment(vcpu, &tmp, seg);
2703 }
2704
2705 static void enter_pmode(struct kvm_vcpu *vcpu)
2706 {
2707 unsigned long flags;
2708 struct vcpu_vmx *vmx = to_vmx(vcpu);
2709
2710 vmx->emulation_required = 1;
2711 vmx->rmode.vm86_active = 0;
2712
2713 vmx_segment_cache_clear(vmx);
2714
2715 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2716
2717 flags = vmcs_readl(GUEST_RFLAGS);
2718 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2719 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2720 vmcs_writel(GUEST_RFLAGS, flags);
2721
2722 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2723 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2724
2725 update_exception_bitmap(vcpu);
2726
2727 if (emulate_invalid_guest_state)
2728 return;
2729
2730 fix_pmode_dataseg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2731 fix_pmode_dataseg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2732 fix_pmode_dataseg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2733 fix_pmode_dataseg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2734
2735 vmx_segment_cache_clear(vmx);
2736
2737 vmcs_write16(GUEST_SS_SELECTOR, 0);
2738 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2739
2740 vmcs_write16(GUEST_CS_SELECTOR,
2741 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2742 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2743 }
2744
2745 static gva_t rmode_tss_base(struct kvm *kvm)
2746 {
2747 if (!kvm->arch.tss_addr) {
2748 struct kvm_memslots *slots;
2749 struct kvm_memory_slot *slot;
2750 gfn_t base_gfn;
2751
2752 slots = kvm_memslots(kvm);
2753 slot = id_to_memslot(slots, 0);
2754 base_gfn = slot->base_gfn + slot->npages - 3;
2755
2756 return base_gfn << PAGE_SHIFT;
2757 }
2758 return kvm->arch.tss_addr;
2759 }
2760
2761 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2762 {
2763 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2764
2765 vmcs_write16(sf->selector, save->base >> 4);
2766 vmcs_write32(sf->base, save->base & 0xffff0);
2767 vmcs_write32(sf->limit, 0xffff);
2768 vmcs_write32(sf->ar_bytes, 0xf3);
2769 if (save->base & 0xf)
2770 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2771 " aligned when entering protected mode (seg=%d)",
2772 seg);
2773 }
2774
2775 static void enter_rmode(struct kvm_vcpu *vcpu)
2776 {
2777 unsigned long flags;
2778 struct vcpu_vmx *vmx = to_vmx(vcpu);
2779 struct kvm_segment var;
2780
2781 if (enable_unrestricted_guest)
2782 return;
2783
2784 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2785 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2786 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2787 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2788 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2789
2790 vmx->emulation_required = 1;
2791 vmx->rmode.vm86_active = 1;
2792
2793
2794 /*
2795 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2796 * vcpu. Call it here with phys address pointing 16M below 4G.
2797 */
2798 if (!vcpu->kvm->arch.tss_addr) {
2799 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2800 "called before entering vcpu\n");
2801 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2802 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2803 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2804 }
2805
2806 vmx_segment_cache_clear(vmx);
2807
2808 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2809 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2810 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2811
2812 flags = vmcs_readl(GUEST_RFLAGS);
2813 vmx->rmode.save_rflags = flags;
2814
2815 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2816
2817 vmcs_writel(GUEST_RFLAGS, flags);
2818 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2819 update_exception_bitmap(vcpu);
2820
2821 if (emulate_invalid_guest_state)
2822 goto continue_rmode;
2823
2824 vmx_get_segment(vcpu, &var, VCPU_SREG_SS);
2825 vmx_set_segment(vcpu, &var, VCPU_SREG_SS);
2826
2827 vmx_get_segment(vcpu, &var, VCPU_SREG_CS);
2828 vmx_set_segment(vcpu, &var, VCPU_SREG_CS);
2829
2830 vmx_get_segment(vcpu, &var, VCPU_SREG_ES);
2831 vmx_set_segment(vcpu, &var, VCPU_SREG_ES);
2832
2833 vmx_get_segment(vcpu, &var, VCPU_SREG_DS);
2834 vmx_set_segment(vcpu, &var, VCPU_SREG_DS);
2835
2836 vmx_get_segment(vcpu, &var, VCPU_SREG_GS);
2837 vmx_set_segment(vcpu, &var, VCPU_SREG_GS);
2838
2839 vmx_get_segment(vcpu, &var, VCPU_SREG_FS);
2840 vmx_set_segment(vcpu, &var, VCPU_SREG_FS);
2841
2842 continue_rmode:
2843 kvm_mmu_reset_context(vcpu);
2844 }
2845
2846 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2847 {
2848 struct vcpu_vmx *vmx = to_vmx(vcpu);
2849 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2850
2851 if (!msr)
2852 return;
2853
2854 /*
2855 * Force kernel_gs_base reloading before EFER changes, as control
2856 * of this msr depends on is_long_mode().
2857 */
2858 vmx_load_host_state(to_vmx(vcpu));
2859 vcpu->arch.efer = efer;
2860 if (efer & EFER_LMA) {
2861 vmcs_write32(VM_ENTRY_CONTROLS,
2862 vmcs_read32(VM_ENTRY_CONTROLS) |
2863 VM_ENTRY_IA32E_MODE);
2864 msr->data = efer;
2865 } else {
2866 vmcs_write32(VM_ENTRY_CONTROLS,
2867 vmcs_read32(VM_ENTRY_CONTROLS) &
2868 ~VM_ENTRY_IA32E_MODE);
2869
2870 msr->data = efer & ~EFER_LME;
2871 }
2872 setup_msrs(vmx);
2873 }
2874
2875 #ifdef CONFIG_X86_64
2876
2877 static void enter_lmode(struct kvm_vcpu *vcpu)
2878 {
2879 u32 guest_tr_ar;
2880
2881 vmx_segment_cache_clear(to_vmx(vcpu));
2882
2883 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2884 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2885 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2886 __func__);
2887 vmcs_write32(GUEST_TR_AR_BYTES,
2888 (guest_tr_ar & ~AR_TYPE_MASK)
2889 | AR_TYPE_BUSY_64_TSS);
2890 }
2891 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2892 }
2893
2894 static void exit_lmode(struct kvm_vcpu *vcpu)
2895 {
2896 vmcs_write32(VM_ENTRY_CONTROLS,
2897 vmcs_read32(VM_ENTRY_CONTROLS)
2898 & ~VM_ENTRY_IA32E_MODE);
2899 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2900 }
2901
2902 #endif
2903
2904 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2905 {
2906 vpid_sync_context(to_vmx(vcpu));
2907 if (enable_ept) {
2908 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2909 return;
2910 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2911 }
2912 }
2913
2914 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2915 {
2916 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2917
2918 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2919 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2920 }
2921
2922 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2923 {
2924 if (enable_ept && is_paging(vcpu))
2925 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2926 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2927 }
2928
2929 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2930 {
2931 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2932
2933 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2934 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2935 }
2936
2937 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2938 {
2939 if (!test_bit(VCPU_EXREG_PDPTR,
2940 (unsigned long *)&vcpu->arch.regs_dirty))
2941 return;
2942
2943 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2944 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2945 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2946 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2947 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2948 }
2949 }
2950
2951 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2952 {
2953 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2954 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2955 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2956 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2957 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2958 }
2959
2960 __set_bit(VCPU_EXREG_PDPTR,
2961 (unsigned long *)&vcpu->arch.regs_avail);
2962 __set_bit(VCPU_EXREG_PDPTR,
2963 (unsigned long *)&vcpu->arch.regs_dirty);
2964 }
2965
2966 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2967
2968 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2969 unsigned long cr0,
2970 struct kvm_vcpu *vcpu)
2971 {
2972 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2973 vmx_decache_cr3(vcpu);
2974 if (!(cr0 & X86_CR0_PG)) {
2975 /* From paging/starting to nonpaging */
2976 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2977 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2978 (CPU_BASED_CR3_LOAD_EXITING |
2979 CPU_BASED_CR3_STORE_EXITING));
2980 vcpu->arch.cr0 = cr0;
2981 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2982 } else if (!is_paging(vcpu)) {
2983 /* From nonpaging to paging */
2984 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2985 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2986 ~(CPU_BASED_CR3_LOAD_EXITING |
2987 CPU_BASED_CR3_STORE_EXITING));
2988 vcpu->arch.cr0 = cr0;
2989 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2990 }
2991
2992 if (!(cr0 & X86_CR0_WP))
2993 *hw_cr0 &= ~X86_CR0_WP;
2994 }
2995
2996 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2997 {
2998 struct vcpu_vmx *vmx = to_vmx(vcpu);
2999 unsigned long hw_cr0;
3000
3001 if (enable_unrestricted_guest)
3002 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
3003 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3004 else
3005 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
3006
3007 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3008 enter_pmode(vcpu);
3009
3010 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3011 enter_rmode(vcpu);
3012
3013 #ifdef CONFIG_X86_64
3014 if (vcpu->arch.efer & EFER_LME) {
3015 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3016 enter_lmode(vcpu);
3017 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3018 exit_lmode(vcpu);
3019 }
3020 #endif
3021
3022 if (enable_ept)
3023 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3024
3025 if (!vcpu->fpu_active)
3026 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3027
3028 vmcs_writel(CR0_READ_SHADOW, cr0);
3029 vmcs_writel(GUEST_CR0, hw_cr0);
3030 vcpu->arch.cr0 = cr0;
3031 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3032 }
3033
3034 static u64 construct_eptp(unsigned long root_hpa)
3035 {
3036 u64 eptp;
3037
3038 /* TODO write the value reading from MSR */
3039 eptp = VMX_EPT_DEFAULT_MT |
3040 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3041 if (enable_ept_ad_bits)
3042 eptp |= VMX_EPT_AD_ENABLE_BIT;
3043 eptp |= (root_hpa & PAGE_MASK);
3044
3045 return eptp;
3046 }
3047
3048 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3049 {
3050 unsigned long guest_cr3;
3051 u64 eptp;
3052
3053 guest_cr3 = cr3;
3054 if (enable_ept) {
3055 eptp = construct_eptp(cr3);
3056 vmcs_write64(EPT_POINTER, eptp);
3057 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3058 vcpu->kvm->arch.ept_identity_map_addr;
3059 ept_load_pdptrs(vcpu);
3060 }
3061
3062 vmx_flush_tlb(vcpu);
3063 vmcs_writel(GUEST_CR3, guest_cr3);
3064 }
3065
3066 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3067 {
3068 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3069 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3070
3071 if (cr4 & X86_CR4_VMXE) {
3072 /*
3073 * To use VMXON (and later other VMX instructions), a guest
3074 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3075 * So basically the check on whether to allow nested VMX
3076 * is here.
3077 */
3078 if (!nested_vmx_allowed(vcpu))
3079 return 1;
3080 } else if (to_vmx(vcpu)->nested.vmxon)
3081 return 1;
3082
3083 vcpu->arch.cr4 = cr4;
3084 if (enable_ept) {
3085 if (!is_paging(vcpu)) {
3086 hw_cr4 &= ~X86_CR4_PAE;
3087 hw_cr4 |= X86_CR4_PSE;
3088 } else if (!(cr4 & X86_CR4_PAE)) {
3089 hw_cr4 &= ~X86_CR4_PAE;
3090 }
3091 }
3092
3093 vmcs_writel(CR4_READ_SHADOW, cr4);
3094 vmcs_writel(GUEST_CR4, hw_cr4);
3095 return 0;
3096 }
3097
3098 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3099 struct kvm_segment *var, int seg)
3100 {
3101 struct vcpu_vmx *vmx = to_vmx(vcpu);
3102 u32 ar;
3103
3104 if (vmx->rmode.vm86_active
3105 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3106 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3107 || seg == VCPU_SREG_GS)) {
3108 *var = vmx->rmode.segs[seg];
3109 if (seg == VCPU_SREG_TR
3110 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3111 return;
3112 var->base = vmx_read_guest_seg_base(vmx, seg);
3113 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3114 return;
3115 }
3116 var->base = vmx_read_guest_seg_base(vmx, seg);
3117 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3118 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3119 ar = vmx_read_guest_seg_ar(vmx, seg);
3120 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
3121 ar = 0;
3122 var->type = ar & 15;
3123 var->s = (ar >> 4) & 1;
3124 var->dpl = (ar >> 5) & 3;
3125 var->present = (ar >> 7) & 1;
3126 var->avl = (ar >> 12) & 1;
3127 var->l = (ar >> 13) & 1;
3128 var->db = (ar >> 14) & 1;
3129 var->g = (ar >> 15) & 1;
3130 var->unusable = (ar >> 16) & 1;
3131 }
3132
3133 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3134 {
3135 struct kvm_segment s;
3136
3137 if (to_vmx(vcpu)->rmode.vm86_active) {
3138 vmx_get_segment(vcpu, &s, seg);
3139 return s.base;
3140 }
3141 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3142 }
3143
3144 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3145 {
3146 if (!is_protmode(vcpu))
3147 return 0;
3148
3149 if (!is_long_mode(vcpu)
3150 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3151 return 3;
3152
3153 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3154 }
3155
3156 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3157 {
3158 struct vcpu_vmx *vmx = to_vmx(vcpu);
3159
3160 /*
3161 * If we enter real mode with cs.sel & 3 != 0, the normal CPL calculations
3162 * fail; use the cache instead.
3163 */
3164 if (unlikely(vmx->emulation_required && emulate_invalid_guest_state)) {
3165 return vmx->cpl;
3166 }
3167
3168 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3169 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3170 vmx->cpl = __vmx_get_cpl(vcpu);
3171 }
3172
3173 return vmx->cpl;
3174 }
3175
3176
3177 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3178 {
3179 u32 ar;
3180
3181 if (var->unusable || !var->present)
3182 ar = 1 << 16;
3183 else {
3184 ar = var->type & 15;
3185 ar |= (var->s & 1) << 4;
3186 ar |= (var->dpl & 3) << 5;
3187 ar |= (var->present & 1) << 7;
3188 ar |= (var->avl & 1) << 12;
3189 ar |= (var->l & 1) << 13;
3190 ar |= (var->db & 1) << 14;
3191 ar |= (var->g & 1) << 15;
3192 }
3193
3194 return ar;
3195 }
3196
3197 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3198 struct kvm_segment *var, int seg)
3199 {
3200 struct vcpu_vmx *vmx = to_vmx(vcpu);
3201 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3202 u32 ar;
3203
3204 vmx_segment_cache_clear(vmx);
3205
3206 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3207 vmcs_write16(sf->selector, var->selector);
3208 vmx->rmode.segs[VCPU_SREG_TR] = *var;
3209 return;
3210 }
3211 vmcs_writel(sf->base, var->base);
3212 vmcs_write32(sf->limit, var->limit);
3213 vmcs_write16(sf->selector, var->selector);
3214 if (vmx->rmode.vm86_active && var->s) {
3215 vmx->rmode.segs[seg] = *var;
3216 /*
3217 * Hack real-mode segments into vm86 compatibility.
3218 */
3219 if (var->base == 0xffff0000 && var->selector == 0xf000)
3220 vmcs_writel(sf->base, 0xf0000);
3221 ar = 0xf3;
3222 } else
3223 ar = vmx_segment_access_rights(var);
3224
3225 /*
3226 * Fix the "Accessed" bit in AR field of segment registers for older
3227 * qemu binaries.
3228 * IA32 arch specifies that at the time of processor reset the
3229 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3230 * is setting it to 0 in the userland code. This causes invalid guest
3231 * state vmexit when "unrestricted guest" mode is turned on.
3232 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3233 * tree. Newer qemu binaries with that qemu fix would not need this
3234 * kvm hack.
3235 */
3236 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3237 ar |= 0x1; /* Accessed */
3238
3239 vmcs_write32(sf->ar_bytes, ar);
3240 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3241
3242 /*
3243 * Fix segments for real mode guest in hosts that don't have
3244 * "unrestricted_mode" or it was disabled.
3245 * This is done to allow migration of the guests from hosts with
3246 * unrestricted guest like Westmere to older host that don't have
3247 * unrestricted guest like Nehelem.
