2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
38 #include <asm/virtext.h>
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static int __read_mostly bypass_guest_pf
= 1;
51 module_param(bypass_guest_pf
, bool, S_IRUGO
);
53 static int __read_mostly enable_vpid
= 1;
54 module_param_named(vpid
, enable_vpid
, bool, 0444);
56 static int __read_mostly flexpriority_enabled
= 1;
57 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
59 static int __read_mostly enable_ept
= 1;
60 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
62 static int __read_mostly enable_unrestricted_guest
= 1;
63 module_param_named(unrestricted_guest
,
64 enable_unrestricted_guest
, bool, S_IRUGO
);
66 static int __read_mostly emulate_invalid_guest_state
= 0;
67 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
69 static int __read_mostly vmm_exclusive
= 1;
70 module_param(vmm_exclusive
, bool, S_IRUGO
);
72 static int __read_mostly yield_on_hlt
= 1;
73 module_param(yield_on_hlt
, bool, S_IRUGO
);
75 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
76 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
77 #define KVM_GUEST_CR0_MASK \
78 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
79 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
80 (X86_CR0_WP | X86_CR0_NE)
81 #define KVM_VM_CR0_ALWAYS_ON \
82 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
83 #define KVM_CR4_GUEST_OWNED_BITS \
84 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
87 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
88 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
90 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
93 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
94 * ple_gap: upper bound on the amount of time between two successive
95 * executions of PAUSE in a loop. Also indicate if ple enabled.
96 * According to test, this time is usually smaller than 128 cycles.
97 * ple_window: upper bound on the amount of time a guest is allowed to execute
98 * in a PAUSE loop. Tests indicate that most spinlocks are held for
99 * less than 2^12 cycles
100 * Time is measured based on a counter that runs at the same rate as the TSC,
101 * refer SDM volume 3b section 21.6.13 & 22.1.3.
103 #define KVM_VMX_DEFAULT_PLE_GAP 128
104 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
105 static int ple_gap
= KVM_VMX_DEFAULT_PLE_GAP
;
106 module_param(ple_gap
, int, S_IRUGO
);
108 static int ple_window
= KVM_VMX_DEFAULT_PLE_WINDOW
;
109 module_param(ple_window
, int, S_IRUGO
);
111 #define NR_AUTOLOAD_MSRS 1
119 struct shared_msr_entry
{
126 struct kvm_vcpu vcpu
;
127 struct list_head local_vcpus_link
;
128 unsigned long host_rsp
;
132 u32 idt_vectoring_info
;
133 struct shared_msr_entry
*guest_msrs
;
137 u64 msr_host_kernel_gs_base
;
138 u64 msr_guest_kernel_gs_base
;
141 struct msr_autoload
{
143 struct vmx_msr_entry guest
[NR_AUTOLOAD_MSRS
];
144 struct vmx_msr_entry host
[NR_AUTOLOAD_MSRS
];
148 u16 fs_sel
, gs_sel
, ldt_sel
;
149 int gs_ldt_reload_needed
;
150 int fs_reload_needed
;
155 struct kvm_save_segment
{
160 } tr
, es
, ds
, fs
, gs
;
163 bool emulation_required
;
165 /* Support for vnmi-less CPUs */
166 int soft_vnmi_blocked
;
168 s64 vnmi_blocked_time
;
174 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
176 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
179 static u64
construct_eptp(unsigned long root_hpa
);
180 static void kvm_cpu_vmxon(u64 addr
);
181 static void kvm_cpu_vmxoff(void);
182 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
);
183 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
);
185 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
186 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
187 static DEFINE_PER_CPU(struct list_head
, vcpus_on_cpu
);
188 static DEFINE_PER_CPU(struct desc_ptr
, host_gdt
);
190 static unsigned long *vmx_io_bitmap_a
;
191 static unsigned long *vmx_io_bitmap_b
;
192 static unsigned long *vmx_msr_bitmap_legacy
;
193 static unsigned long *vmx_msr_bitmap_longmode
;
195 static bool cpu_has_load_ia32_efer
;
197 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
198 static DEFINE_SPINLOCK(vmx_vpid_lock
);
200 static struct vmcs_config
{
204 u32 pin_based_exec_ctrl
;
205 u32 cpu_based_exec_ctrl
;
206 u32 cpu_based_2nd_exec_ctrl
;
211 static struct vmx_capability
{
216 #define VMX_SEGMENT_FIELD(seg) \
217 [VCPU_SREG_##seg] = { \
218 .selector = GUEST_##seg##_SELECTOR, \
219 .base = GUEST_##seg##_BASE, \
220 .limit = GUEST_##seg##_LIMIT, \
221 .ar_bytes = GUEST_##seg##_AR_BYTES, \
224 static struct kvm_vmx_segment_field
{
229 } kvm_vmx_segment_fields
[] = {
230 VMX_SEGMENT_FIELD(CS
),
231 VMX_SEGMENT_FIELD(DS
),
232 VMX_SEGMENT_FIELD(ES
),
233 VMX_SEGMENT_FIELD(FS
),
234 VMX_SEGMENT_FIELD(GS
),
235 VMX_SEGMENT_FIELD(SS
),
236 VMX_SEGMENT_FIELD(TR
),
237 VMX_SEGMENT_FIELD(LDTR
),
240 static u64 host_efer
;
242 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
245 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
246 * away by decrementing the array size.
