KVM: VMX: Move MSR_KERNEL_GS_BASE out of the vmx autoload msr area
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34 #include <asm/vmx.h>
35 #include <asm/virtext.h>
36 #include <asm/mce.h>
37
38 #include "trace.h"
39
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
44
45 static int __read_mostly bypass_guest_pf = 1;
46 module_param(bypass_guest_pf, bool, S_IRUGO);
47
48 static int __read_mostly enable_vpid = 1;
49 module_param_named(vpid, enable_vpid, bool, 0444);
50
51 static int __read_mostly flexpriority_enabled = 1;
52 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
53
54 static int __read_mostly enable_ept = 1;
55 module_param_named(ept, enable_ept, bool, S_IRUGO);
56
57 static int __read_mostly enable_unrestricted_guest = 1;
58 module_param_named(unrestricted_guest,
59 enable_unrestricted_guest, bool, S_IRUGO);
60
61 static int __read_mostly emulate_invalid_guest_state = 0;
62 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
63
64 /*
65 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
66 * ple_gap: upper bound on the amount of time between two successive
67 * executions of PAUSE in a loop. Also indicate if ple enabled.
68 * According to test, this time is usually small than 41 cycles.
69 * ple_window: upper bound on the amount of time a guest is allowed to execute
70 * in a PAUSE loop. Tests indicate that most spinlocks are held for
71 * less than 2^12 cycles
72 * Time is measured based on a counter that runs at the same rate as the TSC,
73 * refer SDM volume 3b section 21.6.13 & 22.1.3.
74 */
75 #define KVM_VMX_DEFAULT_PLE_GAP 41
76 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
77 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
78 module_param(ple_gap, int, S_IRUGO);
79
80 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
81 module_param(ple_window, int, S_IRUGO);
82
83 struct vmcs {
84 u32 revision_id;
85 u32 abort;
86 char data[0];
87 };
88
89 struct vcpu_vmx {
90 struct kvm_vcpu vcpu;
91 struct list_head local_vcpus_link;
92 unsigned long host_rsp;
93 int launched;
94 u8 fail;
95 u32 idt_vectoring_info;
96 struct kvm_msr_entry *guest_msrs;
97 struct kvm_msr_entry *host_msrs;
98 int nmsrs;
99 int save_nmsrs;
100 int msr_offset_efer;
101 #ifdef CONFIG_X86_64
102 u64 msr_host_kernel_gs_base;
103 u64 msr_guest_kernel_gs_base;
104 #endif
105 struct vmcs *vmcs;
106 struct {
107 int loaded;
108 u16 fs_sel, gs_sel, ldt_sel;
109 int gs_ldt_reload_needed;
110 int fs_reload_needed;
111 int guest_efer_loaded;
112 } host_state;
113 struct {
114 int vm86_active;
115 u8 save_iopl;
116 struct kvm_save_segment {
117 u16 selector;
118 unsigned long base;
119 u32 limit;
120 u32 ar;
121 } tr, es, ds, fs, gs;
122 struct {
123 bool pending;
124 u8 vector;
125 unsigned rip;
126 } irq;
127 } rmode;
128 int vpid;
129 bool emulation_required;
130
131 /* Support for vnmi-less CPUs */
132 int soft_vnmi_blocked;
133 ktime_t entry_time;
134 s64 vnmi_blocked_time;
135 u32 exit_reason;
136 };
137
138 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
139 {
140 return container_of(vcpu, struct vcpu_vmx, vcpu);
141 }
142
143 static int init_rmode(struct kvm *kvm);
144 static u64 construct_eptp(unsigned long root_hpa);
145
146 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
147 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
148 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
149
150 static unsigned long *vmx_io_bitmap_a;
151 static unsigned long *vmx_io_bitmap_b;
152 static unsigned long *vmx_msr_bitmap_legacy;
153 static unsigned long *vmx_msr_bitmap_longmode;
154
155 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
156 static DEFINE_SPINLOCK(vmx_vpid_lock);
157
158 static struct vmcs_config {
159 int size;
160 int order;
161 u32 revision_id;
162 u32 pin_based_exec_ctrl;
163 u32 cpu_based_exec_ctrl;
164 u32 cpu_based_2nd_exec_ctrl;
165 u32 vmexit_ctrl;
166 u32 vmentry_ctrl;
167 } vmcs_config;
168
169 static struct vmx_capability {
170 u32 ept;
171 u32 vpid;
172 } vmx_capability;
173
174 #define VMX_SEGMENT_FIELD(seg) \
175 [VCPU_SREG_##seg] = { \
176 .selector = GUEST_##seg##_SELECTOR, \
177 .base = GUEST_##seg##_BASE, \
178 .limit = GUEST_##seg##_LIMIT, \
179 .ar_bytes = GUEST_##seg##_AR_BYTES, \
180 }
181
182 static struct kvm_vmx_segment_field {
183 unsigned selector;
184 unsigned base;
185 unsigned limit;
186 unsigned ar_bytes;
187 } kvm_vmx_segment_fields[] = {
188 VMX_SEGMENT_FIELD(CS),
189 VMX_SEGMENT_FIELD(DS),
190 VMX_SEGMENT_FIELD(ES),
191 VMX_SEGMENT_FIELD(FS),
192 VMX_SEGMENT_FIELD(GS),
193 VMX_SEGMENT_FIELD(SS),
194 VMX_SEGMENT_FIELD(TR),
195 VMX_SEGMENT_FIELD(LDTR),
196 };
197
198 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
199
200 /*
201 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
202 * away by decrementing the array size.
203 */
204 static const u32 vmx_msr_index[] = {
205 #ifdef CONFIG_X86_64
206 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
207 #endif
208 MSR_EFER, MSR_K6_STAR,
209 };
210 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
211
212 static void load_msrs(struct kvm_msr_entry *e, int n)
213 {
214 int i;
215
216 for (i = 0; i < n; ++i)
217 wrmsrl(e[i].index, e[i].data);
218 }
219
220 static void save_msrs(struct kvm_msr_entry *e, int n)
221 {
222 int i;
223
224 for (i = 0; i < n; ++i)
225 rdmsrl(e[i].index, e[i].data);
226 }
227
228 static inline int is_page_fault(u32 intr_info)
229 {
230 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
231 INTR_INFO_VALID_MASK)) ==
232 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
233 }
234
235 static inline int is_no_device(u32 intr_info)
236 {
237 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
238 INTR_INFO_VALID_MASK)) ==
239 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
240 }
241
242 static inline int is_invalid_opcode(u32 intr_info)
243 {
244 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
245 INTR_INFO_VALID_MASK)) ==
246 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
247 }
248
249 static inline int is_external_interrupt(u32 intr_info)
250 {
251 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
252 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
253 }
254
255 static inline int is_machine_check(u32 intr_info)
256 {
257 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
258 INTR_INFO_VALID_MASK)) ==
259 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
260 }
261
262 static inline int cpu_has_vmx_msr_bitmap(void)
263 {
264 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
265 }
266
267 static inline int cpu_has_vmx_tpr_shadow(void)
268 {
269 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
270 }
271
272 static inline int vm_need_tpr_shadow(struct kvm *kvm)
273 {
274 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
275 }
276
277 static inline int cpu_has_secondary_exec_ctrls(void)
278 {
279 return vmcs_config.cpu_based_exec_ctrl &
280 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
281 }
282
283 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
284 {
285 return vmcs_config.cpu_based_2nd_exec_ctrl &
286 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
287 }
288
289 static inline bool cpu_has_vmx_flexpriority(void)
290 {
291 return cpu_has_vmx_tpr_shadow() &&
292 cpu_has_vmx_virtualize_apic_accesses();
293 }
294
295 static inline bool cpu_has_vmx_ept_execute_only(void)
296 {
297 return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
298 }
299
300 static inline bool cpu_has_vmx_eptp_uncacheable(void)
301 {
302 return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
303 }
304
305 static inline bool cpu_has_vmx_eptp_writeback(void)
306 {
307 return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
308 }
309
310 static inline bool cpu_has_vmx_ept_2m_page(void)
311 {
312 return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
313 }
314
315 static inline int cpu_has_vmx_invept_individual_addr(void)
316 {
317 return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
318 }
319
320 static inline int cpu_has_vmx_invept_context(void)
321 {
322 return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
323 }
324
325 static inline int cpu_has_vmx_invept_global(void)
326 {
327 return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
328 }
329
330 static inline int cpu_has_vmx_ept(void)
331 {
332 return vmcs_config.cpu_based_2nd_exec_ctrl &
333 SECONDARY_EXEC_ENABLE_EPT;
334 }
335
336 static inline int cpu_has_vmx_unrestricted_guest(void)
337 {
338 return vmcs_config.cpu_based_2nd_exec_ctrl &
339 SECONDARY_EXEC_UNRESTRICTED_GUEST;
340 }
341
342 static inline int cpu_has_vmx_ple(void)
343 {
344 return vmcs_config.cpu_based_2nd_exec_ctrl &
345 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
346 }
347
348 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
349 {
350 return flexpriority_enabled &&
351 (cpu_has_vmx_virtualize_apic_accesses()) &&
352 (irqchip_in_kernel(kvm));
353 }
354
355 static inline int cpu_has_vmx_vpid(void)
356 {
357 return vmcs_config.cpu_based_2nd_exec_ctrl &
358 SECONDARY_EXEC_ENABLE_VPID;
359 }
360
361 static inline int cpu_has_virtual_nmis(void)
362 {
363 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
364 }
365
366 static inline bool report_flexpriority(void)
367 {
368 return flexpriority_enabled;
369 }
370
371 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
372 {
373 int i;
374
375 for (i = 0; i < vmx->nmsrs; ++i)
376 if (vmx->guest_msrs[i].index == msr)
377 return i;
378 return -1;
379 }
380
381 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
382 {
383 struct {
384 u64 vpid : 16;
385 u64 rsvd : 48;
386 u64 gva;
387 } operand = { vpid, 0, gva };
388
389 asm volatile (__ex(ASM_VMX_INVVPID)
390 /* CF==1 or ZF==1 --> rc = -1 */
391 "; ja 1f ; ud2 ; 1:"
392 : : "a"(&operand), "c"(ext) : "cc", "memory");
393 }
394
395 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
396 {
397 struct {
398 u64 eptp, gpa;
399 } operand = {eptp, gpa};
400
401 asm volatile (__ex(ASM_VMX_INVEPT)
402 /* CF==1 or ZF==1 --> rc = -1 */
403 "; ja 1f ; ud2 ; 1:\n"
404 : : "a" (&operand), "c" (ext) : "cc", "memory");
405 }
406
407 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
408 {
409 int i;
410
411 i = __find_msr_index(vmx, msr);
412 if (i >= 0)
413 return &vmx->guest_msrs[i];
414 return NULL;
415 }
416
417 static void vmcs_clear(struct vmcs *vmcs)
418 {
419 u64 phys_addr = __pa(vmcs);
420 u8 error;
421
422 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
423 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
424 : "cc", "memory");
425 if (error)
426 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
427 vmcs, phys_addr);
428 }
429
430 static void __vcpu_clear(void *arg)
431 {
432 struct vcpu_vmx *vmx = arg;
433 int cpu = raw_smp_processor_id();
434
435 if (vmx->vcpu.cpu == cpu)
436 vmcs_clear(vmx->vmcs);
437 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
438 per_cpu(current_vmcs, cpu) = NULL;
439 rdtscll(vmx->vcpu.arch.host_tsc);
440 list_del(&vmx->local_vcpus_link);
441 vmx->vcpu.cpu = -1;
442 vmx->launched = 0;
443 }
444
445 static void vcpu_clear(struct vcpu_vmx *vmx)
446 {
447 if (vmx->vcpu.cpu == -1)
448 return;
449 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
450 }
451
452 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
453 {
454 if (vmx->vpid == 0)
455 return;
456
457 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
458 }
459
460 static inline void ept_sync_global(void)
461 {
462 if (cpu_has_vmx_invept_global())
463 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
464 }
465
466 static inline void ept_sync_context(u64 eptp)
467 {
468 if (enable_ept) {
469 if (cpu_has_vmx_invept_context())
470 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
471 else
472 ept_sync_global();
473 }
474 }
475
476 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
477 {
478 if (enable_ept) {
479 if (cpu_has_vmx_invept_individual_addr())
480 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
481 eptp, gpa);
482 else
483 ept_sync_context(eptp);
484 }
485 }
486
487 static unsigned long vmcs_readl(unsigned long field)
488 {
489 unsigned long value;
490
491 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
492 : "=a"(value) : "d"(field) : "cc");
493 return value;
494 }
495
496 static u16 vmcs_read16(unsigned long field)
497 {
498 return vmcs_readl(field);
499 }
500
501 static u32 vmcs_read32(unsigned long field)
502 {
503 return vmcs_readl(field);
504 }
505
506 static u64 vmcs_read64(unsigned long field)
507 {
508 #ifdef CONFIG_X86_64
509 return vmcs_readl(field);
510 #else
511 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
512 #endif
513 }
514
515 static noinline void vmwrite_error(unsigned long field, unsigned long value)
516 {
517 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
518 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
519 dump_stack();
520 }
521
522 static void vmcs_writel(unsigned long field, unsigned long value)
523 {
524 u8 error;
525
526 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
527 : "=q"(error) : "a"(value), "d"(field) : "cc");
528 if (unlikely(error))
529 vmwrite_error(field, value);
530 }
531
532 static void vmcs_write16(unsigned long field, u16 value)
533 {
534 vmcs_writel(field, value);
535 }
536
537 static void vmcs_write32(unsigned long field, u32 value)
538 {
539 vmcs_writel(field, value);
540 }
541
542 static void vmcs_write64(unsigned long field, u64 value)
543 {
544 vmcs_writel(field, value);
545 #ifndef CONFIG_X86_64
546 asm volatile ("");
547 vmcs_writel(field+1, value >> 32);
548 #endif
549 }
550
551 static void vmcs_clear_bits(unsigned long field, u32 mask)
552 {
553 vmcs_writel(field, vmcs_readl(field) & ~mask);
554 }
555
556 static void vmcs_set_bits(unsigned long field, u32 mask)
557 {
558 vmcs_writel(field, vmcs_readl(field) | mask);
559 }
560
561 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
562 {
563 u32 eb;
564
565 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
566 if (!vcpu->fpu_active)
567 eb |= 1u << NM_VECTOR;
568 /*
569 * Unconditionally intercept #DB so we can maintain dr6 without
570 * reading it every exit.
