Merge tag 'usb-3.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
46
47 #include "trace.h"
48
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id vmx_cpu_id[] = {
57 X86_FEATURE_MATCH(X86_FEATURE_VMX),
58 {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
62 static bool __read_mostly enable_vpid = 1;
63 module_param_named(vpid, enable_vpid, bool, 0444);
64
65 static bool __read_mostly flexpriority_enabled = 1;
66 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
67
68 static bool __read_mostly enable_ept = 1;
69 module_param_named(ept, enable_ept, bool, S_IRUGO);
70
71 static bool __read_mostly enable_unrestricted_guest = 1;
72 module_param_named(unrestricted_guest,
73 enable_unrestricted_guest, bool, S_IRUGO);
74
75 static bool __read_mostly enable_ept_ad_bits = 1;
76 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
78 static bool __read_mostly emulate_invalid_guest_state = true;
79 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
80
81 static bool __read_mostly vmm_exclusive = 1;
82 module_param(vmm_exclusive, bool, S_IRUGO);
83
84 static bool __read_mostly fasteoi = 1;
85 module_param(fasteoi, bool, S_IRUGO);
86
87 static bool __read_mostly enable_apicv_reg_vid;
88
89 /*
90 * If nested=1, nested virtualization is supported, i.e., guests may use
91 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
92 * use VMX instructions.
93 */
94 static bool __read_mostly nested = 0;
95 module_param(nested, bool, S_IRUGO);
96
97 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
98 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
99 #define KVM_VM_CR0_ALWAYS_ON \
100 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
101 #define KVM_CR4_GUEST_OWNED_BITS \
102 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
103 | X86_CR4_OSXMMEXCPT)
104
105 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
106 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
107
108 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
109
110 /*
111 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
112 * ple_gap: upper bound on the amount of time between two successive
113 * executions of PAUSE in a loop. Also indicate if ple enabled.
114 * According to test, this time is usually smaller than 128 cycles.
115 * ple_window: upper bound on the amount of time a guest is allowed to execute
116 * in a PAUSE loop. Tests indicate that most spinlocks are held for
117 * less than 2^12 cycles
118 * Time is measured based on a counter that runs at the same rate as the TSC,
119 * refer SDM volume 3b section 21.6.13 & 22.1.3.
120 */
121 #define KVM_VMX_DEFAULT_PLE_GAP 128
122 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
123 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
124 module_param(ple_gap, int, S_IRUGO);
125
126 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
127 module_param(ple_window, int, S_IRUGO);
128
129 extern const ulong vmx_return;
130
131 #define NR_AUTOLOAD_MSRS 8
132 #define VMCS02_POOL_SIZE 1
133
134 struct vmcs {
135 u32 revision_id;
136 u32 abort;
137 char data[0];
138 };
139
140 /*
141 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
142 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
143 * loaded on this CPU (so we can clear them if the CPU goes down).
144 */
145 struct loaded_vmcs {
146 struct vmcs *vmcs;
147 int cpu;
148 int launched;
149 struct list_head loaded_vmcss_on_cpu_link;
150 };
151
152 struct shared_msr_entry {
153 unsigned index;
154 u64 data;
155 u64 mask;
156 };
157
158 /*
159 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
160 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
161 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
162 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
163 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
164 * More than one of these structures may exist, if L1 runs multiple L2 guests.
165 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
166 * underlying hardware which will be used to run L2.
167 * This structure is packed to ensure that its layout is identical across
168 * machines (necessary for live migration).
169 * If there are changes in this struct, VMCS12_REVISION must be changed.
170 */
171 typedef u64 natural_width;
172 struct __packed vmcs12 {
173 /* According to the Intel spec, a VMCS region must start with the
174 * following two fields. Then follow implementation-specific data.
175 */
176 u32 revision_id;
177 u32 abort;
178
179 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
180 u32 padding[7]; /* room for future expansion */
181
182 u64 io_bitmap_a;
183 u64 io_bitmap_b;
184 u64 msr_bitmap;
185 u64 vm_exit_msr_store_addr;
186 u64 vm_exit_msr_load_addr;
187 u64 vm_entry_msr_load_addr;
188 u64 tsc_offset;
189 u64 virtual_apic_page_addr;
190 u64 apic_access_addr;
191 u64 ept_pointer;
192 u64 guest_physical_address;
193 u64 vmcs_link_pointer;
194 u64 guest_ia32_debugctl;
195 u64 guest_ia32_pat;
196 u64 guest_ia32_efer;
197 u64 guest_ia32_perf_global_ctrl;
198 u64 guest_pdptr0;
199 u64 guest_pdptr1;
200 u64 guest_pdptr2;
201 u64 guest_pdptr3;
202 u64 host_ia32_pat;
203 u64 host_ia32_efer;
204 u64 host_ia32_perf_global_ctrl;
205 u64 padding64[8]; /* room for future expansion */
206 /*
207 * To allow migration of L1 (complete with its L2 guests) between
208 * machines of different natural widths (32 or 64 bit), we cannot have
209 * unsigned long fields with no explict size. We use u64 (aliased
210 * natural_width) instead. Luckily, x86 is little-endian.
211 */
212 natural_width cr0_guest_host_mask;
213 natural_width cr4_guest_host_mask;
214 natural_width cr0_read_shadow;
215 natural_width cr4_read_shadow;
216 natural_width cr3_target_value0;
217 natural_width cr3_target_value1;
218 natural_width cr3_target_value2;
219 natural_width cr3_target_value3;
220 natural_width exit_qualification;
221 natural_width guest_linear_address;
222 natural_width guest_cr0;
223 natural_width guest_cr3;
224 natural_width guest_cr4;
225 natural_width guest_es_base;
226 natural_width guest_cs_base;
227 natural_width guest_ss_base;
228 natural_width guest_ds_base;
229 natural_width guest_fs_base;
230 natural_width guest_gs_base;
231 natural_width guest_ldtr_base;
232 natural_width guest_tr_base;
233 natural_width guest_gdtr_base;
234 natural_width guest_idtr_base;
235 natural_width guest_dr7;
236 natural_width guest_rsp;
237 natural_width guest_rip;
238 natural_width guest_rflags;
239 natural_width guest_pending_dbg_exceptions;
240 natural_width guest_sysenter_esp;
241 natural_width guest_sysenter_eip;
242 natural_width host_cr0;
243 natural_width host_cr3;
244 natural_width host_cr4;
245 natural_width host_fs_base;
246 natural_width host_gs_base;
247 natural_width host_tr_base;
248 natural_width host_gdtr_base;
249 natural_width host_idtr_base;
250 natural_width host_ia32_sysenter_esp;
251 natural_width host_ia32_sysenter_eip;
252 natural_width host_rsp;
253 natural_width host_rip;
254 natural_width paddingl[8]; /* room for future expansion */
255 u32 pin_based_vm_exec_control;
256 u32 cpu_based_vm_exec_control;
257 u32 exception_bitmap;
258 u32 page_fault_error_code_mask;
259 u32 page_fault_error_code_match;
260 u32 cr3_target_count;
261 u32 vm_exit_controls;
262 u32 vm_exit_msr_store_count;
263 u32 vm_exit_msr_load_count;
264 u32 vm_entry_controls;
265 u32 vm_entry_msr_load_count;
266 u32 vm_entry_intr_info_field;
267 u32 vm_entry_exception_error_code;
268 u32 vm_entry_instruction_len;
269 u32 tpr_threshold;
270 u32 secondary_vm_exec_control;
271 u32 vm_instruction_error;
272 u32 vm_exit_reason;
273 u32 vm_exit_intr_info;
274 u32 vm_exit_intr_error_code;
275 u32 idt_vectoring_info_field;
276 u32 idt_vectoring_error_code;
277 u32 vm_exit_instruction_len;
278 u32 vmx_instruction_info;
279 u32 guest_es_limit;
280 u32 guest_cs_limit;
281 u32 guest_ss_limit;
282 u32 guest_ds_limit;
283 u32 guest_fs_limit;
284 u32 guest_gs_limit;
285 u32 guest_ldtr_limit;
286 u32 guest_tr_limit;
287 u32 guest_gdtr_limit;
288 u32 guest_idtr_limit;
289 u32 guest_es_ar_bytes;
290 u32 guest_cs_ar_bytes;
291 u32 guest_ss_ar_bytes;
292 u32 guest_ds_ar_bytes;
293 u32 guest_fs_ar_bytes;
294 u32 guest_gs_ar_bytes;
295 u32 guest_ldtr_ar_bytes;
296 u32 guest_tr_ar_bytes;
297 u32 guest_interruptibility_info;
298 u32 guest_activity_state;
299 u32 guest_sysenter_cs;
300 u32 host_ia32_sysenter_cs;
301 u32 padding32[8]; /* room for future expansion */
302 u16 virtual_processor_id;
303 u16 guest_es_selector;
304 u16 guest_cs_selector;
305 u16 guest_ss_selector;
306 u16 guest_ds_selector;
307 u16 guest_fs_selector;
308 u16 guest_gs_selector;
309 u16 guest_ldtr_selector;
310 u16 guest_tr_selector;
311 u16 host_es_selector;
312 u16 host_cs_selector;
313 u16 host_ss_selector;
314 u16 host_ds_selector;
315 u16 host_fs_selector;
316 u16 host_gs_selector;
317 u16 host_tr_selector;
318 };
319
320 /*
321 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
322 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
323 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
324 */
325 #define VMCS12_REVISION 0x11e57ed0
326
327 /*
328 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
329 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
330 * current implementation, 4K are reserved to avoid future complications.
331 */
332 #define VMCS12_SIZE 0x1000
333
334 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
335 struct vmcs02_list {
336 struct list_head list;
337 gpa_t vmptr;
338 struct loaded_vmcs vmcs02;
339 };
340
341 /*
342 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
343 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
344 */
345 struct nested_vmx {
346 /* Has the level1 guest done vmxon? */
347 bool vmxon;
348
349 /* The guest-physical address of the current VMCS L1 keeps for L2 */
350 gpa_t current_vmptr;
351 /* The host-usable pointer to the above */
352 struct page *current_vmcs12_page;
353 struct vmcs12 *current_vmcs12;
354
355 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
356 struct list_head vmcs02_pool;
357 int vmcs02_num;
358 u64 vmcs01_tsc_offset;
359 /* L2 must run next, and mustn't decide to exit to L1. */
360 bool nested_run_pending;
361 /*
362 * Guest pages referred to in vmcs02 with host-physical pointers, so
363 * we must keep them pinned while L2 runs.
364 */
365 struct page *apic_access_page;
366 };
367
368 struct vcpu_vmx {
369 struct kvm_vcpu vcpu;
370 unsigned long host_rsp;
371 u8 fail;
372 u8 cpl;
373 bool nmi_known_unmasked;
374 u32 exit_intr_info;
375 u32 idt_vectoring_info;
376 ulong rflags;
377 struct shared_msr_entry *guest_msrs;
378 int nmsrs;
379 int save_nmsrs;
380 #ifdef CONFIG_X86_64
381 u64 msr_host_kernel_gs_base;
382 u64 msr_guest_kernel_gs_base;
383 #endif
384 /*
385 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
386 * non-nested (L1) guest, it always points to vmcs01. For a nested
387 * guest (L2), it points to a different VMCS.
388 */
389 struct loaded_vmcs vmcs01;
390 struct loaded_vmcs *loaded_vmcs;
391 bool __launched; /* temporary, used in vmx_vcpu_run */
392 struct msr_autoload {
393 unsigned nr;
394 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
395 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
396 } msr_autoload;
397 struct {
398 int loaded;
399 u16 fs_sel, gs_sel, ldt_sel;
400 #ifdef CONFIG_X86_64
401 u16 ds_sel, es_sel;
402 #endif
403 int gs_ldt_reload_needed;
404 int fs_reload_needed;
405 } host_state;
406 struct {
407 int vm86_active;
408 ulong save_rflags;
409 struct kvm_segment segs[8];
410 } rmode;
411 struct {
412 u32 bitmask; /* 4 bits per segment (1 bit per field) */
413 struct kvm_save_segment {
414 u16 selector;
415 unsigned long base;
416 u32 limit;
417 u32 ar;
418 } seg[8];
419 } segment_cache;
420 int vpid;
421 bool emulation_required;
422
423 /* Support for vnmi-less CPUs */
424 int soft_vnmi_blocked;
425 ktime_t entry_time;
426 s64 vnmi_blocked_time;
427 u32 exit_reason;
428
429 bool rdtscp_enabled;
430
431 /* Support for a guest hypervisor (nested VMX) */
432 struct nested_vmx nested;
433 };
434
435 enum segment_cache_field {
436 SEG_FIELD_SEL = 0,
437 SEG_FIELD_BASE = 1,
438 SEG_FIELD_LIMIT = 2,
439 SEG_FIELD_AR = 3,
440
441 SEG_FIELD_NR = 4
442 };
443
444 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
445 {
446 return container_of(vcpu, struct vcpu_vmx, vcpu);
447 }
448
449 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
450 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
451 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
452 [number##_HIGH] = VMCS12_OFFSET(name)+4
453
454 static const unsigned short vmcs_field_to_offset_table[] = {
455 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
456 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
457 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
458 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
459 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
460 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
461 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
462 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
463 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
464 FIELD(HOST_ES_SELECTOR, host_es_selector),
465 FIELD(HOST_CS_SELECTOR, host_cs_selector),
466 FIELD(HOST_SS_SELECTOR, host_ss_selector),
467 FIELD(HOST_DS_SELECTOR, host_ds_selector),
468 FIELD(HOST_FS_SELECTOR, host_fs_selector),
469 FIELD(HOST_GS_SELECTOR, host_gs_selector),
470 FIELD(HOST_TR_SELECTOR, host_tr_selector),
471 FIELD64(IO_BITMAP_A, io_bitmap_a),
472 FIELD64(IO_BITMAP_B, io_bitmap_b),
473 FIELD64(MSR_BITMAP, msr_bitmap),
474 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
475 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
476 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
477 FIELD64(TSC_OFFSET, tsc_offset),
478 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
479 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
480 FIELD64(EPT_POINTER, ept_pointer),
481 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
482 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
483 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
484 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
485 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
486 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
487 FIELD64(GUEST_PDPTR0, guest_pdptr0),
488 FIELD64(GUEST_PDPTR1, guest_pdptr1),
489 FIELD64(GUEST_PDPTR2, guest_pdptr2),
490 FIELD64(GUEST_PDPTR3, guest_pdptr3),
491 FIELD64(HOST_IA32_PAT, host_ia32_pat),
492 FIELD64(HOST_IA32_EFER, host_ia32_efer),
493 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
494 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
495 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
496 FIELD(EXCEPTION_BITMAP, exception_bitmap),
497 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
498 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
499 FIELD(CR3_TARGET_COUNT, cr3_target_count),
500 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
501 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
502 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
503 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
504 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
505 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
506 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
507 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
508 FIELD(TPR_THRESHOLD, tpr_threshold),
509 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
510 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
511 FIELD(VM_EXIT_REASON, vm_exit_reason),
512 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
513 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
514 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
515 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
516 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
517 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
518 FIELD(GUEST_ES_LIMIT, guest_es_limit),
519 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
520 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
521 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
522 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
523 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
524 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
525 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
526 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
527 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
528 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
529 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
530 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
531 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
532 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
533 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
534 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
535 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
536 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
537 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
538 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
539 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
540 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
541 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
542 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
543 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
544 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
545 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
546 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
547 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
548 FIELD(EXIT_QUALIFICATION, exit_qualification),
549 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
550 FIELD(GUEST_CR0, guest_cr0),
551 FIELD(GUEST_CR3, guest_cr3),
552 FIELD(GUEST_CR4, guest_cr4),
553 FIELD(GUEST_ES_BASE, guest_es_base),
554 FIELD(GUEST_CS_BASE, guest_cs_base),
555 FIELD(GUEST_SS_BASE, guest_ss_base),
556 FIELD(GUEST_DS_BASE, guest_ds_base),
557 FIELD(GUEST_FS_BASE, guest_fs_base),
558 FIELD(GUEST_GS_BASE, guest_gs_base),
559 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
560 FIELD(GUEST_TR_BASE, guest_tr_base),
561 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
562 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
563 FIELD(GUEST_DR7, guest_dr7),
564 FIELD(GUEST_RSP, guest_rsp),
565 FIELD(GUEST_RIP, guest_rip),
566 FIELD(GUEST_RFLAGS, guest_rflags),
567 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
568 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
569 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
570 FIELD(HOST_CR0, host_cr0),
571 FIELD(HOST_CR3, host_cr3),
572 FIELD(HOST_CR4, host_cr4),
573 FIELD(HOST_FS_BASE, host_fs_base),
574 FIELD(HOST_GS_BASE, host_gs_base),
575 FIELD(HOST_TR_BASE, host_tr_base),
576 FIELD(HOST_GDTR_BASE, host_gdtr_base),
577 FIELD(HOST_IDTR_BASE, host_idtr_base),
578 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
579 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
580 FIELD(HOST_RSP, host_rsp),
581 FIELD(HOST_RIP, host_rip),
582 };
583 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
584
585 static inline short vmcs_field_to_offset(unsigned long field)
586 {
587 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
588 return -1;
589 return vmcs_field_to_offset_table[field];
590 }
591
592 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
593 {
594 return to_vmx(vcpu)->nested.current_vmcs12;
595 }
596
597 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
598 {
599 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
600 if (is_error_page(page))
601 return NULL;
602
603 return page;
604 }
605
606 static void nested_release_page(struct page *page)
607 {
608 kvm_release_page_dirty(page);
609 }
610
611 static void nested_release_page_clean(struct page *page)
612 {
613 kvm_release_page_clean(page);
614 }
615
616 static u64 construct_eptp(unsigned long root_hpa);
617 static void kvm_cpu_vmxon(u64 addr);
618 static void kvm_cpu_vmxoff(void);
619 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
620 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
621 static void vmx_set_segment(struct kvm_vcpu *vcpu,
622 struct kvm_segment *var, int seg);
623 static void vmx_get_segment(struct kvm_vcpu *vcpu,
624 struct kvm_segment *var, int seg);
625 static bool guest_state_valid(struct kvm_vcpu *vcpu);
626 static u32 vmx_segment_access_rights(struct kvm_segment *var);
627
628 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
629 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
630 /*
631 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
632 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
633 */
634 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
635 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
636
637 static unsigned long *vmx_io_bitmap_a;
638 static unsigned long *vmx_io_bitmap_b;
639 static unsigned long *vmx_msr_bitmap_legacy;
640 static unsigned long *vmx_msr_bitmap_longmode;
641 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
642 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
643
644 static bool cpu_has_load_ia32_efer;
645 static bool cpu_has_load_perf_global_ctrl;
646
647 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
648 static DEFINE_SPINLOCK(vmx_vpid_lock);
649
650 static struct vmcs_config {
651 int size;
652 int order;
653 u32 revision_id;
654 u32 pin_based_exec_ctrl;
655 u32 cpu_based_exec_ctrl;
656 u32 cpu_based_2nd_exec_ctrl;
657 u32 vmexit_ctrl;
658 u32 vmentry_ctrl;
659 } vmcs_config;
660
661 static struct vmx_capability {
662 u32 ept;
663 u32 vpid;
664 } vmx_capability;
665
666 #define VMX_SEGMENT_FIELD(seg) \
667 [VCPU_SREG_##seg] = { \
668 .selector = GUEST_##seg##_SELECTOR, \
669 .base = GUEST_##seg##_BASE, \
670 .limit = GUEST_##seg##_LIMIT, \
671 .ar_bytes = GUEST_##seg##_AR_BYTES, \
672 }
673
674 static const struct kvm_vmx_segment_field {
675 unsigned selector;
676 unsigned base;
677 unsigned limit;
678 unsigned ar_bytes;
679 } kvm_vmx_segment_fields[] = {
680 VMX_SEGMENT_FIELD(CS),
681 VMX_SEGMENT_FIELD(DS),
682 VMX_SEGMENT_FIELD(ES),
683 VMX_SEGMENT_FIELD(FS),
684 VMX_SEGMENT_FIELD(GS),
685 VMX_SEGMENT_FIELD(SS),
686 VMX_SEGMENT_FIELD(TR),
687 VMX_SEGMENT_FIELD(LDTR),
688 };
689
690 static u64 host_efer;
691
692 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
693
694 /*
695 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
696 * away by decrementing the array size.
697 */
698 static const u32 vmx_msr_index[] = {
699 #ifdef CONFIG_X86_64
700 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
701 #endif
702 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
703 };
704 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
705
706 static inline bool is_page_fault(u32 intr_info)
707 {
708 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
709 INTR_INFO_VALID_MASK)) ==
710 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
711 }
712
713 static inline bool is_no_device(u32 intr_info)
714 {
715 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
716 INTR_INFO_VALID_MASK)) ==
717 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
718 }
719
720 static inline bool is_invalid_opcode(u32 intr_info)
721 {
722 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
723 INTR_INFO_VALID_MASK)) ==
724 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
725 }
726
727 static inline bool is_external_interrupt(u32 intr_info)
728 {
729 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
730 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
731 }
732
733 static inline bool is_machine_check(u32 intr_info)
734 {
735 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
736 INTR_INFO_VALID_MASK)) ==
737 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
738 }
739
740 static inline bool cpu_has_vmx_msr_bitmap(void)
741 {
742 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
743 }
744
745 static inline bool cpu_has_vmx_tpr_shadow(void)
746 {
747 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
748 }
749
750 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
751 {
752 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
753 }
754
755 static inline bool cpu_has_secondary_exec_ctrls(void)
756 {
757 return vmcs_config.cpu_based_exec_ctrl &
758 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
759 }
760
761 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
762 {
763 return vmcs_config.cpu_based_2nd_exec_ctrl &
764 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
765 }
766
767 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
768 {
769 return vmcs_config.cpu_based_2nd_exec_ctrl &
770 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
771 }
772
773 static inline bool cpu_has_vmx_apic_register_virt(void)
774 {
775 return vmcs_config.cpu_based_2nd_exec_ctrl &
776 SECONDARY_EXEC_APIC_REGISTER_VIRT;
777 }
778
779 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
780 {
781 return vmcs_config.cpu_based_2nd_exec_ctrl &
782 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
783 }
784
785 static inline bool cpu_has_vmx_flexpriority(void)
786 {
787 return cpu_has_vmx_tpr_shadow() &&
788 cpu_has_vmx_virtualize_apic_accesses();
789 }
790
791 static inline bool cpu_has_vmx_ept_execute_only(void)
792 {
793 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
794 }
795
796 static inline bool cpu_has_vmx_eptp_uncacheable(void)
797 {
798 return vmx_capability.ept & VMX_EPTP_UC_BIT;
799 }
800
801 static inline bool cpu_has_vmx_eptp_writeback(void)
802 {
803 return vmx_capability.ept & VMX_EPTP_WB_BIT;
804 }
805
806 static inline bool cpu_has_vmx_ept_2m_page(void)
807 {
808 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
809 }
810
811 static inline bool cpu_has_vmx_ept_1g_page(void)
812 {
813 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
814 }
815
816 static inline bool cpu_has_vmx_ept_4levels(void)
817 {
818 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
819 }
820
821 static inline bool cpu_has_vmx_ept_ad_bits(void)
822 {
823 return vmx_capability.ept & VMX_EPT_AD_BIT;
824 }
825
826 static inline bool cpu_has_vmx_invept_context(void)
827 {
828 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
829 }
830
831 static inline bool cpu_has_vmx_invept_global(void)
832 {
833 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
834 }
835
836 static inline bool cpu_has_vmx_invvpid_single(void)
837 {
838 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
839 }
840
841 static inline bool cpu_has_vmx_invvpid_global(void)
842 {
843 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
844 }
845
846 static inline bool cpu_has_vmx_ept(void)
847 {
848 return vmcs_config.cpu_based_2nd_exec_ctrl &
849 SECONDARY_EXEC_ENABLE_EPT;
850 }
851
852 static inline bool cpu_has_vmx_unrestricted_guest(void)
853 {
854 return vmcs_config.cpu_based_2nd_exec_ctrl &
855 SECONDARY_EXEC_UNRESTRICTED_GUEST;
856 }
857
858 static inline bool cpu_has_vmx_ple(void)
859 {
860 return vmcs_config.cpu_based_2nd_exec_ctrl &
861 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
862 }
863
864 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
865 {
866 return flexpriority_enabled && irqchip_in_kernel(kvm);
867 }
868
869 static inline bool cpu_has_vmx_vpid(void)
870 {
871 return vmcs_config.cpu_based_2nd_exec_ctrl &
872 SECONDARY_EXEC_ENABLE_VPID;
873 }
874
875 static inline bool cpu_has_vmx_rdtscp(void)
876 {
877 return vmcs_config.cpu_based_2nd_exec_ctrl &
878 SECONDARY_EXEC_RDTSCP;
879 }
880
881 static inline bool cpu_has_vmx_invpcid(void)
882 {
883 return vmcs_config.cpu_based_2nd_exec_ctrl &
884 SECONDARY_EXEC_ENABLE_INVPCID;
885 }
886
887 static inline bool cpu_has_virtual_nmis(void)
888 {
889 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
890 }
891
892 static inline bool cpu_has_vmx_wbinvd_exit(void)
893 {
894 return vmcs_config.cpu_based_2nd_exec_ctrl &
895 SECONDARY_EXEC_WBINVD_EXITING;
896 }
897
898 static inline bool report_flexpriority(void)
899 {
900 return flexpriority_enabled;
901 }
902
903 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
904 {
905 return vmcs12->cpu_based_vm_exec_control & bit;
906 }
907
908 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
909 {
910 return (vmcs12->cpu_based_vm_exec_control &
911 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
912 (vmcs12->secondary_vm_exec_control & bit);
913 }
914
915 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
916 struct kvm_vcpu *vcpu)
917 {
918 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
919 }
920
921 static inline bool is_exception(u32 intr_info)
922 {
923 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
924 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
925 }
926
927 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
928 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
929 struct vmcs12 *vmcs12,
930 u32 reason, unsigned long qualification);
931
932 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
933 {
934 int i;
935
936 for (i = 0; i < vmx->nmsrs; ++i)
937 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
938 return i;
939 return -1;
940 }
941
942 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
943 {
944 struct {
945 u64 vpid : 16;
946 u64 rsvd : 48;
947 u64 gva;
948 } operand = { vpid, 0, gva };
949
950 asm volatile (__ex(ASM_VMX_INVVPID)
951 /* CF==1 or ZF==1 --> rc = -1 */
952 "; ja 1f ; ud2 ; 1:"
953 : : "a"(&operand), "c"(ext) : "cc", "memory");
954 }
955
956 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
957 {
958 struct {
959 u64 eptp, gpa;
960 } operand = {eptp, gpa};
961
962 asm volatile (__ex(ASM_VMX_INVEPT)
963 /* CF==1 or ZF==1 --> rc = -1 */
964 "; ja 1f ; ud2 ; 1:\n"
965 : : "a" (&operand), "c" (ext) : "cc", "memory");
966 }
967
968 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
969 {
970 int i;
971
972 i = __find_msr_index(vmx, msr);
973 if (i >= 0)
974 return &vmx->guest_msrs[i];
975 return NULL;
976 }
977
978 static void vmcs_clear(struct vmcs *vmcs)
979 {
980 u64 phys_addr = __pa(vmcs);
981 u8 error;
982
983 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
984 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
985 : "cc", "memory");
986 if (error)
987 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
988 vmcs, phys_addr);
989 }
990
991 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
992 {
993 vmcs_clear(loaded_vmcs->vmcs);
994 loaded_vmcs->cpu = -1;
995 loaded_vmcs->launched = 0;
996 }
997
998 static void vmcs_load(struct vmcs *vmcs)
999 {
1000 u64 phys_addr = __pa(vmcs);
1001 u8 error;
1002
1003 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1004 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1005 : "cc", "memory");
1006 if (error)
1007 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1008 vmcs, phys_addr);
1009 }
1010
1011 #ifdef CONFIG_KEXEC
1012 /*
1013 * This bitmap is used to indicate whether the vmclear
1014 * operation is enabled on all cpus. All disabled by
1015 * default.