3248 */
3249 if (!enable_unrestricted_guest && vmx->rmode.vm86_active) {
3250 switch (seg) {
3251 case VCPU_SREG_CS:
3252 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
3253 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
3254 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
3255 vmcs_writel(GUEST_CS_BASE, 0xf0000);
3256 vmcs_write16(GUEST_CS_SELECTOR,
3257 vmcs_readl(GUEST_CS_BASE) >> 4);
3258 break;
3259 case VCPU_SREG_ES:
3260 case VCPU_SREG_DS:
3261 case VCPU_SREG_GS:
3262 case VCPU_SREG_FS:
3263 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3264 break;
3265 case VCPU_SREG_SS:
3266 vmcs_write16(GUEST_SS_SELECTOR,
3267 vmcs_readl(GUEST_SS_BASE) >> 4);
3268 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
3269 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
3270 break;
3271 }
3272 }
3273 }
3274
3275 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3276 {
3277 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3278
3279 *db = (ar >> 14) & 1;
3280 *l = (ar >> 13) & 1;
3281 }
3282
3283 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3284 {
3285 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3286 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3287 }
3288
3289 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3290 {
3291 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3292 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3293 }
3294
3295 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3296 {
3297 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3298 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3299 }
3300
3301 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3302 {
3303 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3304 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3305 }
3306
3307 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3308 {
3309 struct kvm_segment var;
3310 u32 ar;
3311
3312 vmx_get_segment(vcpu, &var, seg);
3313 ar = vmx_segment_access_rights(&var);
3314
3315 if (var.base != (var.selector << 4))
3316 return false;
3317 if (var.limit < 0xffff)
3318 return false;
3319 if (((ar | (3 << AR_DPL_SHIFT)) & ~(AR_G_MASK | AR_DB_MASK)) != 0xf3)
3320 return false;
3321
3322 return true;
3323 }
3324
3325 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3326 {
3327 struct kvm_segment cs;
3328 unsigned int cs_rpl;
3329
3330 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3331 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3332
3333 if (cs.unusable)
3334 return false;
3335 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3336 return false;
3337 if (!cs.s)
3338 return false;
3339 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3340 if (cs.dpl > cs_rpl)
3341 return false;
3342 } else {
3343 if (cs.dpl != cs_rpl)
3344 return false;
3345 }
3346 if (!cs.present)
3347 return false;
3348
3349 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3350 return true;
3351 }
3352
3353 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3354 {
3355 struct kvm_segment ss;
3356 unsigned int ss_rpl;
3357
3358 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3359 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3360
3361 if (ss.unusable)
3362 return true;
3363 if (ss.type != 3 && ss.type != 7)
3364 return false;
3365 if (!ss.s)
3366 return false;
3367 if (ss.dpl != ss_rpl) /* DPL != RPL */
3368 return false;
3369 if (!ss.present)
3370 return false;
3371
3372 return true;
3373 }
3374
3375 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3376 {
3377 struct kvm_segment var;
3378 unsigned int rpl;
3379
3380 vmx_get_segment(vcpu, &var, seg);
3381 rpl = var.selector & SELECTOR_RPL_MASK;
3382
3383 if (var.unusable)
3384 return true;
3385 if (!var.s)
3386 return false;
3387 if (!var.present)
3388 return false;
3389 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3390 if (var.dpl < rpl) /* DPL < RPL */
3391 return false;
3392 }
3393
3394 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3395 * rights flags
3396 */
3397 return true;
3398 }
3399
3400 static bool tr_valid(struct kvm_vcpu *vcpu)
3401 {
3402 struct kvm_segment tr;
3403
3404 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3405
3406 if (tr.unusable)
3407 return false;
3408 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3409 return false;
3410 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3411 return false;
3412 if (!tr.present)
3413 return false;
3414
3415 return true;
3416 }
3417
3418 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3419 {
3420 struct kvm_segment ldtr;
3421
3422 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3423
3424 if (ldtr.unusable)
3425 return true;
3426 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3427 return false;
3428 if (ldtr.type != 2)
3429 return false;
3430 if (!ldtr.present)
3431 return false;
3432
3433 return true;
3434 }
3435
3436 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3437 {
3438 struct kvm_segment cs, ss;
3439
3440 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3441 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3442
3443 return ((cs.selector & SELECTOR_RPL_MASK) ==
3444 (ss.selector & SELECTOR_RPL_MASK));
3445 }
3446
3447 /*
3448 * Check if guest state is valid. Returns true if valid, false if
3449 * not.
3450 * We assume that registers are always usable
3451 */
3452 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3453 {
3454 /* real mode guest state checks */
3455 if (!is_protmode(vcpu)) {
3456 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3457 return false;
3458 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3459 return false;
3460 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3461 return false;
3462 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3463 return false;
3464 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3465 return false;
3466 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3467 return false;
3468 } else {
3469 /* protected mode guest state checks */
3470 if (!cs_ss_rpl_check(vcpu))
3471 return false;
3472 if (!code_segment_valid(vcpu))
3473 return false;
3474 if (!stack_segment_valid(vcpu))
3475 return false;
3476 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3477 return false;
3478 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3479 return false;
3480 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3481 return false;
3482 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3483 return false;
3484 if (!tr_valid(vcpu))
3485 return false;
3486 if (!ldtr_valid(vcpu))
3487 return false;
3488 }
3489 /* TODO:
3490 * - Add checks on RIP
3491 * - Add checks on RFLAGS
3492 */
3493
3494 return true;
3495 }
3496
3497 static int init_rmode_tss(struct kvm *kvm)
3498 {
3499 gfn_t fn;
3500 u16 data = 0;
3501 int r, idx, ret = 0;
3502
3503 idx = srcu_read_lock(&kvm->srcu);
3504 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3505 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3506 if (r < 0)
3507 goto out;
3508 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3509 r = kvm_write_guest_page(kvm, fn++, &data,
3510 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3511 if (r < 0)
3512 goto out;
3513 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3514 if (r < 0)
3515 goto out;
3516 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3517 if (r < 0)
3518 goto out;
3519 data = ~0;
3520 r = kvm_write_guest_page(kvm, fn, &data,
3521 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3522 sizeof(u8));
3523 if (r < 0)
3524 goto out;
3525
3526 ret = 1;
3527 out:
3528 srcu_read_unlock(&kvm->srcu, idx);
3529 return ret;
3530 }
3531
3532 static int init_rmode_identity_map(struct kvm *kvm)
3533 {
3534 int i, idx, r, ret;
3535 pfn_t identity_map_pfn;
3536 u32 tmp;
3537
3538 if (!enable_ept)
3539 return 1;
3540 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3541 printk(KERN_ERR "EPT: identity-mapping pagetable "
3542 "haven't been allocated!\n");
3543 return 0;
3544 }
3545 if (likely(kvm->arch.ept_identity_pagetable_done))
3546 return 1;
3547 ret = 0;
3548 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3549 idx = srcu_read_lock(&kvm->srcu);
3550 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3551 if (r < 0)
3552 goto out;
3553 /* Set up identity-mapping pagetable for EPT in real mode */
3554 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3555 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3556 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3557 r = kvm_write_guest_page(kvm, identity_map_pfn,
3558 &tmp, i * sizeof(tmp), sizeof(tmp));
3559 if (r < 0)
3560 goto out;
3561 }
3562 kvm->arch.ept_identity_pagetable_done = true;
3563 ret = 1;
3564 out:
3565 srcu_read_unlock(&kvm->srcu, idx);
3566 return ret;
3567 }
3568
3569 static void seg_setup(int seg)
3570 {
3571 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3572 unsigned int ar;
3573
3574 vmcs_write16(sf->selector, 0);
3575 vmcs_writel(sf->base, 0);
3576 vmcs_write32(sf->limit, 0xffff);
3577 if (enable_unrestricted_guest) {
3578 ar = 0x93;
3579 if (seg == VCPU_SREG_CS)
3580 ar |= 0x08; /* code segment */
3581 } else
3582 ar = 0xf3;
3583
3584 vmcs_write32(sf->ar_bytes, ar);
3585 }
3586
3587 static int alloc_apic_access_page(struct kvm *kvm)
3588 {
3589 struct page *page;
3590 struct kvm_userspace_memory_region kvm_userspace_mem;
3591 int r = 0;
3592
3593 mutex_lock(&kvm->slots_lock);
3594 if (kvm->arch.apic_access_page)
3595 goto out;
3596 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3597 kvm_userspace_mem.flags = 0;
3598 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3599 kvm_userspace_mem.memory_size = PAGE_SIZE;
3600 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3601 if (r)
3602 goto out;
3603
3604 page = gfn_to_page(kvm, 0xfee00);
3605 if (is_error_page(page)) {
3606 r = -EFAULT;
3607 goto out;
3608 }
3609
3610 kvm->arch.apic_access_page = page;
3611 out:
3612 mutex_unlock(&kvm->slots_lock);
3613 return r;
3614 }
3615
3616 static int alloc_identity_pagetable(struct kvm *kvm)
3617 {
3618 struct page *page;
3619 struct kvm_userspace_memory_region kvm_userspace_mem;
3620 int r = 0;
3621
3622 mutex_lock(&kvm->slots_lock);
3623 if (kvm->arch.ept_identity_pagetable)
3624 goto out;
3625 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3626 kvm_userspace_mem.flags = 0;
3627 kvm_userspace_mem.guest_phys_addr =
3628 kvm->arch.ept_identity_map_addr;
3629 kvm_userspace_mem.memory_size = PAGE_SIZE;
3630 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3631 if (r)
3632 goto out;
3633
3634 page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3635 if (is_error_page(page)) {
3636 r = -EFAULT;
3637 goto out;
3638 }
3639
3640 kvm->arch.ept_identity_pagetable = page;
3641 out:
3642 mutex_unlock(&kvm->slots_lock);
3643 return r;
3644 }
3645
3646 static void allocate_vpid(struct vcpu_vmx *vmx)
3647 {
3648 int vpid;
3649
3650 vmx->vpid = 0;
3651 if (!enable_vpid)
3652 return;
3653 spin_lock(&vmx_vpid_lock);
3654 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3655 if (vpid < VMX_NR_VPIDS) {
3656 vmx->vpid = vpid;
3657 __set_bit(vpid, vmx_vpid_bitmap);
3658 }
3659 spin_unlock(&vmx_vpid_lock);
3660 }
3661
3662 static void free_vpid(struct vcpu_vmx *vmx)
3663 {
3664 if (!enable_vpid)
3665 return;
3666 spin_lock(&vmx_vpid_lock);
3667 if (vmx->vpid != 0)
3668 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3669 spin_unlock(&vmx_vpid_lock);
3670 }
3671
3672 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3673 {
3674 int f = sizeof(unsigned long);
3675
3676 if (!cpu_has_vmx_msr_bitmap())
3677 return;
3678
3679 /*
3680 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3681 * have the write-low and read-high bitmap offsets the wrong way round.
3682 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3683 */
3684 if (msr <= 0x1fff) {
3685 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3686 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3687 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3688 msr &= 0x1fff;
3689 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3690 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3691 }
3692 }
3693
3694 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3695 {
3696 if (!longmode_only)
3697 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3698 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3699 }
3700
3701 /*
3702 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3703 * will not change in the lifetime of the guest.
3704 * Note that host-state that does change is set elsewhere. E.g., host-state
3705 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3706 */
3707 static void vmx_set_constant_host_state(void)
3708 {
3709 u32 low32, high32;
3710 unsigned long tmpl;
3711 struct desc_ptr dt;
3712
3713 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
3714 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3715 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3716
3717 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3718 #ifdef CONFIG_X86_64
3719 /*
3720 * Load null selectors, so we can avoid reloading them in
3721 * __vmx_load_host_state(), in case userspace uses the null selectors
3722 * too (the expected case).
3723 */
3724 vmcs_write16(HOST_DS_SELECTOR, 0);
3725 vmcs_write16(HOST_ES_SELECTOR, 0);
3726 #else
3727 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3728 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3729 #endif
3730 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3731 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3732
3733 native_store_idt(&dt);
3734 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3735
3736 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
3737
3738 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3739 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3740 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3741 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3742
3743 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3744 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3745 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3746 }
3747 }
3748
3749 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3750 {
3751 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3752 if (enable_ept)
3753 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3754 if (is_guest_mode(&vmx->vcpu))
3755 vmx->vcpu.arch.cr4_guest_owned_bits &=
3756 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3757 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3758 }
3759
3760 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3761 {
3762 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3763 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3764 exec_control &= ~CPU_BASED_TPR_SHADOW;
3765 #ifdef CONFIG_X86_64
3766 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3767 CPU_BASED_CR8_LOAD_EXITING;
3768 #endif
3769 }
3770 if (!enable_ept)
3771 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3772 CPU_BASED_CR3_LOAD_EXITING |
3773 CPU_BASED_INVLPG_EXITING;
3774 return exec_control;
3775 }
3776
3777 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3778 {
3779 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3780 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3781 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3782 if (vmx->vpid == 0)
3783 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3784 if (!enable_ept) {
3785 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3786 enable_unrestricted_guest = 0;
3787 /* Enable INVPCID for non-ept guests may cause performance regression. */
3788 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3789 }
3790 if (!enable_unrestricted_guest)
3791 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3792 if (!ple_gap)
3793 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3794 return exec_control;
3795 }
3796
3797 static void ept_set_mmio_spte_mask(void)
3798 {
3799 /*
3800 * EPT Misconfigurations can be generated if the value of bits 2:0
3801 * of an EPT paging-structure entry is 110b (write/execute).
3802 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3803 * spte.
3804 */
3805 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3806 }
3807
3808 /*
3809 * Sets up the vmcs for emulated real mode.
3810 */
3811 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3812 {
3813 #ifdef CONFIG_X86_64
3814 unsigned long a;
3815 #endif
3816 int i;
3817
3818 /* I/O */
3819 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3820 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3821
3822 if (cpu_has_vmx_msr_bitmap())
3823 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3824
3825 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3826
3827 /* Control */
3828 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3829 vmcs_config.pin_based_exec_ctrl);
3830
3831 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
3832
3833 if (cpu_has_secondary_exec_ctrls()) {
3834 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3835 vmx_secondary_exec_control(vmx));
3836 }
3837
3838 if (ple_gap) {
3839 vmcs_write32(PLE_GAP, ple_gap);
3840 vmcs_write32(PLE_WINDOW, ple_window);
3841 }
3842
3843 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3844 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
3845 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3846
3847 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3848 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
3849 vmx_set_constant_host_state();
3850 #ifdef CONFIG_X86_64
3851 rdmsrl(MSR_FS_BASE, a);
3852 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3853 rdmsrl(MSR_GS_BASE, a);
3854 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3855 #else
3856 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3857 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3858 #endif
3859
3860 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3861 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3862 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3863 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3864 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3865
3866 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3867 u32 msr_low, msr_high;
3868 u64 host_pat;
3869 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3870 host_pat = msr_low | ((u64) msr_high << 32);
3871 /* Write the default value follow host pat */
3872 vmcs_write64(GUEST_IA32_PAT, host_pat);
3873 /* Keep arch.pat sync with GUEST_IA32_PAT */
3874 vmx->vcpu.arch.pat = host_pat;
3875 }
3876
3877 for (i = 0; i < NR_VMX_MSR; ++i) {
3878 u32 index = vmx_msr_index[i];
3879 u32 data_low, data_high;
3880 int j = vmx->nmsrs;
3881
3882 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3883 continue;
3884 if (wrmsr_safe(index, data_low, data_high) < 0)
3885 continue;
3886 vmx->guest_msrs[j].index = i;
3887 vmx->guest_msrs[j].data = 0;
3888 vmx->guest_msrs[j].mask = -1ull;
3889 ++vmx->nmsrs;
3890 }
3891
3892 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3893
3894 /* 22.2.1, 20.8.1 */
3895 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3896
3897 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3898 set_cr4_guest_host_mask(vmx);
3899
3900 kvm_write_tsc(&vmx->vcpu, 0);
3901
3902 return 0;
3903 }
3904
3905 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3906 {
3907 struct vcpu_vmx *vmx = to_vmx(vcpu);
3908 u64 msr;
3909 int ret;
3910
3911 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3912
3913 vmx->rmode.vm86_active = 0;
3914
3915 vmx->soft_vnmi_blocked = 0;
3916
3917 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3918 kvm_set_cr8(&vmx->vcpu, 0);
3919 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3920 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3921 msr |= MSR_IA32_APICBASE_BSP;
3922 kvm_set_apic_base(&vmx->vcpu, msr);
3923
3924 ret = fx_init(&vmx->vcpu);
3925 if (ret != 0)
3926 goto out;
3927
3928 vmx_segment_cache_clear(vmx);
3929
3930 seg_setup(VCPU_SREG_CS);
3931 /*
3932 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3933 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3934 */
3935 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3936 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3937 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3938 } else {
3939 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3940 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3941 }
3942
3943 seg_setup(VCPU_SREG_DS);
3944 seg_setup(VCPU_SREG_ES);
3945 seg_setup(VCPU_SREG_FS);
3946 seg_setup(VCPU_SREG_GS);
3947 seg_setup(VCPU_SREG_SS);
3948
3949 vmcs_write16(GUEST_TR_SELECTOR, 0);
3950 vmcs_writel(GUEST_TR_BASE, 0);
3951 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3952 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3953
3954 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3955 vmcs_writel(GUEST_LDTR_BASE, 0);
3956 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3957 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3958
3959 vmcs_write32(GUEST_SYSENTER_CS, 0);
3960 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3961 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3962
3963 vmcs_writel(GUEST_RFLAGS, 0x02);
3964 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3965 kvm_rip_write(vcpu, 0xfff0);
3966 else
3967 kvm_rip_write(vcpu, 0);
3968 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3969
3970 vmcs_writel(GUEST_GDTR_BASE, 0);
3971 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3972
3973 vmcs_writel(GUEST_IDTR_BASE, 0);
3974 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3975
3976 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3977 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3978 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3979
3980 /* Special registers */
3981 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3982
3983 setup_msrs(vmx);
3984
3985 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3986
3987 if (cpu_has_vmx_tpr_shadow()) {
3988 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3989 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3990 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3991 __pa(vmx->vcpu.arch.apic->regs));
3992 vmcs_write32(TPR_THRESHOLD, 0);
3993 }
3994
3995 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3996 vmcs_write64(APIC_ACCESS_ADDR,
3997 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
3998
3999 if (vmx->vpid != 0)
4000 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4001
4002 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4003 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4004 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4005 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4006 vmx_set_cr4(&vmx->vcpu, 0);
4007 vmx_set_efer(&vmx->vcpu, 0);
4008 vmx_fpu_activate(&vmx->vcpu);
4009 update_exception_bitmap(&vmx->vcpu);
4010
4011 vpid_sync_context(vmx);
4012
4013 ret = 0;
4014
4015 /* HACK: Don't enable emulation on guest boot/reset */
4016 vmx->emulation_required = 0;
4017
4018 out:
4019 return ret;
4020 }
4021
4022 /*
4023 * In nested virtualization, check if L1 asked to exit on external interrupts.