571 */
572 eb |= 1u << DB_VECTOR;
573 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
574 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
575 eb |= 1u << BP_VECTOR;
576 }
577 if (to_vmx(vcpu)->rmode.vm86_active)
578 eb = ~0;
579 if (enable_ept)
580 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
581 vmcs_write32(EXCEPTION_BITMAP, eb);
582 }
583
584 static void reload_tss(void)
585 {
586 /*
587 * VT restores TR but not its size. Useless.
588 */
589 struct descriptor_table gdt;
590 struct desc_struct *descs;
591
592 kvm_get_gdt(&gdt);
593 descs = (void *)gdt.base;
594 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
595 load_TR_desc();
596 }
597
598 static void load_transition_efer(struct vcpu_vmx *vmx)
599 {
600 int efer_offset = vmx->msr_offset_efer;
601 u64 host_efer;
602 u64 guest_efer;
603 u64 ignore_bits;
604
605 if (efer_offset < 0)
606 return;
607 host_efer = vmx->host_msrs[efer_offset].data;
608 guest_efer = vmx->guest_msrs[efer_offset].data;
609
610 /*
611 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
612 * outside long mode
613 */
614 ignore_bits = EFER_NX | EFER_SCE;
615 #ifdef CONFIG_X86_64
616 ignore_bits |= EFER_LMA | EFER_LME;
617 /* SCE is meaningful only in long mode on Intel */
618 if (guest_efer & EFER_LMA)
619 ignore_bits &= ~(u64)EFER_SCE;
620 #endif
621 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
622 return;
623
624 vmx->host_state.guest_efer_loaded = 1;
625 guest_efer &= ~ignore_bits;
626 guest_efer |= host_efer & ignore_bits;
627 wrmsrl(MSR_EFER, guest_efer);
628 vmx->vcpu.stat.efer_reload++;
629 }
630
631 static void reload_host_efer(struct vcpu_vmx *vmx)
632 {
633 if (vmx->host_state.guest_efer_loaded) {
634 vmx->host_state.guest_efer_loaded = 0;
635 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
636 }
637 }
638
639 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
640 {
641 struct vcpu_vmx *vmx = to_vmx(vcpu);
642
643 if (vmx->host_state.loaded)
644 return;
645
646 vmx->host_state.loaded = 1;
647 /*
648 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
649 * allow segment selectors with cpl > 0 or ti == 1.
650 */
651 vmx->host_state.ldt_sel = kvm_read_ldt();
652 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
653 vmx->host_state.fs_sel = kvm_read_fs();
654 if (!(vmx->host_state.fs_sel & 7)) {
655 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
656 vmx->host_state.fs_reload_needed = 0;
657 } else {
658 vmcs_write16(HOST_FS_SELECTOR, 0);
659 vmx->host_state.fs_reload_needed = 1;
660 }
661 vmx->host_state.gs_sel = kvm_read_gs();
662 if (!(vmx->host_state.gs_sel & 7))
663 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
664 else {
665 vmcs_write16(HOST_GS_SELECTOR, 0);
666 vmx->host_state.gs_ldt_reload_needed = 1;
667 }
668
669 #ifdef CONFIG_X86_64
670 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
671 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
672 #else
673 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
674 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
675 #endif
676
677 #ifdef CONFIG_X86_64
678 if (is_long_mode(&vmx->vcpu)) {
679 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
680 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
681 }
682 #endif
683 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
684 load_transition_efer(vmx);
685 }
686
687 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
688 {
689 unsigned long flags;
690
691 if (!vmx->host_state.loaded)
692 return;
693
694 ++vmx->vcpu.stat.host_state_reload;
695 vmx->host_state.loaded = 0;
696 if (vmx->host_state.fs_reload_needed)
697 kvm_load_fs(vmx->host_state.fs_sel);
698 if (vmx->host_state.gs_ldt_reload_needed) {
699 kvm_load_ldt(vmx->host_state.ldt_sel);
700 /*
701 * If we have to reload gs, we must take care to
702 * preserve our gs base.
703 */
704 local_irq_save(flags);
705 kvm_load_gs(vmx->host_state.gs_sel);
706 #ifdef CONFIG_X86_64
707 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
708 #endif
709 local_irq_restore(flags);
710 }
711 reload_tss();
712 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
713 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
714 reload_host_efer(vmx);
715 #ifdef CONFIG_X86_64
716 if (is_long_mode(&vmx->vcpu)) {
717 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
718 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
719 }
720 #endif
721 }
722
723 static void vmx_load_host_state(struct vcpu_vmx *vmx)
724 {
725 preempt_disable();
726 __vmx_load_host_state(vmx);
727 preempt_enable();
728 }
729
730 /*
731 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
732 * vcpu mutex is already taken.
733 */
734 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
735 {
736 struct vcpu_vmx *vmx = to_vmx(vcpu);
737 u64 phys_addr = __pa(vmx->vmcs);
738 u64 tsc_this, delta, new_offset;
739
740 if (vcpu->cpu != cpu) {
741 vcpu_clear(vmx);
742 kvm_migrate_timers(vcpu);
743 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
744 local_irq_disable();
745 list_add(&vmx->local_vcpus_link,
746 &per_cpu(vcpus_on_cpu, cpu));
747 local_irq_enable();
748 }
749
750 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
751 u8 error;
752
753 per_cpu(current_vmcs, cpu) = vmx->vmcs;
754 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
755 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
756 : "cc");
757 if (error)
758 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
759 vmx->vmcs, phys_addr);
760 }
761
762 if (vcpu->cpu != cpu) {
763 struct descriptor_table dt;
764 unsigned long sysenter_esp;
765
766 vcpu->cpu = cpu;
767 /*
768 * Linux uses per-cpu TSS and GDT, so set these when switching
769 * processors.
770 */
771 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
772 kvm_get_gdt(&dt);
773 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
774
775 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
776 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
777
778 /*
779 * Make sure the time stamp counter is monotonous.
780 */
781 rdtscll(tsc_this);
782 if (tsc_this < vcpu->arch.host_tsc) {
783 delta = vcpu->arch.host_tsc - tsc_this;
784 new_offset = vmcs_read64(TSC_OFFSET) + delta;
785 vmcs_write64(TSC_OFFSET, new_offset);
786 }
787 }
788 }
789
790 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
791 {
792 __vmx_load_host_state(to_vmx(vcpu));
793 }
794
795 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
796 {
797 if (vcpu->fpu_active)
798 return;
799 vcpu->fpu_active = 1;
800 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
801 if (vcpu->arch.cr0 & X86_CR0_TS)
802 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
803 update_exception_bitmap(vcpu);
804 }
805
806 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
807 {
808 if (!vcpu->fpu_active)
809 return;
810 vcpu->fpu_active = 0;
811 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
812 update_exception_bitmap(vcpu);
813 }
814
815 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
816 {
817 unsigned long rflags;
818
819 rflags = vmcs_readl(GUEST_RFLAGS);
820 if (to_vmx(vcpu)->rmode.vm86_active)
821 rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
822 return rflags;
823 }
824
825 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
826 {
827 if (to_vmx(vcpu)->rmode.vm86_active)
828 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
829 vmcs_writel(GUEST_RFLAGS, rflags);
830 }
831
832 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
833 {
834 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
835 int ret = 0;
836
837 if (interruptibility & GUEST_INTR_STATE_STI)
838 ret |= X86_SHADOW_INT_STI;
839 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
840 ret |= X86_SHADOW_INT_MOV_SS;
841
842 return ret & mask;
843 }
844
845 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
846 {
847 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
848 u32 interruptibility = interruptibility_old;
849
850 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
851
852 if (mask & X86_SHADOW_INT_MOV_SS)
853 interruptibility |= GUEST_INTR_STATE_MOV_SS;
854 if (mask & X86_SHADOW_INT_STI)
855 interruptibility |= GUEST_INTR_STATE_STI;
856
857 if ((interruptibility != interruptibility_old))
858 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
859 }
860
861 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
862 {
863 unsigned long rip;
864
865 rip = kvm_rip_read(vcpu);
866 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
867 kvm_rip_write(vcpu, rip);
868
869 /* skipping an emulated instruction also counts */
870 vmx_set_interrupt_shadow(vcpu, 0);
871 }
872
873 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
874 bool has_error_code, u32 error_code)
875 {
876 struct vcpu_vmx *vmx = to_vmx(vcpu);
877 u32 intr_info = nr | INTR_INFO_VALID_MASK;
878
879 if (has_error_code) {
880 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
881 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
882 }
883
884 if (vmx->rmode.vm86_active) {
885 vmx->rmode.irq.pending = true;
886 vmx->rmode.irq.vector = nr;
887 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
888 if (kvm_exception_is_soft(nr))
889 vmx->rmode.irq.rip +=
890 vmx->vcpu.arch.event_exit_inst_len;
891 intr_info |= INTR_TYPE_SOFT_INTR;
892 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
893 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
894 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
895 return;
896 }
897
898 if (kvm_exception_is_soft(nr)) {
899 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
900 vmx->vcpu.arch.event_exit_inst_len);
901 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
902 } else
903 intr_info |= INTR_TYPE_HARD_EXCEPTION;
904
905 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
906 }
907
908 /*
909 * Swap MSR entry in host/guest MSR entry array.
910 */
911 #ifdef CONFIG_X86_64
912 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
913 {
914 struct kvm_msr_entry tmp;
915
916 tmp = vmx->guest_msrs[to];
917 vmx->guest_msrs[to] = vmx->guest_msrs[from];
918 vmx->guest_msrs[from] = tmp;
919 tmp = vmx->host_msrs[to];
920 vmx->host_msrs[to] = vmx->host_msrs[from];
921 vmx->host_msrs[from] = tmp;
922 }
923 #endif
924
925 /*
926 * Set up the vmcs to automatically save and restore system
927 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
928 * mode, as fiddling with msrs is very expensive.
929 */
930 static void setup_msrs(struct vcpu_vmx *vmx)
931 {
932 int save_nmsrs;
933 unsigned long *msr_bitmap;
934
935 vmx_load_host_state(vmx);
936 save_nmsrs = 0;
937 #ifdef CONFIG_X86_64
938 if (is_long_mode(&vmx->vcpu)) {
939 int index;
940
941 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
942 if (index >= 0)
943 move_msr_up(vmx, index, save_nmsrs++);
944 index = __find_msr_index(vmx, MSR_LSTAR);
945 if (index >= 0)
946 move_msr_up(vmx, index, save_nmsrs++);
947 index = __find_msr_index(vmx, MSR_CSTAR);
948 if (index >= 0)
949 move_msr_up(vmx, index, save_nmsrs++);
950 /*
951 * MSR_K6_STAR is only needed on long mode guests, and only
952 * if efer.sce is enabled.
953 */
954 index = __find_msr_index(vmx, MSR_K6_STAR);
955 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
956 move_msr_up(vmx, index, save_nmsrs++);
957 }
958 #endif
959 vmx->save_nmsrs = save_nmsrs;
960
961 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
962
963 if (cpu_has_vmx_msr_bitmap()) {
964 if (is_long_mode(&vmx->vcpu))
965 msr_bitmap = vmx_msr_bitmap_longmode;
966 else
967 msr_bitmap = vmx_msr_bitmap_legacy;
968
969 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
970 }
971 }
972
973 /*
974 * reads and returns guest's timestamp counter "register"
975 * guest_tsc = host_tsc + tsc_offset -- 21.3
976 */
977 static u64 guest_read_tsc(void)
978 {
979 u64 host_tsc, tsc_offset;
980
981 rdtscll(host_tsc);
982 tsc_offset = vmcs_read64(TSC_OFFSET);
983 return host_tsc + tsc_offset;
984 }
985
986 /*
987 * writes 'guest_tsc' into guest's timestamp counter "register"
988 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
989 */
990 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
991 {
992 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
993 }
994
995 /*
996 * Reads an msr value (of 'msr_index') into 'pdata'.
997 * Returns 0 on success, non-0 otherwise.
998 * Assumes vcpu_load() was already called.
999 */
1000 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1001 {
1002 u64 data;
1003 struct kvm_msr_entry *msr;
1004
1005 if (!pdata) {
1006 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1007 return -EINVAL;
1008 }
1009
1010 switch (msr_index) {
1011 #ifdef CONFIG_X86_64
1012 case MSR_FS_BASE:
1013 data = vmcs_readl(GUEST_FS_BASE);
1014 break;
1015 case MSR_GS_BASE:
1016 data = vmcs_readl(GUEST_GS_BASE);
1017 break;
1018 case MSR_KERNEL_GS_BASE:
1019 vmx_load_host_state(to_vmx(vcpu));
1020 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1021 break;
1022 case MSR_EFER:
1023 return kvm_get_msr_common(vcpu, msr_index, pdata);
1024 #endif
1025 case MSR_IA32_TSC:
1026 data = guest_read_tsc();
1027 break;
1028 case MSR_IA32_SYSENTER_CS:
1029 data = vmcs_read32(GUEST_SYSENTER_CS);
1030 break;
1031 case MSR_IA32_SYSENTER_EIP:
1032 data = vmcs_readl(GUEST_SYSENTER_EIP);
1033 break;
1034 case MSR_IA32_SYSENTER_ESP:
1035 data = vmcs_readl(GUEST_SYSENTER_ESP);
1036 break;
1037 default:
1038 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1039 if (msr) {
1040 vmx_load_host_state(to_vmx(vcpu));
1041 data = msr->data;
1042 break;
1043 }
1044 return kvm_get_msr_common(vcpu, msr_index, pdata);
1045 }
1046
1047 *pdata = data;
1048 return 0;
1049 }
1050
1051 /*
1052 * Writes msr value into into the appropriate "register".
1053 * Returns 0 on success, non-0 otherwise.
1054 * Assumes vcpu_load() was already called.