1016 */
1017 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1018
1019 static inline void crash_enable_local_vmclear(int cpu)
1020 {
1021 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1022 }
1023
1024 static inline void crash_disable_local_vmclear(int cpu)
1025 {
1026 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1027 }
1028
1029 static inline int crash_local_vmclear_enabled(int cpu)
1030 {
1031 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1032 }
1033
1034 static void crash_vmclear_local_loaded_vmcss(void)
1035 {
1036 int cpu = raw_smp_processor_id();
1037 struct loaded_vmcs *v;
1038
1039 if (!crash_local_vmclear_enabled(cpu))
1040 return;
1041
1042 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1043 loaded_vmcss_on_cpu_link)
1044 vmcs_clear(v->vmcs);
1045 }
1046 #else
1047 static inline void crash_enable_local_vmclear(int cpu) { }
1048 static inline void crash_disable_local_vmclear(int cpu) { }
1049 #endif /* CONFIG_KEXEC */
1050
1051 static void __loaded_vmcs_clear(void *arg)
1052 {
1053 struct loaded_vmcs *loaded_vmcs = arg;
1054 int cpu = raw_smp_processor_id();
1055
1056 if (loaded_vmcs->cpu != cpu)
1057 return; /* vcpu migration can race with cpu offline */
1058 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1059 per_cpu(current_vmcs, cpu) = NULL;
1060 crash_disable_local_vmclear(cpu);
1061 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1062
1063 /*
1064 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1065 * is before setting loaded_vmcs->vcpu to -1 which is done in
1066 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1067 * then adds the vmcs into percpu list before it is deleted.
1068 */
1069 smp_wmb();
1070
1071 loaded_vmcs_init(loaded_vmcs);
1072 crash_enable_local_vmclear(cpu);
1073 }
1074
1075 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1076 {
1077 int cpu = loaded_vmcs->cpu;
1078
1079 if (cpu != -1)
1080 smp_call_function_single(cpu,
1081 __loaded_vmcs_clear, loaded_vmcs, 1);
1082 }
1083
1084 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1085 {
1086 if (vmx->vpid == 0)
1087 return;
1088
1089 if (cpu_has_vmx_invvpid_single())
1090 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1091 }
1092
1093 static inline void vpid_sync_vcpu_global(void)
1094 {
1095 if (cpu_has_vmx_invvpid_global())
1096 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1097 }
1098
1099 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1100 {
1101 if (cpu_has_vmx_invvpid_single())
1102 vpid_sync_vcpu_single(vmx);
1103 else
1104 vpid_sync_vcpu_global();
1105 }
1106
1107 static inline void ept_sync_global(void)
1108 {
1109 if (cpu_has_vmx_invept_global())
1110 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1111 }
1112
1113 static inline void ept_sync_context(u64 eptp)
1114 {
1115 if (enable_ept) {
1116 if (cpu_has_vmx_invept_context())
1117 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1118 else
1119 ept_sync_global();
1120 }
1121 }
1122
1123 static __always_inline unsigned long vmcs_readl(unsigned long field)
1124 {
1125 unsigned long value;
1126
1127 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1128 : "=a"(value) : "d"(field) : "cc");
1129 return value;
1130 }
1131
1132 static __always_inline u16 vmcs_read16(unsigned long field)
1133 {
1134 return vmcs_readl(field);
1135 }
1136
1137 static __always_inline u32 vmcs_read32(unsigned long field)
1138 {
1139 return vmcs_readl(field);
1140 }
1141
1142 static __always_inline u64 vmcs_read64(unsigned long field)
1143 {
1144 #ifdef CONFIG_X86_64
1145 return vmcs_readl(field);
1146 #else
1147 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1148 #endif
1149 }
1150
1151 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1152 {
1153 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1154 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1155 dump_stack();
1156 }
1157
1158 static void vmcs_writel(unsigned long field, unsigned long value)
1159 {
1160 u8 error;
1161
1162 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1163 : "=q"(error) : "a"(value), "d"(field) : "cc");
1164 if (unlikely(error))
1165 vmwrite_error(field, value);
1166 }
1167
1168 static void vmcs_write16(unsigned long field, u16 value)
1169 {
1170 vmcs_writel(field, value);
1171 }
1172
1173 static void vmcs_write32(unsigned long field, u32 value)
1174 {
1175 vmcs_writel(field, value);
1176 }
1177
1178 static void vmcs_write64(unsigned long field, u64 value)
1179 {
1180 vmcs_writel(field, value);
1181 #ifndef CONFIG_X86_64
1182 asm volatile ("");
1183 vmcs_writel(field+1, value >> 32);
1184 #endif
1185 }
1186
1187 static void vmcs_clear_bits(unsigned long field, u32 mask)
1188 {
1189 vmcs_writel(field, vmcs_readl(field) & ~mask);
1190 }
1191
1192 static void vmcs_set_bits(unsigned long field, u32 mask)
1193 {
1194 vmcs_writel(field, vmcs_readl(field) | mask);
1195 }
1196
1197 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1198 {
1199 vmx->segment_cache.bitmask = 0;
1200 }
1201
1202 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1203 unsigned field)
1204 {
1205 bool ret;
1206 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1207
1208 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1209 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1210 vmx->segment_cache.bitmask = 0;
1211 }
1212 ret = vmx->segment_cache.bitmask & mask;
1213 vmx->segment_cache.bitmask |= mask;
1214 return ret;
1215 }
1216
1217 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1218 {
1219 u16 *p = &vmx->segment_cache.seg[seg].selector;
1220
1221 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1222 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1223 return *p;
1224 }
1225
1226 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1227 {
1228 ulong *p = &vmx->segment_cache.seg[seg].base;
1229
1230 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1231 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1232 return *p;
1233 }
1234
1235 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1236 {
1237 u32 *p = &vmx->segment_cache.seg[seg].limit;
1238
1239 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1240 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1241 return *p;
1242 }
1243
1244 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1245 {
1246 u32 *p = &vmx->segment_cache.seg[seg].ar;
1247
1248 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1249 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1250 return *p;
1251 }
1252
1253 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1254 {
1255 u32 eb;
1256
1257 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1258 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1259 if ((vcpu->guest_debug &
1260 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1261 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1262 eb |= 1u << BP_VECTOR;
1263 if (to_vmx(vcpu)->rmode.vm86_active)
1264 eb = ~0;
1265 if (enable_ept)
1266 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1267 if (vcpu->fpu_active)
1268 eb &= ~(1u << NM_VECTOR);
1269
1270 /* When we are running a nested L2 guest and L1 specified for it a
1271 * certain exception bitmap, we must trap the same exceptions and pass
1272 * them to L1. When running L2, we will only handle the exceptions
1273 * specified above if L1 did not want them.
1274 */
1275 if (is_guest_mode(vcpu))
1276 eb |= get_vmcs12(vcpu)->exception_bitmap;
1277
1278 vmcs_write32(EXCEPTION_BITMAP, eb);
1279 }
1280
1281 static void clear_atomic_switch_msr_special(unsigned long entry,
1282 unsigned long exit)
1283 {
1284 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1285 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1286 }
1287
1288 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1289 {
1290 unsigned i;
1291 struct msr_autoload *m = &vmx->msr_autoload;
1292
1293 switch (msr) {
1294 case MSR_EFER:
1295 if (cpu_has_load_ia32_efer) {
1296 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1297 VM_EXIT_LOAD_IA32_EFER);
1298 return;
1299 }
1300 break;
1301 case MSR_CORE_PERF_GLOBAL_CTRL:
1302 if (cpu_has_load_perf_global_ctrl) {
1303 clear_atomic_switch_msr_special(
1304 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1305 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1306 return;
1307 }
1308 break;
1309 }
1310
1311 for (i = 0; i < m->nr; ++i)
1312 if (m->guest[i].index == msr)
1313 break;
1314
1315 if (i == m->nr)
1316 return;
1317 --m->nr;
1318 m->guest[i] = m->guest[m->nr];
1319 m->host[i] = m->host[m->nr];
1320 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1321 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1322 }
1323
1324 static void add_atomic_switch_msr_special(unsigned long entry,
1325 unsigned long exit, unsigned long guest_val_vmcs,
1326 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1327 {
1328 vmcs_write64(guest_val_vmcs, guest_val);
1329 vmcs_write64(host_val_vmcs, host_val);
1330 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1331 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1332 }
1333
1334 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1335 u64 guest_val, u64 host_val)
1336 {
1337 unsigned i;
1338 struct msr_autoload *m = &vmx->msr_autoload;
1339
1340 switch (msr) {
1341 case MSR_EFER:
1342 if (cpu_has_load_ia32_efer) {
1343 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1344 VM_EXIT_LOAD_IA32_EFER,
1345 GUEST_IA32_EFER,
1346 HOST_IA32_EFER,
1347 guest_val, host_val);
1348 return;
1349 }
1350 break;
1351 case MSR_CORE_PERF_GLOBAL_CTRL:
1352 if (cpu_has_load_perf_global_ctrl) {
1353 add_atomic_switch_msr_special(
1354 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1355 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1356 GUEST_IA32_PERF_GLOBAL_CTRL,
1357 HOST_IA32_PERF_GLOBAL_CTRL,
1358 guest_val, host_val);
1359 return;
1360 }
1361 break;
1362 }
1363
1364 for (i = 0; i < m->nr; ++i)
1365 if (m->guest[i].index == msr)
1366 break;
1367
1368 if (i == NR_AUTOLOAD_MSRS) {
1369 printk_once(KERN_WARNING"Not enough mst switch entries. "
1370 "Can't add msr %x\n", msr);
1371 return;
1372 } else if (i == m->nr) {
1373 ++m->nr;
1374 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1375 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1376 }
1377
1378 m->guest[i].index = msr;
1379 m->guest[i].value = guest_val;
1380 m->host[i].index = msr;
1381 m->host[i].value = host_val;
1382 }
1383
1384 static void reload_tss(void)
1385 {
1386 /*
1387 * VT restores TR but not its size. Useless.
1388 */
1389 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1390 struct desc_struct *descs;
1391
1392 descs = (void *)gdt->address;
1393 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1394 load_TR_desc();
1395 }
1396
1397 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1398 {
1399 u64 guest_efer;
1400 u64 ignore_bits;
1401
1402 guest_efer = vmx->vcpu.arch.efer;
1403
1404 /*
1405 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1406 * outside long mode
1407 */
1408 ignore_bits = EFER_NX | EFER_SCE;
1409 #ifdef CONFIG_X86_64
1410 ignore_bits |= EFER_LMA | EFER_LME;
1411 /* SCE is meaningful only in long mode on Intel */
1412 if (guest_efer & EFER_LMA)
1413 ignore_bits &= ~(u64)EFER_SCE;
1414 #endif
1415 guest_efer &= ~ignore_bits;
1416 guest_efer |= host_efer & ignore_bits;
1417 vmx->guest_msrs[efer_offset].data = guest_efer;
1418 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1419
1420 clear_atomic_switch_msr(vmx, MSR_EFER);
1421 /* On ept, can't emulate nx, and must switch nx atomically */
1422 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1423 guest_efer = vmx->vcpu.arch.efer;
1424 if (!(guest_efer & EFER_LMA))
1425 guest_efer &= ~EFER_LME;
1426 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1427 return false;
1428 }
1429
1430 return true;
1431 }
1432
1433 static unsigned long segment_base(u16 selector)
1434 {
1435 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1436 struct desc_struct *d;
1437 unsigned long table_base;
1438 unsigned long v;
1439
1440 if (!(selector & ~3))
1441 return 0;
1442
1443 table_base = gdt->address;
1444
1445 if (selector & 4) { /* from ldt */
1446 u16 ldt_selector = kvm_read_ldt();
1447
1448 if (!(ldt_selector & ~3))
1449 return 0;
1450
1451 table_base = segment_base(ldt_selector);
1452 }
1453 d = (struct desc_struct *)(table_base + (selector & ~7));
1454 v = get_desc_base(d);
1455 #ifdef CONFIG_X86_64
1456 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1457 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1458 #endif
1459 return v;
1460 }
1461
1462 static inline unsigned long kvm_read_tr_base(void)
1463 {
1464 u16 tr;
1465 asm("str %0" : "=g"(tr));
1466 return segment_base(tr);
1467 }
1468
1469 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1470 {
1471 struct vcpu_vmx *vmx = to_vmx(vcpu);
1472 int i;
1473
1474 if (vmx->host_state.loaded)
1475 return;
1476
1477 vmx->host_state.loaded = 1;
1478 /*
1479 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1480 * allow segment selectors with cpl > 0 or ti == 1.
1481 */
1482 vmx->host_state.ldt_sel = kvm_read_ldt();
1483 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1484 savesegment(fs, vmx->host_state.fs_sel);
1485 if (!(vmx->host_state.fs_sel & 7)) {
1486 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1487 vmx->host_state.fs_reload_needed = 0;
1488 } else {
1489 vmcs_write16(HOST_FS_SELECTOR, 0);
1490 vmx->host_state.fs_reload_needed = 1;
1491 }
1492 savesegment(gs, vmx->host_state.gs_sel);
1493 if (!(vmx->host_state.gs_sel & 7))
1494 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1495 else {
1496 vmcs_write16(HOST_GS_SELECTOR, 0);
1497 vmx->host_state.gs_ldt_reload_needed = 1;
1498 }
1499
1500 #ifdef CONFIG_X86_64
1501 savesegment(ds, vmx->host_state.ds_sel);
1502 savesegment(es, vmx->host_state.es_sel);
1503 #endif
1504
1505 #ifdef CONFIG_X86_64
1506 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1507 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1508 #else
1509 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1510 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1511 #endif
1512
1513 #ifdef CONFIG_X86_64
1514 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1515 if (is_long_mode(&vmx->vcpu))
1516 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1517 #endif
1518 for (i = 0; i < vmx->save_nmsrs; ++i)
1519 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1520 vmx->guest_msrs[i].data,
1521 vmx->guest_msrs[i].mask);
1522 }
1523
1524 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1525 {
1526 if (!vmx->host_state.loaded)
1527 return;
1528
1529 ++vmx->vcpu.stat.host_state_reload;
1530 vmx->host_state.loaded = 0;
1531 #ifdef CONFIG_X86_64
1532 if (is_long_mode(&vmx->vcpu))
1533 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1534 #endif
1535 if (vmx->host_state.gs_ldt_reload_needed) {
1536 kvm_load_ldt(vmx->host_state.ldt_sel);
1537 #ifdef CONFIG_X86_64
1538 load_gs_index(vmx->host_state.gs_sel);
1539 #else
1540 loadsegment(gs, vmx->host_state.gs_sel);
1541 #endif
1542 }
1543 if (vmx->host_state.fs_reload_needed)
1544 loadsegment(fs, vmx->host_state.fs_sel);
1545 #ifdef CONFIG_X86_64
1546 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1547 loadsegment(ds, vmx->host_state.ds_sel);
1548 loadsegment(es, vmx->host_state.es_sel);
1549 }
1550 #endif
1551 reload_tss();
1552 #ifdef CONFIG_X86_64
1553 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1554 #endif
1555 /*
1556 * If the FPU is not active (through the host task or
1557 * the guest vcpu), then restore the cr0.TS bit.
1558 */
1559 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1560 stts();
1561 load_gdt(&__get_cpu_var(host_gdt));
1562 }
1563
1564 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1565 {
1566 preempt_disable();
1567 __vmx_load_host_state(vmx);
1568 preempt_enable();
1569 }
1570
1571 /*
1572 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1573 * vcpu mutex is already taken.
1574 */
1575 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1576 {
1577 struct vcpu_vmx *vmx = to_vmx(vcpu);
1578 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1579
1580 if (!vmm_exclusive)
1581 kvm_cpu_vmxon(phys_addr);
1582 else if (vmx->loaded_vmcs->cpu != cpu)
1583 loaded_vmcs_clear(vmx->loaded_vmcs);
1584
1585 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1586 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1587 vmcs_load(vmx->loaded_vmcs->vmcs);
1588 }
1589
1590 if (vmx->loaded_vmcs->cpu != cpu) {
1591 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1592 unsigned long sysenter_esp;
1593
1594 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1595 local_irq_disable();
1596 crash_disable_local_vmclear(cpu);
1597
1598 /*
1599 * Read loaded_vmcs->cpu should be before fetching
1600 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1601 * See the comments in __loaded_vmcs_clear().
1602 */
1603 smp_rmb();
1604
1605 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1606 &per_cpu(loaded_vmcss_on_cpu, cpu));
1607 crash_enable_local_vmclear(cpu);
1608 local_irq_enable();
1609
1610 /*
1611 * Linux uses per-cpu TSS and GDT, so set these when switching
1612 * processors.
1613 */
1614 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1615 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1616
1617 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1618 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1619 vmx->loaded_vmcs->cpu = cpu;
1620 }
1621 }
1622
1623 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1624 {
1625 __vmx_load_host_state(to_vmx(vcpu));
1626 if (!vmm_exclusive) {
1627 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1628 vcpu->cpu = -1;
1629 kvm_cpu_vmxoff();
1630 }
1631 }
1632
1633 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1634 {
1635 ulong cr0;
1636
1637 if (vcpu->fpu_active)
1638 return;
1639 vcpu->fpu_active = 1;
1640 cr0 = vmcs_readl(GUEST_CR0);
1641 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1642 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1643 vmcs_writel(GUEST_CR0, cr0);
1644 update_exception_bitmap(vcpu);
1645 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1646 if (is_guest_mode(vcpu))
1647 vcpu->arch.cr0_guest_owned_bits &=
1648 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1649 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1650 }
1651
1652 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1653
1654 /*
1655 * Return the cr0 value that a nested guest would read. This is a combination
1656 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1657 * its hypervisor (cr0_read_shadow).
1658 */
1659 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1660 {
1661 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1662 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1663 }
1664 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1665 {
1666 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1667 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1668 }
1669
1670 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1671 {
1672 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1673 * set this *before* calling this function.
1674 */
1675 vmx_decache_cr0_guest_bits(vcpu);
1676 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1677 update_exception_bitmap(vcpu);
1678 vcpu->arch.cr0_guest_owned_bits = 0;
1679 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1680 if (is_guest_mode(vcpu)) {
1681 /*
1682 * L1's specified read shadow might not contain the TS bit,
1683 * so now that we turned on shadowing of this bit, we need to
1684 * set this bit of the shadow. Like in nested_vmx_run we need
1685 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1686 * up-to-date here because we just decached cr0.TS (and we'll
1687 * only update vmcs12->guest_cr0 on nested exit).
1688 */
1689 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1690 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1691 (vcpu->arch.cr0 & X86_CR0_TS);
1692 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1693 } else
1694 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1695 }
1696
1697 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1698 {
1699 unsigned long rflags, save_rflags;
1700
1701 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1702 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1703 rflags = vmcs_readl(GUEST_RFLAGS);
1704 if (to_vmx(vcpu)->rmode.vm86_active) {
1705 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1706 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1707 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1708 }
1709 to_vmx(vcpu)->rflags = rflags;
1710 }
1711 return to_vmx(vcpu)->rflags;
1712 }
1713
1714 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1715 {
1716 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1717 to_vmx(vcpu)->rflags = rflags;
1718 if (to_vmx(vcpu)->rmode.vm86_active) {
1719 to_vmx(vcpu)->rmode.save_rflags = rflags;
1720 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1721 }
1722 vmcs_writel(GUEST_RFLAGS, rflags);
1723 }
1724
1725 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1726 {
1727 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1728 int ret = 0;
1729
1730 if (interruptibility & GUEST_INTR_STATE_STI)
1731 ret |= KVM_X86_SHADOW_INT_STI;
1732 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1733 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1734
1735 return ret & mask;
1736 }
1737
1738 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1739 {
1740 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1741 u32 interruptibility = interruptibility_old;
1742
1743 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1744
1745 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1746 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1747 else if (mask & KVM_X86_SHADOW_INT_STI)
1748 interruptibility |= GUEST_INTR_STATE_STI;
1749
1750 if ((interruptibility != interruptibility_old))
1751 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1752 }
1753
1754 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1755 {
1756 unsigned long rip;
1757
1758 rip = kvm_rip_read(vcpu);
1759 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1760 kvm_rip_write(vcpu, rip);
1761
1762 /* skipping an emulated instruction also counts */
1763 vmx_set_interrupt_shadow(vcpu, 0);
1764 }
1765
1766 /*
1767 * KVM wants to inject page-faults which it got to the guest. This function
1768 * checks whether in a nested guest, we need to inject them to L1 or L2.
1769 * This function assumes it is called with the exit reason in vmcs02 being
1770 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1771 * is running).
1772 */
1773 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1774 {
1775 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1776
1777 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1778 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1779 return 0;
1780
1781 nested_vmx_vmexit(vcpu);
1782 return 1;
1783 }
1784
1785 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1786 bool has_error_code, u32 error_code,
1787 bool reinject)
1788 {
1789 struct vcpu_vmx *vmx = to_vmx(vcpu);
1790 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1791
1792 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1793 nested_pf_handled(vcpu))
1794 return;
1795
1796 if (has_error_code) {
1797 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1798 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1799 }
1800
1801 if (vmx->rmode.vm86_active) {
1802 int inc_eip = 0;
1803 if (kvm_exception_is_soft(nr))
1804 inc_eip = vcpu->arch.event_exit_inst_len;
1805 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1806 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1807 return;
1808 }
1809
1810 if (kvm_exception_is_soft(nr)) {
1811 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1812 vmx->vcpu.arch.event_exit_inst_len);
1813 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1814 } else
1815 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1816
1817 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1818 }
1819
1820 static bool vmx_rdtscp_supported(void)
1821 {
1822 return cpu_has_vmx_rdtscp();
1823 }
1824
1825 static bool vmx_invpcid_supported(void)
1826 {
1827 return cpu_has_vmx_invpcid() && enable_ept;
1828 }
1829
1830 /*
1831 * Swap MSR entry in host/guest MSR entry array.
1832 */
1833 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1834 {
1835 struct shared_msr_entry tmp;
1836
1837 tmp = vmx->guest_msrs[to];
1838 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1839 vmx->guest_msrs[from] = tmp;
1840 }
1841
1842 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
1843 {
1844 unsigned long *msr_bitmap;
1845
1846 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
1847 if (is_long_mode(vcpu))
1848 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
1849 else
1850 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
1851 } else {
1852 if (is_long_mode(vcpu))
1853 msr_bitmap = vmx_msr_bitmap_longmode;
1854 else
1855 msr_bitmap = vmx_msr_bitmap_legacy;
1856 }
1857
1858 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1859 }
1860
1861 /*
1862 * Set up the vmcs to automatically save and restore system
1863 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1864 * mode, as fiddling with msrs is very expensive.
1865 */
1866 static void setup_msrs(struct vcpu_vmx *vmx)
1867 {
1868 int save_nmsrs, index;
1869
1870 save_nmsrs = 0;
1871 #ifdef CONFIG_X86_64
1872 if (is_long_mode(&vmx->vcpu)) {
1873 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1874 if (index >= 0)
1875 move_msr_up(vmx, index, save_nmsrs++);
1876 index = __find_msr_index(vmx, MSR_LSTAR);
1877 if (index >= 0)
1878 move_msr_up(vmx, index, save_nmsrs++);
1879 index = __find_msr_index(vmx, MSR_CSTAR);
1880 if (index >= 0)
1881 move_msr_up(vmx, index, save_nmsrs++);
1882 index = __find_msr_index(vmx, MSR_TSC_AUX);
1883 if (index >= 0 && vmx->rdtscp_enabled)
1884 move_msr_up(vmx, index, save_nmsrs++);
1885 /*
1886 * MSR_STAR is only needed on long mode guests, and only
1887 * if efer.sce is enabled.
1888 */
1889 index = __find_msr_index(vmx, MSR_STAR);
1890 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1891 move_msr_up(vmx, index, save_nmsrs++);
1892 }
1893 #endif
1894 index = __find_msr_index(vmx, MSR_EFER);
1895 if (index >= 0 && update_transition_efer(vmx, index))
1896 move_msr_up(vmx, index, save_nmsrs++);
1897
1898 vmx->save_nmsrs = save_nmsrs;
1899
1900 if (cpu_has_vmx_msr_bitmap())
1901 vmx_set_msr_bitmap(&vmx->vcpu);
1902 }
1903
1904 /*
1905 * reads and returns guest's timestamp counter "register"
1906 * guest_tsc = host_tsc + tsc_offset -- 21.3
1907 */
1908 static u64 guest_read_tsc(void)
1909 {
1910 u64 host_tsc, tsc_offset;
1911
1912 rdtscll(host_tsc);
1913 tsc_offset = vmcs_read64(TSC_OFFSET);
1914 return host_tsc + tsc_offset;
1915 }
1916
1917 /*
1918 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1919 * counter, even if a nested guest (L2) is currently running.
1920 */
1921 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1922 {
1923 u64 tsc_offset;
1924
1925 tsc_offset = is_guest_mode(vcpu) ?
1926 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1927 vmcs_read64(TSC_OFFSET);
1928 return host_tsc + tsc_offset;
1929 }
1930
1931 /*
1932 * Engage any workarounds for mis-matched TSC rates. Currently limited to
1933 * software catchup for faster rates on slower CPUs.
1934 */
1935 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1936 {
1937 if (!scale)
1938 return;
1939
1940 if (user_tsc_khz > tsc_khz) {
1941 vcpu->arch.tsc_catchup = 1;
1942 vcpu->arch.tsc_always_catchup = 1;
1943 } else
1944 WARN(1, "user requested TSC rate below hardware speed\n");
1945 }
1946
1947 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
1948 {
1949 return vmcs_read64(TSC_OFFSET);
1950 }
1951
1952 /*
1953 * writes 'offset' into guest's timestamp counter offset register
1954 */
1955 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1956 {
1957 if (is_guest_mode(vcpu)) {
1958 /*
1959 * We're here if L1 chose not to trap WRMSR to TSC. According
1960 * to the spec, this should set L1's TSC; The offset that L1
1961 * set for L2 remains unchanged, and still needs to be added
1962 * to the newly set TSC to get L2's TSC.