4024 * For most existing hypervisors, this will always return true.
4025 */
4026 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4027 {
4028 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4029 PIN_BASED_EXT_INTR_MASK;
4030 }
4031
4032 static void enable_irq_window(struct kvm_vcpu *vcpu)
4033 {
4034 u32 cpu_based_vm_exec_control;
4035 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4036 /*
4037 * We get here if vmx_interrupt_allowed() said we can't
4038 * inject to L1 now because L2 must run. Ask L2 to exit
4039 * right after entry, so we can inject to L1 more promptly.
4040 */
4041 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
4042 return;
4043 }
4044
4045 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4046 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4047 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4048 }
4049
4050 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4051 {
4052 u32 cpu_based_vm_exec_control;
4053
4054 if (!cpu_has_virtual_nmis()) {
4055 enable_irq_window(vcpu);
4056 return;
4057 }
4058
4059 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4060 enable_irq_window(vcpu);
4061 return;
4062 }
4063 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4064 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4065 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4066 }
4067
4068 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4069 {
4070 struct vcpu_vmx *vmx = to_vmx(vcpu);
4071 uint32_t intr;
4072 int irq = vcpu->arch.interrupt.nr;
4073
4074 trace_kvm_inj_virq(irq);
4075
4076 ++vcpu->stat.irq_injections;
4077 if (vmx->rmode.vm86_active) {
4078 int inc_eip = 0;
4079 if (vcpu->arch.interrupt.soft)
4080 inc_eip = vcpu->arch.event_exit_inst_len;
4081 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4082 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4083 return;
4084 }
4085 intr = irq | INTR_INFO_VALID_MASK;
4086 if (vcpu->arch.interrupt.soft) {
4087 intr |= INTR_TYPE_SOFT_INTR;
4088 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4089 vmx->vcpu.arch.event_exit_inst_len);
4090 } else
4091 intr |= INTR_TYPE_EXT_INTR;
4092 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4093 }
4094
4095 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4096 {
4097 struct vcpu_vmx *vmx = to_vmx(vcpu);
4098
4099 if (is_guest_mode(vcpu))
4100 return;
4101
4102 if (!cpu_has_virtual_nmis()) {
4103 /*
4104 * Tracking the NMI-blocked state in software is built upon
4105 * finding the next open IRQ window. This, in turn, depends on
4106 * well-behaving guests: They have to keep IRQs disabled at
4107 * least as long as the NMI handler runs. Otherwise we may
4108 * cause NMI nesting, maybe breaking the guest. But as this is
4109 * highly unlikely, we can live with the residual risk.
4110 */
4111 vmx->soft_vnmi_blocked = 1;
4112 vmx->vnmi_blocked_time = 0;
4113 }
4114
4115 ++vcpu->stat.nmi_injections;
4116 vmx->nmi_known_unmasked = false;
4117 if (vmx->rmode.vm86_active) {
4118 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4119 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4120 return;
4121 }
4122 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4123 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4124 }
4125
4126 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4127 {
4128 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4129 return 0;
4130
4131 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4132 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4133 | GUEST_INTR_STATE_NMI));
4134 }
4135
4136 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4137 {
4138 if (!cpu_has_virtual_nmis())
4139 return to_vmx(vcpu)->soft_vnmi_blocked;
4140 if (to_vmx(vcpu)->nmi_known_unmasked)
4141 return false;
4142 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4143 }
4144
4145 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4146 {
4147 struct vcpu_vmx *vmx = to_vmx(vcpu);
4148
4149 if (!cpu_has_virtual_nmis()) {
4150 if (vmx->soft_vnmi_blocked != masked) {
4151 vmx->soft_vnmi_blocked = masked;
4152 vmx->vnmi_blocked_time = 0;
4153 }
4154 } else {
4155 vmx->nmi_known_unmasked = !masked;
4156 if (masked)
4157 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4158 GUEST_INTR_STATE_NMI);
4159 else
4160 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4161 GUEST_INTR_STATE_NMI);
4162 }
4163 }
4164
4165 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4166 {
4167 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4168 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4169 if (to_vmx(vcpu)->nested.nested_run_pending ||
4170 (vmcs12->idt_vectoring_info_field &
4171 VECTORING_INFO_VALID_MASK))
4172 return 0;
4173 nested_vmx_vmexit(vcpu);
4174 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4175 vmcs12->vm_exit_intr_info = 0;
4176 /* fall through to normal code, but now in L1, not L2 */
4177 }
4178
4179 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4180 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4181 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4182 }
4183
4184 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4185 {
4186 int ret;
4187 struct kvm_userspace_memory_region tss_mem = {
4188 .slot = TSS_PRIVATE_MEMSLOT,
4189 .guest_phys_addr = addr,
4190 .memory_size = PAGE_SIZE * 3,
4191 .flags = 0,
4192 };
4193
4194 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4195 if (ret)
4196 return ret;
4197 kvm->arch.tss_addr = addr;
4198 if (!init_rmode_tss(kvm))
4199 return -ENOMEM;
4200
4201 return 0;
4202 }
4203
4204 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4205 int vec, u32 err_code)
4206 {
4207 /*
4208 * Instruction with address size override prefix opcode 0x67
4209 * Cause the #SS fault with 0 error code in VM86 mode.
4210 */
4211 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
4212 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
4213 return 1;
4214 /*
4215 * Forward all other exceptions that are valid in real mode.
4216 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4217 * the required debugging infrastructure rework.
4218 */
4219 switch (vec) {
4220 case DB_VECTOR:
4221 if (vcpu->guest_debug &
4222 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4223 return 0;
4224 kvm_queue_exception(vcpu, vec);
4225 return 1;
4226 case BP_VECTOR:
4227 /*
4228 * Update instruction length as we may reinject the exception
4229 * from user space while in guest debugging mode.
4230 */
4231 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4232 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4233 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4234 return 0;
4235 /* fall through */
4236 case DE_VECTOR:
4237 case OF_VECTOR:
4238 case BR_VECTOR:
4239 case UD_VECTOR:
4240 case DF_VECTOR:
4241 case SS_VECTOR:
4242 case GP_VECTOR:
4243 case MF_VECTOR:
4244 kvm_queue_exception(vcpu, vec);
4245 return 1;
4246 }
4247 return 0;
4248 }
4249
4250 /*
4251 * Trigger machine check on the host. We assume all the MSRs are already set up
4252 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4253 * We pass a fake environment to the machine check handler because we want
4254 * the guest to be always treated like user space, no matter what context
4255 * it used internally.
4256 */
4257 static void kvm_machine_check(void)
4258 {
4259 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4260 struct pt_regs regs = {
4261 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4262 .flags = X86_EFLAGS_IF,
4263 };
4264
4265 do_machine_check(&regs, 0);
4266 #endif
4267 }
4268
4269 static int handle_machine_check(struct kvm_vcpu *vcpu)
4270 {
4271 /* already handled by vcpu_run */
4272 return 1;
4273 }
4274
4275 static int handle_exception(struct kvm_vcpu *vcpu)
4276 {
4277 struct vcpu_vmx *vmx = to_vmx(vcpu);
4278 struct kvm_run *kvm_run = vcpu->run;
4279 u32 intr_info, ex_no, error_code;
4280 unsigned long cr2, rip, dr6;
4281 u32 vect_info;
4282 enum emulation_result er;
4283
4284 vect_info = vmx->idt_vectoring_info;
4285 intr_info = vmx->exit_intr_info;
4286
4287 if (is_machine_check(intr_info))
4288 return handle_machine_check(vcpu);
4289
4290 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4291 !is_page_fault(intr_info)) {
4292 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4293 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4294 vcpu->run->internal.ndata = 2;
4295 vcpu->run->internal.data[0] = vect_info;
4296 vcpu->run->internal.data[1] = intr_info;
4297 return 0;
4298 }
4299
4300 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4301 return 1; /* already handled by vmx_vcpu_run() */
4302
4303 if (is_no_device(intr_info)) {
4304 vmx_fpu_activate(vcpu);
4305 return 1;
4306 }
4307
4308 if (is_invalid_opcode(intr_info)) {
4309 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4310 if (er != EMULATE_DONE)
4311 kvm_queue_exception(vcpu, UD_VECTOR);
4312 return 1;
4313 }
4314
4315 error_code = 0;
4316 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4317 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4318 if (is_page_fault(intr_info)) {
4319 /* EPT won't cause page fault directly */
4320 BUG_ON(enable_ept);
4321 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4322 trace_kvm_page_fault(cr2, error_code);
4323
4324 if (kvm_event_needs_reinjection(vcpu))
4325 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4326 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4327 }
4328
4329 if (vmx->rmode.vm86_active &&
4330 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
4331 error_code)) {
4332 if (vcpu->arch.halt_request) {
4333 vcpu->arch.halt_request = 0;
4334 return kvm_emulate_halt(vcpu);
4335 }
4336 return 1;
4337 }
4338
4339 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4340 switch (ex_no) {
4341 case DB_VECTOR:
4342 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4343 if (!(vcpu->guest_debug &
4344 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4345 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4346 kvm_queue_exception(vcpu, DB_VECTOR);
4347 return 1;
4348 }
4349 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4350 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4351 /* fall through */
4352 case BP_VECTOR:
4353 /*
4354 * Update instruction length as we may reinject #BP from
4355 * user space while in guest debugging mode. Reading it for
4356 * #DB as well causes no harm, it is not used in that case.
4357 */
4358 vmx->vcpu.arch.event_exit_inst_len =
4359 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4360 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4361 rip = kvm_rip_read(vcpu);
4362 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4363 kvm_run->debug.arch.exception = ex_no;
4364 break;
4365 default:
4366 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4367 kvm_run->ex.exception = ex_no;
4368 kvm_run->ex.error_code = error_code;
4369 break;
4370 }
4371 return 0;
4372 }
4373
4374 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4375 {
4376 ++vcpu->stat.irq_exits;
4377 return 1;
4378 }
4379
4380 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4381 {
4382 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4383 return 0;
4384 }
4385
4386 static int handle_io(struct kvm_vcpu *vcpu)
4387 {
4388 unsigned long exit_qualification;
4389 int size, in, string;
4390 unsigned port;
4391
4392 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4393 string = (exit_qualification & 16) != 0;
4394 in = (exit_qualification & 8) != 0;
4395
4396 ++vcpu->stat.io_exits;
4397
4398 if (string || in)
4399 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4400
4401 port = exit_qualification >> 16;
4402 size = (exit_qualification & 7) + 1;
4403 skip_emulated_instruction(vcpu);
4404
4405 return kvm_fast_pio_out(vcpu, size, port);
4406 }
4407
4408 static void
4409 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4410 {
4411 /*
4412 * Patch in the VMCALL instruction:
4413 */
4414 hypercall[0] = 0x0f;
4415 hypercall[1] = 0x01;
4416 hypercall[2] = 0xc1;
4417 }
4418
4419 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4420 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4421 {
4422 if (to_vmx(vcpu)->nested.vmxon &&
4423 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4424 return 1;
4425
4426 if (is_guest_mode(vcpu)) {
4427 /*
4428 * We get here when L2 changed cr0 in a way that did not change
4429 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4430 * but did change L0 shadowed bits. This can currently happen
4431 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4432 * loading) while pretending to allow the guest to change it.
4433 */
4434 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4435 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4436 return 1;
4437 vmcs_writel(CR0_READ_SHADOW, val);
4438 return 0;
4439 } else
4440 return kvm_set_cr0(vcpu, val);
4441 }
4442
4443 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4444 {
4445 if (is_guest_mode(vcpu)) {
4446 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4447 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4448 return 1;
4449 vmcs_writel(CR4_READ_SHADOW, val);
4450 return 0;
4451 } else
4452 return kvm_set_cr4(vcpu, val);
4453 }
4454
4455 /* called to set cr0 as approriate for clts instruction exit. */
4456 static void handle_clts(struct kvm_vcpu *vcpu)
4457 {
4458 if (is_guest_mode(vcpu)) {
4459 /*
4460 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4461 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4462 * just pretend it's off (also in arch.cr0 for fpu_activate).
4463 */
4464 vmcs_writel(CR0_READ_SHADOW,
4465 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4466 vcpu->arch.cr0 &= ~X86_CR0_TS;
4467 } else
4468 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4469 }
4470
4471 static int handle_cr(struct kvm_vcpu *vcpu)
4472 {
4473 unsigned long exit_qualification, val;
4474 int cr;
4475 int reg;
4476 int err;
4477
4478 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4479 cr = exit_qualification & 15;
4480 reg = (exit_qualification >> 8) & 15;
4481 switch ((exit_qualification >> 4) & 3) {
4482 case 0: /* mov to cr */
4483 val = kvm_register_read(vcpu, reg);
4484 trace_kvm_cr_write(cr, val);
4485 switch (cr) {
4486 case 0:
4487 err = handle_set_cr0(vcpu, val);
4488 kvm_complete_insn_gp(vcpu, err);
4489 return 1;
4490 case 3:
4491 err = kvm_set_cr3(vcpu, val);
4492 kvm_complete_insn_gp(vcpu, err);
4493 return 1;
4494 case 4:
4495 err = handle_set_cr4(vcpu, val);
4496 kvm_complete_insn_gp(vcpu, err);
4497 return 1;
4498 case 8: {
4499 u8 cr8_prev = kvm_get_cr8(vcpu);
4500 u8 cr8 = kvm_register_read(vcpu, reg);
4501 err = kvm_set_cr8(vcpu, cr8);
4502 kvm_complete_insn_gp(vcpu, err);
4503 if (irqchip_in_kernel(vcpu->kvm))
4504 return 1;
4505 if (cr8_prev <= cr8)
4506 return 1;
4507 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4508 return 0;
4509 }
4510 }
4511 break;
4512 case 2: /* clts */
4513 handle_clts(vcpu);
4514 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4515 skip_emulated_instruction(vcpu);
4516 vmx_fpu_activate(vcpu);
4517 return 1;
4518 case 1: /*mov from cr*/
4519 switch (cr) {
4520 case 3:
4521 val = kvm_read_cr3(vcpu);
4522 kvm_register_write(vcpu, reg, val);
4523 trace_kvm_cr_read(cr, val);
4524 skip_emulated_instruction(vcpu);
4525 return 1;
4526 case 8:
4527 val = kvm_get_cr8(vcpu);
4528 kvm_register_write(vcpu, reg, val);
4529 trace_kvm_cr_read(cr, val);
4530 skip_emulated_instruction(vcpu);
4531 return 1;
4532 }
4533 break;
4534 case 3: /* lmsw */
4535 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4536 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4537 kvm_lmsw(vcpu, val);
4538
4539 skip_emulated_instruction(vcpu);
4540 return 1;
4541 default:
4542 break;
4543 }
4544 vcpu->run->exit_reason = 0;
4545 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4546 (int)(exit_qualification >> 4) & 3, cr);
4547 return 0;
4548 }
4549
4550 static int handle_dr(struct kvm_vcpu *vcpu)
4551 {
4552 unsigned long exit_qualification;
4553 int dr, reg;
4554
4555 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4556 if (!kvm_require_cpl(vcpu, 0))
4557 return 1;
4558 dr = vmcs_readl(GUEST_DR7);
4559 if (dr & DR7_GD) {
4560 /*
4561 * As the vm-exit takes precedence over the debug trap, we
4562 * need to emulate the latter, either for the host or the
4563 * guest debugging itself.