1055 */
1056 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1057 {
1058 struct vcpu_vmx *vmx = to_vmx(vcpu);
1059 struct kvm_msr_entry *msr;
1060 u64 host_tsc;
1061 int ret = 0;
1062
1063 switch (msr_index) {
1064 case MSR_EFER:
1065 vmx_load_host_state(vmx);
1066 ret = kvm_set_msr_common(vcpu, msr_index, data);
1067 break;
1068 #ifdef CONFIG_X86_64
1069 case MSR_FS_BASE:
1070 vmcs_writel(GUEST_FS_BASE, data);
1071 break;
1072 case MSR_GS_BASE:
1073 vmcs_writel(GUEST_GS_BASE, data);
1074 break;
1075 case MSR_KERNEL_GS_BASE:
1076 vmx_load_host_state(vmx);
1077 vmx->msr_guest_kernel_gs_base = data;
1078 break;
1079 #endif
1080 case MSR_IA32_SYSENTER_CS:
1081 vmcs_write32(GUEST_SYSENTER_CS, data);
1082 break;
1083 case MSR_IA32_SYSENTER_EIP:
1084 vmcs_writel(GUEST_SYSENTER_EIP, data);
1085 break;
1086 case MSR_IA32_SYSENTER_ESP:
1087 vmcs_writel(GUEST_SYSENTER_ESP, data);
1088 break;
1089 case MSR_IA32_TSC:
1090 rdtscll(host_tsc);
1091 guest_write_tsc(data, host_tsc);
1092 break;
1093 case MSR_IA32_CR_PAT:
1094 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1095 vmcs_write64(GUEST_IA32_PAT, data);
1096 vcpu->arch.pat = data;
1097 break;
1098 }
1099 /* Otherwise falls through to kvm_set_msr_common */
1100 default:
1101 msr = find_msr_entry(vmx, msr_index);
1102 if (msr) {
1103 vmx_load_host_state(vmx);
1104 msr->data = data;
1105 break;
1106 }
1107 ret = kvm_set_msr_common(vcpu, msr_index, data);
1108 }
1109
1110 return ret;
1111 }
1112
1113 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1114 {
1115 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1116 switch (reg) {
1117 case VCPU_REGS_RSP:
1118 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1119 break;
1120 case VCPU_REGS_RIP:
1121 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1122 break;
1123 case VCPU_EXREG_PDPTR:
1124 if (enable_ept)
1125 ept_save_pdptrs(vcpu);
1126 break;
1127 default:
1128 break;
1129 }
1130 }
1131
1132 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1133 {
1134 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1135 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1136 else
1137 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1138
1139 update_exception_bitmap(vcpu);
1140 }
1141
1142 static __init int cpu_has_kvm_support(void)
1143 {
1144 return cpu_has_vmx();
1145 }
1146
1147 static __init int vmx_disabled_by_bios(void)
1148 {
1149 u64 msr;
1150
1151 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1152 return (msr & (FEATURE_CONTROL_LOCKED |
1153 FEATURE_CONTROL_VMXON_ENABLED))
1154 == FEATURE_CONTROL_LOCKED;
1155 /* locked but not enabled */
1156 }
1157
1158 static int hardware_enable(void *garbage)
1159 {
1160 int cpu = raw_smp_processor_id();
1161 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1162 u64 old;
1163
1164 if (read_cr4() & X86_CR4_VMXE)
1165 return -EBUSY;
1166
1167 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1168 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1169 if ((old & (FEATURE_CONTROL_LOCKED |
1170 FEATURE_CONTROL_VMXON_ENABLED))
1171 != (FEATURE_CONTROL_LOCKED |
1172 FEATURE_CONTROL_VMXON_ENABLED))
1173 /* enable and lock */
1174 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1175 FEATURE_CONTROL_LOCKED |
1176 FEATURE_CONTROL_VMXON_ENABLED);
1177 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1178 asm volatile (ASM_VMX_VMXON_RAX
1179 : : "a"(&phys_addr), "m"(phys_addr)
1180 : "memory", "cc");
1181
1182 ept_sync_global();
1183
1184 return 0;
1185 }
1186
1187 static void vmclear_local_vcpus(void)
1188 {
1189 int cpu = raw_smp_processor_id();
1190 struct vcpu_vmx *vmx, *n;
1191
1192 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1193 local_vcpus_link)
1194 __vcpu_clear(vmx);
1195 }
1196
1197
1198 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1199 * tricks.
1200 */
1201 static void kvm_cpu_vmxoff(void)
1202 {
1203 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1204 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1205 }
1206
1207 static void hardware_disable(void *garbage)
1208 {
1209 vmclear_local_vcpus();
1210 kvm_cpu_vmxoff();
1211 }
1212
1213 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1214 u32 msr, u32 *result)
1215 {
1216 u32 vmx_msr_low, vmx_msr_high;
1217 u32 ctl = ctl_min | ctl_opt;
1218
1219 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1220
1221 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1222 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1223
1224 /* Ensure minimum (required) set of control bits are supported. */
1225 if (ctl_min & ~ctl)
1226 return -EIO;
1227
1228 *result = ctl;
1229 return 0;
1230 }
1231
1232 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1233 {
1234 u32 vmx_msr_low, vmx_msr_high;
1235 u32 min, opt, min2, opt2;
1236 u32 _pin_based_exec_control = 0;
1237 u32 _cpu_based_exec_control = 0;
1238 u32 _cpu_based_2nd_exec_control = 0;
1239 u32 _vmexit_control = 0;
1240 u32 _vmentry_control = 0;
1241
1242 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1243 opt = PIN_BASED_VIRTUAL_NMIS;
1244 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1245 &_pin_based_exec_control) < 0)
1246 return -EIO;
1247
1248 min = CPU_BASED_HLT_EXITING |
1249 #ifdef CONFIG_X86_64
1250 CPU_BASED_CR8_LOAD_EXITING |
1251 CPU_BASED_CR8_STORE_EXITING |
1252 #endif
1253 CPU_BASED_CR3_LOAD_EXITING |
1254 CPU_BASED_CR3_STORE_EXITING |
1255 CPU_BASED_USE_IO_BITMAPS |
1256 CPU_BASED_MOV_DR_EXITING |
1257 CPU_BASED_USE_TSC_OFFSETING |
1258 CPU_BASED_INVLPG_EXITING;
1259 opt = CPU_BASED_TPR_SHADOW |
1260 CPU_BASED_USE_MSR_BITMAPS |
1261 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1262 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1263 &_cpu_based_exec_control) < 0)
1264 return -EIO;
1265 #ifdef CONFIG_X86_64
1266 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1267 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1268 ~CPU_BASED_CR8_STORE_EXITING;
1269 #endif
1270 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1271 min2 = 0;
1272 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1273 SECONDARY_EXEC_WBINVD_EXITING |
1274 SECONDARY_EXEC_ENABLE_VPID |
1275 SECONDARY_EXEC_ENABLE_EPT |
1276 SECONDARY_EXEC_UNRESTRICTED_GUEST |
1277 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1278 if (adjust_vmx_controls(min2, opt2,
1279 MSR_IA32_VMX_PROCBASED_CTLS2,
1280 &_cpu_based_2nd_exec_control) < 0)
1281 return -EIO;
1282 }
1283 #ifndef CONFIG_X86_64
1284 if (!(_cpu_based_2nd_exec_control &
1285 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1286 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1287 #endif
1288 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1289 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1290 enabled */
1291 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1292 CPU_BASED_CR3_STORE_EXITING |
1293 CPU_BASED_INVLPG_EXITING);
1294 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1295 vmx_capability.ept, vmx_capability.vpid);
1296 }
1297
1298 min = 0;
1299 #ifdef CONFIG_X86_64
1300 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1301 #endif
1302 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1303 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1304 &_vmexit_control) < 0)
1305 return -EIO;
1306
1307 min = 0;
1308 opt = VM_ENTRY_LOAD_IA32_PAT;
1309 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1310 &_vmentry_control) < 0)
1311 return -EIO;
1312
1313 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1314
1315 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1316 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1317 return -EIO;
1318
1319 #ifdef CONFIG_X86_64
1320 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1321 if (vmx_msr_high & (1u<<16))
1322 return -EIO;
1323 #endif
1324
1325 /* Require Write-Back (WB) memory type for VMCS accesses. */
1326 if (((vmx_msr_high >> 18) & 15) != 6)
1327 return -EIO;
1328
1329 vmcs_conf->size = vmx_msr_high & 0x1fff;
1330 vmcs_conf->order = get_order(vmcs_config.size);
1331 vmcs_conf->revision_id = vmx_msr_low;
1332
1333 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1334 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1335 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1336 vmcs_conf->vmexit_ctrl = _vmexit_control;
1337 vmcs_conf->vmentry_ctrl = _vmentry_control;
1338
1339 return 0;
1340 }
1341
1342 static struct vmcs *alloc_vmcs_cpu(int cpu)
1343 {
1344 int node = cpu_to_node(cpu);
1345 struct page *pages;
1346 struct vmcs *vmcs;
1347
1348 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1349 if (!pages)
1350 return NULL;
1351 vmcs = page_address(pages);
1352 memset(vmcs, 0, vmcs_config.size);
1353 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1354 return vmcs;
1355 }
1356
1357 static struct vmcs *alloc_vmcs(void)
1358 {
1359 return alloc_vmcs_cpu(raw_smp_processor_id());
1360 }
1361
1362 static void free_vmcs(struct vmcs *vmcs)
1363 {
1364 free_pages((unsigned long)vmcs, vmcs_config.order);
1365 }
1366
1367 static void free_kvm_area(void)
1368 {
1369 int cpu;
1370
1371 for_each_possible_cpu(cpu) {
1372 free_vmcs(per_cpu(vmxarea, cpu));
1373 per_cpu(vmxarea, cpu) = NULL;
1374 }
1375 }
1376
1377 static __init int alloc_kvm_area(void)
1378 {
1379 int cpu;
1380
1381 for_each_possible_cpu(cpu) {
1382 struct vmcs *vmcs;
1383
1384 vmcs = alloc_vmcs_cpu(cpu);
1385 if (!vmcs) {
1386 free_kvm_area();
1387 return -ENOMEM;
1388 }
1389
1390 per_cpu(vmxarea, cpu) = vmcs;
1391 }
1392 return 0;
1393 }
1394
1395 static __init int hardware_setup(void)
1396 {
1397 if (setup_vmcs_config(&vmcs_config) < 0)
1398 return -EIO;
1399
1400 if (boot_cpu_has(X86_FEATURE_NX))
1401 kvm_enable_efer_bits(EFER_NX);
1402
1403 if (!cpu_has_vmx_vpid())
1404 enable_vpid = 0;
1405
1406 if (!cpu_has_vmx_ept()) {
1407 enable_ept = 0;
1408 enable_unrestricted_guest = 0;
1409 }
1410
1411 if (!cpu_has_vmx_unrestricted_guest())
1412 enable_unrestricted_guest = 0;
1413
1414 if (!cpu_has_vmx_flexpriority())
1415 flexpriority_enabled = 0;
1416
1417 if (!cpu_has_vmx_tpr_shadow())
1418 kvm_x86_ops->update_cr8_intercept = NULL;
1419
1420 if (enable_ept && !cpu_has_vmx_ept_2m_page())
1421 kvm_disable_largepages();
1422
1423 if (!cpu_has_vmx_ple())
1424 ple_gap = 0;
1425
1426 return alloc_kvm_area();
1427 }
1428
1429 static __exit void hardware_unsetup(void)
1430 {
1431 free_kvm_area();
1432 }
1433
1434 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1435 {
1436 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1437
1438 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1439 vmcs_write16(sf->selector, save->selector);
1440 vmcs_writel(sf->base, save->base);
1441 vmcs_write32(sf->limit, save->limit);
1442 vmcs_write32(sf->ar_bytes, save->ar);
1443 } else {
1444 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1445 << AR_DPL_SHIFT;
1446 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1447 }
1448 }
1449
1450 static void enter_pmode(struct kvm_vcpu *vcpu)
1451 {
1452 unsigned long flags;
1453 struct vcpu_vmx *vmx = to_vmx(vcpu);
1454
1455 vmx->emulation_required = 1;
1456 vmx->rmode.vm86_active = 0;
1457
1458 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1459 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1460 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1461
1462 flags = vmcs_readl(GUEST_RFLAGS);
1463 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1464 flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1465 vmcs_writel(GUEST_RFLAGS, flags);
1466
1467 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1468 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1469
1470 update_exception_bitmap(vcpu);
1471
1472 if (emulate_invalid_guest_state)
1473 return;
1474
1475 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1476 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1477 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1478 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1479
1480 vmcs_write16(GUEST_SS_SELECTOR, 0);
1481 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1482
1483 vmcs_write16(GUEST_CS_SELECTOR,
1484 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1485 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1486 }
1487
1488 static gva_t rmode_tss_base(struct kvm *kvm)
1489 {
1490 if (!kvm->arch.tss_addr) {
1491 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1492 kvm->memslots[0].npages - 3;
1493 return base_gfn << PAGE_SHIFT;
1494 }
1495 return kvm->arch.tss_addr;
1496 }
1497
1498 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1499 {
1500 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1501
1502 save->selector = vmcs_read16(sf->selector);
1503 save->base = vmcs_readl(sf->base);
1504 save->limit = vmcs_read32(sf->limit);
1505 save->ar = vmcs_read32(sf->ar_bytes);
1506 vmcs_write16(sf->selector, save->base >> 4);
1507 vmcs_write32(sf->base, save->base & 0xfffff);
1508 vmcs_write32(sf->limit, 0xffff);
1509 vmcs_write32(sf->ar_bytes, 0xf3);
1510 }
1511
1512 static void enter_rmode(struct kvm_vcpu *vcpu)
1513 {
1514 unsigned long flags;
1515 struct vcpu_vmx *vmx = to_vmx(vcpu);
1516
1517 if (enable_unrestricted_guest)
1518 return;
1519
1520 vmx->emulation_required = 1;
1521 vmx->rmode.vm86_active = 1;
1522
1523 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1524 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1525
1526 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1527 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1528
1529 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1530 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1531
1532 flags = vmcs_readl(GUEST_RFLAGS);
1533 vmx->rmode.save_iopl
1534 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1535
1536 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1537
1538 vmcs_writel(GUEST_RFLAGS, flags);
1539 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1540 update_exception_bitmap(vcpu);
1541
1542 if (emulate_invalid_guest_state)
1543 goto continue_rmode;
1544
1545 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1546 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1547 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1548
1549 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1550 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1551 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1552 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1553 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1554
1555 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1556 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1557 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1558 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1559
1560 continue_rmode:
1561 kvm_mmu_reset_context(vcpu);
1562 init_rmode(vcpu->kvm);
1563 }
1564
1565 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1566 {
1567 struct vcpu_vmx *vmx = to_vmx(vcpu);
1568 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1569
1570 /*
1571 * Force kernel_gs_base reloading before EFER changes, as control
1572 * of this msr depends on is_long_mode().