1963 */
1964 struct vmcs12 *vmcs12;
1965 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1966 /* recalculate vmcs02.TSC_OFFSET: */
1967 vmcs12 = get_vmcs12(vcpu);
1968 vmcs_write64(TSC_OFFSET, offset +
1969 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1970 vmcs12->tsc_offset : 0));
1971 } else {
1972 vmcs_write64(TSC_OFFSET, offset);
1973 }
1974 }
1975
1976 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1977 {
1978 u64 offset = vmcs_read64(TSC_OFFSET);
1979 vmcs_write64(TSC_OFFSET, offset + adjustment);
1980 if (is_guest_mode(vcpu)) {
1981 /* Even when running L2, the adjustment needs to apply to L1 */
1982 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1983 }
1984 }
1985
1986 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1987 {
1988 return target_tsc - native_read_tsc();
1989 }
1990
1991 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1992 {
1993 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1994 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1995 }
1996
1997 /*
1998 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1999 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2000 * all guests if the "nested" module option is off, and can also be disabled
2001 * for a single guest by disabling its VMX cpuid bit.
2002 */
2003 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2004 {
2005 return nested && guest_cpuid_has_vmx(vcpu);
2006 }
2007
2008 /*
2009 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2010 * returned for the various VMX controls MSRs when nested VMX is enabled.
2011 * The same values should also be used to verify that vmcs12 control fields are
2012 * valid during nested entry from L1 to L2.
2013 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2014 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2015 * bit in the high half is on if the corresponding bit in the control field
2016 * may be on. See also vmx_control_verify().
2017 * TODO: allow these variables to be modified (downgraded) by module options
2018 * or other means.
2019 */
2020 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2021 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2022 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2023 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2024 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2025 static __init void nested_vmx_setup_ctls_msrs(void)
2026 {
2027 /*
2028 * Note that as a general rule, the high half of the MSRs (bits in
2029 * the control fields which may be 1) should be initialized by the
2030 * intersection of the underlying hardware's MSR (i.e., features which
2031 * can be supported) and the list of features we want to expose -
2032 * because they are known to be properly supported in our code.
2033 * Also, usually, the low half of the MSRs (bits which must be 1) can
2034 * be set to 0, meaning that L1 may turn off any of these bits. The
2035 * reason is that if one of these bits is necessary, it will appear
2036 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2037 * fields of vmcs01 and vmcs02, will turn these bits off - and
2038 * nested_vmx_exit_handled() will not pass related exits to L1.
2039 * These rules have exceptions below.
2040 */
2041
2042 /* pin-based controls */
2043 /*
2044 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2045 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2046 */
2047 nested_vmx_pinbased_ctls_low = 0x16 ;
2048 nested_vmx_pinbased_ctls_high = 0x16 |
2049 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
2050 PIN_BASED_VIRTUAL_NMIS;
2051
2052 /* exit controls */
2053 nested_vmx_exit_ctls_low = 0;
2054 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2055 #ifdef CONFIG_X86_64
2056 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
2057 #else
2058 nested_vmx_exit_ctls_high = 0;
2059 #endif
2060
2061 /* entry controls */
2062 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2063 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2064 nested_vmx_entry_ctls_low = 0;
2065 nested_vmx_entry_ctls_high &=
2066 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
2067
2068 /* cpu-based controls */
2069 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2070 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2071 nested_vmx_procbased_ctls_low = 0;
2072 nested_vmx_procbased_ctls_high &=
2073 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2074 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2075 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2076 CPU_BASED_CR3_STORE_EXITING |
2077 #ifdef CONFIG_X86_64
2078 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2079 #endif
2080 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2081 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2082 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2083 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2084 /*
2085 * We can allow some features even when not supported by the
2086 * hardware. For example, L1 can specify an MSR bitmap - and we
2087 * can use it to avoid exits to L1 - even when L0 runs L2
2088 * without MSR bitmaps.
2089 */
2090 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2091
2092 /* secondary cpu-based controls */
2093 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2094 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2095 nested_vmx_secondary_ctls_low = 0;
2096 nested_vmx_secondary_ctls_high &=
2097 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2098 }
2099
2100 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2101 {
2102 /*
2103 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2104 */
2105 return ((control & high) | low) == control;
2106 }
2107
2108 static inline u64 vmx_control_msr(u32 low, u32 high)
2109 {
2110 return low | ((u64)high << 32);
2111 }
2112
2113 /*
2114 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2115 * also let it use VMX-specific MSRs.
2116 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2117 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2118 * like all other MSRs).
2119 */
2120 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2121 {
2122 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2123 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2124 /*
2125 * According to the spec, processors which do not support VMX
2126 * should throw a #GP(0) when VMX capability MSRs are read.
2127 */
2128 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2129 return 1;
2130 }
2131
2132 switch (msr_index) {
2133 case MSR_IA32_FEATURE_CONTROL:
2134 *pdata = 0;
2135 break;
2136 case MSR_IA32_VMX_BASIC:
2137 /*
2138 * This MSR reports some information about VMX support. We
2139 * should return information about the VMX we emulate for the
2140 * guest, and the VMCS structure we give it - not about the
2141 * VMX support of the underlying hardware.
2142 */
2143 *pdata = VMCS12_REVISION |
2144 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2145 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2146 break;
2147 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2148 case MSR_IA32_VMX_PINBASED_CTLS:
2149 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2150 nested_vmx_pinbased_ctls_high);
2151 break;
2152 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2153 case MSR_IA32_VMX_PROCBASED_CTLS:
2154 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2155 nested_vmx_procbased_ctls_high);
2156 break;
2157 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2158 case MSR_IA32_VMX_EXIT_CTLS:
2159 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2160 nested_vmx_exit_ctls_high);
2161 break;
2162 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2163 case MSR_IA32_VMX_ENTRY_CTLS:
2164 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2165 nested_vmx_entry_ctls_high);
2166 break;
2167 case MSR_IA32_VMX_MISC:
2168 *pdata = 0;
2169 break;
2170 /*
2171 * These MSRs specify bits which the guest must keep fixed (on or off)
2172 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2173 * We picked the standard core2 setting.
2174 */
2175 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2176 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2177 case MSR_IA32_VMX_CR0_FIXED0:
2178 *pdata = VMXON_CR0_ALWAYSON;
2179 break;
2180 case MSR_IA32_VMX_CR0_FIXED1:
2181 *pdata = -1ULL;
2182 break;
2183 case MSR_IA32_VMX_CR4_FIXED0:
2184 *pdata = VMXON_CR4_ALWAYSON;
2185 break;
2186 case MSR_IA32_VMX_CR4_FIXED1:
2187 *pdata = -1ULL;
2188 break;
2189 case MSR_IA32_VMX_VMCS_ENUM:
2190 *pdata = 0x1f;
2191 break;
2192 case MSR_IA32_VMX_PROCBASED_CTLS2:
2193 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2194 nested_vmx_secondary_ctls_high);
2195 break;
2196 case MSR_IA32_VMX_EPT_VPID_CAP:
2197 /* Currently, no nested ept or nested vpid */
2198 *pdata = 0;
2199 break;
2200 default:
2201 return 0;
2202 }
2203
2204 return 1;
2205 }
2206
2207 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2208 {
2209 if (!nested_vmx_allowed(vcpu))
2210 return 0;
2211
2212 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2213 /* TODO: the right thing. */
2214 return 1;
2215 /*
2216 * No need to treat VMX capability MSRs specially: If we don't handle
2217 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2218 */
2219 return 0;
2220 }
2221
2222 /*
2223 * Reads an msr value (of 'msr_index') into 'pdata'.
2224 * Returns 0 on success, non-0 otherwise.
2225 * Assumes vcpu_load() was already called.
2226 */
2227 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2228 {
2229 u64 data;
2230 struct shared_msr_entry *msr;
2231
2232 if (!pdata) {
2233 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2234 return -EINVAL;
2235 }
2236
2237 switch (msr_index) {
2238 #ifdef CONFIG_X86_64
2239 case MSR_FS_BASE:
2240 data = vmcs_readl(GUEST_FS_BASE);
2241 break;
2242 case MSR_GS_BASE:
2243 data = vmcs_readl(GUEST_GS_BASE);
2244 break;
2245 case MSR_KERNEL_GS_BASE:
2246 vmx_load_host_state(to_vmx(vcpu));
2247 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2248 break;
2249 #endif
2250 case MSR_EFER:
2251 return kvm_get_msr_common(vcpu, msr_index, pdata);
2252 case MSR_IA32_TSC:
2253 data = guest_read_tsc();
2254 break;
2255 case MSR_IA32_SYSENTER_CS:
2256 data = vmcs_read32(GUEST_SYSENTER_CS);
2257 break;
2258 case MSR_IA32_SYSENTER_EIP:
2259 data = vmcs_readl(GUEST_SYSENTER_EIP);
2260 break;
2261 case MSR_IA32_SYSENTER_ESP:
2262 data = vmcs_readl(GUEST_SYSENTER_ESP);
2263 break;
2264 case MSR_TSC_AUX:
2265 if (!to_vmx(vcpu)->rdtscp_enabled)
2266 return 1;
2267 /* Otherwise falls through */
2268 default:
2269 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2270 return 0;
2271 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2272 if (msr) {
2273 data = msr->data;
2274 break;
2275 }
2276 return kvm_get_msr_common(vcpu, msr_index, pdata);
2277 }
2278
2279 *pdata = data;
2280 return 0;
2281 }
2282
2283 /*
2284 * Writes msr value into into the appropriate "register".
2285 * Returns 0 on success, non-0 otherwise.
2286 * Assumes vcpu_load() was already called.
2287 */
2288 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2289 {
2290 struct vcpu_vmx *vmx = to_vmx(vcpu);
2291 struct shared_msr_entry *msr;
2292 int ret = 0;
2293 u32 msr_index = msr_info->index;
2294 u64 data = msr_info->data;
2295
2296 switch (msr_index) {
2297 case MSR_EFER:
2298 ret = kvm_set_msr_common(vcpu, msr_info);
2299 break;
2300 #ifdef CONFIG_X86_64
2301 case MSR_FS_BASE:
2302 vmx_segment_cache_clear(vmx);
2303 vmcs_writel(GUEST_FS_BASE, data);
2304 break;
2305 case MSR_GS_BASE:
2306 vmx_segment_cache_clear(vmx);
2307 vmcs_writel(GUEST_GS_BASE, data);
2308 break;
2309 case MSR_KERNEL_GS_BASE:
2310 vmx_load_host_state(vmx);
2311 vmx->msr_guest_kernel_gs_base = data;
2312 break;
2313 #endif
2314 case MSR_IA32_SYSENTER_CS:
2315 vmcs_write32(GUEST_SYSENTER_CS, data);
2316 break;
2317 case MSR_IA32_SYSENTER_EIP:
2318 vmcs_writel(GUEST_SYSENTER_EIP, data);
2319 break;
2320 case MSR_IA32_SYSENTER_ESP:
2321 vmcs_writel(GUEST_SYSENTER_ESP, data);
2322 break;
2323 case MSR_IA32_TSC:
2324 kvm_write_tsc(vcpu, msr_info);
2325 break;
2326 case MSR_IA32_CR_PAT:
2327 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2328 vmcs_write64(GUEST_IA32_PAT, data);
2329 vcpu->arch.pat = data;
2330 break;
2331 }
2332 ret = kvm_set_msr_common(vcpu, msr_info);
2333 break;
2334 case MSR_IA32_TSC_ADJUST:
2335 ret = kvm_set_msr_common(vcpu, msr_info);
2336 break;
2337 case MSR_TSC_AUX:
2338 if (!vmx->rdtscp_enabled)
2339 return 1;
2340 /* Check reserved bit, higher 32 bits should be zero */
2341 if ((data >> 32) != 0)
2342 return 1;
2343 /* Otherwise falls through */
2344 default:
2345 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2346 break;
2347 msr = find_msr_entry(vmx, msr_index);
2348 if (msr) {
2349 msr->data = data;
2350 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2351 preempt_disable();
2352 kvm_set_shared_msr(msr->index, msr->data,
2353 msr->mask);
2354 preempt_enable();
2355 }
2356 break;
2357 }
2358 ret = kvm_set_msr_common(vcpu, msr_info);
2359 }
2360
2361 return ret;
2362 }
2363
2364 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2365 {
2366 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2367 switch (reg) {
2368 case VCPU_REGS_RSP:
2369 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2370 break;
2371 case VCPU_REGS_RIP:
2372 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2373 break;
2374 case VCPU_EXREG_PDPTR:
2375 if (enable_ept)
2376 ept_save_pdptrs(vcpu);
2377 break;
2378 default:
2379 break;
2380 }
2381 }
2382
2383 static __init int cpu_has_kvm_support(void)
2384 {
2385 return cpu_has_vmx();
2386 }
2387
2388 static __init int vmx_disabled_by_bios(void)
2389 {
2390 u64 msr;
2391
2392 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2393 if (msr & FEATURE_CONTROL_LOCKED) {
2394 /* launched w/ TXT and VMX disabled */
2395 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2396 && tboot_enabled())
2397 return 1;
2398 /* launched w/o TXT and VMX only enabled w/ TXT */
2399 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2400 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2401 && !tboot_enabled()) {
2402 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2403 "activate TXT before enabling KVM\n");
2404 return 1;
2405 }
2406 /* launched w/o TXT and VMX disabled */
2407 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2408 && !tboot_enabled())
2409 return 1;
2410 }
2411
2412 return 0;
2413 }
2414
2415 static void kvm_cpu_vmxon(u64 addr)
2416 {
2417 asm volatile (ASM_VMX_VMXON_RAX
2418 : : "a"(&addr), "m"(addr)
2419 : "memory", "cc");
2420 }
2421
2422 static int hardware_enable(void *garbage)
2423 {
2424 int cpu = raw_smp_processor_id();
2425 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2426 u64 old, test_bits;
2427
2428 if (read_cr4() & X86_CR4_VMXE)
2429 return -EBUSY;
2430
2431 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2432
2433 /*
2434 * Now we can enable the vmclear operation in kdump
2435 * since the loaded_vmcss_on_cpu list on this cpu
2436 * has been initialized.
2437 *
2438 * Though the cpu is not in VMX operation now, there
2439 * is no problem to enable the vmclear operation
2440 * for the loaded_vmcss_on_cpu list is empty!
2441 */
2442 crash_enable_local_vmclear(cpu);
2443
2444 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2445
2446 test_bits = FEATURE_CONTROL_LOCKED;
2447 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2448 if (tboot_enabled())
2449 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2450
2451 if ((old & test_bits) != test_bits) {
2452 /* enable and lock */
2453 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2454 }
2455 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2456
2457 if (vmm_exclusive) {
2458 kvm_cpu_vmxon(phys_addr);
2459 ept_sync_global();
2460 }
2461
2462 store_gdt(&__get_cpu_var(host_gdt));
2463
2464 return 0;
2465 }
2466
2467 static void vmclear_local_loaded_vmcss(void)
2468 {
2469 int cpu = raw_smp_processor_id();
2470 struct loaded_vmcs *v, *n;
2471
2472 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2473 loaded_vmcss_on_cpu_link)
2474 __loaded_vmcs_clear(v);
2475 }
2476
2477
2478 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2479 * tricks.
2480 */
2481 static void kvm_cpu_vmxoff(void)
2482 {
2483 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2484 }
2485
2486 static void hardware_disable(void *garbage)
2487 {
2488 if (vmm_exclusive) {
2489 vmclear_local_loaded_vmcss();
2490 kvm_cpu_vmxoff();
2491 }
2492 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2493 }
2494
2495 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2496 u32 msr, u32 *result)
2497 {
2498 u32 vmx_msr_low, vmx_msr_high;
2499 u32 ctl = ctl_min | ctl_opt;
2500
2501 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2502
2503 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2504 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2505
2506 /* Ensure minimum (required) set of control bits are supported. */
2507 if (ctl_min & ~ctl)
2508 return -EIO;
2509
2510 *result = ctl;
2511 return 0;
2512 }
2513
2514 static __init bool allow_1_setting(u32 msr, u32 ctl)
2515 {
2516 u32 vmx_msr_low, vmx_msr_high;
2517
2518 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2519 return vmx_msr_high & ctl;
2520 }
2521
2522 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2523 {
2524 u32 vmx_msr_low, vmx_msr_high;
2525 u32 min, opt, min2, opt2;
2526 u32 _pin_based_exec_control = 0;
2527 u32 _cpu_based_exec_control = 0;
2528 u32 _cpu_based_2nd_exec_control = 0;
2529 u32 _vmexit_control = 0;
2530 u32 _vmentry_control = 0;
2531
2532 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2533 opt = PIN_BASED_VIRTUAL_NMIS;
2534 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2535 &_pin_based_exec_control) < 0)
2536 return -EIO;
2537
2538 min = CPU_BASED_HLT_EXITING |
2539 #ifdef CONFIG_X86_64
2540 CPU_BASED_CR8_LOAD_EXITING |
2541 CPU_BASED_CR8_STORE_EXITING |
2542 #endif
2543 CPU_BASED_CR3_LOAD_EXITING |
2544 CPU_BASED_CR3_STORE_EXITING |
2545 CPU_BASED_USE_IO_BITMAPS |
2546 CPU_BASED_MOV_DR_EXITING |
2547 CPU_BASED_USE_TSC_OFFSETING |
2548 CPU_BASED_MWAIT_EXITING |
2549 CPU_BASED_MONITOR_EXITING |
2550 CPU_BASED_INVLPG_EXITING |
2551 CPU_BASED_RDPMC_EXITING;
2552
2553 opt = CPU_BASED_TPR_SHADOW |
2554 CPU_BASED_USE_MSR_BITMAPS |
2555 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2556 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2557 &_cpu_based_exec_control) < 0)
2558 return -EIO;
2559 #ifdef CONFIG_X86_64
2560 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2561 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2562 ~CPU_BASED_CR8_STORE_EXITING;
2563 #endif
2564 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2565 min2 = 0;
2566 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2567 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2568 SECONDARY_EXEC_WBINVD_EXITING |
2569 SECONDARY_EXEC_ENABLE_VPID |
2570 SECONDARY_EXEC_ENABLE_EPT |
2571 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2572 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2573 SECONDARY_EXEC_RDTSCP |
2574 SECONDARY_EXEC_ENABLE_INVPCID |
2575 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2576 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
2577 if (adjust_vmx_controls(min2, opt2,
2578 MSR_IA32_VMX_PROCBASED_CTLS2,
2579 &_cpu_based_2nd_exec_control) < 0)
2580 return -EIO;
2581 }
2582 #ifndef CONFIG_X86_64
2583 if (!(_cpu_based_2nd_exec_control &
2584 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2585 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2586 #endif
2587
2588 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2589 _cpu_based_2nd_exec_control &= ~(
2590 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2591 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2592 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2593
2594 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2595 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2596 enabled */
2597 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2598 CPU_BASED_CR3_STORE_EXITING |
2599 CPU_BASED_INVLPG_EXITING);
2600 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2601 vmx_capability.ept, vmx_capability.vpid);
2602 }
2603
2604 min = 0;
2605 #ifdef CONFIG_X86_64
2606 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2607 #endif
2608 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2609 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2610 &_vmexit_control) < 0)
2611 return -EIO;
2612
2613 min = 0;
2614 opt = VM_ENTRY_LOAD_IA32_PAT;
2615 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2616 &_vmentry_control) < 0)
2617 return -EIO;
2618
2619 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2620
2621 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2622 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2623 return -EIO;
2624
2625 #ifdef CONFIG_X86_64
2626 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2627 if (vmx_msr_high & (1u<<16))
2628 return -EIO;
2629 #endif
2630
2631 /* Require Write-Back (WB) memory type for VMCS accesses. */
2632 if (((vmx_msr_high >> 18) & 15) != 6)
2633 return -EIO;
2634
2635 vmcs_conf->size = vmx_msr_high & 0x1fff;
2636 vmcs_conf->order = get_order(vmcs_config.size);
2637 vmcs_conf->revision_id = vmx_msr_low;
2638
2639 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2640 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2641 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2642 vmcs_conf->vmexit_ctrl = _vmexit_control;
2643 vmcs_conf->vmentry_ctrl = _vmentry_control;
2644
2645 cpu_has_load_ia32_efer =
2646 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2647 VM_ENTRY_LOAD_IA32_EFER)
2648 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2649 VM_EXIT_LOAD_IA32_EFER);
2650
2651 cpu_has_load_perf_global_ctrl =
2652 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2653 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2654 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2655 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2656
2657 /*
2658 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2659 * but due to arrata below it can't be used. Workaround is to use
2660 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2661 *
2662 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2663 *
2664 * AAK155 (model 26)
2665 * AAP115 (model 30)
2666 * AAT100 (model 37)
2667 * BC86,AAY89,BD102 (model 44)
2668 * BA97 (model 46)
2669 *
2670 */
2671 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2672 switch (boot_cpu_data.x86_model) {
2673 case 26:
2674 case 30:
2675 case 37:
2676 case 44:
2677 case 46:
2678 cpu_has_load_perf_global_ctrl = false;
2679 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2680 "does not work properly. Using workaround\n");
2681 break;
2682 default:
2683 break;
2684 }
2685 }
2686
2687 return 0;
2688 }
2689
2690 static struct vmcs *alloc_vmcs_cpu(int cpu)
2691 {
2692 int node = cpu_to_node(cpu);
2693 struct page *pages;
2694 struct vmcs *vmcs;
2695
2696 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2697 if (!pages)
2698 return NULL;
2699 vmcs = page_address(pages);
2700 memset(vmcs, 0, vmcs_config.size);
2701 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2702 return vmcs;
2703 }
2704
2705 static struct vmcs *alloc_vmcs(void)
2706 {
2707 return alloc_vmcs_cpu(raw_smp_processor_id());
2708 }
2709
2710 static void free_vmcs(struct vmcs *vmcs)
2711 {
2712 free_pages((unsigned long)vmcs, vmcs_config.order);
2713 }
2714
2715 /*
2716 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2717 */
2718 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2719 {
2720 if (!loaded_vmcs->vmcs)
2721 return;
2722 loaded_vmcs_clear(loaded_vmcs);
2723 free_vmcs(loaded_vmcs->vmcs);
2724 loaded_vmcs->vmcs = NULL;
2725 }
2726
2727 static void free_kvm_area(void)
2728 {
2729 int cpu;
2730
2731 for_each_possible_cpu(cpu) {
2732 free_vmcs(per_cpu(vmxarea, cpu));
2733 per_cpu(vmxarea, cpu) = NULL;
2734 }
2735 }
2736
2737 static __init int alloc_kvm_area(void)
2738 {
2739 int cpu;
2740
2741 for_each_possible_cpu(cpu) {
2742 struct vmcs *vmcs;
2743
2744 vmcs = alloc_vmcs_cpu(cpu);
2745 if (!vmcs) {
2746 free_kvm_area();
2747 return -ENOMEM;
2748 }
2749
2750 per_cpu(vmxarea, cpu) = vmcs;
2751 }
2752 return 0;
2753 }
2754
2755 static __init int hardware_setup(void)
2756 {
2757 if (setup_vmcs_config(&vmcs_config) < 0)
2758 return -EIO;
2759
2760 if (boot_cpu_has(X86_FEATURE_NX))
2761 kvm_enable_efer_bits(EFER_NX);
2762
2763 if (!cpu_has_vmx_vpid())
2764 enable_vpid = 0;
2765
2766 if (!cpu_has_vmx_ept() ||
2767 !cpu_has_vmx_ept_4levels()) {
2768 enable_ept = 0;
2769 enable_unrestricted_guest = 0;
2770 enable_ept_ad_bits = 0;
2771 }
2772
2773 if (!cpu_has_vmx_ept_ad_bits())
2774 enable_ept_ad_bits = 0;
2775
2776 if (!cpu_has_vmx_unrestricted_guest())
2777 enable_unrestricted_guest = 0;
2778
2779 if (!cpu_has_vmx_flexpriority())
2780 flexpriority_enabled = 0;
2781
2782 if (!cpu_has_vmx_tpr_shadow())
2783 kvm_x86_ops->update_cr8_intercept = NULL;
2784
2785 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2786 kvm_disable_largepages();
2787
2788 if (!cpu_has_vmx_ple())
2789 ple_gap = 0;
2790
2791 if (!cpu_has_vmx_apic_register_virt() ||
2792 !cpu_has_vmx_virtual_intr_delivery())
2793 enable_apicv_reg_vid = 0;
2794
2795 if (enable_apicv_reg_vid)
2796 kvm_x86_ops->update_cr8_intercept = NULL;
2797 else
2798 kvm_x86_ops->hwapic_irr_update = NULL;
2799
2800 if (nested)
2801 nested_vmx_setup_ctls_msrs();
2802
2803 return alloc_kvm_area();
2804 }
2805
2806 static __exit void hardware_unsetup(void)
2807 {
2808 free_kvm_area();
2809 }
2810
2811 static bool emulation_required(struct kvm_vcpu *vcpu)
2812 {
2813 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2814 }
2815
2816 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2817 struct kvm_segment *save)
2818 {
2819 if (!emulate_invalid_guest_state) {
2820 /*
2821 * CS and SS RPL should be equal during guest entry according
2822 * to VMX spec, but in reality it is not always so. Since vcpu
2823 * is in the middle of the transition from real mode to
2824 * protected mode it is safe to assume that RPL 0 is a good
2825 * default value.
2826 */
2827 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2828 save->selector &= ~SELECTOR_RPL_MASK;
2829 save->dpl = save->selector & SELECTOR_RPL_MASK;
2830 save->s = 1;
2831 }
2832 vmx_set_segment(vcpu, save, seg);
2833 }
2834
2835 static void enter_pmode(struct kvm_vcpu *vcpu)
2836 {
2837 unsigned long flags;
2838 struct vcpu_vmx *vmx = to_vmx(vcpu);
2839
2840 /*
2841 * Update real mode segment cache. It may be not up-to-date if sement
2842 * register was written while vcpu was in a guest mode.