248 static const u32 vmx_msr_index
[] = {
250 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
,
252 MSR_EFER
, MSR_TSC_AUX
, MSR_STAR
,
254 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
256 static inline bool is_page_fault(u32 intr_info
)
258 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
259 INTR_INFO_VALID_MASK
)) ==
260 (INTR_TYPE_HARD_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
263 static inline bool is_no_device(u32 intr_info
)
265 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
266 INTR_INFO_VALID_MASK
)) ==
267 (INTR_TYPE_HARD_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
270 static inline bool is_invalid_opcode(u32 intr_info
)
272 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
273 INTR_INFO_VALID_MASK
)) ==
274 (INTR_TYPE_HARD_EXCEPTION
| UD_VECTOR
| INTR_INFO_VALID_MASK
);
277 static inline bool is_external_interrupt(u32 intr_info
)
279 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
280 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
283 static inline bool is_machine_check(u32 intr_info
)
285 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
286 INTR_INFO_VALID_MASK
)) ==
287 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
290 static inline bool cpu_has_vmx_msr_bitmap(void)
292 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
295 static inline bool cpu_has_vmx_tpr_shadow(void)
297 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
300 static inline bool vm_need_tpr_shadow(struct kvm
*kvm
)
302 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm
));
305 static inline bool cpu_has_secondary_exec_ctrls(void)
307 return vmcs_config
.cpu_based_exec_ctrl
&
308 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
311 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
313 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
314 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
317 static inline bool cpu_has_vmx_flexpriority(void)
319 return cpu_has_vmx_tpr_shadow() &&
320 cpu_has_vmx_virtualize_apic_accesses();
323 static inline bool cpu_has_vmx_ept_execute_only(void)
325 return vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
;
328 static inline bool cpu_has_vmx_eptp_uncacheable(void)
330 return vmx_capability
.ept
& VMX_EPTP_UC_BIT
;
333 static inline bool cpu_has_vmx_eptp_writeback(void)
335 return vmx_capability
.ept
& VMX_EPTP_WB_BIT
;
338 static inline bool cpu_has_vmx_ept_2m_page(void)
340 return vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
;
343 static inline bool cpu_has_vmx_ept_1g_page(void)
345 return vmx_capability
.ept
& VMX_EPT_1GB_PAGE_BIT
;
348 static inline bool cpu_has_vmx_ept_4levels(void)
350 return vmx_capability
.ept
& VMX_EPT_PAGE_WALK_4_BIT
;
353 static inline bool cpu_has_vmx_invept_individual_addr(void)
355 return vmx_capability
.ept
& VMX_EPT_EXTENT_INDIVIDUAL_BIT
;
358 static inline bool cpu_has_vmx_invept_context(void)
360 return vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
;
363 static inline bool cpu_has_vmx_invept_global(void)
365 return vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
;
368 static inline bool cpu_has_vmx_invvpid_single(void)
370 return vmx_capability
.vpid
& VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT
;
373 static inline bool cpu_has_vmx_invvpid_global(void)
375 return vmx_capability
.vpid
& VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
378 static inline bool cpu_has_vmx_ept(void)
380 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
381 SECONDARY_EXEC_ENABLE_EPT
;
384 static inline bool cpu_has_vmx_unrestricted_guest(void)
386 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
387 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
390 static inline bool cpu_has_vmx_ple(void)
392 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
393 SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