1573 */
1574 vmx_load_host_state(to_vmx(vcpu));
1575 vcpu->arch.shadow_efer = efer;
1576 if (!msr)
1577 return;
1578 if (efer & EFER_LMA) {
1579 vmcs_write32(VM_ENTRY_CONTROLS,
1580 vmcs_read32(VM_ENTRY_CONTROLS) |
1581 VM_ENTRY_IA32E_MODE);
1582 msr->data = efer;
1583 } else {
1584 vmcs_write32(VM_ENTRY_CONTROLS,
1585 vmcs_read32(VM_ENTRY_CONTROLS) &
1586 ~VM_ENTRY_IA32E_MODE);
1587
1588 msr->data = efer & ~EFER_LME;
1589 }
1590 setup_msrs(vmx);
1591 }
1592
1593 #ifdef CONFIG_X86_64
1594
1595 static void enter_lmode(struct kvm_vcpu *vcpu)
1596 {
1597 u32 guest_tr_ar;
1598
1599 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1600 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1601 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1602 __func__);
1603 vmcs_write32(GUEST_TR_AR_BYTES,
1604 (guest_tr_ar & ~AR_TYPE_MASK)
1605 | AR_TYPE_BUSY_64_TSS);
1606 }
1607 vcpu->arch.shadow_efer |= EFER_LMA;
1608 vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1609 }
1610
1611 static void exit_lmode(struct kvm_vcpu *vcpu)
1612 {
1613 vcpu->arch.shadow_efer &= ~EFER_LMA;
1614
1615 vmcs_write32(VM_ENTRY_CONTROLS,
1616 vmcs_read32(VM_ENTRY_CONTROLS)
1617 & ~VM_ENTRY_IA32E_MODE);
1618 }
1619
1620 #endif
1621
1622 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1623 {
1624 vpid_sync_vcpu_all(to_vmx(vcpu));
1625 if (enable_ept)
1626 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1627 }
1628
1629 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1630 {
1631 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1632 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1633 }
1634
1635 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1636 {
1637 if (!test_bit(VCPU_EXREG_PDPTR,
1638 (unsigned long *)&vcpu->arch.regs_dirty))
1639 return;
1640
1641 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1642 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1643 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1644 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1645 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1646 }
1647 }
1648
1649 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1650 {
1651 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1652 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1653 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1654 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1655 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1656 }
1657
1658 __set_bit(VCPU_EXREG_PDPTR,
1659 (unsigned long *)&vcpu->arch.regs_avail);
1660 __set_bit(VCPU_EXREG_PDPTR,
1661 (unsigned long *)&vcpu->arch.regs_dirty);
1662 }
1663
1664 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1665
1666 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1667 unsigned long cr0,
1668 struct kvm_vcpu *vcpu)
1669 {
1670 if (!(cr0 & X86_CR0_PG)) {
1671 /* From paging/starting to nonpaging */
1672 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1673 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1674 (CPU_BASED_CR3_LOAD_EXITING |
1675 CPU_BASED_CR3_STORE_EXITING));
1676 vcpu->arch.cr0 = cr0;
1677 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1678 } else if (!is_paging(vcpu)) {
1679 /* From nonpaging to paging */
1680 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1681 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1682 ~(CPU_BASED_CR3_LOAD_EXITING |
1683 CPU_BASED_CR3_STORE_EXITING));
1684 vcpu->arch.cr0 = cr0;
1685 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1686 }
1687
1688 if (!(cr0 & X86_CR0_WP))
1689 *hw_cr0 &= ~X86_CR0_WP;
1690 }
1691
1692 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1693 struct kvm_vcpu *vcpu)
1694 {
1695 if (!is_paging(vcpu)) {
1696 *hw_cr4 &= ~X86_CR4_PAE;
1697 *hw_cr4 |= X86_CR4_PSE;
1698 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1699 *hw_cr4 &= ~X86_CR4_PAE;
1700 }
1701
1702 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1703 {
1704 struct vcpu_vmx *vmx = to_vmx(vcpu);
1705 unsigned long hw_cr0;
1706
1707 if (enable_unrestricted_guest)
1708 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1709 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1710 else
1711 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1712
1713 vmx_fpu_deactivate(vcpu);
1714
1715 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1716 enter_pmode(vcpu);
1717
1718 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1719 enter_rmode(vcpu);
1720
1721 #ifdef CONFIG_X86_64
1722 if (vcpu->arch.shadow_efer & EFER_LME) {
1723 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1724 enter_lmode(vcpu);
1725 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1726 exit_lmode(vcpu);
1727 }
1728 #endif
1729
1730 if (enable_ept)
1731 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1732
1733 vmcs_writel(CR0_READ_SHADOW, cr0);
1734 vmcs_writel(GUEST_CR0, hw_cr0);
1735 vcpu->arch.cr0 = cr0;
1736
1737 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1738 vmx_fpu_activate(vcpu);
1739 }
1740
1741 static u64 construct_eptp(unsigned long root_hpa)
1742 {
1743 u64 eptp;
1744
1745 /* TODO write the value reading from MSR */
1746 eptp = VMX_EPT_DEFAULT_MT |
1747 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1748 eptp |= (root_hpa & PAGE_MASK);
1749
1750 return eptp;
1751 }
1752
1753 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1754 {
1755 unsigned long guest_cr3;
1756 u64 eptp;
1757
1758 guest_cr3 = cr3;
1759 if (enable_ept) {
1760 eptp = construct_eptp(cr3);
1761 vmcs_write64(EPT_POINTER, eptp);
1762 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1763 vcpu->kvm->arch.ept_identity_map_addr;
1764 }
1765
1766 vmx_flush_tlb(vcpu);
1767 vmcs_writel(GUEST_CR3, guest_cr3);
1768 if (vcpu->arch.cr0 & X86_CR0_PE)
1769 vmx_fpu_deactivate(vcpu);
1770 }
1771
1772 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1773 {
1774 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1775 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1776
1777 vcpu->arch.cr4 = cr4;
1778 if (enable_ept)
1779 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1780
1781 vmcs_writel(CR4_READ_SHADOW, cr4);
1782 vmcs_writel(GUEST_CR4, hw_cr4);
1783 }
1784
1785 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1786 {
1787 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1788
1789 return vmcs_readl(sf->base);
1790 }
1791
1792 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1793 struct kvm_segment *var, int seg)
1794 {
1795 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1796 u32 ar;
1797
1798 var->base = vmcs_readl(sf->base);
1799 var->limit = vmcs_read32(sf->limit);
1800 var->selector = vmcs_read16(sf->selector);
1801 ar = vmcs_read32(sf->ar_bytes);
1802 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1803 ar = 0;
1804 var->type = ar & 15;
1805 var->s = (ar >> 4) & 1;
1806 var->dpl = (ar >> 5) & 3;
1807 var->present = (ar >> 7) & 1;
1808 var->avl = (ar >> 12) & 1;
1809 var->l = (ar >> 13) & 1;
1810 var->db = (ar >> 14) & 1;
1811 var->g = (ar >> 15) & 1;
1812 var->unusable = (ar >> 16) & 1;
1813 }
1814
1815 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1816 {
1817 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1818 return 0;
1819
1820 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1821 return 3;
1822
1823 return vmcs_read16(GUEST_CS_SELECTOR) & 3;
1824 }
1825
1826 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1827 {
1828 u32 ar;
1829
1830 if (var->unusable)
1831 ar = 1 << 16;
1832 else {
1833 ar = var->type & 15;
1834 ar |= (var->s & 1) << 4;
1835 ar |= (var->dpl & 3) << 5;
1836 ar |= (var->present & 1) << 7;
1837 ar |= (var->avl & 1) << 12;
1838 ar |= (var->l & 1) << 13;
1839 ar |= (var->db & 1) << 14;
1840 ar |= (var->g & 1) << 15;
1841 }
1842 if (ar == 0) /* a 0 value means unusable */
1843 ar = AR_UNUSABLE_MASK;
1844
1845 return ar;
1846 }
1847
1848 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1849 struct kvm_segment *var, int seg)
1850 {
1851 struct vcpu_vmx *vmx = to_vmx(vcpu);
1852 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1853 u32 ar;
1854
1855 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1856 vmx->rmode.tr.selector = var->selector;
1857 vmx->rmode.tr.base = var->base;
1858 vmx->rmode.tr.limit = var->limit;
1859 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1860 return;
1861 }
1862 vmcs_writel(sf->base, var->base);
1863 vmcs_write32(sf->limit, var->limit);
1864 vmcs_write16(sf->selector, var->selector);
1865 if (vmx->rmode.vm86_active && var->s) {
1866 /*
1867 * Hack real-mode segments into vm86 compatibility.
1868 */
1869 if (var->base == 0xffff0000 && var->selector == 0xf000)
1870 vmcs_writel(sf->base, 0xf0000);
1871 ar = 0xf3;
1872 } else
1873 ar = vmx_segment_access_rights(var);
1874
1875 /*
1876 * Fix the "Accessed" bit in AR field of segment registers for older
1877 * qemu binaries.
1878 * IA32 arch specifies that at the time of processor reset the
1879 * "Accessed" bit in the AR field of segment registers is 1. And qemu
1880 * is setting it to 0 in the usedland code. This causes invalid guest
1881 * state vmexit when "unrestricted guest" mode is turned on.
1882 * Fix for this setup issue in cpu_reset is being pushed in the qemu
1883 * tree. Newer qemu binaries with that qemu fix would not need this
1884 * kvm hack.
1885 */
1886 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1887 ar |= 0x1; /* Accessed */
1888
1889 vmcs_write32(sf->ar_bytes, ar);
1890 }
1891
1892 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1893 {
1894 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1895
1896 *db = (ar >> 14) & 1;
1897 *l = (ar >> 13) & 1;
1898 }
1899
1900 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1901 {
1902 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1903 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1904 }
1905
1906 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1907 {
1908 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1909 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1910 }
1911
1912 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1913 {
1914 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1915 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1916 }
1917
1918 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1919 {
1920 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1921 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1922 }
1923
1924 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1925 {
1926 struct kvm_segment var;
1927 u32 ar;
1928
1929 vmx_get_segment(vcpu, &var, seg);
1930 ar = vmx_segment_access_rights(&var);
1931
1932 if (var.base != (var.selector << 4))
1933 return false;
1934 if (var.limit != 0xffff)
1935 return false;
1936 if (ar != 0xf3)
1937 return false;
1938
1939 return true;
1940 }
1941
1942 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1943 {
1944 struct kvm_segment cs;
1945 unsigned int cs_rpl;
1946
1947 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1948 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1949
1950 if (cs.unusable)
1951 return false;
1952 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1953 return false;
1954 if (!cs.s)
1955 return false;
1956 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1957 if (cs.dpl > cs_rpl)
1958 return false;
1959 } else {
1960 if (cs.dpl != cs_rpl)
1961 return false;
1962 }
1963 if (!cs.present)
1964 return false;
1965
1966 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1967 return true;
1968 }
1969
1970 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1971 {
1972 struct kvm_segment ss;
1973 unsigned int ss_rpl;
1974
1975 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1976 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1977
1978 if (ss.unusable)
1979 return true;
1980 if (ss.type != 3 && ss.type != 7)
1981 return false;
1982 if (!ss.s)
1983 return false;
1984 if (ss.dpl != ss_rpl) /* DPL != RPL */
1985 return false;
1986 if (!ss.present)
1987 return false;
1988
1989 return true;
1990 }
1991
1992 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1993 {
1994 struct kvm_segment var;
1995 unsigned int rpl;
1996
1997 vmx_get_segment(vcpu, &var, seg);
1998 rpl = var.selector & SELECTOR_RPL_MASK;
1999
2000 if (var.unusable)
2001 return true;
2002 if (!var.s)
2003 return false;
2004 if (!var.present)
2005 return false;
2006 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2007 if (var.dpl < rpl) /* DPL < RPL */
2008 return false;
2009 }
2010
2011 /* TODO: Add other members to kvm_segment_field to allow checking for other access
2012 * rights flags
2013 */
2014 return true;
2015 }
2016
2017 static bool tr_valid(struct kvm_vcpu *vcpu)
2018 {
2019 struct kvm_segment tr;
2020
2021 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2022
2023 if (tr.unusable)
2024 return false;
2025 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2026 return false;
2027 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2028 return false;
2029 if (!tr.present)
2030 return false;
2031
2032 return true;
2033 }
2034
2035 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2036 {
2037 struct kvm_segment ldtr;
2038
2039 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2040
2041 if (ldtr.unusable)
2042 return true;
2043 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2044 return false;
2045 if (ldtr.type != 2)
2046 return false;
2047 if (!ldtr.present)
2048 return false;
2049
2050 return true;
2051 }
2052
2053 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2054 {
2055 struct kvm_segment cs, ss;
2056
2057 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2058 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2059
2060 return ((cs.selector & SELECTOR_RPL_MASK) ==
2061 (ss.selector & SELECTOR_RPL_MASK));
2062 }
2063
2064 /*
2065 * Check if guest state is valid. Returns true if valid, false if
2066 * not.