4564 */
4565 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4566 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4567 vcpu->run->debug.arch.dr7 = dr;
4568 vcpu->run->debug.arch.pc =
4569 vmcs_readl(GUEST_CS_BASE) +
4570 vmcs_readl(GUEST_RIP);
4571 vcpu->run->debug.arch.exception = DB_VECTOR;
4572 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4573 return 0;
4574 } else {
4575 vcpu->arch.dr7 &= ~DR7_GD;
4576 vcpu->arch.dr6 |= DR6_BD;
4577 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4578 kvm_queue_exception(vcpu, DB_VECTOR);
4579 return 1;
4580 }
4581 }
4582
4583 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4584 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4585 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4586 if (exit_qualification & TYPE_MOV_FROM_DR) {
4587 unsigned long val;
4588 if (!kvm_get_dr(vcpu, dr, &val))
4589 kvm_register_write(vcpu, reg, val);
4590 } else
4591 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4592 skip_emulated_instruction(vcpu);
4593 return 1;
4594 }
4595
4596 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4597 {
4598 vmcs_writel(GUEST_DR7, val);
4599 }
4600
4601 static int handle_cpuid(struct kvm_vcpu *vcpu)
4602 {
4603 kvm_emulate_cpuid(vcpu);
4604 return 1;
4605 }
4606
4607 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4608 {
4609 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4610 u64 data;
4611
4612 if (vmx_get_msr(vcpu, ecx, &data)) {
4613 trace_kvm_msr_read_ex(ecx);
4614 kvm_inject_gp(vcpu, 0);
4615 return 1;
4616 }
4617
4618 trace_kvm_msr_read(ecx, data);
4619
4620 /* FIXME: handling of bits 32:63 of rax, rdx */
4621 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4622 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4623 skip_emulated_instruction(vcpu);
4624 return 1;
4625 }
4626
4627 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4628 {
4629 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4630 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4631 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4632
4633 if (vmx_set_msr(vcpu, ecx, data) != 0) {
4634 trace_kvm_msr_write_ex(ecx, data);
4635 kvm_inject_gp(vcpu, 0);
4636 return 1;
4637 }
4638
4639 trace_kvm_msr_write(ecx, data);
4640 skip_emulated_instruction(vcpu);
4641 return 1;
4642 }
4643
4644 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4645 {
4646 kvm_make_request(KVM_REQ_EVENT, vcpu);
4647 return 1;
4648 }
4649
4650 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4651 {
4652 u32 cpu_based_vm_exec_control;
4653
4654 /* clear pending irq */
4655 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4656 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4657 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4658
4659 kvm_make_request(KVM_REQ_EVENT, vcpu);
4660
4661 ++vcpu->stat.irq_window_exits;
4662
4663 /*
4664 * If the user space waits to inject interrupts, exit as soon as
4665 * possible
4666 */
4667 if (!irqchip_in_kernel(vcpu->kvm) &&
4668 vcpu->run->request_interrupt_window &&
4669 !kvm_cpu_has_interrupt(vcpu)) {
4670 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4671 return 0;
4672 }
4673 return 1;
4674 }
4675
4676 static int handle_halt(struct kvm_vcpu *vcpu)
4677 {
4678 skip_emulated_instruction(vcpu);
4679 return kvm_emulate_halt(vcpu);
4680 }
4681
4682 static int handle_vmcall(struct kvm_vcpu *vcpu)
4683 {
4684 skip_emulated_instruction(vcpu);
4685 kvm_emulate_hypercall(vcpu);
4686 return 1;
4687 }
4688
4689 static int handle_invd(struct kvm_vcpu *vcpu)
4690 {
4691 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4692 }
4693
4694 static int handle_invlpg(struct kvm_vcpu *vcpu)
4695 {
4696 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4697
4698 kvm_mmu_invlpg(vcpu, exit_qualification);
4699 skip_emulated_instruction(vcpu);
4700 return 1;
4701 }
4702
4703 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4704 {
4705 int err;
4706
4707 err = kvm_rdpmc(vcpu);
4708 kvm_complete_insn_gp(vcpu, err);
4709
4710 return 1;
4711 }
4712
4713 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4714 {
4715 skip_emulated_instruction(vcpu);
4716 kvm_emulate_wbinvd(vcpu);
4717 return 1;
4718 }
4719
4720 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4721 {
4722 u64 new_bv = kvm_read_edx_eax(vcpu);
4723 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4724
4725 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4726 skip_emulated_instruction(vcpu);
4727 return 1;
4728 }
4729
4730 static int handle_apic_access(struct kvm_vcpu *vcpu)
4731 {
4732 if (likely(fasteoi)) {
4733 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4734 int access_type, offset;
4735
4736 access_type = exit_qualification & APIC_ACCESS_TYPE;
4737 offset = exit_qualification & APIC_ACCESS_OFFSET;
4738 /*
4739 * Sane guest uses MOV to write EOI, with written value
4740 * not cared. So make a short-circuit here by avoiding
4741 * heavy instruction emulation.
4742 */
4743 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4744 (offset == APIC_EOI)) {
4745 kvm_lapic_set_eoi(vcpu);
4746 skip_emulated_instruction(vcpu);
4747 return 1;
4748 }
4749 }
4750 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4751 }
4752
4753 static int handle_task_switch(struct kvm_vcpu *vcpu)
4754 {
4755 struct vcpu_vmx *vmx = to_vmx(vcpu);
4756 unsigned long exit_qualification;
4757 bool has_error_code = false;
4758 u32 error_code = 0;
4759 u16 tss_selector;
4760 int reason, type, idt_v, idt_index;
4761
4762 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4763 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
4764 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4765
4766 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4767
4768 reason = (u32)exit_qualification >> 30;
4769 if (reason == TASK_SWITCH_GATE && idt_v) {
4770 switch (type) {
4771 case INTR_TYPE_NMI_INTR:
4772 vcpu->arch.nmi_injected = false;
4773 vmx_set_nmi_mask(vcpu, true);
4774 break;
4775 case INTR_TYPE_EXT_INTR:
4776 case INTR_TYPE_SOFT_INTR:
4777 kvm_clear_interrupt_queue(vcpu);
4778 break;
4779 case INTR_TYPE_HARD_EXCEPTION:
4780 if (vmx->idt_vectoring_info &
4781 VECTORING_INFO_DELIVER_CODE_MASK) {
4782 has_error_code = true;
4783 error_code =
4784 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4785 }
4786 /* fall through */
4787 case INTR_TYPE_SOFT_EXCEPTION:
4788 kvm_clear_exception_queue(vcpu);
4789 break;
4790 default:
4791 break;
4792 }
4793 }
4794 tss_selector = exit_qualification;
4795
4796 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4797 type != INTR_TYPE_EXT_INTR &&
4798 type != INTR_TYPE_NMI_INTR))
4799 skip_emulated_instruction(vcpu);
4800
4801 if (kvm_task_switch(vcpu, tss_selector,
4802 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
4803 has_error_code, error_code) == EMULATE_FAIL) {
4804 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4805 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4806 vcpu->run->internal.ndata = 0;
4807 return 0;
4808 }
4809
4810 /* clear all local breakpoint enable flags */
4811 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4812
4813 /*
4814 * TODO: What about debug traps on tss switch?
4815 * Are we supposed to inject them and update dr6?
4816 */
4817
4818 return 1;
4819 }
4820
4821 static int handle_ept_violation(struct kvm_vcpu *vcpu)
4822 {
4823 unsigned long exit_qualification;
4824 gpa_t gpa;
4825 u32 error_code;
4826 int gla_validity;
4827
4828 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4829
4830 if (exit_qualification & (1 << 6)) {
4831 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4832 return -EINVAL;
4833 }
4834
4835 gla_validity = (exit_qualification >> 7) & 0x3;
4836 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4837 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4838 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4839 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4840 vmcs_readl(GUEST_LINEAR_ADDRESS));
4841 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4842 (long unsigned int)exit_qualification);
4843 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4844 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4845 return 0;
4846 }
4847
4848 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4849 trace_kvm_page_fault(gpa, exit_qualification);
4850
4851 /* It is a write fault? */
4852 error_code = exit_qualification & (1U << 1);
4853 /* ept page table is present? */
4854 error_code |= (exit_qualification >> 3) & 0x1;
4855
4856 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
4857 }
4858
4859 static u64 ept_rsvd_mask(u64 spte, int level)
4860 {
4861 int i;
4862 u64 mask = 0;
4863
4864 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4865 mask |= (1ULL << i);
4866
4867 if (level > 2)
4868 /* bits 7:3 reserved */
4869 mask |= 0xf8;
4870 else if (level == 2) {
4871 if (spte & (1ULL << 7))
4872 /* 2MB ref, bits 20:12 reserved */
4873 mask |= 0x1ff000;
4874 else
4875 /* bits 6:3 reserved */
4876 mask |= 0x78;
4877 }
4878
4879 return mask;
4880 }
4881
4882 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4883 int level)
4884 {
4885 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4886
4887 /* 010b (write-only) */
4888 WARN_ON((spte & 0x7) == 0x2);
4889
4890 /* 110b (write/execute) */
4891 WARN_ON((spte & 0x7) == 0x6);
4892
4893 /* 100b (execute-only) and value not supported by logical processor */
4894 if (!cpu_has_vmx_ept_execute_only())
4895 WARN_ON((spte & 0x7) == 0x4);
4896
4897 /* not 000b */
4898 if ((spte & 0x7)) {
4899 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4900
4901 if (rsvd_bits != 0) {
4902 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4903 __func__, rsvd_bits);
4904 WARN_ON(1);
4905 }
4906
4907 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4908 u64 ept_mem_type = (spte & 0x38) >> 3;
4909
4910 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4911 ept_mem_type == 7) {
4912 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4913 __func__, ept_mem_type);
4914 WARN_ON(1);
4915 }
4916 }
4917 }
4918 }
4919
4920 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4921 {
4922 u64 sptes[4];
4923 int nr_sptes, i, ret;
4924 gpa_t gpa;
4925
4926 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4927
4928 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4929 if (likely(ret == 1))
4930 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4931 EMULATE_DONE;
4932 if (unlikely(!ret))
4933 return 1;
4934
4935 /* It is the real ept misconfig */
4936 printk(KERN_ERR "EPT: Misconfiguration.\n");
4937 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4938
4939 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4940
4941 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4942 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4943
4944 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4945 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4946
4947 return 0;
4948 }
4949
4950 static int handle_nmi_window(struct kvm_vcpu *vcpu)
4951 {
4952 u32 cpu_based_vm_exec_control;
4953
4954 /* clear pending NMI */
4955 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4956 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4957 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4958 ++vcpu->stat.nmi_window_exits;
4959 kvm_make_request(KVM_REQ_EVENT, vcpu);
4960
4961 return 1;
4962 }
4963
4964 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4965 {
4966 struct vcpu_vmx *vmx = to_vmx(vcpu);
4967 enum emulation_result err = EMULATE_DONE;
4968 int ret = 1;
4969 u32 cpu_exec_ctrl;
4970 bool intr_window_requested;
4971 unsigned count = 130;
4972
4973 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4974 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
4975
4976 while (!guest_state_valid(vcpu) && count-- != 0) {
4977 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
4978 return handle_interrupt_window(&vmx->vcpu);
4979
4980 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
4981 return 1;
4982
4983 err = emulate_instruction(vcpu, 0);
4984
4985 if (err == EMULATE_DO_MMIO) {
4986 ret = 0;
4987 goto out;
4988 }
4989
4990 if (err != EMULATE_DONE) {
4991 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4992 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4993 vcpu->run->internal.ndata = 0;
4994 return 0;
4995 }
4996
4997 if (signal_pending(current))
4998 goto out;
4999 if (need_resched())
5000 schedule();
5001 }
5002
5003 vmx->emulation_required = !guest_state_valid(vcpu);
5004 out:
5005 return ret;
5006 }
5007
5008 /*
5009 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5010 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5011 */
5012 static int handle_pause(struct kvm_vcpu *vcpu)
5013 {
5014 skip_emulated_instruction(vcpu);
5015 kvm_vcpu_on_spin(vcpu);
5016
5017 return 1;
5018 }
5019
5020 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5021 {
5022 kvm_queue_exception(vcpu, UD_VECTOR);
5023 return 1;
5024 }
5025
5026 /*
5027 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5028 * We could reuse a single VMCS for all the L2 guests, but we also want the
5029 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5030 * allows keeping them loaded on the processor, and in the future will allow
5031 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5032 * every entry if they never change.
5033 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5034 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5035 *
5036 * The following functions allocate and free a vmcs02 in this pool.
5037 */
5038
5039 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5040 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5041 {
5042 struct vmcs02_list *item;
5043 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5044 if (item->vmptr == vmx->nested.current_vmptr) {
5045 list_move(&item->list, &vmx->nested.vmcs02_pool);
5046 return &item->vmcs02;
5047 }
5048
5049 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5050 /* Recycle the least recently used VMCS. */
5051 item = list_entry(vmx->nested.vmcs02_pool.prev,
5052 struct vmcs02_list, list);
5053 item->vmptr = vmx->nested.current_vmptr;
5054 list_move(&item->list, &vmx->nested.vmcs02_pool);
5055 return &item->vmcs02;
5056 }
5057
5058 /* Create a new VMCS */
5059 item = (struct vmcs02_list *)
5060 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5061 if (!item)
5062 return NULL;
5063 item->vmcs02.vmcs = alloc_vmcs();
5064 if (!item->vmcs02.vmcs) {
5065 kfree(item);
5066 return NULL;
5067 }
5068 loaded_vmcs_init(&item->vmcs02);
5069 item->vmptr = vmx->nested.current_vmptr;
5070 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5071 vmx->nested.vmcs02_num++;
5072 return &item->vmcs02;
5073 }
5074
5075 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5076 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5077 {
5078 struct vmcs02_list *item;
5079 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5080 if (item->vmptr == vmptr) {
5081 free_loaded_vmcs(&item->vmcs02);
5082 list_del(&item->list);
5083 kfree(item);
5084 vmx->nested.vmcs02_num--;
5085 return;
5086 }
5087 }
5088
5089 /*
5090 * Free all VMCSs saved for this vcpu, except the one pointed by
5091 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5092 * currently used, if running L2), and vmcs01 when running L2.
5093 */
5094 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5095 {
5096 struct vmcs02_list *item, *n;
5097 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5098 if (vmx->loaded_vmcs != &item->vmcs02)
5099 free_loaded_vmcs(&item->vmcs02);
5100 list_del(&item->list);
5101 kfree(item);
5102 }
5103 vmx->nested.vmcs02_num = 0;
5104
5105 if (vmx->loaded_vmcs != &vmx->vmcs01)
5106 free_loaded_vmcs(&vmx->vmcs01);
5107 }
5108
5109 /*
5110 * Emulate the VMXON instruction.
5111 * Currently, we just remember that VMX is active, and do not save or even
5112 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5113 * do not currently need to store anything in that guest-allocated memory
5114 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5115 * argument is different from the VMXON pointer (which the spec says they do).
5116 */
5117 static int handle_vmon(struct kvm_vcpu *vcpu)
5118 {
5119 struct kvm_segment cs;
5120 struct vcpu_vmx *vmx = to_vmx(vcpu);
5121
5122 /* The Intel VMX Instruction Reference lists a bunch of bits that
5123 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5124 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5125 * Otherwise, we should fail with #UD. We test these now:
5126 */
5127 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5128 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5129 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5130 kvm_queue_exception(vcpu, UD_VECTOR);
5131 return 1;
5132 }
5133
5134 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5135 if (is_long_mode(vcpu) && !cs.l) {
5136 kvm_queue_exception(vcpu, UD_VECTOR);
5137 return 1;
5138 }
5139
5140 if (vmx_get_cpl(vcpu)) {
5141 kvm_inject_gp(vcpu, 0);
5142 return 1;
5143 }
5144
5145 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5146 vmx->nested.vmcs02_num = 0;
5147
5148 vmx->nested.vmxon = true;
5149
5150 skip_emulated_instruction(vcpu);
5151 return 1;
5152 }
5153
5154 /*
5155 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5156 * for running VMX instructions (except VMXON, whose prerequisites are
5157 * slightly different). It also specifies what exception to inject otherwise.