2843 */
2844 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2845 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2846 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2847 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2848 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2849 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2850
2851 vmx->rmode.vm86_active = 0;
2852
2853 vmx_segment_cache_clear(vmx);
2854
2855 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2856
2857 flags = vmcs_readl(GUEST_RFLAGS);
2858 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2859 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2860 vmcs_writel(GUEST_RFLAGS, flags);
2861
2862 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2863 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2864
2865 update_exception_bitmap(vcpu);
2866
2867 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2868 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2869 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2870 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2871 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2872 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2873
2874 /* CPL is always 0 when CPU enters protected mode */
2875 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2876 vmx->cpl = 0;
2877 }
2878
2879 static gva_t rmode_tss_base(struct kvm *kvm)
2880 {
2881 if (!kvm->arch.tss_addr) {
2882 struct kvm_memslots *slots;
2883 struct kvm_memory_slot *slot;
2884 gfn_t base_gfn;
2885
2886 slots = kvm_memslots(kvm);
2887 slot = id_to_memslot(slots, 0);
2888 base_gfn = slot->base_gfn + slot->npages - 3;
2889
2890 return base_gfn << PAGE_SHIFT;
2891 }
2892 return kvm->arch.tss_addr;
2893 }
2894
2895 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2896 {
2897 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2898 struct kvm_segment var = *save;
2899
2900 var.dpl = 0x3;
2901 if (seg == VCPU_SREG_CS)
2902 var.type = 0x3;
2903
2904 if (!emulate_invalid_guest_state) {
2905 var.selector = var.base >> 4;
2906 var.base = var.base & 0xffff0;
2907 var.limit = 0xffff;
2908 var.g = 0;
2909 var.db = 0;
2910 var.present = 1;
2911 var.s = 1;
2912 var.l = 0;
2913 var.unusable = 0;
2914 var.type = 0x3;
2915 var.avl = 0;
2916 if (save->base & 0xf)
2917 printk_once(KERN_WARNING "kvm: segment base is not "
2918 "paragraph aligned when entering "
2919 "protected mode (seg=%d)", seg);
2920 }
2921
2922 vmcs_write16(sf->selector, var.selector);
2923 vmcs_write32(sf->base, var.base);
2924 vmcs_write32(sf->limit, var.limit);
2925 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2926 }
2927
2928 static void enter_rmode(struct kvm_vcpu *vcpu)
2929 {
2930 unsigned long flags;
2931 struct vcpu_vmx *vmx = to_vmx(vcpu);
2932
2933 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2934 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2935 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2936 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2937 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2938 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2939 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2940
2941 vmx->rmode.vm86_active = 1;
2942
2943 /*
2944 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2945 * vcpu. Call it here with phys address pointing 16M below 4G.
2946 */
2947 if (!vcpu->kvm->arch.tss_addr) {
2948 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2949 "called before entering vcpu\n");
2950 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2951 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2952 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2953 }
2954
2955 vmx_segment_cache_clear(vmx);
2956
2957 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2958 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2959 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2960
2961 flags = vmcs_readl(GUEST_RFLAGS);
2962 vmx->rmode.save_rflags = flags;
2963
2964 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2965
2966 vmcs_writel(GUEST_RFLAGS, flags);
2967 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2968 update_exception_bitmap(vcpu);
2969
2970 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2971 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2972 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2973 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2974 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2975 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2976
2977 kvm_mmu_reset_context(vcpu);
2978 }
2979
2980 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2981 {
2982 struct vcpu_vmx *vmx = to_vmx(vcpu);
2983 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2984
2985 if (!msr)
2986 return;
2987
2988 /*
2989 * Force kernel_gs_base reloading before EFER changes, as control
2990 * of this msr depends on is_long_mode().
2991 */
2992 vmx_load_host_state(to_vmx(vcpu));
2993 vcpu->arch.efer = efer;
2994 if (efer & EFER_LMA) {
2995 vmcs_write32(VM_ENTRY_CONTROLS,
2996 vmcs_read32(VM_ENTRY_CONTROLS) |
2997 VM_ENTRY_IA32E_MODE);
2998 msr->data = efer;
2999 } else {
3000 vmcs_write32(VM_ENTRY_CONTROLS,
3001 vmcs_read32(VM_ENTRY_CONTROLS) &
3002 ~VM_ENTRY_IA32E_MODE);
3003
3004 msr->data = efer & ~EFER_LME;
3005 }
3006 setup_msrs(vmx);
3007 }
3008
3009 #ifdef CONFIG_X86_64
3010
3011 static void enter_lmode(struct kvm_vcpu *vcpu)
3012 {
3013 u32 guest_tr_ar;
3014
3015 vmx_segment_cache_clear(to_vmx(vcpu));
3016
3017 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3018 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3019 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3020 __func__);
3021 vmcs_write32(GUEST_TR_AR_BYTES,
3022 (guest_tr_ar & ~AR_TYPE_MASK)
3023 | AR_TYPE_BUSY_64_TSS);
3024 }
3025 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3026 }
3027
3028 static void exit_lmode(struct kvm_vcpu *vcpu)
3029 {
3030 vmcs_write32(VM_ENTRY_CONTROLS,
3031 vmcs_read32(VM_ENTRY_CONTROLS)
3032 & ~VM_ENTRY_IA32E_MODE);
3033 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3034 }
3035
3036 #endif
3037
3038 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3039 {
3040 vpid_sync_context(to_vmx(vcpu));
3041 if (enable_ept) {
3042 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3043 return;
3044 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3045 }
3046 }
3047
3048 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3049 {
3050 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3051
3052 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3053 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3054 }
3055
3056 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3057 {
3058 if (enable_ept && is_paging(vcpu))
3059 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3060 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3061 }
3062
3063 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3064 {
3065 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3066
3067 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3068 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3069 }
3070
3071 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3072 {
3073 if (!test_bit(VCPU_EXREG_PDPTR,
3074 (unsigned long *)&vcpu->arch.regs_dirty))
3075 return;
3076
3077 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3078 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
3079 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
3080 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
3081 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
3082 }
3083 }
3084
3085 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3086 {
3087 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3088 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3089 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3090 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3091 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3092 }
3093
3094 __set_bit(VCPU_EXREG_PDPTR,
3095 (unsigned long *)&vcpu->arch.regs_avail);
3096 __set_bit(VCPU_EXREG_PDPTR,
3097 (unsigned long *)&vcpu->arch.regs_dirty);
3098 }
3099
3100 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3101
3102 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3103 unsigned long cr0,
3104 struct kvm_vcpu *vcpu)
3105 {
3106 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3107 vmx_decache_cr3(vcpu);
3108 if (!(cr0 & X86_CR0_PG)) {
3109 /* From paging/starting to nonpaging */
3110 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3111 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3112 (CPU_BASED_CR3_LOAD_EXITING |
3113 CPU_BASED_CR3_STORE_EXITING));
3114 vcpu->arch.cr0 = cr0;
3115 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3116 } else if (!is_paging(vcpu)) {
3117 /* From nonpaging to paging */
3118 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3119 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3120 ~(CPU_BASED_CR3_LOAD_EXITING |
3121 CPU_BASED_CR3_STORE_EXITING));
3122 vcpu->arch.cr0 = cr0;
3123 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3124 }
3125
3126 if (!(cr0 & X86_CR0_WP))
3127 *hw_cr0 &= ~X86_CR0_WP;
3128 }
3129
3130 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3131 {
3132 struct vcpu_vmx *vmx = to_vmx(vcpu);
3133 unsigned long hw_cr0;
3134
3135 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3136 if (enable_unrestricted_guest)
3137 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3138 else {
3139 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3140
3141 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3142 enter_pmode(vcpu);
3143
3144 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3145 enter_rmode(vcpu);
3146 }
3147
3148 #ifdef CONFIG_X86_64
3149 if (vcpu->arch.efer & EFER_LME) {
3150 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3151 enter_lmode(vcpu);
3152 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3153 exit_lmode(vcpu);
3154 }
3155 #endif
3156
3157 if (enable_ept)
3158 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3159
3160 if (!vcpu->fpu_active)
3161 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3162
3163 vmcs_writel(CR0_READ_SHADOW, cr0);
3164 vmcs_writel(GUEST_CR0, hw_cr0);
3165 vcpu->arch.cr0 = cr0;
3166
3167 /* depends on vcpu->arch.cr0 to be set to a new value */
3168 vmx->emulation_required = emulation_required(vcpu);
3169 }
3170
3171 static u64 construct_eptp(unsigned long root_hpa)
3172 {
3173 u64 eptp;
3174
3175 /* TODO write the value reading from MSR */
3176 eptp = VMX_EPT_DEFAULT_MT |
3177 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3178 if (enable_ept_ad_bits)
3179 eptp |= VMX_EPT_AD_ENABLE_BIT;
3180 eptp |= (root_hpa & PAGE_MASK);
3181
3182 return eptp;
3183 }
3184
3185 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3186 {
3187 unsigned long guest_cr3;
3188 u64 eptp;
3189
3190 guest_cr3 = cr3;
3191 if (enable_ept) {
3192 eptp = construct_eptp(cr3);
3193 vmcs_write64(EPT_POINTER, eptp);
3194 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3195 vcpu->kvm->arch.ept_identity_map_addr;
3196 ept_load_pdptrs(vcpu);
3197 }
3198
3199 vmx_flush_tlb(vcpu);
3200 vmcs_writel(GUEST_CR3, guest_cr3);
3201 }
3202
3203 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3204 {
3205 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3206 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3207
3208 if (cr4 & X86_CR4_VMXE) {
3209 /*
3210 * To use VMXON (and later other VMX instructions), a guest
3211 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3212 * So basically the check on whether to allow nested VMX
3213 * is here.
3214 */
3215 if (!nested_vmx_allowed(vcpu))
3216 return 1;
3217 } else if (to_vmx(vcpu)->nested.vmxon)
3218 return 1;
3219
3220 vcpu->arch.cr4 = cr4;
3221 if (enable_ept) {
3222 if (!is_paging(vcpu)) {
3223 hw_cr4 &= ~X86_CR4_PAE;
3224 hw_cr4 |= X86_CR4_PSE;
3225 /*
3226 * SMEP is disabled if CPU is in non-paging mode in
3227 * hardware. However KVM always uses paging mode to
3228 * emulate guest non-paging mode with TDP.
3229 * To emulate this behavior, SMEP needs to be manually
3230 * disabled when guest switches to non-paging mode.
3231 */
3232 hw_cr4 &= ~X86_CR4_SMEP;
3233 } else if (!(cr4 & X86_CR4_PAE)) {
3234 hw_cr4 &= ~X86_CR4_PAE;
3235 }
3236 }
3237
3238 vmcs_writel(CR4_READ_SHADOW, cr4);
3239 vmcs_writel(GUEST_CR4, hw_cr4);
3240 return 0;
3241 }
3242
3243 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3244 struct kvm_segment *var, int seg)
3245 {
3246 struct vcpu_vmx *vmx = to_vmx(vcpu);
3247 u32 ar;
3248
3249 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3250 *var = vmx->rmode.segs[seg];
3251 if (seg == VCPU_SREG_TR
3252 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3253 return;
3254 var->base = vmx_read_guest_seg_base(vmx, seg);
3255 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3256 return;
3257 }
3258 var->base = vmx_read_guest_seg_base(vmx, seg);
3259 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3260 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3261 ar = vmx_read_guest_seg_ar(vmx, seg);
3262 var->type = ar & 15;
3263 var->s = (ar >> 4) & 1;
3264 var->dpl = (ar >> 5) & 3;
3265 var->present = (ar >> 7) & 1;
3266 var->avl = (ar >> 12) & 1;
3267 var->l = (ar >> 13) & 1;
3268 var->db = (ar >> 14) & 1;
3269 var->g = (ar >> 15) & 1;
3270 var->unusable = (ar >> 16) & 1;
3271 }
3272
3273 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3274 {
3275 struct kvm_segment s;
3276
3277 if (to_vmx(vcpu)->rmode.vm86_active) {
3278 vmx_get_segment(vcpu, &s, seg);
3279 return s.base;
3280 }
3281 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3282 }
3283
3284 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3285 {
3286 struct vcpu_vmx *vmx = to_vmx(vcpu);
3287
3288 if (!is_protmode(vcpu))
3289 return 0;
3290
3291 if (!is_long_mode(vcpu)
3292 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3293 return 3;
3294
3295 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3296 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3297 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
3298 }
3299
3300 return vmx->cpl;
3301 }
3302
3303
3304 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3305 {
3306 u32 ar;
3307
3308 if (var->unusable || !var->present)
3309 ar = 1 << 16;
3310 else {
3311 ar = var->type & 15;
3312 ar |= (var->s & 1) << 4;
3313 ar |= (var->dpl & 3) << 5;
3314 ar |= (var->present & 1) << 7;
3315 ar |= (var->avl & 1) << 12;
3316 ar |= (var->l & 1) << 13;
3317 ar |= (var->db & 1) << 14;
3318 ar |= (var->g & 1) << 15;
3319 }
3320
3321 return ar;
3322 }
3323
3324 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3325 struct kvm_segment *var, int seg)
3326 {
3327 struct vcpu_vmx *vmx = to_vmx(vcpu);
3328 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3329
3330 vmx_segment_cache_clear(vmx);
3331 if (seg == VCPU_SREG_CS)
3332 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3333
3334 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3335 vmx->rmode.segs[seg] = *var;
3336 if (seg == VCPU_SREG_TR)
3337 vmcs_write16(sf->selector, var->selector);
3338 else if (var->s)
3339 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3340 goto out;
3341 }
3342
3343 vmcs_writel(sf->base, var->base);
3344 vmcs_write32(sf->limit, var->limit);
3345 vmcs_write16(sf->selector, var->selector);
3346
3347 /*
3348 * Fix the "Accessed" bit in AR field of segment registers for older
3349 * qemu binaries.
3350 * IA32 arch specifies that at the time of processor reset the
3351 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3352 * is setting it to 0 in the userland code. This causes invalid guest
3353 * state vmexit when "unrestricted guest" mode is turned on.
3354 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3355 * tree. Newer qemu binaries with that qemu fix would not need this
3356 * kvm hack.
3357 */
3358 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3359 var->type |= 0x1; /* Accessed */
3360
3361 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3362
3363 out:
3364 vmx->emulation_required |= emulation_required(vcpu);
3365 }
3366
3367 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3368 {
3369 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3370
3371 *db = (ar >> 14) & 1;
3372 *l = (ar >> 13) & 1;
3373 }
3374
3375 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3376 {
3377 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3378 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3379 }
3380
3381 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3382 {
3383 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3384 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3385 }
3386
3387 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3388 {
3389 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3390 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3391 }
3392
3393 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3394 {
3395 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3396 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3397 }
3398
3399 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3400 {
3401 struct kvm_segment var;
3402 u32 ar;
3403
3404 vmx_get_segment(vcpu, &var, seg);
3405 var.dpl = 0x3;
3406 if (seg == VCPU_SREG_CS)
3407 var.type = 0x3;
3408 ar = vmx_segment_access_rights(&var);
3409
3410 if (var.base != (var.selector << 4))
3411 return false;
3412 if (var.limit != 0xffff)
3413 return false;
3414 if (ar != 0xf3)
3415 return false;
3416
3417 return true;
3418 }
3419
3420 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3421 {
3422 struct kvm_segment cs;
3423 unsigned int cs_rpl;
3424
3425 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3426 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3427
3428 if (cs.unusable)
3429 return false;
3430 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3431 return false;
3432 if (!cs.s)
3433 return false;
3434 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3435 if (cs.dpl > cs_rpl)
3436 return false;
3437 } else {
3438 if (cs.dpl != cs_rpl)
3439 return false;
3440 }
3441 if (!cs.present)
3442 return false;
3443
3444 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3445 return true;
3446 }
3447
3448 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3449 {
3450 struct kvm_segment ss;
3451 unsigned int ss_rpl;
3452
3453 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3454 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3455
3456 if (ss.unusable)
3457 return true;
3458 if (ss.type != 3 && ss.type != 7)
3459 return false;
3460 if (!ss.s)
3461 return false;
3462 if (ss.dpl != ss_rpl) /* DPL != RPL */
3463 return false;
3464 if (!ss.present)
3465 return false;
3466
3467 return true;
3468 }
3469
3470 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3471 {
3472 struct kvm_segment var;
3473 unsigned int rpl;
3474
3475 vmx_get_segment(vcpu, &var, seg);
3476 rpl = var.selector & SELECTOR_RPL_MASK;
3477
3478 if (var.unusable)
3479 return true;
3480 if (!var.s)
3481 return false;
3482 if (!var.present)
3483 return false;
3484 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3485 if (var.dpl < rpl) /* DPL < RPL */
3486 return false;
3487 }
3488
3489 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3490 * rights flags
3491 */
3492 return true;
3493 }
3494
3495 static bool tr_valid(struct kvm_vcpu *vcpu)
3496 {
3497 struct kvm_segment tr;
3498
3499 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3500
3501 if (tr.unusable)
3502 return false;
3503 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3504 return false;
3505 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3506 return false;
3507 if (!tr.present)
3508 return false;
3509
3510 return true;
3511 }
3512
3513 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3514 {
3515 struct kvm_segment ldtr;
3516
3517 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3518
3519 if (ldtr.unusable)
3520 return true;
3521 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3522 return false;
3523 if (ldtr.type != 2)
3524 return false;
3525 if (!ldtr.present)
3526 return false;
3527
3528 return true;
3529 }
3530
3531 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3532 {
3533 struct kvm_segment cs, ss;
3534
3535 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3536 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3537
3538 return ((cs.selector & SELECTOR_RPL_MASK) ==
3539 (ss.selector & SELECTOR_RPL_MASK));
3540 }
3541
3542 /*
3543 * Check if guest state is valid. Returns true if valid, false if
3544 * not.
3545 * We assume that registers are always usable
3546 */
3547 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3548 {
3549 if (enable_unrestricted_guest)
3550 return true;
3551
3552 /* real mode guest state checks */
3553 if (!is_protmode(vcpu)) {
3554 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3555 return false;
3556 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3557 return false;
3558 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3559 return false;
3560 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3561 return false;
3562 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3563 return false;
3564 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3565 return false;
3566 } else {
3567 /* protected mode guest state checks */
3568 if (!cs_ss_rpl_check(vcpu))
3569 return false;
3570 if (!code_segment_valid(vcpu))
3571 return false;
3572 if (!stack_segment_valid(vcpu))
3573 return false;
3574 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3575 return false;
3576 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3577 return false;
3578 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3579 return false;
3580 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3581 return false;
3582 if (!tr_valid(vcpu))
3583 return false;
3584 if (!ldtr_valid(vcpu))
3585 return false;
3586 }
3587 /* TODO:
3588 * - Add checks on RIP
3589 * - Add checks on RFLAGS
3590 */
3591
3592 return true;
3593 }
3594
3595 static int init_rmode_tss(struct kvm *kvm)
3596 {
3597 gfn_t fn;
3598 u16 data = 0;
3599 int r, idx, ret = 0;
3600
3601 idx = srcu_read_lock(&kvm->srcu);
3602 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3603 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3604 if (r < 0)
3605 goto out;
3606 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3607 r = kvm_write_guest_page(kvm, fn++, &data,
3608 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3609 if (r < 0)
3610 goto out;
3611 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3612 if (r < 0)
3613 goto out;
3614 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3615 if (r < 0)
3616 goto out;
3617 data = ~0;
3618 r = kvm_write_guest_page(kvm, fn, &data,
3619 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3620 sizeof(u8));
3621 if (r < 0)
3622 goto out;
3623
3624 ret = 1;
3625 out:
3626 srcu_read_unlock(&kvm->srcu, idx);
3627 return ret;
3628 }
3629
3630 static int init_rmode_identity_map(struct kvm *kvm)
3631 {
3632 int i, idx, r, ret;
3633 pfn_t identity_map_pfn;
3634 u32 tmp;
3635
3636 if (!enable_ept)
3637 return 1;
3638 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3639 printk(KERN_ERR "EPT: identity-mapping pagetable "
3640 "haven't been allocated!\n");
3641 return 0;
3642 }
3643 if (likely(kvm->arch.ept_identity_pagetable_done))
3644 return 1;
3645 ret = 0;
3646 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3647 idx = srcu_read_lock(&kvm->srcu);
3648 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3649 if (r < 0)
3650 goto out;
3651 /* Set up identity-mapping pagetable for EPT in real mode */
3652 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3653 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3654 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3655 r = kvm_write_guest_page(kvm, identity_map_pfn,
3656 &tmp, i * sizeof(tmp), sizeof(tmp));
3657 if (r < 0)
3658 goto out;
3659 }
3660 kvm->arch.ept_identity_pagetable_done = true;
3661 ret = 1;
3662 out:
3663 srcu_read_unlock(&kvm->srcu, idx);
3664 return ret;
3665 }
3666
3667 static void seg_setup(int seg)
3668 {
3669 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3670 unsigned int ar;
3671
3672 vmcs_write16(sf->selector, 0);
3673 vmcs_writel(sf->base, 0);
3674 vmcs_write32(sf->limit, 0xffff);
3675 ar = 0x93;
3676 if (seg == VCPU_SREG_CS)
3677 ar |= 0x08; /* code segment */
3678
3679 vmcs_write32(sf->ar_bytes, ar);
3680 }
3681
3682 static int alloc_apic_access_page(struct kvm *kvm)
3683 {
3684 struct page *page;
3685 struct kvm_userspace_memory_region kvm_userspace_mem;
3686 int r = 0;
3687
3688 mutex_lock(&kvm->slots_lock);
3689 if (kvm->arch.apic_access_page)
3690 goto out;
3691 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3692 kvm_userspace_mem.flags = 0;
3693 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3694 kvm_userspace_mem.memory_size = PAGE_SIZE;
3695 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, false);
3696 if (r)
3697 goto out;
3698
3699 page = gfn_to_page(kvm, 0xfee00);
3700 if (is_error_page(page)) {
3701 r = -EFAULT;
3702 goto out;
3703 }
3704
3705 kvm->arch.apic_access_page = page;
3706 out:
3707 mutex_unlock(&kvm->slots_lock);
3708 return r;
3709 }
3710
3711 static int alloc_identity_pagetable(struct kvm *kvm)
3712 {
3713 struct page *page;
3714 struct kvm_userspace_memory_region kvm_userspace_mem;
3715 int r = 0;
3716
3717 mutex_lock(&kvm->slots_lock);
3718 if (kvm->arch.ept_identity_pagetable)
3719 goto out;
3720 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3721 kvm_userspace_mem.flags = 0;
3722 kvm_userspace_mem.guest_phys_addr =
3723 kvm->arch.ept_identity_map_addr;
3724 kvm_userspace_mem.memory_size = PAGE_SIZE;
3725 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, false);
3726 if (r)
3727 goto out;
3728
3729 page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3730 if (is_error_page(page)) {
3731 r = -EFAULT;
3732 goto out;
3733 }
3734
3735 kvm->arch.ept_identity_pagetable = page;
3736 out:
3737 mutex_unlock(&kvm->slots_lock);
3738 return r;
3739 }
3740
3741 static void allocate_vpid(struct vcpu_vmx *vmx)
3742 {
3743 int vpid;
3744
3745 vmx->vpid = 0;
3746 if (!enable_vpid)
3747 return;
3748 spin_lock(&vmx_vpid_lock);
3749 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3750 if (vpid < VMX_NR_VPIDS) {
3751 vmx->vpid = vpid;
3752 __set_bit(vpid, vmx_vpid_bitmap);
3753 }
3754 spin_unlock(&vmx_vpid_lock);
3755 }
3756
3757 static void free_vpid(struct vcpu_vmx *vmx)
3758 {
3759 if (!enable_vpid)
3760 return;
3761 spin_lock(&vmx_vpid_lock);
3762 if (vmx->vpid != 0)
3763 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3764 spin_unlock(&vmx_vpid_lock);
3765 }
3766
3767 #define MSR_TYPE_R 1
3768 #define MSR_TYPE_W 2
3769 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3770 u32 msr, int type)
3771 {
3772 int f = sizeof(unsigned long);
3773
3774 if (!cpu_has_vmx_msr_bitmap())
3775 return;
3776
3777 /*
3778 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3779 * have the write-low and read-high bitmap offsets the wrong way round.
3780 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3781 */
3782 if (msr <= 0x1fff) {
3783 if (type & MSR_TYPE_R)
3784 /* read-low */
3785 __clear_bit(msr, msr_bitmap + 0x000 / f);
3786
3787 if (type & MSR_TYPE_W)
3788 /* write-low */
3789 __clear_bit(msr, msr_bitmap + 0x800 / f);
3790
3791 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3792 msr &= 0x1fff;
3793 if (type & MSR_TYPE_R)
3794 /* read-high */
3795 __clear_bit(msr, msr_bitmap + 0x400 / f);
3796
3797 if (type & MSR_TYPE_W)
3798 /* write-high */
3799 __clear_bit(msr, msr_bitmap + 0xc00 / f);
3800
3801 }
3802 }
3803
3804 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3805 u32 msr, int type)
3806 {
3807 int f = sizeof(unsigned long);
3808
3809 if (!cpu_has_vmx_msr_bitmap())
3810 return;
3811
3812 /*
3813 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3814 * have the write-low and read-high bitmap offsets the wrong way round.
3815 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3816 */
3817 if (msr <= 0x1fff) {
3818 if (type & MSR_TYPE_R)
3819 /* read-low */
3820 __set_bit(msr, msr_bitmap + 0x000 / f);
3821
3822 if (type & MSR_TYPE_W)
3823 /* write-low */
3824 __set_bit(msr, msr_bitmap + 0x800 / f);
3825
3826 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3827 msr &= 0x1fff;
3828 if (type & MSR_TYPE_R)
3829 /* read-high */
3830 __set_bit(msr, msr_bitmap + 0x400 / f);
3831
3832 if (type & MSR_TYPE_W)
3833 /* write-high */
3834 __set_bit(msr, msr_bitmap + 0xc00 / f);
3835
3836 }
3837 }
3838
3839 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3840 {
3841 if (!longmode_only)
3842 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
3843 msr, MSR_TYPE_R | MSR_TYPE_W);
3844 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
3845 msr, MSR_TYPE_R | MSR_TYPE_W);
3846 }
3847
3848 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
3849 {
3850 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3851 msr, MSR_TYPE_R);
3852 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3853 msr, MSR_TYPE_R);
3854 }
3855
3856 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
3857 {
3858 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3859 msr, MSR_TYPE_R);
3860 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3861 msr, MSR_TYPE_R);
3862 }
3863
3864 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
3865 {
3866 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3867 msr, MSR_TYPE_W);
3868 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3869 msr, MSR_TYPE_W);
3870 }
3871
3872 /*
3873 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3874 * will not change in the lifetime of the guest.
3875 * Note that host-state that does change is set elsewhere. E.g., host-state
3876 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3877 */
3878 static void vmx_set_constant_host_state(void)
3879 {
3880 u32 low32, high32;
3881 unsigned long tmpl;
3882 struct desc_ptr dt;
3883
3884 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
3885 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3886 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3887
3888 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3889 #ifdef CONFIG_X86_64
3890 /*
3891 * Load null selectors, so we can avoid reloading them in
3892 * __vmx_load_host_state(), in case userspace uses the null selectors
3893 * too (the expected case).
3894 */
3895 vmcs_write16(HOST_DS_SELECTOR, 0);
3896 vmcs_write16(HOST_ES_SELECTOR, 0);
3897 #else
3898 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3899 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3900 #endif
3901 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3902 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3903
3904 native_store_idt(&dt);
3905 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3906
3907 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
3908
3909 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3910 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3911 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3912 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3913
3914 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3915 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3916 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3917 }
3918 }
3919
3920 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3921 {
3922 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3923 if (enable_ept)
3924 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3925 if (is_guest_mode(&vmx->vcpu))
3926 vmx->vcpu.arch.cr4_guest_owned_bits &=
3927 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3928 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3929 }
3930
3931 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3932 {
3933 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3934 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3935 exec_control &= ~CPU_BASED_TPR_SHADOW;
3936 #ifdef CONFIG_X86_64
3937 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3938 CPU_BASED_CR8_LOAD_EXITING;
3939 #endif
3940 }
3941 if (!enable_ept)
3942 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3943 CPU_BASED_CR3_LOAD_EXITING |
3944 CPU_BASED_INVLPG_EXITING;
3945 return exec_control;
3946 }
3947
3948 static int vmx_vm_has_apicv(struct kvm *kvm)
3949 {
3950 return enable_apicv_reg_vid && irqchip_in_kernel(kvm);
3951 }
3952
3953 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3954 {
3955 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3956 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3957 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3958 if (vmx->vpid == 0)
3959 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3960 if (!enable_ept) {
3961 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3962 enable_unrestricted_guest = 0;
3963 /* Enable INVPCID for non-ept guests may cause performance regression. */
3964 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3965 }
3966 if (!enable_unrestricted_guest)
3967 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3968 if (!ple_gap)
3969 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3970 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
3971 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3972 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3973 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
3974 return exec_control;
3975 }
3976
3977 static void ept_set_mmio_spte_mask(void)
3978 {
3979 /*
3980 * EPT Misconfigurations can be generated if the value of bits 2:0
3981 * of an EPT paging-structure entry is 110b (write/execute).