2067 * We assume that registers are always usable
2068 */
2069 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2070 {
2071 /* real mode guest state checks */
2072 if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
2073 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2074 return false;
2075 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2076 return false;
2077 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2078 return false;
2079 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2080 return false;
2081 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2082 return false;
2083 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2084 return false;
2085 } else {
2086 /* protected mode guest state checks */
2087 if (!cs_ss_rpl_check(vcpu))
2088 return false;
2089 if (!code_segment_valid(vcpu))
2090 return false;
2091 if (!stack_segment_valid(vcpu))
2092 return false;
2093 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2094 return false;
2095 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2096 return false;
2097 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2098 return false;
2099 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2100 return false;
2101 if (!tr_valid(vcpu))
2102 return false;
2103 if (!ldtr_valid(vcpu))
2104 return false;
2105 }
2106 /* TODO:
2107 * - Add checks on RIP
2108 * - Add checks on RFLAGS
2109 */
2110
2111 return true;
2112 }
2113
2114 static int init_rmode_tss(struct kvm *kvm)
2115 {
2116 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2117 u16 data = 0;
2118 int ret = 0;
2119 int r;
2120
2121 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2122 if (r < 0)
2123 goto out;
2124 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2125 r = kvm_write_guest_page(kvm, fn++, &data,
2126 TSS_IOPB_BASE_OFFSET, sizeof(u16));
2127 if (r < 0)
2128 goto out;
2129 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2130 if (r < 0)
2131 goto out;
2132 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2133 if (r < 0)
2134 goto out;
2135 data = ~0;
2136 r = kvm_write_guest_page(kvm, fn, &data,
2137 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2138 sizeof(u8));
2139 if (r < 0)
2140 goto out;
2141
2142 ret = 1;
2143 out:
2144 return ret;
2145 }
2146
2147 static int init_rmode_identity_map(struct kvm *kvm)
2148 {
2149 int i, r, ret;
2150 pfn_t identity_map_pfn;
2151 u32 tmp;
2152
2153 if (!enable_ept)
2154 return 1;
2155 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2156 printk(KERN_ERR "EPT: identity-mapping pagetable "
2157 "haven't been allocated!\n");
2158 return 0;
2159 }
2160 if (likely(kvm->arch.ept_identity_pagetable_done))
2161 return 1;
2162 ret = 0;
2163 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2164 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2165 if (r < 0)
2166 goto out;
2167 /* Set up identity-mapping pagetable for EPT in real mode */
2168 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2169 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2170 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2171 r = kvm_write_guest_page(kvm, identity_map_pfn,
2172 &tmp, i * sizeof(tmp), sizeof(tmp));
2173 if (r < 0)
2174 goto out;
2175 }
2176 kvm->arch.ept_identity_pagetable_done = true;
2177 ret = 1;
2178 out:
2179 return ret;
2180 }
2181
2182 static void seg_setup(int seg)
2183 {
2184 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2185 unsigned int ar;
2186
2187 vmcs_write16(sf->selector, 0);
2188 vmcs_writel(sf->base, 0);
2189 vmcs_write32(sf->limit, 0xffff);
2190 if (enable_unrestricted_guest) {
2191 ar = 0x93;
2192 if (seg == VCPU_SREG_CS)
2193 ar |= 0x08; /* code segment */
2194 } else
2195 ar = 0xf3;
2196
2197 vmcs_write32(sf->ar_bytes, ar);
2198 }
2199
2200 static int alloc_apic_access_page(struct kvm *kvm)
2201 {
2202 struct kvm_userspace_memory_region kvm_userspace_mem;
2203 int r = 0;
2204
2205 down_write(&kvm->slots_lock);
2206 if (kvm->arch.apic_access_page)
2207 goto out;
2208 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2209 kvm_userspace_mem.flags = 0;
2210 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2211 kvm_userspace_mem.memory_size = PAGE_SIZE;
2212 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2213 if (r)
2214 goto out;
2215
2216 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2217 out:
2218 up_write(&kvm->slots_lock);
2219 return r;
2220 }
2221
2222 static int alloc_identity_pagetable(struct kvm *kvm)
2223 {
2224 struct kvm_userspace_memory_region kvm_userspace_mem;
2225 int r = 0;
2226
2227 down_write(&kvm->slots_lock);
2228 if (kvm->arch.ept_identity_pagetable)
2229 goto out;
2230 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2231 kvm_userspace_mem.flags = 0;
2232 kvm_userspace_mem.guest_phys_addr =
2233 kvm->arch.ept_identity_map_addr;
2234 kvm_userspace_mem.memory_size = PAGE_SIZE;
2235 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2236 if (r)
2237 goto out;
2238
2239 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2240 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2241 out:
2242 up_write(&kvm->slots_lock);
2243 return r;
2244 }
2245
2246 static void allocate_vpid(struct vcpu_vmx *vmx)
2247 {
2248 int vpid;
2249
2250 vmx->vpid = 0;
2251 if (!enable_vpid)
2252 return;
2253 spin_lock(&vmx_vpid_lock);
2254 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2255 if (vpid < VMX_NR_VPIDS) {
2256 vmx->vpid = vpid;
2257 __set_bit(vpid, vmx_vpid_bitmap);
2258 }
2259 spin_unlock(&vmx_vpid_lock);
2260 }
2261
2262 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2263 {
2264 int f = sizeof(unsigned long);
2265
2266 if (!cpu_has_vmx_msr_bitmap())
2267 return;
2268
2269 /*
2270 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2271 * have the write-low and read-high bitmap offsets the wrong way round.
2272 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2273 */
2274 if (msr <= 0x1fff) {
2275 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2276 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2277 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2278 msr &= 0x1fff;
2279 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2280 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2281 }
2282 }
2283
2284 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2285 {
2286 if (!longmode_only)
2287 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2288 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2289 }
2290
2291 /*
2292 * Sets up the vmcs for emulated real mode.
2293 */
2294 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2295 {
2296 u32 host_sysenter_cs, msr_low, msr_high;
2297 u32 junk;
2298 u64 host_pat, tsc_this, tsc_base;
2299 unsigned long a;
2300 struct descriptor_table dt;
2301 int i;
2302 unsigned long kvm_vmx_return;
2303 u32 exec_control;
2304
2305 /* I/O */
2306 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2307 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2308
2309 if (cpu_has_vmx_msr_bitmap())
2310 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2311
2312 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2313
2314 /* Control */
2315 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2316 vmcs_config.pin_based_exec_ctrl);
2317
2318 exec_control = vmcs_config.cpu_based_exec_ctrl;
2319 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2320 exec_control &= ~CPU_BASED_TPR_SHADOW;
2321 #ifdef CONFIG_X86_64
2322 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2323 CPU_BASED_CR8_LOAD_EXITING;
2324 #endif
2325 }
2326 if (!enable_ept)
2327 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2328 CPU_BASED_CR3_LOAD_EXITING |
2329 CPU_BASED_INVLPG_EXITING;
2330 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2331
2332 if (cpu_has_secondary_exec_ctrls()) {
2333 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2334 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2335 exec_control &=
2336 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2337 if (vmx->vpid == 0)
2338 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2339 if (!enable_ept)
2340 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2341 if (!enable_unrestricted_guest)
2342 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2343 if (!ple_gap)
2344 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2345 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2346 }
2347
2348 if (ple_gap) {
2349 vmcs_write32(PLE_GAP, ple_gap);
2350 vmcs_write32(PLE_WINDOW, ple_window);
2351 }
2352
2353 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2354 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2355 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2356
2357 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
2358 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2359 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2360
2361 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2362 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2363 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2364 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
2365 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
2366 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2367 #ifdef CONFIG_X86_64
2368 rdmsrl(MSR_FS_BASE, a);
2369 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2370 rdmsrl(MSR_GS_BASE, a);
2371 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2372 #else
2373 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2374 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2375 #endif
2376
2377 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2378
2379 kvm_get_idt(&dt);
2380 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
2381
2382 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2383 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2384 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2385 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2386 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2387
2388 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2389 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2390 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2391 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2392 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2393 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2394
2395 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2396 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2397 host_pat = msr_low | ((u64) msr_high << 32);
2398 vmcs_write64(HOST_IA32_PAT, host_pat);
2399 }
2400 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2401 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2402 host_pat = msr_low | ((u64) msr_high << 32);
2403 /* Write the default value follow host pat */
2404 vmcs_write64(GUEST_IA32_PAT, host_pat);
2405 /* Keep arch.pat sync with GUEST_IA32_PAT */
2406 vmx->vcpu.arch.pat = host_pat;
2407 }
2408
2409 for (i = 0; i < NR_VMX_MSR; ++i) {
2410 u32 index = vmx_msr_index[i];
2411 u32 data_low, data_high;
2412 u64 data;
2413 int j = vmx->nmsrs;
2414
2415 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2416 continue;
2417 if (wrmsr_safe(index, data_low, data_high) < 0)
2418 continue;
2419 data = data_low | ((u64)data_high << 32);
2420 vmx->host_msrs[j].index = index;
2421 vmx->host_msrs[j].reserved = 0;
2422 vmx->host_msrs[j].data = data;
2423 vmx->guest_msrs[j] = vmx->host_msrs[j];
2424 ++vmx->nmsrs;
2425 }
2426
2427 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2428
2429 /* 22.2.1, 20.8.1 */
2430 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2431
2432 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2433 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2434
2435 tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2436 rdtscll(tsc_this);
2437 if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2438 tsc_base = tsc_this;
2439
2440 guest_write_tsc(0, tsc_base);
2441
2442 return 0;
2443 }
2444
2445 static int init_rmode(struct kvm *kvm)
2446 {
2447 if (!init_rmode_tss(kvm))
2448 return 0;
2449 if (!init_rmode_identity_map(kvm))
2450 return 0;
2451 return 1;
2452 }
2453
2454 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2455 {
2456 struct vcpu_vmx *vmx = to_vmx(vcpu);
2457 u64 msr;
2458 int ret;
2459
2460 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2461 down_read(&vcpu->kvm->slots_lock);
2462 if (!init_rmode(vmx->vcpu.kvm)) {
2463 ret = -ENOMEM;
2464 goto out;
2465 }
2466
2467 vmx->rmode.vm86_active = 0;
2468
2469 vmx->soft_vnmi_blocked = 0;
2470
2471 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2472 kvm_set_cr8(&vmx->vcpu, 0);
2473 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2474 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2475 msr |= MSR_IA32_APICBASE_BSP;
2476 kvm_set_apic_base(&vmx->vcpu, msr);
2477
2478 fx_init(&vmx->vcpu);
2479
2480 seg_setup(VCPU_SREG_CS);
2481 /*
2482 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2483 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2484 */
2485 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2486 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2487 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2488 } else {
2489 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2490 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2491 }
2492
2493 seg_setup(VCPU_SREG_DS);
2494 seg_setup(VCPU_SREG_ES);
2495 seg_setup(VCPU_SREG_FS);
2496 seg_setup(VCPU_SREG_GS);
2497 seg_setup(VCPU_SREG_SS);
2498
2499 vmcs_write16(GUEST_TR_SELECTOR, 0);
2500 vmcs_writel(GUEST_TR_BASE, 0);
2501 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2502 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2503
2504 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2505 vmcs_writel(GUEST_LDTR_BASE, 0);
2506 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2507 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2508
2509 vmcs_write32(GUEST_SYSENTER_CS, 0);
2510 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2511 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2512
2513 vmcs_writel(GUEST_RFLAGS, 0x02);
2514 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2515 kvm_rip_write(vcpu, 0xfff0);
2516 else
2517 kvm_rip_write(vcpu, 0);
2518 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2519
2520 vmcs_writel(GUEST_DR7, 0x400);
2521
2522 vmcs_writel(GUEST_GDTR_BASE, 0);
2523 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2524
2525 vmcs_writel(GUEST_IDTR_BASE, 0);
2526 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2527
2528 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2529 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2530 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2531
2532 /* Special registers */
2533 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2534
2535 setup_msrs(vmx);
2536
2537 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2538
2539 if (cpu_has_vmx_tpr_shadow()) {
2540 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2541 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2542 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2543 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2544 vmcs_write32(TPR_THRESHOLD, 0);
2545 }
2546
2547 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2548 vmcs_write64(APIC_ACCESS_ADDR,
2549 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2550
2551 if (vmx->vpid != 0)
2552 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2553
2554 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2555 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2556 vmx_set_cr4(&vmx->vcpu, 0);
2557 vmx_set_efer(&vmx->vcpu, 0);
2558 vmx_fpu_activate(&vmx->vcpu);
2559 update_exception_bitmap(&vmx->vcpu);
2560
2561 vpid_sync_vcpu_all(vmx);
2562
2563 ret = 0;
2564
2565 /* HACK: Don't enable emulation on guest boot/reset */
2566 vmx->emulation_required = 0;
2567
2568 out:
2569 up_read(&vcpu->kvm->slots_lock);
2570 return ret;
2571 }
2572
2573 static void enable_irq_window(struct kvm_vcpu *vcpu)
2574 {
2575 u32 cpu_based_vm_exec_control;
2576
2577 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2578 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2579 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2580 }
2581
2582 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2583 {
2584 u32 cpu_based_vm_exec_control;
2585
2586 if (!cpu_has_virtual_nmis()) {
2587 enable_irq_window(vcpu);
2588 return;
2589 }
2590
2591 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2592 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2593 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2594 }
2595
2596 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2597 {
2598 struct vcpu_vmx *vmx = to_vmx(vcpu);
2599 uint32_t intr;
2600 int irq = vcpu->arch.interrupt.nr;
2601
2602 trace_kvm_inj_virq(irq);
2603
2604 ++vcpu->stat.irq_injections;
2605 if (vmx->rmode.vm86_active) {
2606 vmx->rmode.irq.pending = true;
2607 vmx->rmode.irq.vector = irq;
2608 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2609 if (vcpu->arch.interrupt.soft)
2610 vmx->rmode.irq.rip +=
2611 vmx->vcpu.arch.event_exit_inst_len;
2612 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2613 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2614 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2615 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2616 return;
2617 }
2618 intr = irq | INTR_INFO_VALID_MASK;
2619 if (vcpu->arch.interrupt.soft) {
2620 intr |= INTR_TYPE_SOFT_INTR;
2621 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2622 vmx->vcpu.arch.event_exit_inst_len);
2623 } else
2624 intr |= INTR_TYPE_EXT_INTR;
2625 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2626 }
2627
2628 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2629 {
2630 struct vcpu_vmx *vmx = to_vmx(vcpu);
2631
2632 if (!cpu_has_virtual_nmis()) {
2633 /*
2634 * Tracking the NMI-blocked state in software is built upon
2635 * finding the next open IRQ window. This, in turn, depends on
2636 * well-behaving guests: They have to keep IRQs disabled at
2637 * least as long as the NMI handler runs. Otherwise we may
2638 * cause NMI nesting, maybe breaking the guest. But as this is
2639 * highly unlikely, we can live with the residual risk.
2640 */
2641 vmx->soft_vnmi_blocked = 1;
2642 vmx->vnmi_blocked_time = 0;
2643 }
2644
2645 ++vcpu->stat.nmi_injections;
2646 if (vmx->rmode.vm86_active) {
2647 vmx->rmode.irq.pending = true;
2648 vmx->rmode.irq.vector = NMI_VECTOR;
2649 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2650 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2651 NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2652 INTR_INFO_VALID_MASK);
2653 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2654 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2655 return;
2656 }
2657 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2658 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2659 }
2660
2661 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2662 {
2663 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2664 return 0;
2665
2666 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2667 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2668 GUEST_INTR_STATE_NMI));
2669 }
2670
2671 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2672 {
2673 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2674 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2675 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2676 }
2677
2678 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2679 {
2680 int ret;
2681 struct kvm_userspace_memory_region tss_mem = {
2682 .slot = TSS_PRIVATE_MEMSLOT,
2683 .guest_phys_addr = addr,
2684 .memory_size = PAGE_SIZE * 3,
2685 .flags = 0,
2686 };
2687
2688 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2689 if (ret)
2690 return ret;
2691 kvm->arch.tss_addr = addr;
2692 return 0;
2693 }
2694
2695 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2696 int vec, u32 err_code)
2697 {
2698 /*
2699 * Instruction with address size override prefix opcode 0x67
2700 * Cause the #SS fault with 0 error code in VM86 mode.
2701 */
2702 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2703 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2704 return 1;
2705 /*
2706 * Forward all other exceptions that are valid in real mode.
2707 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2708 * the required debugging infrastructure rework.