5158 */
5159 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5160 {
5161 struct kvm_segment cs;
5162 struct vcpu_vmx *vmx = to_vmx(vcpu);
5163
5164 if (!vmx->nested.vmxon) {
5165 kvm_queue_exception(vcpu, UD_VECTOR);
5166 return 0;
5167 }
5168
5169 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5170 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5171 (is_long_mode(vcpu) && !cs.l)) {
5172 kvm_queue_exception(vcpu, UD_VECTOR);
5173 return 0;
5174 }
5175
5176 if (vmx_get_cpl(vcpu)) {
5177 kvm_inject_gp(vcpu, 0);
5178 return 0;
5179 }
5180
5181 return 1;
5182 }
5183
5184 /*
5185 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5186 * just stops using VMX.
5187 */
5188 static void free_nested(struct vcpu_vmx *vmx)
5189 {
5190 if (!vmx->nested.vmxon)
5191 return;
5192 vmx->nested.vmxon = false;
5193 if (vmx->nested.current_vmptr != -1ull) {
5194 kunmap(vmx->nested.current_vmcs12_page);
5195 nested_release_page(vmx->nested.current_vmcs12_page);
5196 vmx->nested.current_vmptr = -1ull;
5197 vmx->nested.current_vmcs12 = NULL;
5198 }
5199 /* Unpin physical memory we referred to in current vmcs02 */
5200 if (vmx->nested.apic_access_page) {
5201 nested_release_page(vmx->nested.apic_access_page);
5202 vmx->nested.apic_access_page = 0;
5203 }
5204
5205 nested_free_all_saved_vmcss(vmx);
5206 }
5207
5208 /* Emulate the VMXOFF instruction */
5209 static int handle_vmoff(struct kvm_vcpu *vcpu)
5210 {
5211 if (!nested_vmx_check_permission(vcpu))
5212 return 1;
5213 free_nested(to_vmx(vcpu));
5214 skip_emulated_instruction(vcpu);
5215 return 1;
5216 }
5217
5218 /*
5219 * Decode the memory-address operand of a vmx instruction, as recorded on an
5220 * exit caused by such an instruction (run by a guest hypervisor).
5221 * On success, returns 0. When the operand is invalid, returns 1 and throws
5222 * #UD or #GP.
5223 */
5224 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5225 unsigned long exit_qualification,
5226 u32 vmx_instruction_info, gva_t *ret)
5227 {
5228 /*
5229 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5230 * Execution", on an exit, vmx_instruction_info holds most of the
5231 * addressing components of the operand. Only the displacement part
5232 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5233 * For how an actual address is calculated from all these components,
5234 * refer to Vol. 1, "Operand Addressing".
5235 */
5236 int scaling = vmx_instruction_info & 3;
5237 int addr_size = (vmx_instruction_info >> 7) & 7;
5238 bool is_reg = vmx_instruction_info & (1u << 10);
5239 int seg_reg = (vmx_instruction_info >> 15) & 7;
5240 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5241 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5242 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5243 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5244
5245 if (is_reg) {
5246 kvm_queue_exception(vcpu, UD_VECTOR);
5247 return 1;
5248 }
5249
5250 /* Addr = segment_base + offset */
5251 /* offset = base + [index * scale] + displacement */
5252 *ret = vmx_get_segment_base(vcpu, seg_reg);
5253 if (base_is_valid)
5254 *ret += kvm_register_read(vcpu, base_reg);
5255 if (index_is_valid)
5256 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5257 *ret += exit_qualification; /* holds the displacement */
5258
5259 if (addr_size == 1) /* 32 bit */
5260 *ret &= 0xffffffff;
5261
5262 /*
5263 * TODO: throw #GP (and return 1) in various cases that the VM*
5264 * instructions require it - e.g., offset beyond segment limit,
5265 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5266 * address, and so on. Currently these are not checked.
5267 */
5268 return 0;
5269 }
5270
5271 /*
5272 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5273 * set the success or error code of an emulated VMX instruction, as specified
5274 * by Vol 2B, VMX Instruction Reference, "Conventions".
5275 */
5276 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5277 {
5278 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5279 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5280 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5281 }
5282
5283 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5284 {
5285 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5286 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5287 X86_EFLAGS_SF | X86_EFLAGS_OF))
5288 | X86_EFLAGS_CF);
5289 }
5290
5291 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5292 u32 vm_instruction_error)
5293 {
5294 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5295 /*
5296 * failValid writes the error number to the current VMCS, which
5297 * can't be done there isn't a current VMCS.
5298 */
5299 nested_vmx_failInvalid(vcpu);
5300 return;
5301 }
5302 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5303 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5304 X86_EFLAGS_SF | X86_EFLAGS_OF))
5305 | X86_EFLAGS_ZF);
5306 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5307 }
5308
5309 /* Emulate the VMCLEAR instruction */
5310 static int handle_vmclear(struct kvm_vcpu *vcpu)
5311 {
5312 struct vcpu_vmx *vmx = to_vmx(vcpu);
5313 gva_t gva;
5314 gpa_t vmptr;
5315 struct vmcs12 *vmcs12;
5316 struct page *page;
5317 struct x86_exception e;
5318
5319 if (!nested_vmx_check_permission(vcpu))
5320 return 1;
5321
5322 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5323 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5324 return 1;
5325
5326 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5327 sizeof(vmptr), &e)) {
5328 kvm_inject_page_fault(vcpu, &e);
5329 return 1;
5330 }
5331
5332 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5333 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5334 skip_emulated_instruction(vcpu);
5335 return 1;
5336 }
5337
5338 if (vmptr == vmx->nested.current_vmptr) {
5339 kunmap(vmx->nested.current_vmcs12_page);
5340 nested_release_page(vmx->nested.current_vmcs12_page);
5341 vmx->nested.current_vmptr = -1ull;
5342 vmx->nested.current_vmcs12 = NULL;
5343 }
5344
5345 page = nested_get_page(vcpu, vmptr);
5346 if (page == NULL) {
5347 /*
5348 * For accurate processor emulation, VMCLEAR beyond available
5349 * physical memory should do nothing at all. However, it is
5350 * possible that a nested vmx bug, not a guest hypervisor bug,
5351 * resulted in this case, so let's shut down before doing any
5352 * more damage:
5353 */
5354 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5355 return 1;
5356 }
5357 vmcs12 = kmap(page);
5358 vmcs12->launch_state = 0;
5359 kunmap(page);
5360 nested_release_page(page);
5361
5362 nested_free_vmcs02(vmx, vmptr);
5363
5364 skip_emulated_instruction(vcpu);
5365 nested_vmx_succeed(vcpu);
5366 return 1;
5367 }
5368
5369 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5370
5371 /* Emulate the VMLAUNCH instruction */
5372 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5373 {
5374 return nested_vmx_run(vcpu, true);
5375 }
5376
5377 /* Emulate the VMRESUME instruction */
5378 static int handle_vmresume(struct kvm_vcpu *vcpu)
5379 {
5380
5381 return nested_vmx_run(vcpu, false);
5382 }
5383
5384 enum vmcs_field_type {
5385 VMCS_FIELD_TYPE_U16 = 0,
5386 VMCS_FIELD_TYPE_U64 = 1,
5387 VMCS_FIELD_TYPE_U32 = 2,
5388 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5389 };
5390
5391 static inline int vmcs_field_type(unsigned long field)
5392 {
5393 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5394 return VMCS_FIELD_TYPE_U32;
5395 return (field >> 13) & 0x3 ;
5396 }
5397
5398 static inline int vmcs_field_readonly(unsigned long field)
5399 {
5400 return (((field >> 10) & 0x3) == 1);
5401 }
5402
5403 /*
5404 * Read a vmcs12 field. Since these can have varying lengths and we return
5405 * one type, we chose the biggest type (u64) and zero-extend the return value
5406 * to that size. Note that the caller, handle_vmread, might need to use only
5407 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5408 * 64-bit fields are to be returned).
5409 */
5410 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5411 unsigned long field, u64 *ret)
5412 {
5413 short offset = vmcs_field_to_offset(field);
5414 char *p;
5415
5416 if (offset < 0)
5417 return 0;
5418
5419 p = ((char *)(get_vmcs12(vcpu))) + offset;
5420
5421 switch (vmcs_field_type(field)) {
5422 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5423 *ret = *((natural_width *)p);
5424 return 1;
5425 case VMCS_FIELD_TYPE_U16:
5426 *ret = *((u16 *)p);
5427 return 1;
5428 case VMCS_FIELD_TYPE_U32:
5429 *ret = *((u32 *)p);
5430 return 1;
5431 case VMCS_FIELD_TYPE_U64:
5432 *ret = *((u64 *)p);
5433 return 1;
5434 default:
5435 return 0; /* can never happen. */
5436 }
5437 }
5438
5439 /*
5440 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5441 * used before) all generate the same failure when it is missing.
5442 */
5443 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5444 {
5445 struct vcpu_vmx *vmx = to_vmx(vcpu);
5446 if (vmx->nested.current_vmptr == -1ull) {
5447 nested_vmx_failInvalid(vcpu);
5448 skip_emulated_instruction(vcpu);
5449 return 0;
5450 }
5451 return 1;
5452 }
5453
5454 static int handle_vmread(struct kvm_vcpu *vcpu)
5455 {
5456 unsigned long field;
5457 u64 field_value;
5458 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5459 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5460 gva_t gva = 0;
5461
5462 if (!nested_vmx_check_permission(vcpu) ||
5463 !nested_vmx_check_vmcs12(vcpu))
5464 return 1;
5465
5466 /* Decode instruction info and find the field to read */
5467 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5468 /* Read the field, zero-extended to a u64 field_value */
5469 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5470 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5471 skip_emulated_instruction(vcpu);
5472 return 1;
5473 }
5474 /*
5475 * Now copy part of this value to register or memory, as requested.
5476 * Note that the number of bits actually copied is 32 or 64 depending
5477 * on the guest's mode (32 or 64 bit), not on the given field's length.
5478 */
5479 if (vmx_instruction_info & (1u << 10)) {
5480 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5481 field_value);
5482 } else {
5483 if (get_vmx_mem_address(vcpu, exit_qualification,
5484 vmx_instruction_info, &gva))
5485 return 1;
5486 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5487 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5488 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5489 }
5490
5491 nested_vmx_succeed(vcpu);
5492 skip_emulated_instruction(vcpu);
5493 return 1;
5494 }
5495
5496
5497 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5498 {
5499 unsigned long field;
5500 gva_t gva;
5501 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5502 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5503 char *p;
5504 short offset;
5505 /* The value to write might be 32 or 64 bits, depending on L1's long
5506 * mode, and eventually we need to write that into a field of several
5507 * possible lengths. The code below first zero-extends the value to 64
5508 * bit (field_value), and then copies only the approriate number of
5509 * bits into the vmcs12 field.
5510 */
5511 u64 field_value = 0;
5512 struct x86_exception e;
5513
5514 if (!nested_vmx_check_permission(vcpu) ||
5515 !nested_vmx_check_vmcs12(vcpu))
5516 return 1;
5517
5518 if (vmx_instruction_info & (1u << 10))
5519 field_value = kvm_register_read(vcpu,
5520 (((vmx_instruction_info) >> 3) & 0xf));
5521 else {
5522 if (get_vmx_mem_address(vcpu, exit_qualification,
5523 vmx_instruction_info, &gva))
5524 return 1;
5525 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5526 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5527 kvm_inject_page_fault(vcpu, &e);
5528 return 1;
5529 }
5530 }
5531
5532
5533 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5534 if (vmcs_field_readonly(field)) {
5535 nested_vmx_failValid(vcpu,
5536 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5537 skip_emulated_instruction(vcpu);
5538 return 1;
5539 }
5540
5541 offset = vmcs_field_to_offset(field);
5542 if (offset < 0) {
5543 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5544 skip_emulated_instruction(vcpu);
5545 return 1;
5546 }
5547 p = ((char *) get_vmcs12(vcpu)) + offset;
5548
5549 switch (vmcs_field_type(field)) {
5550 case VMCS_FIELD_TYPE_U16:
5551 *(u16 *)p = field_value;
5552 break;
5553 case VMCS_FIELD_TYPE_U32:
5554 *(u32 *)p = field_value;
5555 break;
5556 case VMCS_FIELD_TYPE_U64:
5557 *(u64 *)p = field_value;
5558 break;
5559 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5560 *(natural_width *)p = field_value;
5561 break;
5562 default:
5563 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5564 skip_emulated_instruction(vcpu);
5565 return 1;
5566 }
5567
5568 nested_vmx_succeed(vcpu);
5569 skip_emulated_instruction(vcpu);
5570 return 1;
5571 }
5572
5573 /* Emulate the VMPTRLD instruction */
5574 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5575 {
5576 struct vcpu_vmx *vmx = to_vmx(vcpu);
5577 gva_t gva;
5578 gpa_t vmptr;
5579 struct x86_exception e;
5580
5581 if (!nested_vmx_check_permission(vcpu))
5582 return 1;
5583
5584 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5585 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5586 return 1;
5587
5588 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5589 sizeof(vmptr), &e)) {
5590 kvm_inject_page_fault(vcpu, &e);
5591 return 1;
5592 }
5593
5594 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5595 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5596 skip_emulated_instruction(vcpu);
5597 return 1;
5598 }
5599
5600 if (vmx->nested.current_vmptr != vmptr) {
5601 struct vmcs12 *new_vmcs12;
5602 struct page *page;
5603 page = nested_get_page(vcpu, vmptr);
5604 if (page == NULL) {
5605 nested_vmx_failInvalid(vcpu);
5606 skip_emulated_instruction(vcpu);
5607 return 1;
5608 }
5609 new_vmcs12 = kmap(page);
5610 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5611 kunmap(page);
5612 nested_release_page_clean(page);
5613 nested_vmx_failValid(vcpu,
5614 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5615 skip_emulated_instruction(vcpu);
5616 return 1;
5617 }
5618 if (vmx->nested.current_vmptr != -1ull) {
5619 kunmap(vmx->nested.current_vmcs12_page);
5620 nested_release_page(vmx->nested.current_vmcs12_page);
5621 }
5622
5623 vmx->nested.current_vmptr = vmptr;
5624 vmx->nested.current_vmcs12 = new_vmcs12;
5625 vmx->nested.current_vmcs12_page = page;
5626 }
5627
5628 nested_vmx_succeed(vcpu);
5629 skip_emulated_instruction(vcpu);
5630 return 1;
5631 }
5632
5633 /* Emulate the VMPTRST instruction */
5634 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5635 {
5636 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5637 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5638 gva_t vmcs_gva;
5639 struct x86_exception e;
5640
5641 if (!nested_vmx_check_permission(vcpu))
5642 return 1;
5643
5644 if (get_vmx_mem_address(vcpu, exit_qualification,
5645 vmx_instruction_info, &vmcs_gva))
5646 return 1;
5647 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5648 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5649 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5650 sizeof(u64), &e)) {
5651 kvm_inject_page_fault(vcpu, &e);
5652 return 1;
5653 }
5654 nested_vmx_succeed(vcpu);
5655 skip_emulated_instruction(vcpu);
5656 return 1;
5657 }
5658
5659 /*
5660 * The exit handlers return 1 if the exit was handled fully and guest execution
5661 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5662 * to be done to userspace and return 0.