3982 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3983 * spte.
3984 */
3985 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3986 }
3987
3988 /*
3989 * Sets up the vmcs for emulated real mode.
3990 */
3991 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3992 {
3993 #ifdef CONFIG_X86_64
3994 unsigned long a;
3995 #endif
3996 int i;
3997
3998 /* I/O */
3999 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4000 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4001
4002 if (cpu_has_vmx_msr_bitmap())
4003 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4004
4005 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4006
4007 /* Control */
4008 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
4009 vmcs_config.pin_based_exec_ctrl);
4010
4011 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4012
4013 if (cpu_has_secondary_exec_ctrls()) {
4014 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4015 vmx_secondary_exec_control(vmx));
4016 }
4017
4018 if (enable_apicv_reg_vid) {
4019 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4020 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4021 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4022 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4023
4024 vmcs_write16(GUEST_INTR_STATUS, 0);
4025 }
4026
4027 if (ple_gap) {
4028 vmcs_write32(PLE_GAP, ple_gap);
4029 vmcs_write32(PLE_WINDOW, ple_window);
4030 }
4031
4032 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4033 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4034 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4035
4036 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4037 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4038 vmx_set_constant_host_state();
4039 #ifdef CONFIG_X86_64
4040 rdmsrl(MSR_FS_BASE, a);
4041 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4042 rdmsrl(MSR_GS_BASE, a);
4043 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4044 #else
4045 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4046 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4047 #endif
4048
4049 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4050 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4051 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4052 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4053 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4054
4055 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4056 u32 msr_low, msr_high;
4057 u64 host_pat;
4058 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4059 host_pat = msr_low | ((u64) msr_high << 32);
4060 /* Write the default value follow host pat */
4061 vmcs_write64(GUEST_IA32_PAT, host_pat);
4062 /* Keep arch.pat sync with GUEST_IA32_PAT */
4063 vmx->vcpu.arch.pat = host_pat;
4064 }
4065
4066 for (i = 0; i < NR_VMX_MSR; ++i) {
4067 u32 index = vmx_msr_index[i];
4068 u32 data_low, data_high;
4069 int j = vmx->nmsrs;
4070
4071 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4072 continue;
4073 if (wrmsr_safe(index, data_low, data_high) < 0)
4074 continue;
4075 vmx->guest_msrs[j].index = i;
4076 vmx->guest_msrs[j].data = 0;
4077 vmx->guest_msrs[j].mask = -1ull;
4078 ++vmx->nmsrs;
4079 }
4080
4081 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
4082
4083 /* 22.2.1, 20.8.1 */
4084 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
4085
4086 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4087 set_cr4_guest_host_mask(vmx);
4088
4089 return 0;
4090 }
4091
4092 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4093 {
4094 struct vcpu_vmx *vmx = to_vmx(vcpu);
4095 u64 msr;
4096 int ret;
4097
4098 vmx->rmode.vm86_active = 0;
4099
4100 vmx->soft_vnmi_blocked = 0;
4101
4102 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4103 kvm_set_cr8(&vmx->vcpu, 0);
4104 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4105 if (kvm_vcpu_is_bsp(&vmx->vcpu))
4106 msr |= MSR_IA32_APICBASE_BSP;
4107 kvm_set_apic_base(&vmx->vcpu, msr);
4108
4109 vmx_segment_cache_clear(vmx);
4110
4111 seg_setup(VCPU_SREG_CS);
4112 if (kvm_vcpu_is_bsp(&vmx->vcpu))
4113 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4114 else {
4115 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
4116 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
4117 }
4118
4119 seg_setup(VCPU_SREG_DS);
4120 seg_setup(VCPU_SREG_ES);
4121 seg_setup(VCPU_SREG_FS);
4122 seg_setup(VCPU_SREG_GS);
4123 seg_setup(VCPU_SREG_SS);
4124
4125 vmcs_write16(GUEST_TR_SELECTOR, 0);
4126 vmcs_writel(GUEST_TR_BASE, 0);
4127 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4128 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4129
4130 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4131 vmcs_writel(GUEST_LDTR_BASE, 0);
4132 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4133 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4134
4135 vmcs_write32(GUEST_SYSENTER_CS, 0);
4136 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4137 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4138
4139 vmcs_writel(GUEST_RFLAGS, 0x02);
4140 if (kvm_vcpu_is_bsp(&vmx->vcpu))
4141 kvm_rip_write(vcpu, 0xfff0);
4142 else
4143 kvm_rip_write(vcpu, 0);
4144
4145 vmcs_writel(GUEST_GDTR_BASE, 0);
4146 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4147
4148 vmcs_writel(GUEST_IDTR_BASE, 0);
4149 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4150
4151 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4152 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4153 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4154
4155 /* Special registers */
4156 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4157
4158 setup_msrs(vmx);
4159
4160 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4161
4162 if (cpu_has_vmx_tpr_shadow()) {
4163 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4164 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4165 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4166 __pa(vmx->vcpu.arch.apic->regs));
4167 vmcs_write32(TPR_THRESHOLD, 0);
4168 }
4169
4170 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4171 vmcs_write64(APIC_ACCESS_ADDR,
4172 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4173
4174 if (vmx->vpid != 0)
4175 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4176
4177 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4178 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4179 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4180 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4181 vmx_set_cr4(&vmx->vcpu, 0);
4182 vmx_set_efer(&vmx->vcpu, 0);
4183 vmx_fpu_activate(&vmx->vcpu);
4184 update_exception_bitmap(&vmx->vcpu);
4185
4186 vpid_sync_context(vmx);
4187
4188 ret = 0;
4189
4190 return ret;
4191 }
4192
4193 /*
4194 * In nested virtualization, check if L1 asked to exit on external interrupts.
4195 * For most existing hypervisors, this will always return true.
4196 */
4197 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4198 {
4199 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4200 PIN_BASED_EXT_INTR_MASK;
4201 }
4202
4203 static void enable_irq_window(struct kvm_vcpu *vcpu)
4204 {
4205 u32 cpu_based_vm_exec_control;
4206 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4207 /*
4208 * We get here if vmx_interrupt_allowed() said we can't
4209 * inject to L1 now because L2 must run. Ask L2 to exit
4210 * right after entry, so we can inject to L1 more promptly.
4211 */
4212 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
4213 return;
4214 }
4215
4216 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4217 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4218 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4219 }
4220
4221 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4222 {
4223 u32 cpu_based_vm_exec_control;
4224
4225 if (!cpu_has_virtual_nmis()) {
4226 enable_irq_window(vcpu);
4227 return;
4228 }
4229
4230 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4231 enable_irq_window(vcpu);
4232 return;
4233 }
4234 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4235 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4236 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4237 }
4238
4239 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4240 {
4241 struct vcpu_vmx *vmx = to_vmx(vcpu);
4242 uint32_t intr;
4243 int irq = vcpu->arch.interrupt.nr;
4244
4245 trace_kvm_inj_virq(irq);
4246
4247 ++vcpu->stat.irq_injections;
4248 if (vmx->rmode.vm86_active) {
4249 int inc_eip = 0;
4250 if (vcpu->arch.interrupt.soft)
4251 inc_eip = vcpu->arch.event_exit_inst_len;
4252 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4253 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4254 return;
4255 }
4256 intr = irq | INTR_INFO_VALID_MASK;
4257 if (vcpu->arch.interrupt.soft) {
4258 intr |= INTR_TYPE_SOFT_INTR;
4259 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4260 vmx->vcpu.arch.event_exit_inst_len);
4261 } else
4262 intr |= INTR_TYPE_EXT_INTR;
4263 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4264 }
4265
4266 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4267 {
4268 struct vcpu_vmx *vmx = to_vmx(vcpu);
4269
4270 if (is_guest_mode(vcpu))
4271 return;
4272
4273 if (!cpu_has_virtual_nmis()) {
4274 /*
4275 * Tracking the NMI-blocked state in software is built upon
4276 * finding the next open IRQ window. This, in turn, depends on
4277 * well-behaving guests: They have to keep IRQs disabled at
4278 * least as long as the NMI handler runs. Otherwise we may
4279 * cause NMI nesting, maybe breaking the guest. But as this is
4280 * highly unlikely, we can live with the residual risk.
4281 */
4282 vmx->soft_vnmi_blocked = 1;
4283 vmx->vnmi_blocked_time = 0;
4284 }
4285
4286 ++vcpu->stat.nmi_injections;
4287 vmx->nmi_known_unmasked = false;
4288 if (vmx->rmode.vm86_active) {
4289 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4290 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4291 return;
4292 }
4293 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4294 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4295 }
4296
4297 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4298 {
4299 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4300 return 0;
4301
4302 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4303 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4304 | GUEST_INTR_STATE_NMI));
4305 }
4306
4307 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4308 {
4309 if (!cpu_has_virtual_nmis())
4310 return to_vmx(vcpu)->soft_vnmi_blocked;
4311 if (to_vmx(vcpu)->nmi_known_unmasked)
4312 return false;
4313 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4314 }
4315
4316 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4317 {
4318 struct vcpu_vmx *vmx = to_vmx(vcpu);
4319
4320 if (!cpu_has_virtual_nmis()) {
4321 if (vmx->soft_vnmi_blocked != masked) {
4322 vmx->soft_vnmi_blocked = masked;
4323 vmx->vnmi_blocked_time = 0;
4324 }
4325 } else {
4326 vmx->nmi_known_unmasked = !masked;
4327 if (masked)
4328 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4329 GUEST_INTR_STATE_NMI);
4330 else
4331 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4332 GUEST_INTR_STATE_NMI);
4333 }
4334 }
4335
4336 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4337 {
4338 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4339 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4340 if (to_vmx(vcpu)->nested.nested_run_pending ||
4341 (vmcs12->idt_vectoring_info_field &
4342 VECTORING_INFO_VALID_MASK))
4343 return 0;
4344 nested_vmx_vmexit(vcpu);
4345 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4346 vmcs12->vm_exit_intr_info = 0;
4347 /* fall through to normal code, but now in L1, not L2 */
4348 }
4349
4350 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4351 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4352 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4353 }
4354
4355 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4356 {
4357 int ret;
4358 struct kvm_userspace_memory_region tss_mem = {
4359 .slot = TSS_PRIVATE_MEMSLOT,
4360 .guest_phys_addr = addr,
4361 .memory_size = PAGE_SIZE * 3,
4362 .flags = 0,
4363 };
4364
4365 ret = kvm_set_memory_region(kvm, &tss_mem, false);
4366 if (ret)
4367 return ret;
4368 kvm->arch.tss_addr = addr;
4369 if (!init_rmode_tss(kvm))
4370 return -ENOMEM;
4371
4372 return 0;
4373 }
4374
4375 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4376 {
4377 switch (vec) {
4378 case BP_VECTOR:
4379 /*
4380 * Update instruction length as we may reinject the exception
4381 * from user space while in guest debugging mode.
4382 */
4383 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4384 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4385 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4386 return false;
4387 /* fall through */
4388 case DB_VECTOR:
4389 if (vcpu->guest_debug &
4390 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4391 return false;
4392 /* fall through */
4393 case DE_VECTOR:
4394 case OF_VECTOR:
4395 case BR_VECTOR:
4396 case UD_VECTOR:
4397 case DF_VECTOR:
4398 case SS_VECTOR:
4399 case GP_VECTOR:
4400 case MF_VECTOR:
4401 return true;
4402 break;
4403 }
4404 return false;
4405 }
4406
4407 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4408 int vec, u32 err_code)
4409 {
4410 /*
4411 * Instruction with address size override prefix opcode 0x67
4412 * Cause the #SS fault with 0 error code in VM86 mode.
4413 */
4414 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4415 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4416 if (vcpu->arch.halt_request) {
4417 vcpu->arch.halt_request = 0;
4418 return kvm_emulate_halt(vcpu);
4419 }
4420 return 1;
4421 }
4422 return 0;
4423 }
4424
4425 /*
4426 * Forward all other exceptions that are valid in real mode.
4427 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4428 * the required debugging infrastructure rework.
4429 */
4430 kvm_queue_exception(vcpu, vec);
4431 return 1;
4432 }
4433
4434 /*
4435 * Trigger machine check on the host. We assume all the MSRs are already set up
4436 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4437 * We pass a fake environment to the machine check handler because we want
4438 * the guest to be always treated like user space, no matter what context
4439 * it used internally.
4440 */
4441 static void kvm_machine_check(void)
4442 {
4443 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4444 struct pt_regs regs = {
4445 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4446 .flags = X86_EFLAGS_IF,
4447 };
4448
4449 do_machine_check(&regs, 0);
4450 #endif
4451 }
4452
4453 static int handle_machine_check(struct kvm_vcpu *vcpu)
4454 {
4455 /* already handled by vcpu_run */
4456 return 1;
4457 }
4458
4459 static int handle_exception(struct kvm_vcpu *vcpu)
4460 {
4461 struct vcpu_vmx *vmx = to_vmx(vcpu);
4462 struct kvm_run *kvm_run = vcpu->run;
4463 u32 intr_info, ex_no, error_code;
4464 unsigned long cr2, rip, dr6;
4465 u32 vect_info;
4466 enum emulation_result er;
4467
4468 vect_info = vmx->idt_vectoring_info;
4469 intr_info = vmx->exit_intr_info;
4470
4471 if (is_machine_check(intr_info))
4472 return handle_machine_check(vcpu);
4473
4474 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4475 return 1; /* already handled by vmx_vcpu_run() */
4476
4477 if (is_no_device(intr_info)) {
4478 vmx_fpu_activate(vcpu);
4479 return 1;
4480 }
4481
4482 if (is_invalid_opcode(intr_info)) {
4483 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4484 if (er != EMULATE_DONE)
4485 kvm_queue_exception(vcpu, UD_VECTOR);
4486 return 1;
4487 }
4488
4489 error_code = 0;
4490 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4491 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4492
4493 /*
4494 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4495 * MMIO, it is better to report an internal error.
4496 * See the comments in vmx_handle_exit.
4497 */
4498 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4499 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4500 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4501 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4502 vcpu->run->internal.ndata = 2;
4503 vcpu->run->internal.data[0] = vect_info;
4504 vcpu->run->internal.data[1] = intr_info;
4505 return 0;
4506 }
4507
4508 if (is_page_fault(intr_info)) {
4509 /* EPT won't cause page fault directly */
4510 BUG_ON(enable_ept);
4511 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4512 trace_kvm_page_fault(cr2, error_code);
4513
4514 if (kvm_event_needs_reinjection(vcpu))
4515 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4516 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4517 }
4518
4519 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4520
4521 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4522 return handle_rmode_exception(vcpu, ex_no, error_code);
4523
4524 switch (ex_no) {
4525 case DB_VECTOR:
4526 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4527 if (!(vcpu->guest_debug &
4528 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4529 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4530 kvm_queue_exception(vcpu, DB_VECTOR);
4531 return 1;
4532 }
4533 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4534 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4535 /* fall through */
4536 case BP_VECTOR:
4537 /*
4538 * Update instruction length as we may reinject #BP from
4539 * user space while in guest debugging mode. Reading it for
4540 * #DB as well causes no harm, it is not used in that case.
4541 */
4542 vmx->vcpu.arch.event_exit_inst_len =
4543 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4544 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4545 rip = kvm_rip_read(vcpu);
4546 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4547 kvm_run->debug.arch.exception = ex_no;
4548 break;
4549 default:
4550 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4551 kvm_run->ex.exception = ex_no;
4552 kvm_run->ex.error_code = error_code;
4553 break;
4554 }
4555 return 0;
4556 }
4557
4558 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4559 {
4560 ++vcpu->stat.irq_exits;
4561 return 1;
4562 }
4563
4564 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4565 {
4566 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4567 return 0;
4568 }
4569
4570 static int handle_io(struct kvm_vcpu *vcpu)
4571 {
4572 unsigned long exit_qualification;
4573 int size, in, string;
4574 unsigned port;
4575
4576 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4577 string = (exit_qualification & 16) != 0;
4578 in = (exit_qualification & 8) != 0;
4579
4580 ++vcpu->stat.io_exits;
4581
4582 if (string || in)
4583 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4584
4585 port = exit_qualification >> 16;
4586 size = (exit_qualification & 7) + 1;
4587 skip_emulated_instruction(vcpu);
4588
4589 return kvm_fast_pio_out(vcpu, size, port);
4590 }
4591
4592 static void
4593 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4594 {
4595 /*
4596 * Patch in the VMCALL instruction:
4597 */
4598 hypercall[0] = 0x0f;
4599 hypercall[1] = 0x01;
4600 hypercall[2] = 0xc1;
4601 }
4602
4603 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4604 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4605 {
4606 if (to_vmx(vcpu)->nested.vmxon &&
4607 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4608 return 1;
4609
4610 if (is_guest_mode(vcpu)) {
4611 /*
4612 * We get here when L2 changed cr0 in a way that did not change
4613 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4614 * but did change L0 shadowed bits. This can currently happen
4615 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4616 * loading) while pretending to allow the guest to change it.
4617 */
4618 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4619 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4620 return 1;
4621 vmcs_writel(CR0_READ_SHADOW, val);
4622 return 0;
4623 } else
4624 return kvm_set_cr0(vcpu, val);
4625 }
4626
4627 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4628 {
4629 if (is_guest_mode(vcpu)) {
4630 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4631 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4632 return 1;
4633 vmcs_writel(CR4_READ_SHADOW, val);
4634 return 0;
4635 } else
4636 return kvm_set_cr4(vcpu, val);
4637 }
4638
4639 /* called to set cr0 as approriate for clts instruction exit. */
4640 static void handle_clts(struct kvm_vcpu *vcpu)
4641 {
4642 if (is_guest_mode(vcpu)) {
4643 /*
4644 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4645 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4646 * just pretend it's off (also in arch.cr0 for fpu_activate).
4647 */
4648 vmcs_writel(CR0_READ_SHADOW,
4649 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4650 vcpu->arch.cr0 &= ~X86_CR0_TS;
4651 } else
4652 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4653 }
4654
4655 static int handle_cr(struct kvm_vcpu *vcpu)
4656 {
4657 unsigned long exit_qualification, val;
4658 int cr;
4659 int reg;
4660 int err;
4661
4662 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4663 cr = exit_qualification & 15;
4664 reg = (exit_qualification >> 8) & 15;
4665 switch ((exit_qualification >> 4) & 3) {
4666 case 0: /* mov to cr */
4667 val = kvm_register_read(vcpu, reg);
4668 trace_kvm_cr_write(cr, val);
4669 switch (cr) {
4670 case 0:
4671 err = handle_set_cr0(vcpu, val);
4672 kvm_complete_insn_gp(vcpu, err);
4673 return 1;
4674 case 3:
4675 err = kvm_set_cr3(vcpu, val);
4676 kvm_complete_insn_gp(vcpu, err);
4677 return 1;
4678 case 4:
4679 err = handle_set_cr4(vcpu, val);
4680 kvm_complete_insn_gp(vcpu, err);
4681 return 1;
4682 case 8: {
4683 u8 cr8_prev = kvm_get_cr8(vcpu);
4684 u8 cr8 = kvm_register_read(vcpu, reg);
4685 err = kvm_set_cr8(vcpu, cr8);
4686 kvm_complete_insn_gp(vcpu, err);
4687 if (irqchip_in_kernel(vcpu->kvm))
4688 return 1;
4689 if (cr8_prev <= cr8)
4690 return 1;
4691 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4692 return 0;
4693 }
4694 }
4695 break;
4696 case 2: /* clts */
4697 handle_clts(vcpu);
4698 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4699 skip_emulated_instruction(vcpu);
4700 vmx_fpu_activate(vcpu);
4701 return 1;
4702 case 1: /*mov from cr*/
4703 switch (cr) {
4704 case 3:
4705 val = kvm_read_cr3(vcpu);
4706 kvm_register_write(vcpu, reg, val);
4707 trace_kvm_cr_read(cr, val);
4708 skip_emulated_instruction(vcpu);
4709 return 1;
4710 case 8:
4711 val = kvm_get_cr8(vcpu);
4712 kvm_register_write(vcpu, reg, val);
4713 trace_kvm_cr_read(cr, val);
4714 skip_emulated_instruction(vcpu);
4715 return 1;
4716 }
4717 break;
4718 case 3: /* lmsw */
4719 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4720 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4721 kvm_lmsw(vcpu, val);
4722
4723 skip_emulated_instruction(vcpu);
4724 return 1;
4725 default:
4726 break;
4727 }
4728 vcpu->run->exit_reason = 0;
4729 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4730 (int)(exit_qualification >> 4) & 3, cr);
4731 return 0;
4732 }
4733
4734 static int handle_dr(struct kvm_vcpu *vcpu)
4735 {
4736 unsigned long exit_qualification;
4737 int dr, reg;
4738
4739 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4740 if (!kvm_require_cpl(vcpu, 0))
4741 return 1;
4742 dr = vmcs_readl(GUEST_DR7);
4743 if (dr & DR7_GD) {
4744 /*
4745 * As the vm-exit takes precedence over the debug trap, we
4746 * need to emulate the latter, either for the host or the
4747 * guest debugging itself.
4748 */
4749 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4750 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4751 vcpu->run->debug.arch.dr7 = dr;
4752 vcpu->run->debug.arch.pc =
4753 vmcs_readl(GUEST_CS_BASE) +
4754 vmcs_readl(GUEST_RIP);
4755 vcpu->run->debug.arch.exception = DB_VECTOR;
4756 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4757 return 0;
4758 } else {
4759 vcpu->arch.dr7 &= ~DR7_GD;
4760 vcpu->arch.dr6 |= DR6_BD;
4761 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4762 kvm_queue_exception(vcpu, DB_VECTOR);
4763 return 1;
4764 }
4765 }
4766
4767 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4768 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4769 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4770 if (exit_qualification & TYPE_MOV_FROM_DR) {
4771 unsigned long val;
4772 if (!kvm_get_dr(vcpu, dr, &val))
4773 kvm_register_write(vcpu, reg, val);
4774 } else
4775 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4776 skip_emulated_instruction(vcpu);
4777 return 1;
4778 }
4779
4780 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4781 {
4782 vmcs_writel(GUEST_DR7, val);
4783 }
4784
4785 static int handle_cpuid(struct kvm_vcpu *vcpu)
4786 {
4787 kvm_emulate_cpuid(vcpu);
4788 return 1;
4789 }
4790
4791 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4792 {
4793 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4794 u64 data;
4795
4796 if (vmx_get_msr(vcpu, ecx, &data)) {
4797 trace_kvm_msr_read_ex(ecx);
4798 kvm_inject_gp(vcpu, 0);
4799 return 1;
4800 }
4801
4802 trace_kvm_msr_read(ecx, data);
4803
4804 /* FIXME: handling of bits 32:63 of rax, rdx */
4805 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4806 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4807 skip_emulated_instruction(vcpu);
4808 return 1;
4809 }
4810
4811 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4812 {
4813 struct msr_data msr;
4814 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4815 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4816 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4817
4818 msr.data = data;
4819 msr.index = ecx;
4820 msr.host_initiated = false;
4821 if (vmx_set_msr(vcpu, &msr) != 0) {
4822 trace_kvm_msr_write_ex(ecx, data);
4823 kvm_inject_gp(vcpu, 0);
4824 return 1;
4825 }
4826
4827 trace_kvm_msr_write(ecx, data);
4828 skip_emulated_instruction(vcpu);
4829 return 1;
4830 }
4831
4832 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4833 {
4834 kvm_make_request(KVM_REQ_EVENT, vcpu);
4835 return 1;
4836 }
4837
4838 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4839 {
4840 u32 cpu_based_vm_exec_control;
4841
4842 /* clear pending irq */
4843 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4844 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4845 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4846
4847 kvm_make_request(KVM_REQ_EVENT, vcpu);
4848
4849 ++vcpu->stat.irq_window_exits;
4850
4851 /*
4852 * If the user space waits to inject interrupts, exit as soon as
4853 * possible
4854 */
4855 if (!irqchip_in_kernel(vcpu->kvm) &&
4856 vcpu->run->request_interrupt_window &&
4857 !kvm_cpu_has_interrupt(vcpu)) {
4858 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4859 return 0;
4860 }
4861 return 1;
4862 }
4863
4864 static int handle_halt(struct kvm_vcpu *vcpu)
4865 {
4866 skip_emulated_instruction(vcpu);
4867 return kvm_emulate_halt(vcpu);
4868 }
4869
4870 static int handle_vmcall(struct kvm_vcpu *vcpu)
4871 {
4872 skip_emulated_instruction(vcpu);
4873 kvm_emulate_hypercall(vcpu);
4874 return 1;
4875 }
4876
4877 static int handle_invd(struct kvm_vcpu *vcpu)
4878 {
4879 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4880 }
4881
4882 static int handle_invlpg(struct kvm_vcpu *vcpu)
4883 {
4884 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4885
4886 kvm_mmu_invlpg(vcpu, exit_qualification);
4887 skip_emulated_instruction(vcpu);
4888 return 1;
4889 }
4890
4891 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4892 {
4893 int err;
4894
4895 err = kvm_rdpmc(vcpu);
4896 kvm_complete_insn_gp(vcpu, err);
4897
4898 return 1;
4899 }
4900
4901 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4902 {
4903 skip_emulated_instruction(vcpu);
4904 kvm_emulate_wbinvd(vcpu);
4905 return 1;
4906 }
4907
4908 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4909 {
4910 u64 new_bv = kvm_read_edx_eax(vcpu);
4911 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4912
4913 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4914 skip_emulated_instruction(vcpu);
4915 return 1;
4916 }
4917
4918 static int handle_apic_access(struct kvm_vcpu *vcpu)
4919 {
4920 if (likely(fasteoi)) {
4921 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4922 int access_type, offset;
4923
4924 access_type = exit_qualification & APIC_ACCESS_TYPE;
4925 offset = exit_qualification & APIC_ACCESS_OFFSET;
4926 /*
4927 * Sane guest uses MOV to write EOI, with written value
4928 * not cared. So make a short-circuit here by avoiding
4929 * heavy instruction emulation.