2709 */
2710 switch (vec) {
2711 case DB_VECTOR:
2712 if (vcpu->guest_debug &
2713 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2714 return 0;
2715 kvm_queue_exception(vcpu, vec);
2716 return 1;
2717 case BP_VECTOR:
2718 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2719 return 0;
2720 /* fall through */
2721 case DE_VECTOR:
2722 case OF_VECTOR:
2723 case BR_VECTOR:
2724 case UD_VECTOR:
2725 case DF_VECTOR:
2726 case SS_VECTOR:
2727 case GP_VECTOR:
2728 case MF_VECTOR:
2729 kvm_queue_exception(vcpu, vec);
2730 return 1;
2731 }
2732 return 0;
2733 }
2734
2735 /*
2736 * Trigger machine check on the host. We assume all the MSRs are already set up
2737 * by the CPU and that we still run on the same CPU as the MCE occurred on.
2738 * We pass a fake environment to the machine check handler because we want
2739 * the guest to be always treated like user space, no matter what context
2740 * it used internally.
2741 */
2742 static void kvm_machine_check(void)
2743 {
2744 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2745 struct pt_regs regs = {
2746 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2747 .flags = X86_EFLAGS_IF,
2748 };
2749
2750 do_machine_check(&regs, 0);
2751 #endif
2752 }
2753
2754 static int handle_machine_check(struct kvm_vcpu *vcpu)
2755 {
2756 /* already handled by vcpu_run */
2757 return 1;
2758 }
2759
2760 static int handle_exception(struct kvm_vcpu *vcpu)
2761 {
2762 struct vcpu_vmx *vmx = to_vmx(vcpu);
2763 struct kvm_run *kvm_run = vcpu->run;
2764 u32 intr_info, ex_no, error_code;
2765 unsigned long cr2, rip, dr6;
2766 u32 vect_info;
2767 enum emulation_result er;
2768
2769 vect_info = vmx->idt_vectoring_info;
2770 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2771
2772 if (is_machine_check(intr_info))
2773 return handle_machine_check(vcpu);
2774
2775 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2776 !is_page_fault(intr_info))
2777 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2778 "intr info 0x%x\n", __func__, vect_info, intr_info);
2779
2780 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2781 return 1; /* already handled by vmx_vcpu_run() */
2782
2783 if (is_no_device(intr_info)) {
2784 vmx_fpu_activate(vcpu);
2785 return 1;
2786 }
2787
2788 if (is_invalid_opcode(intr_info)) {
2789 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
2790 if (er != EMULATE_DONE)
2791 kvm_queue_exception(vcpu, UD_VECTOR);
2792 return 1;
2793 }
2794
2795 error_code = 0;
2796 rip = kvm_rip_read(vcpu);
2797 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2798 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2799 if (is_page_fault(intr_info)) {
2800 /* EPT won't cause page fault directly */
2801 if (enable_ept)
2802 BUG();
2803 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2804 trace_kvm_page_fault(cr2, error_code);
2805
2806 if (kvm_event_needs_reinjection(vcpu))
2807 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2808 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2809 }
2810
2811 if (vmx->rmode.vm86_active &&
2812 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2813 error_code)) {
2814 if (vcpu->arch.halt_request) {
2815 vcpu->arch.halt_request = 0;
2816 return kvm_emulate_halt(vcpu);
2817 }
2818 return 1;
2819 }
2820
2821 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2822 switch (ex_no) {
2823 case DB_VECTOR:
2824 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2825 if (!(vcpu->guest_debug &
2826 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2827 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2828 kvm_queue_exception(vcpu, DB_VECTOR);
2829 return 1;
2830 }
2831 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2832 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2833 /* fall through */
2834 case BP_VECTOR:
2835 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2836 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2837 kvm_run->debug.arch.exception = ex_no;
2838 break;
2839 default:
2840 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2841 kvm_run->ex.exception = ex_no;
2842 kvm_run->ex.error_code = error_code;
2843 break;
2844 }
2845 return 0;
2846 }
2847
2848 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
2849 {
2850 ++vcpu->stat.irq_exits;
2851 return 1;
2852 }
2853
2854 static int handle_triple_fault(struct kvm_vcpu *vcpu)
2855 {
2856 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2857 return 0;
2858 }
2859
2860 static int handle_io(struct kvm_vcpu *vcpu)
2861 {
2862 unsigned long exit_qualification;
2863 int size, in, string;
2864 unsigned port;
2865
2866 ++vcpu->stat.io_exits;
2867 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2868 string = (exit_qualification & 16) != 0;
2869
2870 if (string) {
2871 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
2872 return 0;
2873 return 1;
2874 }
2875
2876 size = (exit_qualification & 7) + 1;
2877 in = (exit_qualification & 8) != 0;
2878 port = exit_qualification >> 16;
2879
2880 skip_emulated_instruction(vcpu);
2881 return kvm_emulate_pio(vcpu, in, size, port);
2882 }
2883
2884 static void
2885 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2886 {
2887 /*
2888 * Patch in the VMCALL instruction:
2889 */
2890 hypercall[0] = 0x0f;
2891 hypercall[1] = 0x01;
2892 hypercall[2] = 0xc1;
2893 }
2894
2895 static int handle_cr(struct kvm_vcpu *vcpu)
2896 {
2897 unsigned long exit_qualification, val;
2898 int cr;
2899 int reg;
2900
2901 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2902 cr = exit_qualification & 15;
2903 reg = (exit_qualification >> 8) & 15;
2904 switch ((exit_qualification >> 4) & 3) {
2905 case 0: /* mov to cr */
2906 val = kvm_register_read(vcpu, reg);
2907 trace_kvm_cr_write(cr, val);
2908 switch (cr) {
2909 case 0:
2910 kvm_set_cr0(vcpu, val);
2911 skip_emulated_instruction(vcpu);
2912 return 1;
2913 case 3:
2914 kvm_set_cr3(vcpu, val);
2915 skip_emulated_instruction(vcpu);
2916 return 1;
2917 case 4:
2918 kvm_set_cr4(vcpu, val);
2919 skip_emulated_instruction(vcpu);
2920 return 1;
2921 case 8: {
2922 u8 cr8_prev = kvm_get_cr8(vcpu);
2923 u8 cr8 = kvm_register_read(vcpu, reg);
2924 kvm_set_cr8(vcpu, cr8);
2925 skip_emulated_instruction(vcpu);
2926 if (irqchip_in_kernel(vcpu->kvm))
2927 return 1;
2928 if (cr8_prev <= cr8)
2929 return 1;
2930 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2931 return 0;
2932 }
2933 };
2934 break;
2935 case 2: /* clts */
2936 vmx_fpu_deactivate(vcpu);
2937 vcpu->arch.cr0 &= ~X86_CR0_TS;
2938 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2939 vmx_fpu_activate(vcpu);
2940 skip_emulated_instruction(vcpu);
2941 return 1;
2942 case 1: /*mov from cr*/
2943 switch (cr) {
2944 case 3:
2945 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2946 trace_kvm_cr_read(cr, vcpu->arch.cr3);
2947 skip_emulated_instruction(vcpu);
2948 return 1;
2949 case 8:
2950 val = kvm_get_cr8(vcpu);
2951 kvm_register_write(vcpu, reg, val);
2952 trace_kvm_cr_read(cr, val);
2953 skip_emulated_instruction(vcpu);
2954 return 1;
2955 }
2956 break;
2957 case 3: /* lmsw */
2958 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2959
2960 skip_emulated_instruction(vcpu);
2961 return 1;
2962 default:
2963 break;
2964 }
2965 vcpu->run->exit_reason = 0;
2966 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2967 (int)(exit_qualification >> 4) & 3, cr);
2968 return 0;
2969 }
2970
2971 static int handle_dr(struct kvm_vcpu *vcpu)
2972 {
2973 unsigned long exit_qualification;
2974 unsigned long val;
2975 int dr, reg;
2976
2977 if (!kvm_require_cpl(vcpu, 0))
2978 return 1;
2979 dr = vmcs_readl(GUEST_DR7);
2980 if (dr & DR7_GD) {
2981 /*
2982 * As the vm-exit takes precedence over the debug trap, we
2983 * need to emulate the latter, either for the host or the
2984 * guest debugging itself.
2985 */
2986 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2987 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
2988 vcpu->run->debug.arch.dr7 = dr;
2989 vcpu->run->debug.arch.pc =
2990 vmcs_readl(GUEST_CS_BASE) +
2991 vmcs_readl(GUEST_RIP);
2992 vcpu->run->debug.arch.exception = DB_VECTOR;
2993 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
2994 return 0;
2995 } else {
2996 vcpu->arch.dr7 &= ~DR7_GD;
2997 vcpu->arch.dr6 |= DR6_BD;
2998 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2999 kvm_queue_exception(vcpu, DB_VECTOR);
3000 return 1;
3001 }
3002 }
3003
3004 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3005 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3006 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3007 if (exit_qualification & TYPE_MOV_FROM_DR) {
3008 switch (dr) {
3009 case 0 ... 3:
3010 val = vcpu->arch.db[dr];
3011 break;
3012 case 6:
3013 val = vcpu->arch.dr6;
3014 break;
3015 case 7:
3016 val = vcpu->arch.dr7;
3017 break;
3018 default:
3019 val = 0;
3020 }
3021 kvm_register_write(vcpu, reg, val);
3022 } else {
3023 val = vcpu->arch.regs[reg];
3024 switch (dr) {
3025 case 0 ... 3:
3026 vcpu->arch.db[dr] = val;
3027 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
3028 vcpu->arch.eff_db[dr] = val;
3029 break;
3030 case 4 ... 5:
3031 if (vcpu->arch.cr4 & X86_CR4_DE)
3032 kvm_queue_exception(vcpu, UD_VECTOR);
3033 break;
3034 case 6:
3035 if (val & 0xffffffff00000000ULL) {
3036 kvm_queue_exception(vcpu, GP_VECTOR);
3037 break;
3038 }
3039 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
3040 break;
3041 case 7:
3042 if (val & 0xffffffff00000000ULL) {
3043 kvm_queue_exception(vcpu, GP_VECTOR);
3044 break;
3045 }
3046 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
3047 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
3048 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3049 vcpu->arch.switch_db_regs =
3050 (val & DR7_BP_EN_MASK);
3051 }
3052 break;
3053 }
3054 }
3055 skip_emulated_instruction(vcpu);
3056 return 1;
3057 }
3058
3059 static int handle_cpuid(struct kvm_vcpu *vcpu)
3060 {
3061 kvm_emulate_cpuid(vcpu);
3062 return 1;
3063 }
3064
3065 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3066 {
3067 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3068 u64 data;
3069
3070 if (vmx_get_msr(vcpu, ecx, &data)) {
3071 kvm_inject_gp(vcpu, 0);
3072 return 1;
3073 }
3074
3075 trace_kvm_msr_read(ecx, data);
3076
3077 /* FIXME: handling of bits 32:63 of rax, rdx */
3078 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3079 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3080 skip_emulated_instruction(vcpu);
3081 return 1;
3082 }
3083
3084 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3085 {
3086 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3087 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3088 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3089
3090 trace_kvm_msr_write(ecx, data);
3091
3092 if (vmx_set_msr(vcpu, ecx, data) != 0) {
3093 kvm_inject_gp(vcpu, 0);
3094 return 1;
3095 }
3096
3097 skip_emulated_instruction(vcpu);
3098 return 1;
3099 }
3100
3101 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3102 {
3103 return 1;
3104 }
3105
3106 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3107 {
3108 u32 cpu_based_vm_exec_control;
3109
3110 /* clear pending irq */
3111 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3112 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3113 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3114
3115 ++vcpu->stat.irq_window_exits;
3116
3117 /*
3118 * If the user space waits to inject interrupts, exit as soon as
3119 * possible
3120 */
3121 if (!irqchip_in_kernel(vcpu->kvm) &&
3122 vcpu->run->request_interrupt_window &&
3123 !kvm_cpu_has_interrupt(vcpu)) {
3124 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3125 return 0;
3126 }
3127 return 1;
3128 }
3129
3130 static int handle_halt(struct kvm_vcpu *vcpu)
3131 {
3132 skip_emulated_instruction(vcpu);
3133 return kvm_emulate_halt(vcpu);
3134 }
3135
3136 static int handle_vmcall(struct kvm_vcpu *vcpu)
3137 {
3138 skip_emulated_instruction(vcpu);
3139 kvm_emulate_hypercall(vcpu);
3140 return 1;
3141 }
3142
3143 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3144 {
3145 kvm_queue_exception(vcpu, UD_VECTOR);
3146 return 1;
3147 }
3148
3149 static int handle_invlpg(struct kvm_vcpu *vcpu)
3150 {
3151 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3152
3153 kvm_mmu_invlpg(vcpu, exit_qualification);
3154 skip_emulated_instruction(vcpu);
3155 return 1;
3156 }
3157
3158 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3159 {
3160 skip_emulated_instruction(vcpu);
3161 /* TODO: Add support for VT-d/pass-through device */
3162 return 1;
3163 }
3164
3165 static int handle_apic_access(struct kvm_vcpu *vcpu)
3166 {
3167 unsigned long exit_qualification;
3168 enum emulation_result er;
3169 unsigned long offset;
3170
3171 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3172 offset = exit_qualification & 0xffful;
3173
3174 er = emulate_instruction(vcpu, 0, 0, 0);
3175
3176 if (er != EMULATE_DONE) {
3177 printk(KERN_ERR
3178 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3179 offset);
3180 return -ENOEXEC;
3181 }
3182 return 1;
3183 }
3184
3185 static int handle_task_switch(struct kvm_vcpu *vcpu)
3186 {
3187 struct vcpu_vmx *vmx = to_vmx(vcpu);
3188 unsigned long exit_qualification;
3189 u16 tss_selector;
3190 int reason, type, idt_v;
3191
3192 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3193 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3194
3195 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3196
3197 reason = (u32)exit_qualification >> 30;
3198 if (reason == TASK_SWITCH_GATE && idt_v) {
3199 switch (type) {
3200 case INTR_TYPE_NMI_INTR:
3201 vcpu->arch.nmi_injected = false;
3202 if (cpu_has_virtual_nmis())
3203 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3204 GUEST_INTR_STATE_NMI);
3205 break;
3206 case INTR_TYPE_EXT_INTR:
3207 case INTR_TYPE_SOFT_INTR:
3208 kvm_clear_interrupt_queue(vcpu);
3209 break;
3210 case INTR_TYPE_HARD_EXCEPTION:
3211 case INTR_TYPE_SOFT_EXCEPTION:
3212 kvm_clear_exception_queue(vcpu);
3213 break;
3214 default:
3215 break;
3216 }
3217 }
3218 tss_selector = exit_qualification;
3219
3220 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3221 type != INTR_TYPE_EXT_INTR &&
3222 type != INTR_TYPE_NMI_INTR))
3223 skip_emulated_instruction(vcpu);
3224
3225 if (!kvm_task_switch(vcpu, tss_selector, reason))
3226 return 0;
3227
3228 /* clear all local breakpoint enable flags */
3229 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3230
3231 /*
3232 * TODO: What about debug traps on tss switch?