5663 */
5664 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5665 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5666 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5667 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5668 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5669 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5670 [EXIT_REASON_CR_ACCESS] = handle_cr,
5671 [EXIT_REASON_DR_ACCESS] = handle_dr,
5672 [EXIT_REASON_CPUID] = handle_cpuid,
5673 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5674 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5675 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5676 [EXIT_REASON_HLT] = handle_halt,
5677 [EXIT_REASON_INVD] = handle_invd,
5678 [EXIT_REASON_INVLPG] = handle_invlpg,
5679 [EXIT_REASON_RDPMC] = handle_rdpmc,
5680 [EXIT_REASON_VMCALL] = handle_vmcall,
5681 [EXIT_REASON_VMCLEAR] = handle_vmclear,
5682 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
5683 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
5684 [EXIT_REASON_VMPTRST] = handle_vmptrst,
5685 [EXIT_REASON_VMREAD] = handle_vmread,
5686 [EXIT_REASON_VMRESUME] = handle_vmresume,
5687 [EXIT_REASON_VMWRITE] = handle_vmwrite,
5688 [EXIT_REASON_VMOFF] = handle_vmoff,
5689 [EXIT_REASON_VMON] = handle_vmon,
5690 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5691 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5692 [EXIT_REASON_WBINVD] = handle_wbinvd,
5693 [EXIT_REASON_XSETBV] = handle_xsetbv,
5694 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5695 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5696 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5697 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5698 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5699 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5700 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
5701 };
5702
5703 static const int kvm_vmx_max_exit_handlers =
5704 ARRAY_SIZE(kvm_vmx_exit_handlers);
5705
5706 /*
5707 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5708 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5709 * disinterest in the current event (read or write a specific MSR) by using an
5710 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5711 */
5712 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5713 struct vmcs12 *vmcs12, u32 exit_reason)
5714 {
5715 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5716 gpa_t bitmap;
5717
5718 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5719 return 1;
5720
5721 /*
5722 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5723 * for the four combinations of read/write and low/high MSR numbers.
5724 * First we need to figure out which of the four to use:
5725 */
5726 bitmap = vmcs12->msr_bitmap;
5727 if (exit_reason == EXIT_REASON_MSR_WRITE)
5728 bitmap += 2048;
5729 if (msr_index >= 0xc0000000) {
5730 msr_index -= 0xc0000000;
5731 bitmap += 1024;
5732 }
5733
5734 /* Then read the msr_index'th bit from this bitmap: */
5735 if (msr_index < 1024*8) {
5736 unsigned char b;
5737 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5738 return 1 & (b >> (msr_index & 7));
5739 } else
5740 return 1; /* let L1 handle the wrong parameter */
5741 }
5742
5743 /*
5744 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5745 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5746 * intercept (via guest_host_mask etc.) the current event.
5747 */
5748 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5749 struct vmcs12 *vmcs12)
5750 {
5751 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5752 int cr = exit_qualification & 15;
5753 int reg = (exit_qualification >> 8) & 15;
5754 unsigned long val = kvm_register_read(vcpu, reg);
5755
5756 switch ((exit_qualification >> 4) & 3) {
5757 case 0: /* mov to cr */
5758 switch (cr) {
5759 case 0:
5760 if (vmcs12->cr0_guest_host_mask &
5761 (val ^ vmcs12->cr0_read_shadow))
5762 return 1;
5763 break;
5764 case 3:
5765 if ((vmcs12->cr3_target_count >= 1 &&
5766 vmcs12->cr3_target_value0 == val) ||
5767 (vmcs12->cr3_target_count >= 2 &&
5768 vmcs12->cr3_target_value1 == val) ||
5769 (vmcs12->cr3_target_count >= 3 &&
5770 vmcs12->cr3_target_value2 == val) ||
5771 (vmcs12->cr3_target_count >= 4 &&
5772 vmcs12->cr3_target_value3 == val))
5773 return 0;
5774 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5775 return 1;
5776 break;
5777 case 4:
5778 if (vmcs12->cr4_guest_host_mask &
5779 (vmcs12->cr4_read_shadow ^ val))
5780 return 1;
5781 break;
5782 case 8:
5783 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5784 return 1;
5785 break;
5786 }
5787 break;
5788 case 2: /* clts */
5789 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5790 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5791 return 1;
5792 break;
5793 case 1: /* mov from cr */
5794 switch (cr) {
5795 case 3:
5796 if (vmcs12->cpu_based_vm_exec_control &
5797 CPU_BASED_CR3_STORE_EXITING)
5798 return 1;
5799 break;
5800 case 8:
5801 if (vmcs12->cpu_based_vm_exec_control &
5802 CPU_BASED_CR8_STORE_EXITING)
5803 return 1;
5804 break;
5805 }
5806 break;
5807 case 3: /* lmsw */
5808 /*
5809 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5810 * cr0. Other attempted changes are ignored, with no exit.
5811 */
5812 if (vmcs12->cr0_guest_host_mask & 0xe &
5813 (val ^ vmcs12->cr0_read_shadow))
5814 return 1;
5815 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5816 !(vmcs12->cr0_read_shadow & 0x1) &&
5817 (val & 0x1))
5818 return 1;
5819 break;
5820 }
5821 return 0;
5822 }
5823
5824 /*
5825 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5826 * should handle it ourselves in L0 (and then continue L2). Only call this
5827 * when in is_guest_mode (L2).
5828 */
5829 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5830 {
5831 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5832 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5833 struct vcpu_vmx *vmx = to_vmx(vcpu);
5834 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5835
5836 if (vmx->nested.nested_run_pending)
5837 return 0;
5838
5839 if (unlikely(vmx->fail)) {
5840 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5841 vmcs_read32(VM_INSTRUCTION_ERROR));
5842 return 1;
5843 }
5844
5845 switch (exit_reason) {
5846 case EXIT_REASON_EXCEPTION_NMI:
5847 if (!is_exception(intr_info))
5848 return 0;
5849 else if (is_page_fault(intr_info))
5850 return enable_ept;
5851 return vmcs12->exception_bitmap &
5852 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5853 case EXIT_REASON_EXTERNAL_INTERRUPT:
5854 return 0;
5855 case EXIT_REASON_TRIPLE_FAULT:
5856 return 1;
5857 case EXIT_REASON_PENDING_INTERRUPT:
5858 case EXIT_REASON_NMI_WINDOW:
5859 /*
5860 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5861 * (aka Interrupt Window Exiting) only when L1 turned it on,
5862 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5863 * Same for NMI Window Exiting.
5864 */
5865 return 1;
5866 case EXIT_REASON_TASK_SWITCH:
5867 return 1;
5868 case EXIT_REASON_CPUID:
5869 return 1;
5870 case EXIT_REASON_HLT:
5871 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5872 case EXIT_REASON_INVD:
5873 return 1;
5874 case EXIT_REASON_INVLPG:
5875 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5876 case EXIT_REASON_RDPMC:
5877 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5878 case EXIT_REASON_RDTSC:
5879 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5880 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5881 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5882 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5883 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5884 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5885 /*
5886 * VMX instructions trap unconditionally. This allows L1 to
5887 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5888 */
5889 return 1;
5890 case EXIT_REASON_CR_ACCESS:
5891 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5892 case EXIT_REASON_DR_ACCESS:
5893 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5894 case EXIT_REASON_IO_INSTRUCTION:
5895 /* TODO: support IO bitmaps */
5896 return 1;
5897 case EXIT_REASON_MSR_READ:
5898 case EXIT_REASON_MSR_WRITE:
5899 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5900 case EXIT_REASON_INVALID_STATE:
5901 return 1;
5902 case EXIT_REASON_MWAIT_INSTRUCTION:
5903 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5904 case EXIT_REASON_MONITOR_INSTRUCTION:
5905 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5906 case EXIT_REASON_PAUSE_INSTRUCTION:
5907 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5908 nested_cpu_has2(vmcs12,
5909 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5910 case EXIT_REASON_MCE_DURING_VMENTRY:
5911 return 0;
5912 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5913 return 1;
5914 case EXIT_REASON_APIC_ACCESS:
5915 return nested_cpu_has2(vmcs12,
5916 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5917 case EXIT_REASON_EPT_VIOLATION:
5918 case EXIT_REASON_EPT_MISCONFIG:
5919 return 0;
5920 case EXIT_REASON_WBINVD:
5921 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5922 case EXIT_REASON_XSETBV:
5923 return 1;
5924 default:
5925 return 1;
5926 }
5927 }
5928
5929 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5930 {
5931 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5932 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5933 }
5934
5935 /*
5936 * The guest has exited. See if we can fix it or if we need userspace
5937 * assistance.
5938 */
5939 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5940 {
5941 struct vcpu_vmx *vmx = to_vmx(vcpu);
5942 u32 exit_reason = vmx->exit_reason;
5943 u32 vectoring_info = vmx->idt_vectoring_info;
5944
5945 /* If guest state is invalid, start emulating */
5946 if (vmx->emulation_required && emulate_invalid_guest_state)
5947 return handle_invalid_guest_state(vcpu);
5948
5949 /*
5950 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5951 * we did not inject a still-pending event to L1 now because of
5952 * nested_run_pending, we need to re-enable this bit.
5953 */
5954 if (vmx->nested.nested_run_pending)
5955 kvm_make_request(KVM_REQ_EVENT, vcpu);
5956
5957 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5958 exit_reason == EXIT_REASON_VMRESUME))
5959 vmx->nested.nested_run_pending = 1;
5960 else
5961 vmx->nested.nested_run_pending = 0;
5962
5963 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5964 nested_vmx_vmexit(vcpu);
5965 return 1;
5966 }
5967
5968 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5969 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5970 vcpu->run->fail_entry.hardware_entry_failure_reason
5971 = exit_reason;
5972 return 0;
5973 }
5974
5975 if (unlikely(vmx->fail)) {
5976 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5977 vcpu->run->fail_entry.hardware_entry_failure_reason
5978 = vmcs_read32(VM_INSTRUCTION_ERROR);
5979 return 0;
5980 }
5981
5982 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5983 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5984 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5985 exit_reason != EXIT_REASON_TASK_SWITCH))
5986 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5987 "(0x%x) and exit reason is 0x%x\n",
5988 __func__, vectoring_info, exit_reason);
5989
5990 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5991 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5992 get_vmcs12(vcpu), vcpu)))) {
5993 if (vmx_interrupt_allowed(vcpu)) {
5994 vmx->soft_vnmi_blocked = 0;
5995 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
5996 vcpu->arch.nmi_pending) {
5997 /*
5998 * This CPU don't support us in finding the end of an
5999 * NMI-blocked window if the guest runs with IRQs
6000 * disabled. So we pull the trigger after 1 s of
6001 * futile waiting, but inform the user about this.
6002 */
6003 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6004 "state on VCPU %d after 1 s timeout\n",
6005 __func__, vcpu->vcpu_id);
6006 vmx->soft_vnmi_blocked = 0;
6007 }
6008 }
6009
6010 if (exit_reason < kvm_vmx_max_exit_handlers
6011 && kvm_vmx_exit_handlers[exit_reason])
6012 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6013 else {
6014 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6015 vcpu->run->hw.hardware_exit_reason = exit_reason;
6016 }
6017 return 0;
6018 }
6019
6020 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6021 {
6022 if (irr == -1 || tpr < irr) {
6023 vmcs_write32(TPR_THRESHOLD, 0);
6024 return;
6025 }
6026
6027 vmcs_write32(TPR_THRESHOLD, irr);
6028 }
6029
6030 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6031 {
6032 u32 exit_intr_info;
6033
6034 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6035 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6036 return;
6037
6038 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6039 exit_intr_info = vmx->exit_intr_info;
6040
6041 /* Handle machine checks before interrupts are enabled */
6042 if (is_machine_check(exit_intr_info))
6043 kvm_machine_check();
6044
6045 /* We need to handle NMIs before interrupts are enabled */
6046 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
6047 (exit_intr_info & INTR_INFO_VALID_MASK)) {
6048 kvm_before_handle_nmi(&vmx->vcpu);
6049 asm("int $2");
6050 kvm_after_handle_nmi(&vmx->vcpu);
6051 }
6052 }
6053
6054 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6055 {
6056 u32 exit_intr_info;
6057 bool unblock_nmi;
6058 u8 vector;
6059 bool idtv_info_valid;
6060
6061 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6062
6063 if (cpu_has_virtual_nmis()) {
6064 if (vmx->nmi_known_unmasked)
6065 return;
6066 /*
6067 * Can't use vmx->exit_intr_info since we're not sure what
6068 * the exit reason is.
6069 */
6070 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6071 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6072 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6073 /*
6074 * SDM 3: 27.7.1.2 (September 2008)
6075 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6076 * a guest IRET fault.
6077 * SDM 3: 23.2.2 (September 2008)
6078 * Bit 12 is undefined in any of the following cases:
6079 * If the VM exit sets the valid bit in the IDT-vectoring
6080 * information field.
6081 * If the VM exit is due to a double fault.
6082 */
6083 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6084 vector != DF_VECTOR && !idtv_info_valid)
6085 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6086 GUEST_INTR_STATE_NMI);
6087 else
6088 vmx->nmi_known_unmasked =
6089 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6090 & GUEST_INTR_STATE_NMI);
6091 } else if (unlikely(vmx->soft_vnmi_blocked))
6092 vmx->vnmi_blocked_time +=
6093 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
6094 }
6095
6096 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
6097 u32 idt_vectoring_info,
6098 int instr_len_field,
6099 int error_code_field)
6100 {
6101 u8 vector;
6102 int type;
6103 bool idtv_info_valid;
6104
6105 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6106
6107 vmx->vcpu.arch.nmi_injected = false;
6108 kvm_clear_exception_queue(&vmx->vcpu);
6109 kvm_clear_interrupt_queue(&vmx->vcpu);
6110
6111 if (!idtv_info_valid)
6112 return;
6113
6114 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6115
6116 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6117 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6118
6119 switch (type) {
6120 case INTR_TYPE_NMI_INTR:
6121 vmx->vcpu.arch.nmi_injected = true;
6122 /*
6123 * SDM 3: 27.7.1.2 (September 2008)
6124 * Clear bit "block by NMI" before VM entry if a NMI
6125 * delivery faulted.