4930 */
4931 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4932 (offset == APIC_EOI)) {
4933 kvm_lapic_set_eoi(vcpu);
4934 skip_emulated_instruction(vcpu);
4935 return 1;
4936 }
4937 }
4938 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4939 }
4940
4941 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
4942 {
4943 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4944 int vector = exit_qualification & 0xff;
4945
4946 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
4947 kvm_apic_set_eoi_accelerated(vcpu, vector);
4948 return 1;
4949 }
4950
4951 static int handle_apic_write(struct kvm_vcpu *vcpu)
4952 {
4953 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4954 u32 offset = exit_qualification & 0xfff;
4955
4956 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
4957 kvm_apic_write_nodecode(vcpu, offset);
4958 return 1;
4959 }
4960
4961 static int handle_task_switch(struct kvm_vcpu *vcpu)
4962 {
4963 struct vcpu_vmx *vmx = to_vmx(vcpu);
4964 unsigned long exit_qualification;
4965 bool has_error_code = false;
4966 u32 error_code = 0;
4967 u16 tss_selector;
4968 int reason, type, idt_v, idt_index;
4969
4970 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4971 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
4972 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4973
4974 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4975
4976 reason = (u32)exit_qualification >> 30;
4977 if (reason == TASK_SWITCH_GATE && idt_v) {
4978 switch (type) {
4979 case INTR_TYPE_NMI_INTR:
4980 vcpu->arch.nmi_injected = false;
4981 vmx_set_nmi_mask(vcpu, true);
4982 break;
4983 case INTR_TYPE_EXT_INTR:
4984 case INTR_TYPE_SOFT_INTR:
4985 kvm_clear_interrupt_queue(vcpu);
4986 break;
4987 case INTR_TYPE_HARD_EXCEPTION:
4988 if (vmx->idt_vectoring_info &
4989 VECTORING_INFO_DELIVER_CODE_MASK) {
4990 has_error_code = true;
4991 error_code =
4992 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4993 }
4994 /* fall through */
4995 case INTR_TYPE_SOFT_EXCEPTION:
4996 kvm_clear_exception_queue(vcpu);
4997 break;
4998 default:
4999 break;
5000 }
5001 }
5002 tss_selector = exit_qualification;
5003
5004 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5005 type != INTR_TYPE_EXT_INTR &&
5006 type != INTR_TYPE_NMI_INTR))
5007 skip_emulated_instruction(vcpu);
5008
5009 if (kvm_task_switch(vcpu, tss_selector,
5010 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5011 has_error_code, error_code) == EMULATE_FAIL) {
5012 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5013 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5014 vcpu->run->internal.ndata = 0;
5015 return 0;
5016 }
5017
5018 /* clear all local breakpoint enable flags */
5019 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5020
5021 /*
5022 * TODO: What about debug traps on tss switch?
5023 * Are we supposed to inject them and update dr6?
5024 */
5025
5026 return 1;
5027 }
5028
5029 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5030 {
5031 unsigned long exit_qualification;
5032 gpa_t gpa;
5033 u32 error_code;
5034 int gla_validity;
5035
5036 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5037
5038 gla_validity = (exit_qualification >> 7) & 0x3;
5039 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5040 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5041 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5042 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5043 vmcs_readl(GUEST_LINEAR_ADDRESS));
5044 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5045 (long unsigned int)exit_qualification);
5046 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5047 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5048 return 0;
5049 }
5050
5051 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5052 trace_kvm_page_fault(gpa, exit_qualification);
5053
5054 /* It is a write fault? */
5055 error_code = exit_qualification & (1U << 1);
5056 /* ept page table is present? */
5057 error_code |= (exit_qualification >> 3) & 0x1;
5058
5059 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5060 }
5061
5062 static u64 ept_rsvd_mask(u64 spte, int level)
5063 {
5064 int i;
5065 u64 mask = 0;
5066
5067 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5068 mask |= (1ULL << i);
5069
5070 if (level > 2)
5071 /* bits 7:3 reserved */
5072 mask |= 0xf8;
5073 else if (level == 2) {
5074 if (spte & (1ULL << 7))
5075 /* 2MB ref, bits 20:12 reserved */
5076 mask |= 0x1ff000;
5077 else
5078 /* bits 6:3 reserved */
5079 mask |= 0x78;
5080 }
5081
5082 return mask;
5083 }
5084
5085 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5086 int level)
5087 {
5088 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5089
5090 /* 010b (write-only) */
5091 WARN_ON((spte & 0x7) == 0x2);
5092
5093 /* 110b (write/execute) */
5094 WARN_ON((spte & 0x7) == 0x6);
5095
5096 /* 100b (execute-only) and value not supported by logical processor */
5097 if (!cpu_has_vmx_ept_execute_only())
5098 WARN_ON((spte & 0x7) == 0x4);
5099
5100 /* not 000b */
5101 if ((spte & 0x7)) {
5102 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5103
5104 if (rsvd_bits != 0) {
5105 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5106 __func__, rsvd_bits);
5107 WARN_ON(1);
5108 }
5109
5110 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5111 u64 ept_mem_type = (spte & 0x38) >> 3;
5112
5113 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5114 ept_mem_type == 7) {
5115 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5116 __func__, ept_mem_type);
5117 WARN_ON(1);
5118 }
5119 }
5120 }
5121 }
5122
5123 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5124 {
5125 u64 sptes[4];
5126 int nr_sptes, i, ret;
5127 gpa_t gpa;
5128
5129 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5130
5131 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5132 if (likely(ret == 1))
5133 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5134 EMULATE_DONE;
5135 if (unlikely(!ret))
5136 return 1;
5137
5138 /* It is the real ept misconfig */
5139 printk(KERN_ERR "EPT: Misconfiguration.\n");
5140 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5141
5142 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5143
5144 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5145 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5146
5147 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5148 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5149
5150 return 0;
5151 }
5152
5153 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5154 {
5155 u32 cpu_based_vm_exec_control;
5156
5157 /* clear pending NMI */
5158 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5159 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5160 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5161 ++vcpu->stat.nmi_window_exits;
5162 kvm_make_request(KVM_REQ_EVENT, vcpu);
5163
5164 return 1;
5165 }
5166
5167 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5168 {
5169 struct vcpu_vmx *vmx = to_vmx(vcpu);
5170 enum emulation_result err = EMULATE_DONE;
5171 int ret = 1;
5172 u32 cpu_exec_ctrl;
5173 bool intr_window_requested;
5174 unsigned count = 130;
5175
5176 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5177 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5178
5179 while (!guest_state_valid(vcpu) && count-- != 0) {
5180 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5181 return handle_interrupt_window(&vmx->vcpu);
5182
5183 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5184 return 1;
5185
5186 err = emulate_instruction(vcpu, 0);
5187
5188 if (err == EMULATE_DO_MMIO) {
5189 ret = 0;
5190 goto out;
5191 }
5192
5193 if (err != EMULATE_DONE) {
5194 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5195 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5196 vcpu->run->internal.ndata = 0;
5197 return 0;
5198 }
5199
5200 if (signal_pending(current))
5201 goto out;
5202 if (need_resched())
5203 schedule();
5204 }
5205
5206 vmx->emulation_required = emulation_required(vcpu);
5207 out:
5208 return ret;
5209 }
5210
5211 /*
5212 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5213 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5214 */
5215 static int handle_pause(struct kvm_vcpu *vcpu)
5216 {
5217 skip_emulated_instruction(vcpu);
5218 kvm_vcpu_on_spin(vcpu);
5219
5220 return 1;
5221 }
5222
5223 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5224 {
5225 kvm_queue_exception(vcpu, UD_VECTOR);
5226 return 1;
5227 }
5228
5229 /*
5230 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5231 * We could reuse a single VMCS for all the L2 guests, but we also want the
5232 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5233 * allows keeping them loaded on the processor, and in the future will allow
5234 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5235 * every entry if they never change.
5236 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5237 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5238 *
5239 * The following functions allocate and free a vmcs02 in this pool.
5240 */
5241
5242 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5243 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5244 {
5245 struct vmcs02_list *item;
5246 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5247 if (item->vmptr == vmx->nested.current_vmptr) {
5248 list_move(&item->list, &vmx->nested.vmcs02_pool);
5249 return &item->vmcs02;
5250 }
5251
5252 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5253 /* Recycle the least recently used VMCS. */
5254 item = list_entry(vmx->nested.vmcs02_pool.prev,
5255 struct vmcs02_list, list);
5256 item->vmptr = vmx->nested.current_vmptr;
5257 list_move(&item->list, &vmx->nested.vmcs02_pool);
5258 return &item->vmcs02;
5259 }
5260
5261 /* Create a new VMCS */
5262 item = (struct vmcs02_list *)
5263 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5264 if (!item)
5265 return NULL;
5266 item->vmcs02.vmcs = alloc_vmcs();
5267 if (!item->vmcs02.vmcs) {
5268 kfree(item);
5269 return NULL;
5270 }
5271 loaded_vmcs_init(&item->vmcs02);
5272 item->vmptr = vmx->nested.current_vmptr;
5273 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5274 vmx->nested.vmcs02_num++;
5275 return &item->vmcs02;
5276 }
5277
5278 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5279 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5280 {
5281 struct vmcs02_list *item;
5282 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5283 if (item->vmptr == vmptr) {
5284 free_loaded_vmcs(&item->vmcs02);
5285 list_del(&item->list);
5286 kfree(item);
5287 vmx->nested.vmcs02_num--;
5288 return;
5289 }
5290 }
5291
5292 /*
5293 * Free all VMCSs saved for this vcpu, except the one pointed by
5294 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5295 * currently used, if running L2), and vmcs01 when running L2.
5296 */
5297 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5298 {
5299 struct vmcs02_list *item, *n;
5300 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5301 if (vmx->loaded_vmcs != &item->vmcs02)
5302 free_loaded_vmcs(&item->vmcs02);
5303 list_del(&item->list);
5304 kfree(item);
5305 }
5306 vmx->nested.vmcs02_num = 0;
5307
5308 if (vmx->loaded_vmcs != &vmx->vmcs01)
5309 free_loaded_vmcs(&vmx->vmcs01);
5310 }
5311
5312 /*
5313 * Emulate the VMXON instruction.
5314 * Currently, we just remember that VMX is active, and do not save or even
5315 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5316 * do not currently need to store anything in that guest-allocated memory
5317 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5318 * argument is different from the VMXON pointer (which the spec says they do).
5319 */
5320 static int handle_vmon(struct kvm_vcpu *vcpu)
5321 {
5322 struct kvm_segment cs;
5323 struct vcpu_vmx *vmx = to_vmx(vcpu);
5324
5325 /* The Intel VMX Instruction Reference lists a bunch of bits that
5326 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5327 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5328 * Otherwise, we should fail with #UD. We test these now:
5329 */
5330 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5331 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5332 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5333 kvm_queue_exception(vcpu, UD_VECTOR);
5334 return 1;
5335 }
5336
5337 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5338 if (is_long_mode(vcpu) && !cs.l) {
5339 kvm_queue_exception(vcpu, UD_VECTOR);
5340 return 1;
5341 }
5342
5343 if (vmx_get_cpl(vcpu)) {
5344 kvm_inject_gp(vcpu, 0);
5345 return 1;
5346 }
5347
5348 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5349 vmx->nested.vmcs02_num = 0;
5350
5351 vmx->nested.vmxon = true;
5352
5353 skip_emulated_instruction(vcpu);
5354 return 1;
5355 }
5356
5357 /*
5358 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5359 * for running VMX instructions (except VMXON, whose prerequisites are
5360 * slightly different). It also specifies what exception to inject otherwise.
5361 */
5362 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5363 {
5364 struct kvm_segment cs;
5365 struct vcpu_vmx *vmx = to_vmx(vcpu);
5366
5367 if (!vmx->nested.vmxon) {
5368 kvm_queue_exception(vcpu, UD_VECTOR);
5369 return 0;
5370 }
5371
5372 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5373 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5374 (is_long_mode(vcpu) && !cs.l)) {
5375 kvm_queue_exception(vcpu, UD_VECTOR);
5376 return 0;
5377 }
5378
5379 if (vmx_get_cpl(vcpu)) {
5380 kvm_inject_gp(vcpu, 0);
5381 return 0;
5382 }
5383
5384 return 1;
5385 }
5386
5387 /*
5388 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5389 * just stops using VMX.
5390 */
5391 static void free_nested(struct vcpu_vmx *vmx)
5392 {
5393 if (!vmx->nested.vmxon)
5394 return;
5395 vmx->nested.vmxon = false;
5396 if (vmx->nested.current_vmptr != -1ull) {
5397 kunmap(vmx->nested.current_vmcs12_page);
5398 nested_release_page(vmx->nested.current_vmcs12_page);
5399 vmx->nested.current_vmptr = -1ull;
5400 vmx->nested.current_vmcs12 = NULL;
5401 }
5402 /* Unpin physical memory we referred to in current vmcs02 */
5403 if (vmx->nested.apic_access_page) {
5404 nested_release_page(vmx->nested.apic_access_page);
5405 vmx->nested.apic_access_page = 0;
5406 }
5407
5408 nested_free_all_saved_vmcss(vmx);
5409 }
5410
5411 /* Emulate the VMXOFF instruction */
5412 static int handle_vmoff(struct kvm_vcpu *vcpu)
5413 {
5414 if (!nested_vmx_check_permission(vcpu))
5415 return 1;
5416 free_nested(to_vmx(vcpu));
5417 skip_emulated_instruction(vcpu);
5418 return 1;
5419 }
5420
5421 /*
5422 * Decode the memory-address operand of a vmx instruction, as recorded on an
5423 * exit caused by such an instruction (run by a guest hypervisor).
5424 * On success, returns 0. When the operand is invalid, returns 1 and throws
5425 * #UD or #GP.
5426 */
5427 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5428 unsigned long exit_qualification,
5429 u32 vmx_instruction_info, gva_t *ret)
5430 {
5431 /*
5432 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5433 * Execution", on an exit, vmx_instruction_info holds most of the
5434 * addressing components of the operand. Only the displacement part
5435 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5436 * For how an actual address is calculated from all these components,
5437 * refer to Vol. 1, "Operand Addressing".
5438 */
5439 int scaling = vmx_instruction_info & 3;
5440 int addr_size = (vmx_instruction_info >> 7) & 7;
5441 bool is_reg = vmx_instruction_info & (1u << 10);
5442 int seg_reg = (vmx_instruction_info >> 15) & 7;
5443 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5444 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5445 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5446 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5447
5448 if (is_reg) {
5449 kvm_queue_exception(vcpu, UD_VECTOR);
5450 return 1;
5451 }
5452
5453 /* Addr = segment_base + offset */
5454 /* offset = base + [index * scale] + displacement */
5455 *ret = vmx_get_segment_base(vcpu, seg_reg);
5456 if (base_is_valid)
5457 *ret += kvm_register_read(vcpu, base_reg);
5458 if (index_is_valid)
5459 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5460 *ret += exit_qualification; /* holds the displacement */
5461
5462 if (addr_size == 1) /* 32 bit */
5463 *ret &= 0xffffffff;
5464
5465 /*
5466 * TODO: throw #GP (and return 1) in various cases that the VM*
5467 * instructions require it - e.g., offset beyond segment limit,
5468 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5469 * address, and so on. Currently these are not checked.
5470 */
5471 return 0;
5472 }
5473
5474 /*
5475 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5476 * set the success or error code of an emulated VMX instruction, as specified
5477 * by Vol 2B, VMX Instruction Reference, "Conventions".
5478 */
5479 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5480 {
5481 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5482 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5483 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5484 }
5485
5486 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5487 {
5488 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5489 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5490 X86_EFLAGS_SF | X86_EFLAGS_OF))
5491 | X86_EFLAGS_CF);
5492 }
5493
5494 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5495 u32 vm_instruction_error)
5496 {
5497 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5498 /*
5499 * failValid writes the error number to the current VMCS, which
5500 * can't be done there isn't a current VMCS.
5501 */
5502 nested_vmx_failInvalid(vcpu);
5503 return;
5504 }
5505 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5506 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5507 X86_EFLAGS_SF | X86_EFLAGS_OF))
5508 | X86_EFLAGS_ZF);
5509 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5510 }
5511
5512 /* Emulate the VMCLEAR instruction */
5513 static int handle_vmclear(struct kvm_vcpu *vcpu)
5514 {
5515 struct vcpu_vmx *vmx = to_vmx(vcpu);
5516 gva_t gva;
5517 gpa_t vmptr;
5518 struct vmcs12 *vmcs12;
5519 struct page *page;
5520 struct x86_exception e;
5521
5522 if (!nested_vmx_check_permission(vcpu))
5523 return 1;
5524
5525 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5526 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5527 return 1;
5528
5529 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5530 sizeof(vmptr), &e)) {
5531 kvm_inject_page_fault(vcpu, &e);
5532 return 1;
5533 }
5534
5535 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5536 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5537 skip_emulated_instruction(vcpu);
5538 return 1;
5539 }
5540
5541 if (vmptr == vmx->nested.current_vmptr) {
5542 kunmap(vmx->nested.current_vmcs12_page);
5543 nested_release_page(vmx->nested.current_vmcs12_page);
5544 vmx->nested.current_vmptr = -1ull;
5545 vmx->nested.current_vmcs12 = NULL;
5546 }
5547
5548 page = nested_get_page(vcpu, vmptr);
5549 if (page == NULL) {
5550 /*
5551 * For accurate processor emulation, VMCLEAR beyond available
5552 * physical memory should do nothing at all. However, it is
5553 * possible that a nested vmx bug, not a guest hypervisor bug,
5554 * resulted in this case, so let's shut down before doing any
5555 * more damage:
5556 */
5557 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5558 return 1;
5559 }
5560 vmcs12 = kmap(page);
5561 vmcs12->launch_state = 0;
5562 kunmap(page);
5563 nested_release_page(page);
5564
5565 nested_free_vmcs02(vmx, vmptr);
5566
5567 skip_emulated_instruction(vcpu);
5568 nested_vmx_succeed(vcpu);
5569 return 1;
5570 }
5571
5572 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5573
5574 /* Emulate the VMLAUNCH instruction */
5575 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5576 {
5577 return nested_vmx_run(vcpu, true);
5578 }
5579
5580 /* Emulate the VMRESUME instruction */
5581 static int handle_vmresume(struct kvm_vcpu *vcpu)
5582 {
5583
5584 return nested_vmx_run(vcpu, false);
5585 }
5586
5587 enum vmcs_field_type {
5588 VMCS_FIELD_TYPE_U16 = 0,
5589 VMCS_FIELD_TYPE_U64 = 1,
5590 VMCS_FIELD_TYPE_U32 = 2,
5591 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5592 };
5593
5594 static inline int vmcs_field_type(unsigned long field)
5595 {
5596 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5597 return VMCS_FIELD_TYPE_U32;
5598 return (field >> 13) & 0x3 ;
5599 }
5600
5601 static inline int vmcs_field_readonly(unsigned long field)
5602 {
5603 return (((field >> 10) & 0x3) == 1);
5604 }
5605
5606 /*
5607 * Read a vmcs12 field. Since these can have varying lengths and we return
5608 * one type, we chose the biggest type (u64) and zero-extend the return value
5609 * to that size. Note that the caller, handle_vmread, might need to use only
5610 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5611 * 64-bit fields are to be returned).
5612 */
5613 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5614 unsigned long field, u64 *ret)
5615 {
5616 short offset = vmcs_field_to_offset(field);
5617 char *p;
5618
5619 if (offset < 0)
5620 return 0;
5621
5622 p = ((char *)(get_vmcs12(vcpu))) + offset;
5623
5624 switch (vmcs_field_type(field)) {
5625 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5626 *ret = *((natural_width *)p);
5627 return 1;
5628 case VMCS_FIELD_TYPE_U16:
5629 *ret = *((u16 *)p);
5630 return 1;
5631 case VMCS_FIELD_TYPE_U32:
5632 *ret = *((u32 *)p);
5633 return 1;
5634 case VMCS_FIELD_TYPE_U64:
5635 *ret = *((u64 *)p);
5636 return 1;
5637 default:
5638 return 0; /* can never happen. */
5639 }
5640 }
5641
5642 /*
5643 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5644 * used before) all generate the same failure when it is missing.
5645 */
5646 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5647 {
5648 struct vcpu_vmx *vmx = to_vmx(vcpu);
5649 if (vmx->nested.current_vmptr == -1ull) {
5650 nested_vmx_failInvalid(vcpu);
5651 skip_emulated_instruction(vcpu);
5652 return 0;
5653 }
5654 return 1;
5655 }
5656
5657 static int handle_vmread(struct kvm_vcpu *vcpu)
5658 {
5659 unsigned long field;
5660 u64 field_value;
5661 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5662 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5663 gva_t gva = 0;
5664
5665 if (!nested_vmx_check_permission(vcpu) ||
5666 !nested_vmx_check_vmcs12(vcpu))
5667 return 1;
5668
5669 /* Decode instruction info and find the field to read */
5670 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5671 /* Read the field, zero-extended to a u64 field_value */
5672 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5673 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5674 skip_emulated_instruction(vcpu);
5675 return 1;
5676 }
5677 /*
5678 * Now copy part of this value to register or memory, as requested.
5679 * Note that the number of bits actually copied is 32 or 64 depending
5680 * on the guest's mode (32 or 64 bit), not on the given field's length.
5681 */
5682 if (vmx_instruction_info & (1u << 10)) {
5683 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5684 field_value);
5685 } else {
5686 if (get_vmx_mem_address(vcpu, exit_qualification,
5687 vmx_instruction_info, &gva))
5688 return 1;
5689 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5690 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5691 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5692 }
5693
5694 nested_vmx_succeed(vcpu);
5695 skip_emulated_instruction(vcpu);
5696 return 1;
5697 }
5698
5699
5700 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5701 {
5702 unsigned long field;
5703 gva_t gva;
5704 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5705 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5706 char *p;
5707 short offset;
5708 /* The value to write might be 32 or 64 bits, depending on L1's long
5709 * mode, and eventually we need to write that into a field of several
5710 * possible lengths. The code below first zero-extends the value to 64
5711 * bit (field_value), and then copies only the approriate number of
5712 * bits into the vmcs12 field.
5713 */
5714 u64 field_value = 0;
5715 struct x86_exception e;
5716
5717 if (!nested_vmx_check_permission(vcpu) ||
5718 !nested_vmx_check_vmcs12(vcpu))
5719 return 1;
5720
5721 if (vmx_instruction_info & (1u << 10))
5722 field_value = kvm_register_read(vcpu,
5723 (((vmx_instruction_info) >> 3) & 0xf));
5724 else {
5725 if (get_vmx_mem_address(vcpu, exit_qualification,
5726 vmx_instruction_info, &gva))
5727 return 1;
5728 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5729 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5730 kvm_inject_page_fault(vcpu, &e);
5731 return 1;
5732 }
5733 }
5734
5735
5736 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5737 if (vmcs_field_readonly(field)) {
5738 nested_vmx_failValid(vcpu,
5739 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5740 skip_emulated_instruction(vcpu);
5741 return 1;
5742 }
5743
5744 offset = vmcs_field_to_offset(field);
5745 if (offset < 0) {
5746 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5747 skip_emulated_instruction(vcpu);
5748 return 1;
5749 }
5750 p = ((char *) get_vmcs12(vcpu)) + offset;
5751
5752 switch (vmcs_field_type(field)) {
5753 case VMCS_FIELD_TYPE_U16:
5754 *(u16 *)p = field_value;
5755 break;
5756 case VMCS_FIELD_TYPE_U32:
5757 *(u32 *)p = field_value;
5758 break;
5759 case VMCS_FIELD_TYPE_U64:
5760 *(u64 *)p = field_value;
5761 break;
5762 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5763 *(natural_width *)p = field_value;
5764 break;
5765 default:
5766 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5767 skip_emulated_instruction(vcpu);
5768 return 1;
5769 }
5770
5771 nested_vmx_succeed(vcpu);
5772 skip_emulated_instruction(vcpu);
5773 return 1;
5774 }
5775
5776 /* Emulate the VMPTRLD instruction */
5777 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5778 {
5779 struct vcpu_vmx *vmx = to_vmx(vcpu);
5780 gva_t gva;
5781 gpa_t vmptr;
5782 struct x86_exception e;
5783
5784 if (!nested_vmx_check_permission(vcpu))
5785 return 1;
5786
5787 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5788 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5789 return 1;
5790
5791 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5792 sizeof(vmptr), &e)) {
5793 kvm_inject_page_fault(vcpu, &e);
5794 return 1;
5795 }
5796
5797 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5798 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5799 skip_emulated_instruction(vcpu);
5800 return 1;
5801 }
5802
5803 if (vmx->nested.current_vmptr != vmptr) {
5804 struct vmcs12 *new_vmcs12;
5805 struct page *page;
5806 page = nested_get_page(vcpu, vmptr);
5807 if (page == NULL) {
5808 nested_vmx_failInvalid(vcpu);
5809 skip_emulated_instruction(vcpu);
5810 return 1;
5811 }
5812 new_vmcs12 = kmap(page);
5813 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5814 kunmap(page);
5815 nested_release_page_clean(page);
5816 nested_vmx_failValid(vcpu,
5817 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5818 skip_emulated_instruction(vcpu);
5819 return 1;
5820 }
5821 if (vmx->nested.current_vmptr != -1ull) {
5822 kunmap(vmx->nested.current_vmcs12_page);
5823 nested_release_page(vmx->nested.current_vmcs12_page);
5824 }
5825
5826 vmx->nested.current_vmptr = vmptr;
5827 vmx->nested.current_vmcs12 = new_vmcs12;
5828 vmx->nested.current_vmcs12_page = page;
5829 }
5830
5831 nested_vmx_succeed(vcpu);
5832 skip_emulated_instruction(vcpu);
5833 return 1;
5834 }
5835
5836 /* Emulate the VMPTRST instruction */
5837 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5838 {
5839 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5840 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5841 gva_t vmcs_gva;
5842 struct x86_exception e;
5843
5844 if (!nested_vmx_check_permission(vcpu))
5845 return 1;
5846
5847 if (get_vmx_mem_address(vcpu, exit_qualification,
5848 vmx_instruction_info, &vmcs_gva))
5849 return 1;
5850 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5851 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5852 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5853 sizeof(u64), &e)) {
5854 kvm_inject_page_fault(vcpu, &e);
5855 return 1;
5856 }
5857 nested_vmx_succeed(vcpu);
5858 skip_emulated_instruction(vcpu);
5859 return 1;
5860 }
5861
5862 /*
5863 * The exit handlers return 1 if the exit was handled fully and guest execution
5864 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5865 * to be done to userspace and return 0.