3233 * Are we supposed to inject them and update dr6?
3234 */
3235
3236 return 1;
3237 }
3238
3239 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3240 {
3241 unsigned long exit_qualification;
3242 gpa_t gpa;
3243 int gla_validity;
3244
3245 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3246
3247 if (exit_qualification & (1 << 6)) {
3248 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3249 return -EINVAL;
3250 }
3251
3252 gla_validity = (exit_qualification >> 7) & 0x3;
3253 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3254 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3255 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3256 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3257 vmcs_readl(GUEST_LINEAR_ADDRESS));
3258 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3259 (long unsigned int)exit_qualification);
3260 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3261 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3262 return 0;
3263 }
3264
3265 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3266 trace_kvm_page_fault(gpa, exit_qualification);
3267 return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3268 }
3269
3270 static u64 ept_rsvd_mask(u64 spte, int level)
3271 {
3272 int i;
3273 u64 mask = 0;
3274
3275 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3276 mask |= (1ULL << i);
3277
3278 if (level > 2)
3279 /* bits 7:3 reserved */
3280 mask |= 0xf8;
3281 else if (level == 2) {
3282 if (spte & (1ULL << 7))
3283 /* 2MB ref, bits 20:12 reserved */
3284 mask |= 0x1ff000;
3285 else
3286 /* bits 6:3 reserved */
3287 mask |= 0x78;
3288 }
3289
3290 return mask;
3291 }
3292
3293 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3294 int level)
3295 {
3296 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3297
3298 /* 010b (write-only) */
3299 WARN_ON((spte & 0x7) == 0x2);
3300
3301 /* 110b (write/execute) */
3302 WARN_ON((spte & 0x7) == 0x6);
3303
3304 /* 100b (execute-only) and value not supported by logical processor */
3305 if (!cpu_has_vmx_ept_execute_only())
3306 WARN_ON((spte & 0x7) == 0x4);
3307
3308 /* not 000b */
3309 if ((spte & 0x7)) {
3310 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3311
3312 if (rsvd_bits != 0) {
3313 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3314 __func__, rsvd_bits);
3315 WARN_ON(1);
3316 }
3317
3318 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3319 u64 ept_mem_type = (spte & 0x38) >> 3;
3320
3321 if (ept_mem_type == 2 || ept_mem_type == 3 ||
3322 ept_mem_type == 7) {
3323 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3324 __func__, ept_mem_type);
3325 WARN_ON(1);
3326 }
3327 }
3328 }
3329 }
3330
3331 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3332 {
3333 u64 sptes[4];
3334 int nr_sptes, i;
3335 gpa_t gpa;
3336
3337 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3338
3339 printk(KERN_ERR "EPT: Misconfiguration.\n");
3340 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3341
3342 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3343
3344 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3345 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3346
3347 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3348 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3349
3350 return 0;
3351 }
3352
3353 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3354 {
3355 u32 cpu_based_vm_exec_control;
3356
3357 /* clear pending NMI */
3358 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3359 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3360 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3361 ++vcpu->stat.nmi_window_exits;
3362
3363 return 1;
3364 }
3365
3366 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3367 {
3368 struct vcpu_vmx *vmx = to_vmx(vcpu);
3369 enum emulation_result err = EMULATE_DONE;
3370 int ret = 1;
3371
3372 while (!guest_state_valid(vcpu)) {
3373 err = emulate_instruction(vcpu, 0, 0, 0);
3374
3375 if (err == EMULATE_DO_MMIO) {
3376 ret = 0;
3377 goto out;
3378 }
3379
3380 if (err != EMULATE_DONE) {
3381 kvm_report_emulation_failure(vcpu, "emulation failure");
3382 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3383 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3384 ret = 0;
3385 goto out;
3386 }
3387
3388 if (signal_pending(current))
3389 goto out;
3390 if (need_resched())
3391 schedule();
3392 }
3393
3394 vmx->emulation_required = 0;
3395 out:
3396 return ret;
3397 }
3398
3399 /*
3400 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3401 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3402 */
3403 static int handle_pause(struct kvm_vcpu *vcpu)
3404 {
3405 skip_emulated_instruction(vcpu);
3406 kvm_vcpu_on_spin(vcpu);
3407
3408 return 1;
3409 }
3410
3411 /*
3412 * The exit handlers return 1 if the exit was handled fully and guest execution
3413 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3414 * to be done to userspace and return 0.
3415 */
3416 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3417 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3418 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3419 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3420 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3421 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3422 [EXIT_REASON_CR_ACCESS] = handle_cr,
3423 [EXIT_REASON_DR_ACCESS] = handle_dr,
3424 [EXIT_REASON_CPUID] = handle_cpuid,
3425 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3426 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3427 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3428 [EXIT_REASON_HLT] = handle_halt,
3429 [EXIT_REASON_INVLPG] = handle_invlpg,
3430 [EXIT_REASON_VMCALL] = handle_vmcall,
3431 [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
3432 [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
3433 [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
3434 [EXIT_REASON_VMPTRST] = handle_vmx_insn,
3435 [EXIT_REASON_VMREAD] = handle_vmx_insn,
3436 [EXIT_REASON_VMRESUME] = handle_vmx_insn,
3437 [EXIT_REASON_VMWRITE] = handle_vmx_insn,
3438 [EXIT_REASON_VMOFF] = handle_vmx_insn,
3439 [EXIT_REASON_VMON] = handle_vmx_insn,
3440 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3441 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3442 [EXIT_REASON_WBINVD] = handle_wbinvd,
3443 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3444 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
3445 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3446 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
3447 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
3448 };
3449
3450 static const int kvm_vmx_max_exit_handlers =
3451 ARRAY_SIZE(kvm_vmx_exit_handlers);
3452
3453 /*
3454 * The guest has exited. See if we can fix it or if we need userspace
3455 * assistance.
3456 */
3457 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3458 {
3459 struct vcpu_vmx *vmx = to_vmx(vcpu);
3460 u32 exit_reason = vmx->exit_reason;
3461 u32 vectoring_info = vmx->idt_vectoring_info;
3462
3463 trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
3464
3465 /* If guest state is invalid, start emulating */
3466 if (vmx->emulation_required && emulate_invalid_guest_state)
3467 return handle_invalid_guest_state(vcpu);
3468
3469 /* Access CR3 don't cause VMExit in paging mode, so we need
3470 * to sync with guest real CR3. */
3471 if (enable_ept && is_paging(vcpu))
3472 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3473
3474 if (unlikely(vmx->fail)) {
3475 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3476 vcpu->run->fail_entry.hardware_entry_failure_reason
3477 = vmcs_read32(VM_INSTRUCTION_ERROR);
3478 return 0;
3479 }
3480
3481 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3482 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3483 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3484 exit_reason != EXIT_REASON_TASK_SWITCH))
3485 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3486 "(0x%x) and exit reason is 0x%x\n",
3487 __func__, vectoring_info, exit_reason);
3488
3489 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3490 if (vmx_interrupt_allowed(vcpu)) {
3491 vmx->soft_vnmi_blocked = 0;
3492 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3493 vcpu->arch.nmi_pending) {
3494 /*
3495 * This CPU don't support us in finding the end of an
3496 * NMI-blocked window if the guest runs with IRQs
3497 * disabled. So we pull the trigger after 1 s of
3498 * futile waiting, but inform the user about this.
3499 */
3500 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3501 "state on VCPU %d after 1 s timeout\n",
3502 __func__, vcpu->vcpu_id);
3503 vmx->soft_vnmi_blocked = 0;
3504 }
3505 }
3506
3507 if (exit_reason < kvm_vmx_max_exit_handlers
3508 && kvm_vmx_exit_handlers[exit_reason])
3509 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3510 else {
3511 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3512 vcpu->run->hw.hardware_exit_reason = exit_reason;
3513 }
3514 return 0;
3515 }
3516
3517 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3518 {
3519 if (irr == -1 || tpr < irr) {
3520 vmcs_write32(TPR_THRESHOLD, 0);
3521 return;
3522 }
3523
3524 vmcs_write32(TPR_THRESHOLD, irr);
3525 }
3526
3527 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3528 {
3529 u32 exit_intr_info;
3530 u32 idt_vectoring_info = vmx->idt_vectoring_info;
3531 bool unblock_nmi;
3532 u8 vector;
3533 int type;
3534 bool idtv_info_valid;
3535
3536 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3537
3538 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3539
3540 /* Handle machine checks before interrupts are enabled */
3541 if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3542 || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3543 && is_machine_check(exit_intr_info)))
3544 kvm_machine_check();
3545
3546 /* We need to handle NMIs before interrupts are enabled */
3547 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3548 (exit_intr_info & INTR_INFO_VALID_MASK))
3549 asm("int $2");
3550
3551 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3552
3553 if (cpu_has_virtual_nmis()) {
3554 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3555 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3556 /*
3557 * SDM 3: 27.7.1.2 (September 2008)
3558 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3559 * a guest IRET fault.
3560 * SDM 3: 23.2.2 (September 2008)
3561 * Bit 12 is undefined in any of the following cases:
3562 * If the VM exit sets the valid bit in the IDT-vectoring
3563 * information field.
3564 * If the VM exit is due to a double fault.
3565 */
3566 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3567 vector != DF_VECTOR && !idtv_info_valid)
3568 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3569 GUEST_INTR_STATE_NMI);
3570 } else if (unlikely(vmx->soft_vnmi_blocked))
3571 vmx->vnmi_blocked_time +=
3572 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3573
3574 vmx->vcpu.arch.nmi_injected = false;
3575 kvm_clear_exception_queue(&vmx->vcpu);
3576 kvm_clear_interrupt_queue(&vmx->vcpu);
3577
3578 if (!idtv_info_valid)
3579 return;
3580
3581 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3582 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3583
3584 switch (type) {
3585 case INTR_TYPE_NMI_INTR:
3586 vmx->vcpu.arch.nmi_injected = true;
3587 /*
3588 * SDM 3: 27.7.1.2 (September 2008)
3589 * Clear bit "block by NMI" before VM entry if a NMI
3590 * delivery faulted.
3591 */
3592 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3593 GUEST_INTR_STATE_NMI);
3594 break;
3595 case INTR_TYPE_SOFT_EXCEPTION:
3596 vmx->vcpu.arch.event_exit_inst_len =
3597 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3598 /* fall through */
3599 case INTR_TYPE_HARD_EXCEPTION:
3600 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3601 u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3602 kvm_queue_exception_e(&vmx->vcpu, vector, err);
3603 } else
3604 kvm_queue_exception(&vmx->vcpu, vector);
3605 break;
3606 case INTR_TYPE_SOFT_INTR:
3607 vmx->vcpu.arch.event_exit_inst_len =
3608 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3609 /* fall through */
3610 case INTR_TYPE_EXT_INTR:
3611 kvm_queue_interrupt(&vmx->vcpu, vector,
3612 type == INTR_TYPE_SOFT_INTR);
3613 break;
3614 default:
3615 break;
3616 }
3617 }
3618
3619 /*
3620 * Failure to inject an interrupt should give us the information
3621 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3622 * when fetching the interrupt redirection bitmap in the real-mode
3623 * tss, this doesn't happen. So we do it ourselves.