6126 */
6127 vmx_set_nmi_mask(&vmx->vcpu, false);
6128 break;
6129 case INTR_TYPE_SOFT_EXCEPTION:
6130 vmx->vcpu.arch.event_exit_inst_len =
6131 vmcs_read32(instr_len_field);
6132 /* fall through */
6133 case INTR_TYPE_HARD_EXCEPTION:
6134 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6135 u32 err = vmcs_read32(error_code_field);
6136 kvm_queue_exception_e(&vmx->vcpu, vector, err);
6137 } else
6138 kvm_queue_exception(&vmx->vcpu, vector);
6139 break;
6140 case INTR_TYPE_SOFT_INTR:
6141 vmx->vcpu.arch.event_exit_inst_len =
6142 vmcs_read32(instr_len_field);
6143 /* fall through */
6144 case INTR_TYPE_EXT_INTR:
6145 kvm_queue_interrupt(&vmx->vcpu, vector,
6146 type == INTR_TYPE_SOFT_INTR);
6147 break;
6148 default:
6149 break;
6150 }
6151 }
6152
6153 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6154 {
6155 if (is_guest_mode(&vmx->vcpu))
6156 return;
6157 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6158 VM_EXIT_INSTRUCTION_LEN,
6159 IDT_VECTORING_ERROR_CODE);
6160 }
6161
6162 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6163 {
6164 if (is_guest_mode(vcpu))
6165 return;
6166 __vmx_complete_interrupts(to_vmx(vcpu),
6167 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6168 VM_ENTRY_INSTRUCTION_LEN,
6169 VM_ENTRY_EXCEPTION_ERROR_CODE);
6170
6171 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6172 }
6173
6174 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6175 {
6176 int i, nr_msrs;
6177 struct perf_guest_switch_msr *msrs;
6178
6179 msrs = perf_guest_get_msrs(&nr_msrs);
6180
6181 if (!msrs)
6182 return;
6183
6184 for (i = 0; i < nr_msrs; i++)
6185 if (msrs[i].host == msrs[i].guest)
6186 clear_atomic_switch_msr(vmx, msrs[i].msr);
6187 else
6188 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6189 msrs[i].host);
6190 }
6191
6192 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6193 {
6194 struct vcpu_vmx *vmx = to_vmx(vcpu);
6195 unsigned long debugctlmsr;
6196
6197 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6198 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6199 if (vmcs12->idt_vectoring_info_field &
6200 VECTORING_INFO_VALID_MASK) {
6201 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6202 vmcs12->idt_vectoring_info_field);
6203 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6204 vmcs12->vm_exit_instruction_len);
6205 if (vmcs12->idt_vectoring_info_field &
6206 VECTORING_INFO_DELIVER_CODE_MASK)
6207 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6208 vmcs12->idt_vectoring_error_code);
6209 }
6210 }
6211
6212 /* Record the guest's net vcpu time for enforced NMI injections. */
6213 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6214 vmx->entry_time = ktime_get();
6215
6216 /* Don't enter VMX if guest state is invalid, let the exit handler
6217 start emulation until we arrive back to a valid state */
6218 if (vmx->emulation_required && emulate_invalid_guest_state)
6219 return;
6220
6221 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6222 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6223 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6224 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6225
6226 /* When single-stepping over STI and MOV SS, we must clear the
6227 * corresponding interruptibility bits in the guest state. Otherwise
6228 * vmentry fails as it then expects bit 14 (BS) in pending debug
6229 * exceptions being set, but that's not correct for the guest debugging
6230 * case. */
6231 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6232 vmx_set_interrupt_shadow(vcpu, 0);
6233
6234 atomic_switch_perf_msrs(vmx);
6235 debugctlmsr = get_debugctlmsr();
6236
6237 vmx->__launched = vmx->loaded_vmcs->launched;
6238 asm(
6239 /* Store host registers */
6240 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
6241 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
6242 "push %%" _ASM_CX " \n\t"
6243 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
6244 "je 1f \n\t"
6245 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
6246 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6247 "1: \n\t"
6248 /* Reload cr2 if changed */
6249 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
6250 "mov %%cr2, %%" _ASM_DX " \n\t"
6251 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
6252 "je 2f \n\t"
6253 "mov %%" _ASM_AX", %%cr2 \n\t"
6254 "2: \n\t"
6255 /* Check if vmlaunch of vmresume is needed */
6256 "cmpl $0, %c[launched](%0) \n\t"
6257 /* Load guest registers. Don't clobber flags. */
6258 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
6259 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
6260 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
6261 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
6262 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
6263 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
6264 #ifdef CONFIG_X86_64
6265 "mov %c[r8](%0), %%r8 \n\t"
6266 "mov %c[r9](%0), %%r9 \n\t"
6267 "mov %c[r10](%0), %%r10 \n\t"
6268 "mov %c[r11](%0), %%r11 \n\t"
6269 "mov %c[r12](%0), %%r12 \n\t"
6270 "mov %c[r13](%0), %%r13 \n\t"
6271 "mov %c[r14](%0), %%r14 \n\t"
6272 "mov %c[r15](%0), %%r15 \n\t"
6273 #endif
6274 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
6275
6276 /* Enter guest mode */
6277 "jne 1f \n\t"
6278 __ex(ASM_VMX_VMLAUNCH) "\n\t"
6279 "jmp 2f \n\t"
6280 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
6281 "2: "
6282 /* Save guest registers, load host registers, keep flags */
6283 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
6284 "pop %0 \n\t"
6285 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
6286 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
6287 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
6288 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
6289 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
6290 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
6291 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
6292 #ifdef CONFIG_X86_64
6293 "mov %%r8, %c[r8](%0) \n\t"
6294 "mov %%r9, %c[r9](%0) \n\t"
6295 "mov %%r10, %c[r10](%0) \n\t"
6296 "mov %%r11, %c[r11](%0) \n\t"
6297 "mov %%r12, %c[r12](%0) \n\t"
6298 "mov %%r13, %c[r13](%0) \n\t"
6299 "mov %%r14, %c[r14](%0) \n\t"
6300 "mov %%r15, %c[r15](%0) \n\t"
6301 #endif
6302 "mov %%cr2, %%" _ASM_AX " \n\t"
6303 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
6304
6305 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
6306 "setbe %c[fail](%0) \n\t"
6307 ".pushsection .rodata \n\t"
6308 ".global vmx_return \n\t"
6309 "vmx_return: " _ASM_PTR " 2b \n\t"
6310 ".popsection"
6311 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6312 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6313 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
6314 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6315 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6316 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6317 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6318 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6319 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6320 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6321 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6322 #ifdef CONFIG_X86_64
6323 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6324 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6325 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6326 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6327 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6328 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6329 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6330 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6331 #endif
6332 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6333 [wordsize]"i"(sizeof(ulong))
6334 : "cc", "memory"
6335 #ifdef CONFIG_X86_64
6336 , "rax", "rbx", "rdi", "rsi"
6337 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6338 #else
6339 , "eax", "ebx", "edi", "esi"
6340 #endif
6341 );
6342
6343 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6344 if (debugctlmsr)
6345 update_debugctlmsr(debugctlmsr);
6346
6347 #ifndef CONFIG_X86_64
6348 /*
6349 * The sysexit path does not restore ds/es, so we must set them to
6350 * a reasonable value ourselves.
6351 *
6352 * We can't defer this to vmx_load_host_state() since that function
6353 * may be executed in interrupt context, which saves and restore segments
6354 * around it, nullifying its effect.
6355 */
6356 loadsegment(ds, __USER_DS);
6357 loadsegment(es, __USER_DS);
6358 #endif
6359
6360 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6361 | (1 << VCPU_EXREG_RFLAGS)
6362 | (1 << VCPU_EXREG_CPL)
6363 | (1 << VCPU_EXREG_PDPTR)
6364 | (1 << VCPU_EXREG_SEGMENTS)
6365 | (1 << VCPU_EXREG_CR3));
6366 vcpu->arch.regs_dirty = 0;
6367
6368 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6369
6370 if (is_guest_mode(vcpu)) {
6371 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6372 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6373 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6374 vmcs12->idt_vectoring_error_code =
6375 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6376 vmcs12->vm_exit_instruction_len =
6377 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6378 }
6379 }
6380
6381 vmx->loaded_vmcs->launched = 1;
6382
6383 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6384 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6385
6386 vmx_complete_atomic_exit(vmx);
6387 vmx_recover_nmi_blocking(vmx);
6388 vmx_complete_interrupts(vmx);
6389 }
6390
6391 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6392 {
6393 struct vcpu_vmx *vmx = to_vmx(vcpu);
6394
6395 free_vpid(vmx);
6396 free_nested(vmx);
6397 free_loaded_vmcs(vmx->loaded_vmcs);
6398 kfree(vmx->guest_msrs);
6399 kvm_vcpu_uninit(vcpu);
6400 kmem_cache_free(kvm_vcpu_cache, vmx);
6401 }
6402
6403 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6404 {
6405 int err;
6406 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6407 int cpu;
6408
6409 if (!vmx)
6410 return ERR_PTR(-ENOMEM);
6411
6412 allocate_vpid(vmx);
6413
6414 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6415 if (err)
6416 goto free_vcpu;
6417
6418 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6419 err = -ENOMEM;
6420 if (!vmx->guest_msrs) {
6421 goto uninit_vcpu;
6422 }
6423
6424 vmx->loaded_vmcs = &vmx->vmcs01;
6425 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6426 if (!vmx->loaded_vmcs->vmcs)
6427 goto free_msrs;
6428 if (!vmm_exclusive)
6429 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6430 loaded_vmcs_init(vmx->loaded_vmcs);
6431 if (!vmm_exclusive)
6432 kvm_cpu_vmxoff();
6433
6434 cpu = get_cpu();
6435 vmx_vcpu_load(&vmx->vcpu, cpu);
6436 vmx->vcpu.cpu = cpu;
6437 err = vmx_vcpu_setup(vmx);
6438 vmx_vcpu_put(&vmx->vcpu);
6439 put_cpu();
6440 if (err)
6441 goto free_vmcs;
6442 if (vm_need_virtualize_apic_accesses(kvm))
6443 err = alloc_apic_access_page(kvm);
6444 if (err)
6445 goto free_vmcs;
6446
6447 if (enable_ept) {
6448 if (!kvm->arch.ept_identity_map_addr)
6449 kvm->arch.ept_identity_map_addr =
6450 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6451 err = -ENOMEM;
6452 if (alloc_identity_pagetable(kvm) != 0)
6453 goto free_vmcs;
6454 if (!init_rmode_identity_map(kvm))
6455 goto free_vmcs;
6456 }
6457
6458 vmx->nested.current_vmptr = -1ull;
6459 vmx->nested.current_vmcs12 = NULL;
6460
6461 return &vmx->vcpu;
6462
6463 free_vmcs:
6464 free_loaded_vmcs(vmx->loaded_vmcs);
6465 free_msrs:
6466 kfree(vmx->guest_msrs);
6467 uninit_vcpu:
6468 kvm_vcpu_uninit(&vmx->vcpu);
6469 free_vcpu:
6470 free_vpid(vmx);
6471 kmem_cache_free(kvm_vcpu_cache, vmx);
6472 return ERR_PTR(err);
6473 }
6474
6475 static void __init vmx_check_processor_compat(void *rtn)
6476 {
6477 struct vmcs_config vmcs_conf;
6478
6479 *(int *)rtn = 0;
6480 if (setup_vmcs_config(&vmcs_conf) < 0)
6481 *(int *)rtn = -EIO;
6482 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6483 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6484 smp_processor_id());
6485 *(int *)rtn = -EIO;
6486 }
6487 }
6488
6489 static int get_ept_level(void)
6490 {
6491 return VMX_EPT_DEFAULT_GAW + 1;
6492 }
6493
6494 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6495 {
6496 u64 ret;
6497
6498 /* For VT-d and EPT combination
6499 * 1. MMIO: always map as UC
6500 * 2. EPT with VT-d:
6501 * a. VT-d without snooping control feature: can't guarantee the
6502 * result, try to trust guest.
6503 * b. VT-d with snooping control feature: snooping control feature of
6504 * VT-d engine can guarantee the cache correctness. Just set it
6505 * to WB to keep consistent with host. So the same as item 3.
6506 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6507 * consistent with host MTRR
6508 */
6509 if (is_mmio)
6510 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6511 else if (vcpu->kvm->arch.iommu_domain &&
6512 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6513 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6514 VMX_EPT_MT_EPTE_SHIFT;
6515 else
6516 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6517 | VMX_EPT_IPAT_BIT;
6518
6519 return ret;
6520 }
6521
6522 static int vmx_get_lpage_level(void)
6523 {
6524 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6525 return PT_DIRECTORY_LEVEL;
6526 else
6527 /* For shadow and EPT supported 1GB page */
6528 return PT_PDPE_LEVEL;
6529 }
6530
6531 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6532 {
6533 struct kvm_cpuid_entry2 *best;
6534 struct vcpu_vmx *vmx = to_vmx(vcpu);
6535 u32 exec_control;
6536
6537 vmx->rdtscp_enabled = false;
6538 if (vmx_rdtscp_supported()) {
6539 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6540 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6541 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6542 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6543 vmx->rdtscp_enabled = true;
6544 else {
6545 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6546 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6547 exec_control);
6548 }
6549 }
6550 }
6551
6552 /* Exposing INVPCID only when PCID is exposed */
6553 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6554 if (vmx_invpcid_supported() &&
6555 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
6556 guest_cpuid_has_pcid(vcpu)) {
6557 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6558 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
6559 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6560 exec_control);
6561 } else {
6562 if (cpu_has_secondary_exec_ctrls()) {
6563 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6564 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
6565 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6566 exec_control);
6567 }
6568 if (best)
6569 best->ebx &= ~bit(X86_FEATURE_INVPCID);
6570 }
6571 }
6572
6573 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6574 {
6575 if (func == 1 && nested)
6576 entry->ecx |= bit(X86_FEATURE_VMX);
6577 }
6578
6579 /*
6580 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6581 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6582 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6583 * guest in a way that will both be appropriate to L1's requests, and our
6584 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6585 * function also has additional necessary side-effects, like setting various
6586 * vcpu->arch fields.
6587 */
6588 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6589 {
6590 struct vcpu_vmx *vmx = to_vmx(vcpu);
6591 u32 exec_control;
6592
6593 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6594 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6595 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6596 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6597 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6598 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6599 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6600 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6601 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6602 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6603 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6604 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6605 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6606 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6607 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6608 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6609 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6610 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6611 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6612 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6613 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6614 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6615 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6616 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6617 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6618 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6619 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6620 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6621 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6622 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6623 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6624 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6625 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6626 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6627 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6628 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6629
6630 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6631 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6632 vmcs12->vm_entry_intr_info_field);
6633 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6634 vmcs12->vm_entry_exception_error_code);
6635 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6636 vmcs12->vm_entry_instruction_len);
6637 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6638 vmcs12->guest_interruptibility_info);
6639 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6640 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6641 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6642 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6643 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6644 vmcs12->guest_pending_dbg_exceptions);
6645 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6646 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6647
6648 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6649
6650 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6651 (vmcs_config.pin_based_exec_ctrl |
6652 vmcs12->pin_based_vm_exec_control));
6653
6654 /*
6655 * Whether page-faults are trapped is determined by a combination of
6656 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6657 * If enable_ept, L0 doesn't care about page faults and we should
6658 * set all of these to L1's desires. However, if !enable_ept, L0 does
6659 * care about (at least some) page faults, and because it is not easy
6660 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6661 * to exit on each and every L2 page fault. This is done by setting
6662 * MASK=MATCH=0 and (see below) EB.PF=1.
6663 * Note that below we don't need special code to set EB.PF beyond the
6664 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6665 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6666 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6667 *
6668 * A problem with this approach (when !enable_ept) is that L1 may be
6669 * injected with more page faults than it asked for. This could have
6670 * caused problems, but in practice existing hypervisors don't care.
6671 * To fix this, we will need to emulate the PFEC checking (on the L1
6672 * page tables), using walk_addr(), when injecting PFs to L1.
6673 */
6674 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6675 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6676 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6677 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6678
6679 if (cpu_has_secondary_exec_ctrls()) {
6680 u32 exec_control = vmx_secondary_exec_control(vmx);
6681 if (!vmx->rdtscp_enabled)
6682 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6683 /* Take the following fields only from vmcs12 */
6684 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6685 if (nested_cpu_has(vmcs12,
6686 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6687 exec_control |= vmcs12->secondary_vm_exec_control;
6688
6689 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6690 /*
6691 * Translate L1 physical address to host physical
6692 * address for vmcs02. Keep the page pinned, so this
6693 * physical address remains valid. We keep a reference
6694 * to it so we can release it later.
6695 */
6696 if (vmx->nested.apic_access_page) /* shouldn't happen */
6697 nested_release_page(vmx->nested.apic_access_page);
6698 vmx->nested.apic_access_page =
6699 nested_get_page(vcpu, vmcs12->apic_access_addr);
6700 /*
6701 * If translation failed, no matter: This feature asks
6702 * to exit when accessing the given address, and if it
6703 * can never be accessed, this feature won't do
6704 * anything anyway.
6705 */
6706 if (!vmx->nested.apic_access_page)
6707 exec_control &=
6708 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6709 else
6710 vmcs_write64(APIC_ACCESS_ADDR,
6711 page_to_phys(vmx->nested.apic_access_page));
6712 }
6713
6714 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6715 }
6716
6717
6718 /*
6719 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6720 * Some constant fields are set here by vmx_set_constant_host_state().
6721 * Other fields are different per CPU, and will be set later when
6722 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6723 */
6724 vmx_set_constant_host_state();
6725
6726 /*
6727 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6728 * entry, but only if the current (host) sp changed from the value
6729 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6730 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6731 * here we just force the write to happen on entry.
6732 */
6733 vmx->host_rsp = 0;
6734
6735 exec_control = vmx_exec_control(vmx); /* L0's desires */
6736 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6737 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6738 exec_control &= ~CPU_BASED_TPR_SHADOW;
6739 exec_control |= vmcs12->cpu_based_vm_exec_control;
6740 /*
6741 * Merging of IO and MSR bitmaps not currently supported.
6742 * Rather, exit every time.
6743 */
6744 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6745 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6746 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6747
6748 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6749
6750 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6751 * bitwise-or of what L1 wants to trap for L2, and what we want to
6752 * trap. Note that CR0.TS also needs updating - we do this later.
6753 */
6754 update_exception_bitmap(vcpu);
6755 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6756 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6757
6758 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6759 vmcs_write32(VM_EXIT_CONTROLS,
6760 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6761 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6762 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6763
6764 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6765 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6766 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6767 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6768
6769
6770 set_cr4_guest_host_mask(vmx);
6771
6772 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6773 vmcs_write64(TSC_OFFSET,
6774 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6775 else
6776 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6777
6778 if (enable_vpid) {
6779 /*
6780 * Trivially support vpid by letting L2s share their parent
6781 * L1's vpid. TODO: move to a more elaborate solution, giving
6782 * each L2 its own vpid and exposing the vpid feature to L1.
6783 */
6784 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6785 vmx_flush_tlb(vcpu);
6786 }
6787
6788 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6789 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6790 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6791 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6792 else
6793 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6794 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6795 vmx_set_efer(vcpu, vcpu->arch.efer);
6796
6797 /*
6798 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6799 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6800 * The CR0_READ_SHADOW is what L2 should have expected to read given
6801 * the specifications by L1; It's not enough to take
6802 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6803 * have more bits than L1 expected.
6804 */
6805 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6806 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6807
6808 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6809 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6810
6811 /* shadow page tables on either EPT or shadow page tables */
6812 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6813 kvm_mmu_reset_context(vcpu);
6814
6815 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6816 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6817 }
6818
6819 /*
6820 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6821 * for running an L2 nested guest.