5866 */
5867 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5868 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5869 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5870 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5871 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5872 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5873 [EXIT_REASON_CR_ACCESS] = handle_cr,
5874 [EXIT_REASON_DR_ACCESS] = handle_dr,
5875 [EXIT_REASON_CPUID] = handle_cpuid,
5876 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5877 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5878 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5879 [EXIT_REASON_HLT] = handle_halt,
5880 [EXIT_REASON_INVD] = handle_invd,
5881 [EXIT_REASON_INVLPG] = handle_invlpg,
5882 [EXIT_REASON_RDPMC] = handle_rdpmc,
5883 [EXIT_REASON_VMCALL] = handle_vmcall,
5884 [EXIT_REASON_VMCLEAR] = handle_vmclear,
5885 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
5886 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
5887 [EXIT_REASON_VMPTRST] = handle_vmptrst,
5888 [EXIT_REASON_VMREAD] = handle_vmread,
5889 [EXIT_REASON_VMRESUME] = handle_vmresume,
5890 [EXIT_REASON_VMWRITE] = handle_vmwrite,
5891 [EXIT_REASON_VMOFF] = handle_vmoff,
5892 [EXIT_REASON_VMON] = handle_vmon,
5893 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5894 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5895 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5896 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5897 [EXIT_REASON_WBINVD] = handle_wbinvd,
5898 [EXIT_REASON_XSETBV] = handle_xsetbv,
5899 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5900 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5901 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5902 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5903 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5904 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5905 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
5906 };
5907
5908 static const int kvm_vmx_max_exit_handlers =
5909 ARRAY_SIZE(kvm_vmx_exit_handlers);
5910
5911 /*
5912 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5913 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5914 * disinterest in the current event (read or write a specific MSR) by using an
5915 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5916 */
5917 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5918 struct vmcs12 *vmcs12, u32 exit_reason)
5919 {
5920 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5921 gpa_t bitmap;
5922
5923 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5924 return 1;
5925
5926 /*
5927 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5928 * for the four combinations of read/write and low/high MSR numbers.
5929 * First we need to figure out which of the four to use:
5930 */
5931 bitmap = vmcs12->msr_bitmap;
5932 if (exit_reason == EXIT_REASON_MSR_WRITE)
5933 bitmap += 2048;
5934 if (msr_index >= 0xc0000000) {
5935 msr_index -= 0xc0000000;
5936 bitmap += 1024;
5937 }
5938
5939 /* Then read the msr_index'th bit from this bitmap: */
5940 if (msr_index < 1024*8) {
5941 unsigned char b;
5942 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5943 return 1 & (b >> (msr_index & 7));
5944 } else
5945 return 1; /* let L1 handle the wrong parameter */
5946 }
5947
5948 /*
5949 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5950 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5951 * intercept (via guest_host_mask etc.) the current event.
5952 */
5953 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5954 struct vmcs12 *vmcs12)
5955 {
5956 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5957 int cr = exit_qualification & 15;
5958 int reg = (exit_qualification >> 8) & 15;
5959 unsigned long val = kvm_register_read(vcpu, reg);
5960
5961 switch ((exit_qualification >> 4) & 3) {
5962 case 0: /* mov to cr */
5963 switch (cr) {
5964 case 0:
5965 if (vmcs12->cr0_guest_host_mask &
5966 (val ^ vmcs12->cr0_read_shadow))
5967 return 1;
5968 break;
5969 case 3:
5970 if ((vmcs12->cr3_target_count >= 1 &&
5971 vmcs12->cr3_target_value0 == val) ||
5972 (vmcs12->cr3_target_count >= 2 &&
5973 vmcs12->cr3_target_value1 == val) ||
5974 (vmcs12->cr3_target_count >= 3 &&
5975 vmcs12->cr3_target_value2 == val) ||
5976 (vmcs12->cr3_target_count >= 4 &&
5977 vmcs12->cr3_target_value3 == val))
5978 return 0;
5979 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5980 return 1;
5981 break;
5982 case 4:
5983 if (vmcs12->cr4_guest_host_mask &
5984 (vmcs12->cr4_read_shadow ^ val))
5985 return 1;
5986 break;
5987 case 8:
5988 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5989 return 1;
5990 break;
5991 }
5992 break;
5993 case 2: /* clts */
5994 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5995 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5996 return 1;
5997 break;
5998 case 1: /* mov from cr */
5999 switch (cr) {
6000 case 3:
6001 if (vmcs12->cpu_based_vm_exec_control &
6002 CPU_BASED_CR3_STORE_EXITING)
6003 return 1;
6004 break;
6005 case 8:
6006 if (vmcs12->cpu_based_vm_exec_control &
6007 CPU_BASED_CR8_STORE_EXITING)
6008 return 1;
6009 break;
6010 }
6011 break;
6012 case 3: /* lmsw */
6013 /*
6014 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6015 * cr0. Other attempted changes are ignored, with no exit.
6016 */
6017 if (vmcs12->cr0_guest_host_mask & 0xe &
6018 (val ^ vmcs12->cr0_read_shadow))
6019 return 1;
6020 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6021 !(vmcs12->cr0_read_shadow & 0x1) &&
6022 (val & 0x1))
6023 return 1;
6024 break;
6025 }
6026 return 0;
6027 }
6028
6029 /*
6030 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6031 * should handle it ourselves in L0 (and then continue L2). Only call this
6032 * when in is_guest_mode (L2).
6033 */
6034 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6035 {
6036 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
6037 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6038 struct vcpu_vmx *vmx = to_vmx(vcpu);
6039 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6040
6041 if (vmx->nested.nested_run_pending)
6042 return 0;
6043
6044 if (unlikely(vmx->fail)) {
6045 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6046 vmcs_read32(VM_INSTRUCTION_ERROR));
6047 return 1;
6048 }
6049
6050 switch (exit_reason) {
6051 case EXIT_REASON_EXCEPTION_NMI:
6052 if (!is_exception(intr_info))
6053 return 0;
6054 else if (is_page_fault(intr_info))
6055 return enable_ept;
6056 return vmcs12->exception_bitmap &
6057 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6058 case EXIT_REASON_EXTERNAL_INTERRUPT:
6059 return 0;
6060 case EXIT_REASON_TRIPLE_FAULT:
6061 return 1;
6062 case EXIT_REASON_PENDING_INTERRUPT:
6063 case EXIT_REASON_NMI_WINDOW:
6064 /*
6065 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
6066 * (aka Interrupt Window Exiting) only when L1 turned it on,
6067 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
6068 * Same for NMI Window Exiting.
6069 */
6070 return 1;
6071 case EXIT_REASON_TASK_SWITCH:
6072 return 1;
6073 case EXIT_REASON_CPUID:
6074 return 1;
6075 case EXIT_REASON_HLT:
6076 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6077 case EXIT_REASON_INVD:
6078 return 1;
6079 case EXIT_REASON_INVLPG:
6080 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6081 case EXIT_REASON_RDPMC:
6082 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6083 case EXIT_REASON_RDTSC:
6084 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6085 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6086 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6087 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6088 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6089 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6090 /*
6091 * VMX instructions trap unconditionally. This allows L1 to
6092 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6093 */
6094 return 1;
6095 case EXIT_REASON_CR_ACCESS:
6096 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6097 case EXIT_REASON_DR_ACCESS:
6098 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6099 case EXIT_REASON_IO_INSTRUCTION:
6100 /* TODO: support IO bitmaps */
6101 return 1;
6102 case EXIT_REASON_MSR_READ:
6103 case EXIT_REASON_MSR_WRITE:
6104 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6105 case EXIT_REASON_INVALID_STATE:
6106 return 1;
6107 case EXIT_REASON_MWAIT_INSTRUCTION:
6108 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6109 case EXIT_REASON_MONITOR_INSTRUCTION:
6110 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6111 case EXIT_REASON_PAUSE_INSTRUCTION:
6112 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6113 nested_cpu_has2(vmcs12,
6114 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6115 case EXIT_REASON_MCE_DURING_VMENTRY:
6116 return 0;
6117 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6118 return 1;
6119 case EXIT_REASON_APIC_ACCESS:
6120 return nested_cpu_has2(vmcs12,
6121 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6122 case EXIT_REASON_EPT_VIOLATION:
6123 case EXIT_REASON_EPT_MISCONFIG:
6124 return 0;
6125 case EXIT_REASON_WBINVD:
6126 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6127 case EXIT_REASON_XSETBV:
6128 return 1;
6129 default:
6130 return 1;
6131 }
6132 }
6133
6134 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6135 {
6136 *info1 = vmcs_readl(EXIT_QUALIFICATION);
6137 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6138 }
6139
6140 /*
6141 * The guest has exited. See if we can fix it or if we need userspace
6142 * assistance.
6143 */
6144 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6145 {
6146 struct vcpu_vmx *vmx = to_vmx(vcpu);
6147 u32 exit_reason = vmx->exit_reason;
6148 u32 vectoring_info = vmx->idt_vectoring_info;
6149
6150 /* If guest state is invalid, start emulating */
6151 if (vmx->emulation_required)
6152 return handle_invalid_guest_state(vcpu);
6153
6154 /*
6155 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6156 * we did not inject a still-pending event to L1 now because of
6157 * nested_run_pending, we need to re-enable this bit.
6158 */
6159 if (vmx->nested.nested_run_pending)
6160 kvm_make_request(KVM_REQ_EVENT, vcpu);
6161
6162 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
6163 exit_reason == EXIT_REASON_VMRESUME))
6164 vmx->nested.nested_run_pending = 1;
6165 else
6166 vmx->nested.nested_run_pending = 0;
6167
6168 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6169 nested_vmx_vmexit(vcpu);
6170 return 1;
6171 }
6172
6173 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6174 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6175 vcpu->run->fail_entry.hardware_entry_failure_reason
6176 = exit_reason;
6177 return 0;
6178 }
6179
6180 if (unlikely(vmx->fail)) {
6181 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6182 vcpu->run->fail_entry.hardware_entry_failure_reason
6183 = vmcs_read32(VM_INSTRUCTION_ERROR);
6184 return 0;
6185 }
6186
6187 /*
6188 * Note:
6189 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6190 * delivery event since it indicates guest is accessing MMIO.
6191 * The vm-exit can be triggered again after return to guest that
6192 * will cause infinite loop.
6193 */
6194 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6195 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6196 exit_reason != EXIT_REASON_EPT_VIOLATION &&
6197 exit_reason != EXIT_REASON_TASK_SWITCH)) {
6198 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6199 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6200 vcpu->run->internal.ndata = 2;
6201 vcpu->run->internal.data[0] = vectoring_info;
6202 vcpu->run->internal.data[1] = exit_reason;
6203 return 0;
6204 }
6205
6206 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6207 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6208 get_vmcs12(vcpu), vcpu)))) {
6209 if (vmx_interrupt_allowed(vcpu)) {
6210 vmx->soft_vnmi_blocked = 0;
6211 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6212 vcpu->arch.nmi_pending) {
6213 /*
6214 * This CPU don't support us in finding the end of an
6215 * NMI-blocked window if the guest runs with IRQs
6216 * disabled. So we pull the trigger after 1 s of
6217 * futile waiting, but inform the user about this.
6218 */
6219 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6220 "state on VCPU %d after 1 s timeout\n",
6221 __func__, vcpu->vcpu_id);
6222 vmx->soft_vnmi_blocked = 0;
6223 }
6224 }
6225
6226 if (exit_reason < kvm_vmx_max_exit_handlers
6227 && kvm_vmx_exit_handlers[exit_reason])
6228 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6229 else {
6230 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6231 vcpu->run->hw.hardware_exit_reason = exit_reason;
6232 }
6233 return 0;
6234 }
6235
6236 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6237 {
6238 if (irr == -1 || tpr < irr) {
6239 vmcs_write32(TPR_THRESHOLD, 0);
6240 return;
6241 }
6242
6243 vmcs_write32(TPR_THRESHOLD, irr);
6244 }
6245
6246 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6247 {
6248 u32 sec_exec_control;
6249
6250 /*
6251 * There is not point to enable virtualize x2apic without enable
6252 * apicv
6253 */
6254 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6255 !vmx_vm_has_apicv(vcpu->kvm))
6256 return;
6257
6258 if (!vm_need_tpr_shadow(vcpu->kvm))
6259 return;
6260
6261 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6262
6263 if (set) {
6264 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6265 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6266 } else {
6267 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6268 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6269 }
6270 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6271
6272 vmx_set_msr_bitmap(vcpu);
6273 }
6274
6275 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6276 {
6277 u16 status;
6278 u8 old;
6279
6280 if (!vmx_vm_has_apicv(kvm))
6281 return;
6282
6283 if (isr == -1)
6284 isr = 0;
6285
6286 status = vmcs_read16(GUEST_INTR_STATUS);
6287 old = status >> 8;
6288 if (isr != old) {
6289 status &= 0xff;
6290 status |= isr << 8;
6291 vmcs_write16(GUEST_INTR_STATUS, status);
6292 }
6293 }
6294
6295 static void vmx_set_rvi(int vector)
6296 {
6297 u16 status;
6298 u8 old;
6299
6300 status = vmcs_read16(GUEST_INTR_STATUS);
6301 old = (u8)status & 0xff;
6302 if ((u8)vector != old) {
6303 status &= ~0xff;
6304 status |= (u8)vector;
6305 vmcs_write16(GUEST_INTR_STATUS, status);
6306 }
6307 }
6308
6309 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6310 {
6311 if (max_irr == -1)
6312 return;
6313
6314 vmx_set_rvi(max_irr);
6315 }
6316
6317 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6318 {
6319 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6320 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6321 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6322 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6323 }
6324
6325 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6326 {
6327 u32 exit_intr_info;
6328
6329 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6330 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6331 return;
6332
6333 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6334 exit_intr_info = vmx->exit_intr_info;
6335
6336 /* Handle machine checks before interrupts are enabled */
6337 if (is_machine_check(exit_intr_info))
6338 kvm_machine_check();
6339
6340 /* We need to handle NMIs before interrupts are enabled */
6341 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
6342 (exit_intr_info & INTR_INFO_VALID_MASK)) {
6343 kvm_before_handle_nmi(&vmx->vcpu);
6344 asm("int $2");
6345 kvm_after_handle_nmi(&vmx->vcpu);
6346 }
6347 }
6348
6349 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6350 {
6351 u32 exit_intr_info;
6352 bool unblock_nmi;
6353 u8 vector;
6354 bool idtv_info_valid;
6355
6356 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6357
6358 if (cpu_has_virtual_nmis()) {
6359 if (vmx->nmi_known_unmasked)
6360 return;
6361 /*
6362 * Can't use vmx->exit_intr_info since we're not sure what
6363 * the exit reason is.
6364 */
6365 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6366 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6367 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6368 /*
6369 * SDM 3: 27.7.1.2 (September 2008)
6370 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6371 * a guest IRET fault.
6372 * SDM 3: 23.2.2 (September 2008)
6373 * Bit 12 is undefined in any of the following cases:
6374 * If the VM exit sets the valid bit in the IDT-vectoring
6375 * information field.
6376 * If the VM exit is due to a double fault.
6377 */
6378 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6379 vector != DF_VECTOR && !idtv_info_valid)
6380 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6381 GUEST_INTR_STATE_NMI);
6382 else
6383 vmx->nmi_known_unmasked =
6384 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6385 & GUEST_INTR_STATE_NMI);
6386 } else if (unlikely(vmx->soft_vnmi_blocked))
6387 vmx->vnmi_blocked_time +=
6388 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
6389 }
6390
6391 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
6392 u32 idt_vectoring_info,
6393 int instr_len_field,
6394 int error_code_field)
6395 {
6396 u8 vector;
6397 int type;
6398 bool idtv_info_valid;
6399
6400 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6401
6402 vmx->vcpu.arch.nmi_injected = false;
6403 kvm_clear_exception_queue(&vmx->vcpu);
6404 kvm_clear_interrupt_queue(&vmx->vcpu);
6405
6406 if (!idtv_info_valid)
6407 return;
6408
6409 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6410
6411 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6412 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6413
6414 switch (type) {
6415 case INTR_TYPE_NMI_INTR:
6416 vmx->vcpu.arch.nmi_injected = true;
6417 /*
6418 * SDM 3: 27.7.1.2 (September 2008)
6419 * Clear bit "block by NMI" before VM entry if a NMI
6420 * delivery faulted.
6421 */
6422 vmx_set_nmi_mask(&vmx->vcpu, false);
6423 break;
6424 case INTR_TYPE_SOFT_EXCEPTION:
6425 vmx->vcpu.arch.event_exit_inst_len =
6426 vmcs_read32(instr_len_field);
6427 /* fall through */
6428 case INTR_TYPE_HARD_EXCEPTION:
6429 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6430 u32 err = vmcs_read32(error_code_field);
6431 kvm_queue_exception_e(&vmx->vcpu, vector, err);
6432 } else
6433 kvm_queue_exception(&vmx->vcpu, vector);
6434 break;
6435 case INTR_TYPE_SOFT_INTR:
6436 vmx->vcpu.arch.event_exit_inst_len =
6437 vmcs_read32(instr_len_field);
6438 /* fall through */
6439 case INTR_TYPE_EXT_INTR:
6440 kvm_queue_interrupt(&vmx->vcpu, vector,
6441 type == INTR_TYPE_SOFT_INTR);
6442 break;
6443 default:
6444 break;
6445 }
6446 }
6447
6448 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6449 {
6450 if (is_guest_mode(&vmx->vcpu))
6451 return;
6452 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6453 VM_EXIT_INSTRUCTION_LEN,
6454 IDT_VECTORING_ERROR_CODE);
6455 }
6456
6457 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6458 {
6459 if (is_guest_mode(vcpu))
6460 return;
6461 __vmx_complete_interrupts(to_vmx(vcpu),
6462 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6463 VM_ENTRY_INSTRUCTION_LEN,
6464 VM_ENTRY_EXCEPTION_ERROR_CODE);
6465
6466 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6467 }
6468
6469 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6470 {
6471 int i, nr_msrs;
6472 struct perf_guest_switch_msr *msrs;
6473
6474 msrs = perf_guest_get_msrs(&nr_msrs);
6475
6476 if (!msrs)
6477 return;
6478
6479 for (i = 0; i < nr_msrs; i++)
6480 if (msrs[i].host == msrs[i].guest)
6481 clear_atomic_switch_msr(vmx, msrs[i].msr);
6482 else
6483 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6484 msrs[i].host);
6485 }
6486
6487 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6488 {
6489 struct vcpu_vmx *vmx = to_vmx(vcpu);
6490 unsigned long debugctlmsr;
6491
6492 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6493 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6494 if (vmcs12->idt_vectoring_info_field &
6495 VECTORING_INFO_VALID_MASK) {
6496 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6497 vmcs12->idt_vectoring_info_field);
6498 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6499 vmcs12->vm_exit_instruction_len);
6500 if (vmcs12->idt_vectoring_info_field &
6501 VECTORING_INFO_DELIVER_CODE_MASK)
6502 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6503 vmcs12->idt_vectoring_error_code);
6504 }
6505 }
6506
6507 /* Record the guest's net vcpu time for enforced NMI injections. */
6508 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6509 vmx->entry_time = ktime_get();
6510
6511 /* Don't enter VMX if guest state is invalid, let the exit handler
6512 start emulation until we arrive back to a valid state */
6513 if (vmx->emulation_required)
6514 return;
6515
6516 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6517 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6518 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6519 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6520
6521 /* When single-stepping over STI and MOV SS, we must clear the
6522 * corresponding interruptibility bits in the guest state. Otherwise
6523 * vmentry fails as it then expects bit 14 (BS) in pending debug
6524 * exceptions being set, but that's not correct for the guest debugging
6525 * case. */
6526 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6527 vmx_set_interrupt_shadow(vcpu, 0);
6528
6529 atomic_switch_perf_msrs(vmx);
6530 debugctlmsr = get_debugctlmsr();
6531
6532 vmx->__launched = vmx->loaded_vmcs->launched;
6533 asm(
6534 /* Store host registers */
6535 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
6536 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
6537 "push %%" _ASM_CX " \n\t"
6538 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
6539 "je 1f \n\t"
6540 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
6541 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6542 "1: \n\t"
6543 /* Reload cr2 if changed */
6544 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
6545 "mov %%cr2, %%" _ASM_DX " \n\t"
6546 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
6547 "je 2f \n\t"
6548 "mov %%" _ASM_AX", %%cr2 \n\t"
6549 "2: \n\t"
6550 /* Check if vmlaunch of vmresume is needed */
6551 "cmpl $0, %c[launched](%0) \n\t"
6552 /* Load guest registers. Don't clobber flags. */
6553 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
6554 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
6555 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
6556 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
6557 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
6558 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
6559 #ifdef CONFIG_X86_64
6560 "mov %c[r8](%0), %%r8 \n\t"
6561 "mov %c[r9](%0), %%r9 \n\t"
6562 "mov %c[r10](%0), %%r10 \n\t"
6563 "mov %c[r11](%0), %%r11 \n\t"
6564 "mov %c[r12](%0), %%r12 \n\t"
6565 "mov %c[r13](%0), %%r13 \n\t"
6566 "mov %c[r14](%0), %%r14 \n\t"
6567 "mov %c[r15](%0), %%r15 \n\t"
6568 #endif
6569 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
6570
6571 /* Enter guest mode */
6572 "jne 1f \n\t"
6573 __ex(ASM_VMX_VMLAUNCH) "\n\t"
6574 "jmp 2f \n\t"
6575 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
6576 "2: "
6577 /* Save guest registers, load host registers, keep flags */
6578 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
6579 "pop %0 \n\t"
6580 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
6581 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
6582 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
6583 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
6584 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
6585 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
6586 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
6587 #ifdef CONFIG_X86_64
6588 "mov %%r8, %c[r8](%0) \n\t"
6589 "mov %%r9, %c[r9](%0) \n\t"
6590 "mov %%r10, %c[r10](%0) \n\t"
6591 "mov %%r11, %c[r11](%0) \n\t"
6592 "mov %%r12, %c[r12](%0) \n\t"
6593 "mov %%r13, %c[r13](%0) \n\t"
6594 "mov %%r14, %c[r14](%0) \n\t"
6595 "mov %%r15, %c[r15](%0) \n\t"
6596 #endif
6597 "mov %%cr2, %%" _ASM_AX " \n\t"
6598 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
6599
6600 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
6601 "setbe %c[fail](%0) \n\t"
6602 ".pushsection .rodata \n\t"
6603 ".global vmx_return \n\t"
6604 "vmx_return: " _ASM_PTR " 2b \n\t"
6605 ".popsection"
6606 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6607 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6608 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
6609 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6610 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6611 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6612 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6613 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6614 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6615 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6616 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6617 #ifdef CONFIG_X86_64
6618 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6619 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6620 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6621 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6622 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6623 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6624 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6625 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6626 #endif
6627 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6628 [wordsize]"i"(sizeof(ulong))
6629 : "cc", "memory"
6630 #ifdef CONFIG_X86_64
6631 , "rax", "rbx", "rdi", "rsi"
6632 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6633 #else
6634 , "eax", "ebx", "edi", "esi"
6635 #endif
6636 );
6637
6638 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6639 if (debugctlmsr)
6640 update_debugctlmsr(debugctlmsr);
6641
6642 #ifndef CONFIG_X86_64
6643 /*
6644 * The sysexit path does not restore ds/es, so we must set them to
6645 * a reasonable value ourselves.
6646 *
6647 * We can't defer this to vmx_load_host_state() since that function
6648 * may be executed in interrupt context, which saves and restore segments
6649 * around it, nullifying its effect.
6650 */
6651 loadsegment(ds, __USER_DS);
6652 loadsegment(es, __USER_DS);
6653 #endif
6654
6655 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6656 | (1 << VCPU_EXREG_RFLAGS)
6657 | (1 << VCPU_EXREG_CPL)
6658 | (1 << VCPU_EXREG_PDPTR)
6659 | (1 << VCPU_EXREG_SEGMENTS)
6660 | (1 << VCPU_EXREG_CR3));
6661 vcpu->arch.regs_dirty = 0;
6662
6663 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6664
6665 if (is_guest_mode(vcpu)) {
6666 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6667 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6668 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6669 vmcs12->idt_vectoring_error_code =
6670 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6671 vmcs12->vm_exit_instruction_len =
6672 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6673 }
6674 }
6675
6676 vmx->loaded_vmcs->launched = 1;
6677
6678 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6679 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6680
6681 vmx_complete_atomic_exit(vmx);
6682 vmx_recover_nmi_blocking(vmx);
6683 vmx_complete_interrupts(vmx);
6684 }
6685
6686 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6687 {
6688 struct vcpu_vmx *vmx = to_vmx(vcpu);
6689
6690 free_vpid(vmx);
6691 free_nested(vmx);
6692 free_loaded_vmcs(vmx->loaded_vmcs);
6693 kfree(vmx->guest_msrs);
6694 kvm_vcpu_uninit(vcpu);
6695 kmem_cache_free(kvm_vcpu_cache, vmx);
6696 }
6697
6698 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6699 {
6700 int err;
6701 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6702 int cpu;
6703
6704 if (!vmx)
6705 return ERR_PTR(-ENOMEM);
6706
6707 allocate_vpid(vmx);
6708
6709 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6710 if (err)
6711 goto free_vcpu;
6712
6713 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6714 err = -ENOMEM;
6715 if (!vmx->guest_msrs) {
6716 goto uninit_vcpu;
6717 }
6718
6719 vmx->loaded_vmcs = &vmx->vmcs01;
6720 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6721 if (!vmx->loaded_vmcs->vmcs)
6722 goto free_msrs;
6723 if (!vmm_exclusive)
6724 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6725 loaded_vmcs_init(vmx->loaded_vmcs);
6726 if (!vmm_exclusive)
6727 kvm_cpu_vmxoff();
6728
6729 cpu = get_cpu();
6730 vmx_vcpu_load(&vmx->vcpu, cpu);
6731 vmx->vcpu.cpu = cpu;
6732 err = vmx_vcpu_setup(vmx);
6733 vmx_vcpu_put(&vmx->vcpu);
6734 put_cpu();
6735 if (err)
6736 goto free_vmcs;
6737 if (vm_need_virtualize_apic_accesses(kvm))
6738 err = alloc_apic_access_page(kvm);
6739 if (err)
6740 goto free_vmcs;
6741
6742 if (enable_ept) {
6743 if (!kvm->arch.ept_identity_map_addr)
6744 kvm->arch.ept_identity_map_addr =
6745 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6746 err = -ENOMEM;
6747 if (alloc_identity_pagetable(kvm) != 0)
6748 goto free_vmcs;
6749 if (!init_rmode_identity_map(kvm))
6750 goto free_vmcs;
6751 }
6752
6753 vmx->nested.current_vmptr = -1ull;
6754 vmx->nested.current_vmcs12 = NULL;
6755
6756 return &vmx->vcpu;
6757
6758 free_vmcs:
6759 free_loaded_vmcs(vmx->loaded_vmcs);
6760 free_msrs:
6761 kfree(vmx->guest_msrs);
6762 uninit_vcpu:
6763 kvm_vcpu_uninit(&vmx->vcpu);
6764 free_vcpu:
6765 free_vpid(vmx);
6766 kmem_cache_free(kvm_vcpu_cache, vmx);
6767 return ERR_PTR(err);
6768 }
6769
6770 static void __init vmx_check_processor_compat(void *rtn)
6771 {
6772 struct vmcs_config vmcs_conf;
6773
6774 *(int *)rtn = 0;
6775 if (setup_vmcs_config(&vmcs_conf) < 0)
6776 *(int *)rtn = -EIO;
6777 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6778 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6779 smp_processor_id());
6780 *(int *)rtn = -EIO;
6781 }
6782 }
6783
6784 static int get_ept_level(void)
6785 {
6786 return VMX_EPT_DEFAULT_GAW + 1;
6787 }
6788
6789 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6790 {
6791 u64 ret;
6792
6793 /* For VT-d and EPT combination
6794 * 1. MMIO: always map as UC
6795 * 2. EPT with VT-d:
6796 * a. VT-d without snooping control feature: can't guarantee the
6797 * result, try to trust guest.