3624 */
3625 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3626 {
3627 vmx->rmode.irq.pending = 0;
3628 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3629 return;
3630 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3631 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3632 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3633 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3634 return;
3635 }
3636 vmx->idt_vectoring_info =
3637 VECTORING_INFO_VALID_MASK
3638 | INTR_TYPE_EXT_INTR
3639 | vmx->rmode.irq.vector;
3640 }
3641
3642 #ifdef CONFIG_X86_64
3643 #define R "r"
3644 #define Q "q"
3645 #else
3646 #define R "e"
3647 #define Q "l"
3648 #endif
3649
3650 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3651 {
3652 struct vcpu_vmx *vmx = to_vmx(vcpu);
3653
3654 if (enable_ept && is_paging(vcpu)) {
3655 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3656 ept_load_pdptrs(vcpu);
3657 }
3658 /* Record the guest's net vcpu time for enforced NMI injections. */
3659 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3660 vmx->entry_time = ktime_get();
3661
3662 /* Don't enter VMX if guest state is invalid, let the exit handler
3663 start emulation until we arrive back to a valid state */
3664 if (vmx->emulation_required && emulate_invalid_guest_state)
3665 return;
3666
3667 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3668 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3669 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3670 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3671
3672 /* When single-stepping over STI and MOV SS, we must clear the
3673 * corresponding interruptibility bits in the guest state. Otherwise
3674 * vmentry fails as it then expects bit 14 (BS) in pending debug
3675 * exceptions being set, but that's not correct for the guest debugging
3676 * case. */
3677 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3678 vmx_set_interrupt_shadow(vcpu, 0);
3679
3680 /*
3681 * Loading guest fpu may have cleared host cr0.ts
3682 */
3683 vmcs_writel(HOST_CR0, read_cr0());
3684
3685 if (vcpu->arch.switch_db_regs)
3686 set_debugreg(vcpu->arch.dr6, 6);
3687
3688 asm(
3689 /* Store host registers */
3690 "push %%"R"dx; push %%"R"bp;"
3691 "push %%"R"cx \n\t"
3692 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3693 "je 1f \n\t"
3694 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3695 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3696 "1: \n\t"
3697 /* Reload cr2 if changed */
3698 "mov %c[cr2](%0), %%"R"ax \n\t"
3699 "mov %%cr2, %%"R"dx \n\t"
3700 "cmp %%"R"ax, %%"R"dx \n\t"
3701 "je 2f \n\t"
3702 "mov %%"R"ax, %%cr2 \n\t"
3703 "2: \n\t"
3704 /* Check if vmlaunch of vmresume is needed */
3705 "cmpl $0, %c[launched](%0) \n\t"
3706 /* Load guest registers. Don't clobber flags. */
3707 "mov %c[rax](%0), %%"R"ax \n\t"
3708 "mov %c[rbx](%0), %%"R"bx \n\t"
3709 "mov %c[rdx](%0), %%"R"dx \n\t"
3710 "mov %c[rsi](%0), %%"R"si \n\t"
3711 "mov %c[rdi](%0), %%"R"di \n\t"
3712 "mov %c[rbp](%0), %%"R"bp \n\t"
3713 #ifdef CONFIG_X86_64
3714 "mov %c[r8](%0), %%r8 \n\t"
3715 "mov %c[r9](%0), %%r9 \n\t"
3716 "mov %c[r10](%0), %%r10 \n\t"
3717 "mov %c[r11](%0), %%r11 \n\t"
3718 "mov %c[r12](%0), %%r12 \n\t"
3719 "mov %c[r13](%0), %%r13 \n\t"
3720 "mov %c[r14](%0), %%r14 \n\t"
3721 "mov %c[r15](%0), %%r15 \n\t"
3722 #endif
3723 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3724
3725 /* Enter guest mode */
3726 "jne .Llaunched \n\t"
3727 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3728 "jmp .Lkvm_vmx_return \n\t"
3729 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3730 ".Lkvm_vmx_return: "
3731 /* Save guest registers, load host registers, keep flags */
3732 "xchg %0, (%%"R"sp) \n\t"
3733 "mov %%"R"ax, %c[rax](%0) \n\t"
3734 "mov %%"R"bx, %c[rbx](%0) \n\t"
3735 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3736 "mov %%"R"dx, %c[rdx](%0) \n\t"
3737 "mov %%"R"si, %c[rsi](%0) \n\t"
3738 "mov %%"R"di, %c[rdi](%0) \n\t"
3739 "mov %%"R"bp, %c[rbp](%0) \n\t"
3740 #ifdef CONFIG_X86_64
3741 "mov %%r8, %c[r8](%0) \n\t"
3742 "mov %%r9, %c[r9](%0) \n\t"
3743 "mov %%r10, %c[r10](%0) \n\t"
3744 "mov %%r11, %c[r11](%0) \n\t"
3745 "mov %%r12, %c[r12](%0) \n\t"
3746 "mov %%r13, %c[r13](%0) \n\t"
3747 "mov %%r14, %c[r14](%0) \n\t"
3748 "mov %%r15, %c[r15](%0) \n\t"
3749 #endif
3750 "mov %%cr2, %%"R"ax \n\t"
3751 "mov %%"R"ax, %c[cr2](%0) \n\t"
3752
3753 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3754 "setbe %c[fail](%0) \n\t"
3755 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3756 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3757 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3758 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3759 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3760 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3761 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3762 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3763 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3764 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3765 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3766 #ifdef CONFIG_X86_64
3767 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3768 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3769 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3770 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3771 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3772 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3773 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3774 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3775 #endif
3776 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3777 : "cc", "memory"
3778 , R"bx", R"di", R"si"
3779 #ifdef CONFIG_X86_64
3780 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3781 #endif
3782 );
3783
3784 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3785 | (1 << VCPU_EXREG_PDPTR));
3786 vcpu->arch.regs_dirty = 0;
3787
3788 if (vcpu->arch.switch_db_regs)
3789 get_debugreg(vcpu->arch.dr6, 6);
3790
3791 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3792 if (vmx->rmode.irq.pending)
3793 fixup_rmode_irq(vmx);
3794
3795 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3796 vmx->launched = 1;
3797
3798 vmx_complete_interrupts(vmx);
3799 }
3800
3801 #undef R
3802 #undef Q
3803
3804 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3805 {
3806 struct vcpu_vmx *vmx = to_vmx(vcpu);
3807
3808 if (vmx->vmcs) {
3809 vcpu_clear(vmx);
3810 free_vmcs(vmx->vmcs);
3811 vmx->vmcs = NULL;
3812 }
3813 }
3814
3815 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3816 {
3817 struct vcpu_vmx *vmx = to_vmx(vcpu);
3818
3819 spin_lock(&vmx_vpid_lock);
3820 if (vmx->vpid != 0)
3821 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3822 spin_unlock(&vmx_vpid_lock);
3823 vmx_free_vmcs(vcpu);
3824 kfree(vmx->host_msrs);
3825 kfree(vmx->guest_msrs);
3826 kvm_vcpu_uninit(vcpu);
3827 kmem_cache_free(kvm_vcpu_cache, vmx);
3828 }
3829
3830 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3831 {
3832 int err;
3833 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3834 int cpu;
3835
3836 if (!vmx)
3837 return ERR_PTR(-ENOMEM);
3838
3839 allocate_vpid(vmx);
3840
3841 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3842 if (err)
3843 goto free_vcpu;
3844
3845 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3846 if (!vmx->guest_msrs) {
3847 err = -ENOMEM;
3848 goto uninit_vcpu;
3849 }
3850
3851 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3852 if (!vmx->host_msrs)
3853 goto free_guest_msrs;
3854
3855 vmx->vmcs = alloc_vmcs();
3856 if (!vmx->vmcs)
3857 goto free_msrs;
3858
3859 vmcs_clear(vmx->vmcs);
3860
3861 cpu = get_cpu();
3862 vmx_vcpu_load(&vmx->vcpu, cpu);
3863 err = vmx_vcpu_setup(vmx);
3864 vmx_vcpu_put(&vmx->vcpu);
3865 put_cpu();
3866 if (err)
3867 goto free_vmcs;
3868 if (vm_need_virtualize_apic_accesses(kvm))
3869 if (alloc_apic_access_page(kvm) != 0)
3870 goto free_vmcs;
3871
3872 if (enable_ept) {
3873 if (!kvm->arch.ept_identity_map_addr)
3874 kvm->arch.ept_identity_map_addr =
3875 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3876 if (alloc_identity_pagetable(kvm) != 0)
3877 goto free_vmcs;
3878 }
3879
3880 return &vmx->vcpu;
3881
3882 free_vmcs:
3883 free_vmcs(vmx->vmcs);
3884 free_msrs:
3885 kfree(vmx->host_msrs);
3886 free_guest_msrs:
3887 kfree(vmx->guest_msrs);
3888 uninit_vcpu:
3889 kvm_vcpu_uninit(&vmx->vcpu);
3890 free_vcpu:
3891 kmem_cache_free(kvm_vcpu_cache, vmx);
3892 return ERR_PTR(err);
3893 }
3894
3895 static void __init vmx_check_processor_compat(void *rtn)
3896 {
3897 struct vmcs_config vmcs_conf;
3898
3899 *(int *)rtn = 0;
3900 if (setup_vmcs_config(&vmcs_conf) < 0)
3901 *(int *)rtn = -EIO;
3902 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3903 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3904 smp_processor_id());
3905 *(int *)rtn = -EIO;
3906 }
3907 }
3908
3909 static int get_ept_level(void)
3910 {
3911 return VMX_EPT_DEFAULT_GAW + 1;
3912 }
3913
3914 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3915 {
3916 u64 ret;
3917
3918 /* For VT-d and EPT combination
3919 * 1. MMIO: always map as UC
3920 * 2. EPT with VT-d:
3921 * a. VT-d without snooping control feature: can't guarantee the
3922 * result, try to trust guest.
3923 * b. VT-d with snooping control feature: snooping control feature of
3924 * VT-d engine can guarantee the cache correctness. Just set it
3925 * to WB to keep consistent with host. So the same as item 3.
3926 * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3927 * consistent with host MTRR
3928 */
3929 if (is_mmio)
3930 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3931 else if (vcpu->kvm->arch.iommu_domain &&
3932 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3933 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3934 VMX_EPT_MT_EPTE_SHIFT;
3935 else
3936 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3937 | VMX_EPT_IGMT_BIT;
3938
3939 return ret;
3940 }
3941
3942 static const struct trace_print_flags vmx_exit_reasons_str[] = {
3943 { EXIT_REASON_EXCEPTION_NMI, "exception" },
3944 { EXIT_REASON_EXTERNAL_INTERRUPT, "ext_irq" },
3945 { EXIT_REASON_TRIPLE_FAULT, "triple_fault" },
3946 { EXIT_REASON_NMI_WINDOW, "nmi_window" },
3947 { EXIT_REASON_IO_INSTRUCTION, "io_instruction" },
3948 { EXIT_REASON_CR_ACCESS, "cr_access" },
3949 { EXIT_REASON_DR_ACCESS, "dr_access" },
3950 { EXIT_REASON_CPUID, "cpuid" },
3951 { EXIT_REASON_MSR_READ, "rdmsr" },
3952 { EXIT_REASON_MSR_WRITE, "wrmsr" },
3953 { EXIT_REASON_PENDING_INTERRUPT, "interrupt_window" },
3954 { EXIT_REASON_HLT, "halt" },
3955 { EXIT_REASON_INVLPG, "invlpg" },
3956 { EXIT_REASON_VMCALL, "hypercall" },
3957 { EXIT_REASON_TPR_BELOW_THRESHOLD, "tpr_below_thres" },
3958 { EXIT_REASON_APIC_ACCESS, "apic_access" },
3959 { EXIT_REASON_WBINVD, "wbinvd" },
3960 { EXIT_REASON_TASK_SWITCH, "task_switch" },
3961 { EXIT_REASON_EPT_VIOLATION, "ept_violation" },
3962 { -1, NULL }
3963 };
3964
3965 static bool vmx_gb_page_enable(void)
3966 {
3967 return false;
3968 }
3969
3970 static struct kvm_x86_ops vmx_x86_ops = {
3971 .cpu_has_kvm_support = cpu_has_kvm_support,
3972 .disabled_by_bios = vmx_disabled_by_bios,
3973 .hardware_setup = hardware_setup,
3974 .hardware_unsetup = hardware_unsetup,
3975 .check_processor_compatibility = vmx_check_processor_compat,
3976 .hardware_enable = hardware_enable,
3977 .hardware_disable = hardware_disable,
3978 .cpu_has_accelerated_tpr = report_flexpriority,
3979
3980 .vcpu_create = vmx_create_vcpu,
3981 .vcpu_free = vmx_free_vcpu,
3982 .vcpu_reset = vmx_vcpu_reset,
3983
3984 .prepare_guest_switch = vmx_save_host_state,
3985 .vcpu_load = vmx_vcpu_load,
3986 .vcpu_put = vmx_vcpu_put,
3987
3988 .set_guest_debug = set_guest_debug,
3989 .get_msr = vmx_get_msr,
3990 .set_msr = vmx_set_msr,
3991 .get_segment_base = vmx_get_segment_base,
3992 .get_segment = vmx_get_segment,
3993 .set_segment = vmx_set_segment,
3994 .get_cpl = vmx_get_cpl,
3995 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3996 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3997 .set_cr0 = vmx_set_cr0,
3998 .set_cr3 = vmx_set_cr3,
3999 .set_cr4 = vmx_set_cr4,
4000 .set_efer = vmx_set_efer,
4001 .get_idt = vmx_get_idt,
4002 .set_idt = vmx_set_idt,
4003 .get_gdt = vmx_get_gdt,
4004 .set_gdt = vmx_set_gdt,
4005 .cache_reg = vmx_cache_reg,
4006 .get_rflags = vmx_get_rflags,
4007 .set_rflags = vmx_set_rflags,
4008
4009 .tlb_flush = vmx_flush_tlb,
4010
4011 .run = vmx_vcpu_run,
4012 .handle_exit = vmx_handle_exit,
4013 .skip_emulated_instruction = skip_emulated_instruction,
4014 .set_interrupt_shadow = vmx_set_interrupt_shadow,
4015 .get_interrupt_shadow = vmx_get_interrupt_shadow,
4016 .patch_hypercall = vmx_patch_hypercall,
4017 .set_irq = vmx_inject_irq,
4018 .set_nmi = vmx_inject_nmi,
4019 .queue_exception = vmx_queue_exception,
4020 .interrupt_allowed = vmx_interrupt_allowed,
4021 .nmi_allowed = vmx_nmi_allowed,
4022 .enable_nmi_window = enable_nmi_window,
4023 .enable_irq_window = enable_irq_window,
4024 .update_cr8_intercept = update_cr8_intercept,
4025
4026 .set_tss_addr = vmx_set_tss_addr,
4027 .get_tdp_level = get_ept_level,
4028 .get_mt_mask = vmx_get_mt_mask,
4029
4030 .exit_reasons_str = vmx_exit_reasons_str,
4031 .gb_page_enable = vmx_gb_page_enable,
4032 };
4033
4034 static int __init vmx_init(void)
4035 {
4036 int r;
4037
4038 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4039 if (!vmx_io_bitmap_a)
4040 return -ENOMEM;
4041
4042 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4043 if (!vmx_io_bitmap_b) {
4044 r = -ENOMEM;
4045 goto out;
4046 }
4047
4048 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4049 if (!vmx_msr_bitmap_legacy) {
4050 r = -ENOMEM;
4051 goto out1;
4052 }
4053
4054 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4055 if (!vmx_msr_bitmap_longmode) {
4056 r = -ENOMEM;
4057 goto out2;
4058 }
4059
4060 /*
4061 * Allow direct access to the PC debug port (it is often used for I/O
4062 * delays, but the vmexits simply slow things down).
4063 */
4064 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4065 clear_bit(0x80, vmx_io_bitmap_a);
4066
4067 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4068
4069 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4070 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4071
4072 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4073
4074 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
4075 if (r)
4076 goto out3;
4077
4078 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4079 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4080 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4081 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4082 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4083 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4084
4085 if (enable_ept) {
4086 bypass_guest_pf = 0;
4087 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4088 VMX_EPT_WRITABLE_MASK);
4089 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4090 VMX_EPT_EXECUTABLE_MASK);
4091 kvm_enable_tdp();
4092 } else
4093 kvm_disable_tdp();
4094
4095 if (bypass_guest_pf)
4096 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4097
4098 return 0;
4099
4100 out3:
4101 free_page((unsigned long)vmx_msr_bitmap_longmode);
4102 out2:
4103 free_page((unsigned long)vmx_msr_bitmap_legacy);
4104 out1:
4105 free_page((unsigned long)vmx_io_bitmap_b);
4106 out:
4107 free_page((unsigned long)vmx_io_bitmap_a);
4108 return r;
4109 }
4110
4111 static void __exit vmx_exit(void)
4112 {
4113 free_page((unsigned long)vmx_msr_bitmap_legacy);
4114 free_page((unsigned long)vmx_msr_bitmap_longmode);
4115 free_page((unsigned long)vmx_io_bitmap_b);
4116 free_page((unsigned long)vmx_io_bitmap_a);
4117
4118 kvm_exit();
4119 }
4120
4121 module_init(vmx_init)
4122 module_exit(vmx_exit)