6822 */
6823 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6824 {
6825 struct vmcs12 *vmcs12;
6826 struct vcpu_vmx *vmx = to_vmx(vcpu);
6827 int cpu;
6828 struct loaded_vmcs *vmcs02;
6829
6830 if (!nested_vmx_check_permission(vcpu) ||
6831 !nested_vmx_check_vmcs12(vcpu))
6832 return 1;
6833
6834 skip_emulated_instruction(vcpu);
6835 vmcs12 = get_vmcs12(vcpu);
6836
6837 /*
6838 * The nested entry process starts with enforcing various prerequisites
6839 * on vmcs12 as required by the Intel SDM, and act appropriately when
6840 * they fail: As the SDM explains, some conditions should cause the
6841 * instruction to fail, while others will cause the instruction to seem
6842 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6843 * To speed up the normal (success) code path, we should avoid checking
6844 * for misconfigurations which will anyway be caught by the processor
6845 * when using the merged vmcs02.
6846 */
6847 if (vmcs12->launch_state == launch) {
6848 nested_vmx_failValid(vcpu,
6849 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6850 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6851 return 1;
6852 }
6853
6854 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6855 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6856 /*TODO: Also verify bits beyond physical address width are 0*/
6857 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6858 return 1;
6859 }
6860
6861 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6862 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6863 /*TODO: Also verify bits beyond physical address width are 0*/
6864 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6865 return 1;
6866 }
6867
6868 if (vmcs12->vm_entry_msr_load_count > 0 ||
6869 vmcs12->vm_exit_msr_load_count > 0 ||
6870 vmcs12->vm_exit_msr_store_count > 0) {
6871 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6872 __func__);
6873 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6874 return 1;
6875 }
6876
6877 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6878 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6879 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6880 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6881 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6882 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6883 !vmx_control_verify(vmcs12->vm_exit_controls,
6884 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6885 !vmx_control_verify(vmcs12->vm_entry_controls,
6886 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6887 {
6888 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6889 return 1;
6890 }
6891
6892 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6893 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6894 nested_vmx_failValid(vcpu,
6895 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6896 return 1;
6897 }
6898
6899 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6900 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6901 nested_vmx_entry_failure(vcpu, vmcs12,
6902 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6903 return 1;
6904 }
6905 if (vmcs12->vmcs_link_pointer != -1ull) {
6906 nested_vmx_entry_failure(vcpu, vmcs12,
6907 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6908 return 1;
6909 }
6910
6911 /*
6912 * We're finally done with prerequisite checking, and can start with
6913 * the nested entry.
6914 */
6915
6916 vmcs02 = nested_get_current_vmcs02(vmx);
6917 if (!vmcs02)
6918 return -ENOMEM;
6919
6920 enter_guest_mode(vcpu);
6921
6922 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6923
6924 cpu = get_cpu();
6925 vmx->loaded_vmcs = vmcs02;
6926 vmx_vcpu_put(vcpu);
6927 vmx_vcpu_load(vcpu, cpu);
6928 vcpu->cpu = cpu;
6929 put_cpu();
6930
6931 vmcs12->launch_state = 1;
6932
6933 prepare_vmcs02(vcpu, vmcs12);
6934
6935 /*
6936 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6937 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6938 * returned as far as L1 is concerned. It will only return (and set
6939 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6940 */
6941 return 1;
6942 }
6943
6944 /*
6945 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6946 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6947 * This function returns the new value we should put in vmcs12.guest_cr0.
6948 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6949 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6950 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6951 * didn't trap the bit, because if L1 did, so would L0).
6952 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6953 * been modified by L2, and L1 knows it. So just leave the old value of
6954 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6955 * isn't relevant, because if L0 traps this bit it can set it to anything.
6956 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6957 * changed these bits, and therefore they need to be updated, but L0
6958 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6959 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6960 */
6961 static inline unsigned long
6962 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6963 {
6964 return
6965 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6966 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6967 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6968 vcpu->arch.cr0_guest_owned_bits));
6969 }
6970
6971 static inline unsigned long
6972 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6973 {
6974 return
6975 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6976 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6977 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6978 vcpu->arch.cr4_guest_owned_bits));
6979 }
6980
6981 /*
6982 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6983 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6984 * and this function updates it to reflect the changes to the guest state while
6985 * L2 was running (and perhaps made some exits which were handled directly by L0
6986 * without going back to L1), and to reflect the exit reason.
6987 * Note that we do not have to copy here all VMCS fields, just those that
6988 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6989 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6990 * which already writes to vmcs12 directly.
6991 */
6992 void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6993 {
6994 /* update guest state fields: */
6995 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6996 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6997
6998 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6999 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7000 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7001 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7002
7003 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7004 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7005 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7006 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7007 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7008 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7009 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7010 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7011 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7012 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7013 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7014 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7015 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7016 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7017 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7018 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7019 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7020 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7021 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7022 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7023 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7024 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7025 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7026 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7027 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7028 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7029 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7030 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7031 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7032 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7033 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7034 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7035 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7036 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7037 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7038 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7039
7040 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
7041 vmcs12->guest_interruptibility_info =
7042 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7043 vmcs12->guest_pending_dbg_exceptions =
7044 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7045
7046 /* TODO: These cannot have changed unless we have MSR bitmaps and
7047 * the relevant bit asks not to trap the change */
7048 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
7049 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
7050 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7051 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7052 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7053 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7054
7055 /* update exit information fields: */
7056
7057 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
7058 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7059
7060 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7061 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
7062 vmcs12->idt_vectoring_info_field =
7063 vmcs_read32(IDT_VECTORING_INFO_FIELD);
7064 vmcs12->idt_vectoring_error_code =
7065 vmcs_read32(IDT_VECTORING_ERROR_CODE);
7066 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7067 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7068
7069 /* clear vm-entry fields which are to be cleared on exit */
7070 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
7071 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
7072 }
7073
7074 /*
7075 * A part of what we need to when the nested L2 guest exits and we want to
7076 * run its L1 parent, is to reset L1's guest state to the host state specified
7077 * in vmcs12.
7078 * This function is to be called not only on normal nested exit, but also on
7079 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7080 * Failures During or After Loading Guest State").
7081 * This function should be called when the active VMCS is L1's (vmcs01).
7082 */
7083 void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7084 {
7085 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7086 vcpu->arch.efer = vmcs12->host_ia32_efer;
7087 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
7088 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7089 else
7090 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7091 vmx_set_efer(vcpu, vcpu->arch.efer);
7092
7093 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7094 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
7095 /*
7096 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7097 * actually changed, because it depends on the current state of
7098 * fpu_active (which may have changed).
7099 * Note that vmx_set_cr0 refers to efer set above.
7100 */
7101 kvm_set_cr0(vcpu, vmcs12->host_cr0);
7102 /*
7103 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7104 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7105 * but we also need to update cr0_guest_host_mask and exception_bitmap.
7106 */
7107 update_exception_bitmap(vcpu);
7108 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7109 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7110
7111 /*
7112 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7113 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7114 */
7115 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
7116 kvm_set_cr4(vcpu, vmcs12->host_cr4);
7117
7118 /* shadow page tables on either EPT or shadow page tables */
7119 kvm_set_cr3(vcpu, vmcs12->host_cr3);
7120 kvm_mmu_reset_context(vcpu);
7121
7122 if (enable_vpid) {
7123 /*
7124 * Trivially support vpid by letting L2s share their parent
7125 * L1's vpid. TODO: move to a more elaborate solution, giving
7126 * each L2 its own vpid and exposing the vpid feature to L1.
7127 */
7128 vmx_flush_tlb(vcpu);
7129 }
7130
7131
7132 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7133 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7134 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7135 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7136 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7137 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7138 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7139 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7140 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7141 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7142 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7143 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7144 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7145 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7146 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7147
7148 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7149 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7150 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7151 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7152 vmcs12->host_ia32_perf_global_ctrl);
7153 }
7154
7155 /*
7156 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7157 * and modify vmcs12 to make it see what it would expect to see there if
7158 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7159 */
7160 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7161 {
7162 struct vcpu_vmx *vmx = to_vmx(vcpu);
7163 int cpu;
7164 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7165
7166 leave_guest_mode(vcpu);
7167 prepare_vmcs12(vcpu, vmcs12);
7168
7169 cpu = get_cpu();
7170 vmx->loaded_vmcs = &vmx->vmcs01;
7171 vmx_vcpu_put(vcpu);
7172 vmx_vcpu_load(vcpu, cpu);
7173 vcpu->cpu = cpu;
7174 put_cpu();
7175
7176 /* if no vmcs02 cache requested, remove the one we used */
7177 if (VMCS02_POOL_SIZE == 0)
7178 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7179
7180 load_vmcs12_host_state(vcpu, vmcs12);
7181
7182 /* Update TSC_OFFSET if TSC was changed while L2 ran */
7183 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7184
7185 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7186 vmx->host_rsp = 0;
7187
7188 /* Unpin physical memory we referred to in vmcs02 */
7189 if (vmx->nested.apic_access_page) {
7190 nested_release_page(vmx->nested.apic_access_page);
7191 vmx->nested.apic_access_page = 0;
7192 }
7193
7194 /*
7195 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7196 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7197 * success or failure flag accordingly.
7198 */
7199 if (unlikely(vmx->fail)) {
7200 vmx->fail = 0;
7201 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7202 } else
7203 nested_vmx_succeed(vcpu);
7204 }
7205
7206 /*
7207 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7208 * 23.7 "VM-entry failures during or after loading guest state" (this also
7209 * lists the acceptable exit-reason and exit-qualification parameters).
7210 * It should only be called before L2 actually succeeded to run, and when
7211 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7212 */
7213 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7214 struct vmcs12 *vmcs12,
7215 u32 reason, unsigned long qualification)
7216 {
7217 load_vmcs12_host_state(vcpu, vmcs12);
7218 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7219 vmcs12->exit_qualification = qualification;
7220 nested_vmx_succeed(vcpu);
7221 }
7222
7223 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7224 struct x86_instruction_info *info,
7225 enum x86_intercept_stage stage)
7226 {
7227 return X86EMUL_CONTINUE;
7228 }
7229
7230 static struct kvm_x86_ops vmx_x86_ops = {
7231 .cpu_has_kvm_support = cpu_has_kvm_support,
7232 .disabled_by_bios = vmx_disabled_by_bios,
7233 .hardware_setup = hardware_setup,
7234 .hardware_unsetup = hardware_unsetup,
7235 .check_processor_compatibility = vmx_check_processor_compat,
7236 .hardware_enable = hardware_enable,
7237 .hardware_disable = hardware_disable,
7238 .cpu_has_accelerated_tpr = report_flexpriority,
7239
7240 .vcpu_create = vmx_create_vcpu,
7241 .vcpu_free = vmx_free_vcpu,
7242 .vcpu_reset = vmx_vcpu_reset,
7243
7244 .prepare_guest_switch = vmx_save_host_state,
7245 .vcpu_load = vmx_vcpu_load,
7246 .vcpu_put = vmx_vcpu_put,
7247
7248 .update_db_bp_intercept = update_exception_bitmap,
7249 .get_msr = vmx_get_msr,
7250 .set_msr = vmx_set_msr,
7251 .get_segment_base = vmx_get_segment_base,
7252 .get_segment = vmx_get_segment,
7253 .set_segment = vmx_set_segment,
7254 .get_cpl = vmx_get_cpl,
7255 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7256 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7257 .decache_cr3 = vmx_decache_cr3,
7258 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7259 .set_cr0 = vmx_set_cr0,
7260 .set_cr3 = vmx_set_cr3,
7261 .set_cr4 = vmx_set_cr4,
7262 .set_efer = vmx_set_efer,
7263 .get_idt = vmx_get_idt,
7264 .set_idt = vmx_set_idt,
7265 .get_gdt = vmx_get_gdt,
7266 .set_gdt = vmx_set_gdt,
7267 .set_dr7 = vmx_set_dr7,
7268 .cache_reg = vmx_cache_reg,
7269 .get_rflags = vmx_get_rflags,
7270 .set_rflags = vmx_set_rflags,
7271 .fpu_activate = vmx_fpu_activate,
7272 .fpu_deactivate = vmx_fpu_deactivate,
7273
7274 .tlb_flush = vmx_flush_tlb,
7275
7276 .run = vmx_vcpu_run,
7277 .handle_exit = vmx_handle_exit,
7278 .skip_emulated_instruction = skip_emulated_instruction,
7279 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7280 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7281 .patch_hypercall = vmx_patch_hypercall,
7282 .set_irq = vmx_inject_irq,
7283 .set_nmi = vmx_inject_nmi,
7284 .queue_exception = vmx_queue_exception,
7285 .cancel_injection = vmx_cancel_injection,
7286 .interrupt_allowed = vmx_interrupt_allowed,
7287 .nmi_allowed = vmx_nmi_allowed,
7288 .get_nmi_mask = vmx_get_nmi_mask,
7289 .set_nmi_mask = vmx_set_nmi_mask,
7290 .enable_nmi_window = enable_nmi_window,
7291 .enable_irq_window = enable_irq_window,
7292 .update_cr8_intercept = update_cr8_intercept,
7293
7294 .set_tss_addr = vmx_set_tss_addr,
7295 .get_tdp_level = get_ept_level,
7296 .get_mt_mask = vmx_get_mt_mask,
7297
7298 .get_exit_info = vmx_get_exit_info,
7299
7300 .get_lpage_level = vmx_get_lpage_level,
7301
7302 .cpuid_update = vmx_cpuid_update,
7303
7304 .rdtscp_supported = vmx_rdtscp_supported,
7305 .invpcid_supported = vmx_invpcid_supported,
7306
7307 .set_supported_cpuid = vmx_set_supported_cpuid,
7308
7309 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7310
7311 .set_tsc_khz = vmx_set_tsc_khz,
7312 .write_tsc_offset = vmx_write_tsc_offset,
7313 .adjust_tsc_offset = vmx_adjust_tsc_offset,
7314 .compute_tsc_offset = vmx_compute_tsc_offset,
7315 .read_l1_tsc = vmx_read_l1_tsc,
7316
7317 .set_tdp_cr3 = vmx_set_cr3,
7318
7319 .check_intercept = vmx_check_intercept,
7320 };
7321
7322 static int __init vmx_init(void)
7323 {
7324 int r, i;
7325
7326 rdmsrl_safe(MSR_EFER, &host_efer);
7327
7328 for (i = 0; i < NR_VMX_MSR; ++i)
7329 kvm_define_shared_msr(i, vmx_msr_index[i]);
7330
7331 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7332 if (!vmx_io_bitmap_a)
7333 return -ENOMEM;
7334
7335 r = -ENOMEM;
7336
7337 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7338 if (!vmx_io_bitmap_b)
7339 goto out;
7340
7341 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7342 if (!vmx_msr_bitmap_legacy)
7343 goto out1;
7344
7345
7346 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7347 if (!vmx_msr_bitmap_longmode)
7348 goto out2;
7349
7350
7351 /*
7352 * Allow direct access to the PC debug port (it is often used for I/O
7353 * delays, but the vmexits simply slow things down).
7354 */
7355 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7356 clear_bit(0x80, vmx_io_bitmap_a);
7357
7358 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7359
7360 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7361 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7362
7363 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7364
7365 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7366 __alignof__(struct vcpu_vmx), THIS_MODULE);
7367 if (r)
7368 goto out3;
7369
7370 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7371 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7372 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7373 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7374 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7375 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7376
7377 if (enable_ept) {
7378 kvm_mmu_set_mask_ptes(0ull,
7379 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
7380 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
7381 0ull, VMX_EPT_EXECUTABLE_MASK);
7382 ept_set_mmio_spte_mask();
7383 kvm_enable_tdp();
7384 } else
7385 kvm_disable_tdp();
7386
7387 return 0;
7388
7389 out3:
7390 free_page((unsigned long)vmx_msr_bitmap_longmode);
7391 out2:
7392 free_page((unsigned long)vmx_msr_bitmap_legacy);
7393 out1:
7394 free_page((unsigned long)vmx_io_bitmap_b);
7395 out:
7396 free_page((unsigned long)vmx_io_bitmap_a);
7397 return r;
7398 }
7399
7400 static void __exit vmx_exit(void)
7401 {
7402 free_page((unsigned long)vmx_msr_bitmap_legacy);
7403 free_page((unsigned long)vmx_msr_bitmap_longmode);
7404 free_page((unsigned long)vmx_io_bitmap_b);
7405 free_page((unsigned long)vmx_io_bitmap_a);
7406
7407 kvm_exit();
7408 }
7409
7410 module_init(vmx_init)
7411 module_exit(vmx_exit)