6798 * b. VT-d with snooping control feature: snooping control feature of
6799 * VT-d engine can guarantee the cache correctness. Just set it
6800 * to WB to keep consistent with host. So the same as item 3.
6801 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6802 * consistent with host MTRR
6803 */
6804 if (is_mmio)
6805 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6806 else if (vcpu->kvm->arch.iommu_domain &&
6807 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6808 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6809 VMX_EPT_MT_EPTE_SHIFT;
6810 else
6811 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6812 | VMX_EPT_IPAT_BIT;
6813
6814 return ret;
6815 }
6816
6817 static int vmx_get_lpage_level(void)
6818 {
6819 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6820 return PT_DIRECTORY_LEVEL;
6821 else
6822 /* For shadow and EPT supported 1GB page */
6823 return PT_PDPE_LEVEL;
6824 }
6825
6826 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6827 {
6828 struct kvm_cpuid_entry2 *best;
6829 struct vcpu_vmx *vmx = to_vmx(vcpu);
6830 u32 exec_control;
6831
6832 vmx->rdtscp_enabled = false;
6833 if (vmx_rdtscp_supported()) {
6834 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6835 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6836 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6837 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6838 vmx->rdtscp_enabled = true;
6839 else {
6840 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6841 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6842 exec_control);
6843 }
6844 }
6845 }
6846
6847 /* Exposing INVPCID only when PCID is exposed */
6848 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6849 if (vmx_invpcid_supported() &&
6850 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
6851 guest_cpuid_has_pcid(vcpu)) {
6852 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6853 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
6854 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6855 exec_control);
6856 } else {
6857 if (cpu_has_secondary_exec_ctrls()) {
6858 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6859 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
6860 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6861 exec_control);
6862 }
6863 if (best)
6864 best->ebx &= ~bit(X86_FEATURE_INVPCID);
6865 }
6866 }
6867
6868 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6869 {
6870 if (func == 1 && nested)
6871 entry->ecx |= bit(X86_FEATURE_VMX);
6872 }
6873
6874 /*
6875 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6876 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6877 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6878 * guest in a way that will both be appropriate to L1's requests, and our
6879 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6880 * function also has additional necessary side-effects, like setting various
6881 * vcpu->arch fields.
6882 */
6883 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6884 {
6885 struct vcpu_vmx *vmx = to_vmx(vcpu);
6886 u32 exec_control;
6887
6888 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6889 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6890 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6891 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6892 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6893 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6894 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6895 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6896 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6897 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6898 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6899 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6900 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6901 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6902 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6903 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6904 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6905 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6906 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6907 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6908 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6909 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6910 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6911 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6912 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6913 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6914 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6915 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6916 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6917 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6918 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6919 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6920 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6921 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6922 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6923 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6924
6925 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6926 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6927 vmcs12->vm_entry_intr_info_field);
6928 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6929 vmcs12->vm_entry_exception_error_code);
6930 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6931 vmcs12->vm_entry_instruction_len);
6932 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6933 vmcs12->guest_interruptibility_info);
6934 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6935 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6936 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6937 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6938 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6939 vmcs12->guest_pending_dbg_exceptions);
6940 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6941 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6942
6943 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6944
6945 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6946 (vmcs_config.pin_based_exec_ctrl |
6947 vmcs12->pin_based_vm_exec_control));
6948
6949 /*
6950 * Whether page-faults are trapped is determined by a combination of
6951 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6952 * If enable_ept, L0 doesn't care about page faults and we should
6953 * set all of these to L1's desires. However, if !enable_ept, L0 does
6954 * care about (at least some) page faults, and because it is not easy
6955 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6956 * to exit on each and every L2 page fault. This is done by setting
6957 * MASK=MATCH=0 and (see below) EB.PF=1.
6958 * Note that below we don't need special code to set EB.PF beyond the
6959 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6960 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6961 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6962 *
6963 * A problem with this approach (when !enable_ept) is that L1 may be
6964 * injected with more page faults than it asked for. This could have
6965 * caused problems, but in practice existing hypervisors don't care.
6966 * To fix this, we will need to emulate the PFEC checking (on the L1
6967 * page tables), using walk_addr(), when injecting PFs to L1.
6968 */
6969 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6970 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6971 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6972 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6973
6974 if (cpu_has_secondary_exec_ctrls()) {
6975 u32 exec_control = vmx_secondary_exec_control(vmx);
6976 if (!vmx->rdtscp_enabled)
6977 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6978 /* Take the following fields only from vmcs12 */
6979 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6980 if (nested_cpu_has(vmcs12,
6981 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6982 exec_control |= vmcs12->secondary_vm_exec_control;
6983
6984 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6985 /*
6986 * Translate L1 physical address to host physical
6987 * address for vmcs02. Keep the page pinned, so this
6988 * physical address remains valid. We keep a reference
6989 * to it so we can release it later.
6990 */
6991 if (vmx->nested.apic_access_page) /* shouldn't happen */
6992 nested_release_page(vmx->nested.apic_access_page);
6993 vmx->nested.apic_access_page =
6994 nested_get_page(vcpu, vmcs12->apic_access_addr);
6995 /*
6996 * If translation failed, no matter: This feature asks
6997 * to exit when accessing the given address, and if it
6998 * can never be accessed, this feature won't do
6999 * anything anyway.
7000 */
7001 if (!vmx->nested.apic_access_page)
7002 exec_control &=
7003 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7004 else
7005 vmcs_write64(APIC_ACCESS_ADDR,
7006 page_to_phys(vmx->nested.apic_access_page));
7007 }
7008
7009 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7010 }
7011
7012
7013 /*
7014 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7015 * Some constant fields are set here by vmx_set_constant_host_state().
7016 * Other fields are different per CPU, and will be set later when
7017 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7018 */
7019 vmx_set_constant_host_state();
7020
7021 /*
7022 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7023 * entry, but only if the current (host) sp changed from the value
7024 * we wrote last (vmx->host_rsp). This cache is no longer relevant
7025 * if we switch vmcs, and rather than hold a separate cache per vmcs,
7026 * here we just force the write to happen on entry.
7027 */
7028 vmx->host_rsp = 0;
7029
7030 exec_control = vmx_exec_control(vmx); /* L0's desires */
7031 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7032 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7033 exec_control &= ~CPU_BASED_TPR_SHADOW;
7034 exec_control |= vmcs12->cpu_based_vm_exec_control;
7035 /*
7036 * Merging of IO and MSR bitmaps not currently supported.
7037 * Rather, exit every time.
7038 */
7039 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7040 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7041 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7042
7043 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7044
7045 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7046 * bitwise-or of what L1 wants to trap for L2, and what we want to
7047 * trap. Note that CR0.TS also needs updating - we do this later.
7048 */
7049 update_exception_bitmap(vcpu);
7050 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7051 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7052
7053 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
7054 vmcs_write32(VM_EXIT_CONTROLS,
7055 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
7056 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
7057 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7058
7059 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
7060 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7061 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7062 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7063
7064
7065 set_cr4_guest_host_mask(vmx);
7066
7067 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7068 vmcs_write64(TSC_OFFSET,
7069 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7070 else
7071 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7072
7073 if (enable_vpid) {
7074 /*
7075 * Trivially support vpid by letting L2s share their parent
7076 * L1's vpid. TODO: move to a more elaborate solution, giving
7077 * each L2 its own vpid and exposing the vpid feature to L1.
7078 */
7079 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7080 vmx_flush_tlb(vcpu);
7081 }
7082
7083 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7084 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7085 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7086 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7087 else
7088 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7089 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7090 vmx_set_efer(vcpu, vcpu->arch.efer);
7091
7092 /*
7093 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7094 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7095 * The CR0_READ_SHADOW is what L2 should have expected to read given
7096 * the specifications by L1; It's not enough to take
7097 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7098 * have more bits than L1 expected.
7099 */
7100 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7101 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7102
7103 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7104 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7105
7106 /* shadow page tables on either EPT or shadow page tables */
7107 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7108 kvm_mmu_reset_context(vcpu);
7109
7110 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7111 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7112 }
7113
7114 /*
7115 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7116 * for running an L2 nested guest.
7117 */
7118 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7119 {
7120 struct vmcs12 *vmcs12;
7121 struct vcpu_vmx *vmx = to_vmx(vcpu);
7122 int cpu;
7123 struct loaded_vmcs *vmcs02;
7124
7125 if (!nested_vmx_check_permission(vcpu) ||
7126 !nested_vmx_check_vmcs12(vcpu))
7127 return 1;
7128
7129 skip_emulated_instruction(vcpu);
7130 vmcs12 = get_vmcs12(vcpu);
7131
7132 /*
7133 * The nested entry process starts with enforcing various prerequisites
7134 * on vmcs12 as required by the Intel SDM, and act appropriately when
7135 * they fail: As the SDM explains, some conditions should cause the
7136 * instruction to fail, while others will cause the instruction to seem
7137 * to succeed, but return an EXIT_REASON_INVALID_STATE.
7138 * To speed up the normal (success) code path, we should avoid checking
7139 * for misconfigurations which will anyway be caught by the processor
7140 * when using the merged vmcs02.
7141 */
7142 if (vmcs12->launch_state == launch) {
7143 nested_vmx_failValid(vcpu,
7144 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7145 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7146 return 1;
7147 }
7148
7149 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7150 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7151 /*TODO: Also verify bits beyond physical address width are 0*/
7152 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7153 return 1;
7154 }
7155
7156 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7157 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7158 /*TODO: Also verify bits beyond physical address width are 0*/
7159 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7160 return 1;
7161 }
7162
7163 if (vmcs12->vm_entry_msr_load_count > 0 ||
7164 vmcs12->vm_exit_msr_load_count > 0 ||
7165 vmcs12->vm_exit_msr_store_count > 0) {
7166 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7167 __func__);
7168 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7169 return 1;
7170 }
7171
7172 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7173 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7174 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7175 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7176 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7177 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7178 !vmx_control_verify(vmcs12->vm_exit_controls,
7179 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7180 !vmx_control_verify(vmcs12->vm_entry_controls,
7181 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7182 {
7183 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7184 return 1;
7185 }
7186
7187 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7188 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7189 nested_vmx_failValid(vcpu,
7190 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7191 return 1;
7192 }
7193
7194 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7195 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7196 nested_vmx_entry_failure(vcpu, vmcs12,
7197 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7198 return 1;
7199 }
7200 if (vmcs12->vmcs_link_pointer != -1ull) {
7201 nested_vmx_entry_failure(vcpu, vmcs12,
7202 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
7203 return 1;
7204 }
7205
7206 /*
7207 * We're finally done with prerequisite checking, and can start with
7208 * the nested entry.
7209 */
7210
7211 vmcs02 = nested_get_current_vmcs02(vmx);
7212 if (!vmcs02)
7213 return -ENOMEM;
7214
7215 enter_guest_mode(vcpu);
7216
7217 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
7218
7219 cpu = get_cpu();
7220 vmx->loaded_vmcs = vmcs02;
7221 vmx_vcpu_put(vcpu);
7222 vmx_vcpu_load(vcpu, cpu);
7223 vcpu->cpu = cpu;
7224 put_cpu();
7225
7226 vmcs12->launch_state = 1;
7227
7228 prepare_vmcs02(vcpu, vmcs12);
7229
7230 /*
7231 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
7232 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
7233 * returned as far as L1 is concerned. It will only return (and set
7234 * the success flag) when L2 exits (see nested_vmx_vmexit()).
7235 */
7236 return 1;
7237 }
7238
7239 /*
7240 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
7241 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
7242 * This function returns the new value we should put in vmcs12.guest_cr0.
7243 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
7244 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
7245 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
7246 * didn't trap the bit, because if L1 did, so would L0).
7247 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
7248 * been modified by L2, and L1 knows it. So just leave the old value of
7249 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
7250 * isn't relevant, because if L0 traps this bit it can set it to anything.
7251 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
7252 * changed these bits, and therefore they need to be updated, but L0
7253 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
7254 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
7255 */
7256 static inline unsigned long
7257 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7258 {
7259 return
7260 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
7261 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
7262 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7263 vcpu->arch.cr0_guest_owned_bits));
7264 }
7265
7266 static inline unsigned long
7267 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7268 {
7269 return
7270 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7271 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7272 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7273 vcpu->arch.cr4_guest_owned_bits));
7274 }
7275
7276 /*
7277 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
7278 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
7279 * and this function updates it to reflect the changes to the guest state while
7280 * L2 was running (and perhaps made some exits which were handled directly by L0
7281 * without going back to L1), and to reflect the exit reason.
7282 * Note that we do not have to copy here all VMCS fields, just those that
7283 * could have changed by the L2 guest or the exit - i.e., the guest-state and
7284 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7285 * which already writes to vmcs12 directly.
7286 */
7287 void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7288 {
7289 /* update guest state fields: */
7290 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
7291 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
7292
7293 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
7294 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7295 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7296 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7297
7298 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7299 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7300 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7301 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7302 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7303 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7304 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7305 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7306 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7307 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7308 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7309 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7310 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7311 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7312 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7313 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7314 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7315 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7316 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7317 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7318 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7319 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7320 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7321 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7322 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7323 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7324 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7325 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7326 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7327 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7328 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7329 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7330 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7331 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7332 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7333 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7334
7335 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
7336 vmcs12->guest_interruptibility_info =
7337 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7338 vmcs12->guest_pending_dbg_exceptions =
7339 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7340
7341 /* TODO: These cannot have changed unless we have MSR bitmaps and
7342 * the relevant bit asks not to trap the change */
7343 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
7344 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
7345 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7346 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7347 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7348 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7349
7350 /* update exit information fields: */
7351
7352 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
7353 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7354
7355 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7356 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
7357 vmcs12->idt_vectoring_info_field =
7358 vmcs_read32(IDT_VECTORING_INFO_FIELD);
7359 vmcs12->idt_vectoring_error_code =
7360 vmcs_read32(IDT_VECTORING_ERROR_CODE);
7361 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7362 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7363
7364 /* clear vm-entry fields which are to be cleared on exit */
7365 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
7366 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
7367 }
7368
7369 /*
7370 * A part of what we need to when the nested L2 guest exits and we want to
7371 * run its L1 parent, is to reset L1's guest state to the host state specified
7372 * in vmcs12.
7373 * This function is to be called not only on normal nested exit, but also on
7374 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7375 * Failures During or After Loading Guest State").
7376 * This function should be called when the active VMCS is L1's (vmcs01).
7377 */
7378 void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7379 {
7380 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7381 vcpu->arch.efer = vmcs12->host_ia32_efer;
7382 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
7383 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7384 else
7385 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7386 vmx_set_efer(vcpu, vcpu->arch.efer);
7387
7388 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7389 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
7390 /*
7391 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7392 * actually changed, because it depends on the current state of
7393 * fpu_active (which may have changed).
7394 * Note that vmx_set_cr0 refers to efer set above.
7395 */
7396 kvm_set_cr0(vcpu, vmcs12->host_cr0);
7397 /*
7398 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7399 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7400 * but we also need to update cr0_guest_host_mask and exception_bitmap.
7401 */
7402 update_exception_bitmap(vcpu);
7403 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7404 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7405
7406 /*
7407 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7408 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7409 */
7410 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
7411 kvm_set_cr4(vcpu, vmcs12->host_cr4);
7412
7413 /* shadow page tables on either EPT or shadow page tables */
7414 kvm_set_cr3(vcpu, vmcs12->host_cr3);
7415 kvm_mmu_reset_context(vcpu);
7416
7417 if (enable_vpid) {
7418 /*
7419 * Trivially support vpid by letting L2s share their parent
7420 * L1's vpid. TODO: move to a more elaborate solution, giving
7421 * each L2 its own vpid and exposing the vpid feature to L1.
7422 */
7423 vmx_flush_tlb(vcpu);
7424 }
7425
7426
7427 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7428 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7429 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7430 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7431 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7432 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7433 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7434 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7435 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7436 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7437 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7438 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7439 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7440 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7441 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7442
7443 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7444 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7445 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7446 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7447 vmcs12->host_ia32_perf_global_ctrl);
7448 }
7449
7450 /*
7451 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7452 * and modify vmcs12 to make it see what it would expect to see there if
7453 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7454 */
7455 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7456 {
7457 struct vcpu_vmx *vmx = to_vmx(vcpu);
7458 int cpu;
7459 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7460
7461 leave_guest_mode(vcpu);
7462 prepare_vmcs12(vcpu, vmcs12);
7463
7464 cpu = get_cpu();
7465 vmx->loaded_vmcs = &vmx->vmcs01;
7466 vmx_vcpu_put(vcpu);
7467 vmx_vcpu_load(vcpu, cpu);
7468 vcpu->cpu = cpu;
7469 put_cpu();
7470
7471 /* if no vmcs02 cache requested, remove the one we used */
7472 if (VMCS02_POOL_SIZE == 0)
7473 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7474
7475 load_vmcs12_host_state(vcpu, vmcs12);
7476
7477 /* Update TSC_OFFSET if TSC was changed while L2 ran */
7478 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7479
7480 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7481 vmx->host_rsp = 0;
7482
7483 /* Unpin physical memory we referred to in vmcs02 */
7484 if (vmx->nested.apic_access_page) {
7485 nested_release_page(vmx->nested.apic_access_page);
7486 vmx->nested.apic_access_page = 0;
7487 }
7488
7489 /*
7490 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7491 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7492 * success or failure flag accordingly.
7493 */
7494 if (unlikely(vmx->fail)) {
7495 vmx->fail = 0;
7496 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7497 } else
7498 nested_vmx_succeed(vcpu);
7499 }
7500
7501 /*
7502 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7503 * 23.7 "VM-entry failures during or after loading guest state" (this also
7504 * lists the acceptable exit-reason and exit-qualification parameters).
7505 * It should only be called before L2 actually succeeded to run, and when
7506 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7507 */
7508 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7509 struct vmcs12 *vmcs12,
7510 u32 reason, unsigned long qualification)
7511 {
7512 load_vmcs12_host_state(vcpu, vmcs12);
7513 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7514 vmcs12->exit_qualification = qualification;
7515 nested_vmx_succeed(vcpu);
7516 }
7517
7518 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7519 struct x86_instruction_info *info,
7520 enum x86_intercept_stage stage)
7521 {
7522 return X86EMUL_CONTINUE;
7523 }
7524
7525 static struct kvm_x86_ops vmx_x86_ops = {
7526 .cpu_has_kvm_support = cpu_has_kvm_support,
7527 .disabled_by_bios = vmx_disabled_by_bios,
7528 .hardware_setup = hardware_setup,
7529 .hardware_unsetup = hardware_unsetup,
7530 .check_processor_compatibility = vmx_check_processor_compat,
7531 .hardware_enable = hardware_enable,
7532 .hardware_disable = hardware_disable,
7533 .cpu_has_accelerated_tpr = report_flexpriority,
7534
7535 .vcpu_create = vmx_create_vcpu,
7536 .vcpu_free = vmx_free_vcpu,
7537 .vcpu_reset = vmx_vcpu_reset,
7538
7539 .prepare_guest_switch = vmx_save_host_state,
7540 .vcpu_load = vmx_vcpu_load,
7541 .vcpu_put = vmx_vcpu_put,
7542
7543 .update_db_bp_intercept = update_exception_bitmap,
7544 .get_msr = vmx_get_msr,
7545 .set_msr = vmx_set_msr,
7546 .get_segment_base = vmx_get_segment_base,
7547 .get_segment = vmx_get_segment,
7548 .set_segment = vmx_set_segment,
7549 .get_cpl = vmx_get_cpl,
7550 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7551 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7552 .decache_cr3 = vmx_decache_cr3,
7553 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7554 .set_cr0 = vmx_set_cr0,
7555 .set_cr3 = vmx_set_cr3,
7556 .set_cr4 = vmx_set_cr4,
7557 .set_efer = vmx_set_efer,
7558 .get_idt = vmx_get_idt,
7559 .set_idt = vmx_set_idt,
7560 .get_gdt = vmx_get_gdt,
7561 .set_gdt = vmx_set_gdt,
7562 .set_dr7 = vmx_set_dr7,
7563 .cache_reg = vmx_cache_reg,
7564 .get_rflags = vmx_get_rflags,
7565 .set_rflags = vmx_set_rflags,
7566 .fpu_activate = vmx_fpu_activate,
7567 .fpu_deactivate = vmx_fpu_deactivate,
7568
7569 .tlb_flush = vmx_flush_tlb,
7570
7571 .run = vmx_vcpu_run,
7572 .handle_exit = vmx_handle_exit,
7573 .skip_emulated_instruction = skip_emulated_instruction,
7574 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7575 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7576 .patch_hypercall = vmx_patch_hypercall,
7577 .set_irq = vmx_inject_irq,
7578 .set_nmi = vmx_inject_nmi,
7579 .queue_exception = vmx_queue_exception,
7580 .cancel_injection = vmx_cancel_injection,
7581 .interrupt_allowed = vmx_interrupt_allowed,
7582 .nmi_allowed = vmx_nmi_allowed,
7583 .get_nmi_mask = vmx_get_nmi_mask,
7584 .set_nmi_mask = vmx_set_nmi_mask,
7585 .enable_nmi_window = enable_nmi_window,
7586 .enable_irq_window = enable_irq_window,
7587 .update_cr8_intercept = update_cr8_intercept,
7588 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
7589 .vm_has_apicv = vmx_vm_has_apicv,
7590 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7591 .hwapic_irr_update = vmx_hwapic_irr_update,
7592 .hwapic_isr_update = vmx_hwapic_isr_update,
7593
7594 .set_tss_addr = vmx_set_tss_addr,
7595 .get_tdp_level = get_ept_level,
7596 .get_mt_mask = vmx_get_mt_mask,
7597
7598 .get_exit_info = vmx_get_exit_info,
7599
7600 .get_lpage_level = vmx_get_lpage_level,
7601
7602 .cpuid_update = vmx_cpuid_update,
7603
7604 .rdtscp_supported = vmx_rdtscp_supported,
7605 .invpcid_supported = vmx_invpcid_supported,
7606
7607 .set_supported_cpuid = vmx_set_supported_cpuid,
7608
7609 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7610
7611 .set_tsc_khz = vmx_set_tsc_khz,
7612 .read_tsc_offset = vmx_read_tsc_offset,
7613 .write_tsc_offset = vmx_write_tsc_offset,
7614 .adjust_tsc_offset = vmx_adjust_tsc_offset,
7615 .compute_tsc_offset = vmx_compute_tsc_offset,
7616 .read_l1_tsc = vmx_read_l1_tsc,
7617
7618 .set_tdp_cr3 = vmx_set_cr3,
7619
7620 .check_intercept = vmx_check_intercept,
7621 };
7622
7623 static int __init vmx_init(void)
7624 {
7625 int r, i, msr;
7626
7627 rdmsrl_safe(MSR_EFER, &host_efer);
7628
7629 for (i = 0; i < NR_VMX_MSR; ++i)
7630 kvm_define_shared_msr(i, vmx_msr_index[i]);
7631
7632 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7633 if (!vmx_io_bitmap_a)
7634 return -ENOMEM;
7635
7636 r = -ENOMEM;
7637
7638 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7639 if (!vmx_io_bitmap_b)
7640 goto out;
7641
7642 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7643 if (!vmx_msr_bitmap_legacy)
7644 goto out1;
7645
7646 vmx_msr_bitmap_legacy_x2apic =
7647 (unsigned long *)__get_free_page(GFP_KERNEL);
7648 if (!vmx_msr_bitmap_legacy_x2apic)
7649 goto out2;
7650
7651 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7652 if (!vmx_msr_bitmap_longmode)
7653 goto out3;
7654
7655 vmx_msr_bitmap_longmode_x2apic =
7656 (unsigned long *)__get_free_page(GFP_KERNEL);
7657 if (!vmx_msr_bitmap_longmode_x2apic)
7658 goto out4;
7659
7660 /*
7661 * Allow direct access to the PC debug port (it is often used for I/O
7662 * delays, but the vmexits simply slow things down).
7663 */
7664 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7665 clear_bit(0x80, vmx_io_bitmap_a);
7666
7667 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7668
7669 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7670 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7671
7672 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7673
7674 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7675 __alignof__(struct vcpu_vmx), THIS_MODULE);
7676 if (r)
7677 goto out3;
7678
7679 #ifdef CONFIG_KEXEC
7680 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7681 crash_vmclear_local_loaded_vmcss);
7682 #endif
7683
7684 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7685 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7686 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7687 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7688 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7689 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7690 memcpy(vmx_msr_bitmap_legacy_x2apic,
7691 vmx_msr_bitmap_legacy, PAGE_SIZE);
7692 memcpy(vmx_msr_bitmap_longmode_x2apic,
7693 vmx_msr_bitmap_longmode, PAGE_SIZE);
7694
7695 if (enable_apicv_reg_vid) {
7696 for (msr = 0x800; msr <= 0x8ff; msr++)
7697 vmx_disable_intercept_msr_read_x2apic(msr);
7698
7699 /* According SDM, in x2apic mode, the whole id reg is used.
7700 * But in KVM, it only use the highest eight bits. Need to
7701 * intercept it */
7702 vmx_enable_intercept_msr_read_x2apic(0x802);
7703 /* TMCCT */
7704 vmx_enable_intercept_msr_read_x2apic(0x839);
7705 /* TPR */
7706 vmx_disable_intercept_msr_write_x2apic(0x808);
7707 /* EOI */
7708 vmx_disable_intercept_msr_write_x2apic(0x80b);
7709 /* SELF-IPI */
7710 vmx_disable_intercept_msr_write_x2apic(0x83f);
7711 }
7712
7713 if (enable_ept) {
7714 kvm_mmu_set_mask_ptes(0ull,
7715 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
7716 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
7717 0ull, VMX_EPT_EXECUTABLE_MASK);
7718 ept_set_mmio_spte_mask();
7719 kvm_enable_tdp();
7720 } else
7721 kvm_disable_tdp();
7722
7723 return 0;
7724
7725 out4:
7726 free_page((unsigned long)vmx_msr_bitmap_longmode);
7727 out3:
7728 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
7729 out2:
7730 free_page((unsigned long)vmx_msr_bitmap_legacy);
7731 out1:
7732 free_page((unsigned long)vmx_io_bitmap_b);
7733 out:
7734 free_page((unsigned long)vmx_io_bitmap_a);
7735 return r;
7736 }
7737
7738 static void __exit vmx_exit(void)
7739 {
7740 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
7741 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
7742 free_page((unsigned long)vmx_msr_bitmap_legacy);
7743 free_page((unsigned long)vmx_msr_bitmap_longmode);
7744 free_page((unsigned long)vmx_io_bitmap_b);
7745 free_page((unsigned long)vmx_io_bitmap_a);
7746
7747 #ifdef CONFIG_KEXEC
7748 rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
7749 synchronize_rcu();
7750 #endif
7751
7752 kvm_exit();
7753 }
7754
7755 module_init(vmx_init)
7756 module_exit(vmx_exit)