396 static inline bool vm_need_virtualize_apic_accesses(struct kvm
*kvm
)
398 return flexpriority_enabled
&& irqchip_in_kernel(kvm
);
401 static inline bool cpu_has_vmx_vpid(void)
403 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
404 SECONDARY_EXEC_ENABLE_VPID
;
407 static inline bool cpu_has_vmx_rdtscp(void)
409 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
410 SECONDARY_EXEC_RDTSCP
;
413 static inline bool cpu_has_virtual_nmis(void)
415 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
418 static inline bool cpu_has_vmx_wbinvd_exit(void)
420 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
421 SECONDARY_EXEC_WBINVD_EXITING
;
424 static inline bool report_flexpriority(void)
426 return flexpriority_enabled
;
429 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
433 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
434 if (vmx_msr_index
[vmx
->guest_msrs
[i
].index
] == msr
)
439 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
445 } operand
= { vpid
, 0, gva
};
447 asm volatile (__ex(ASM_VMX_INVVPID
)
448 /* CF==1 or ZF==1 --> rc = -1 */
450 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
453 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
457 } operand
= {eptp
, gpa
};
459 asm volatile (__ex(ASM_VMX_INVEPT
)
460 /* CF==1 or ZF==1 --> rc = -1 */
461 "; ja 1f ; ud2 ; 1:\n"
462 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
465 static struct shared_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
469 i
= __find_msr_index(vmx
, msr
);
471 return &vmx
->guest_msrs
[i
];
475 static void vmcs_clear(struct vmcs
*vmcs
)
477 u64 phys_addr
= __pa(vmcs
);
480 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
481 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
484 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
488 static void vmcs_load(struct vmcs
*vmcs
)
490 u64 phys_addr
= __pa(vmcs
);
493 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
494 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
497 printk(KERN_ERR
"kvm: vmptrld %p/%llx fail\n",
501 static void __vcpu_clear(void *arg
)
503 struct vcpu_vmx
*vmx
= arg
;
504 int cpu
= raw_smp_processor_id();
506 if (vmx
->vcpu
.cpu
== cpu
)
507 vmcs_clear(vmx
->vmcs
);
508 if (per_cpu(current_vmcs
, cpu
) == vmx
->vmcs
)
509 per_cpu(current_vmcs
, cpu
) = NULL
;
510 list_del(&vmx
->local_vcpus_link
);
515 static void vcpu_clear(struct vcpu_vmx
*vmx
)
517 if (vmx
->vcpu
.cpu
== -1)
519 smp_call_function_single(vmx
->vcpu
.cpu
, __vcpu_clear
, vmx
, 1);
522 static inline void vpid_sync_vcpu_single(struct vcpu_vmx
*vmx
)
527 if (cpu_has_vmx_invvpid_single())
528 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vmx
->vpid
, 0);
531 static inline void vpid_sync_vcpu_global(void)
533 if (cpu_has_vmx_invvpid_global())
534 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT
, 0, 0);
537 static inline void vpid_sync_context(struct vcpu_vmx
*vmx
)
539 if (cpu_has_vmx_invvpid_single())
540 vpid_sync_vcpu_single(vmx
);
542 vpid_sync_vcpu_global();
545 static inline void ept_sync_global(void)
547 if (cpu_has_vmx_invept_global())
548 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
551 static inline void ept_sync_context(u64 eptp
)
554 if (cpu_has_vmx_invept_context())
555 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
561 static inline void ept_sync_individual_addr(u64 eptp
, gpa_t gpa
)
564 if (cpu_has_vmx_invept_individual_addr())
565 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR
,
568 ept_sync_context(eptp
);
572 static unsigned long vmcs_readl(unsigned long field
)
574 unsigned long value
= 0;
576 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX
)
577 : "+a"(value
) : "d"(field
) : "cc");
581 static u16
vmcs_read16(unsigned long field
)
583 return vmcs_readl(field
);
586 static u32
vmcs_read32(unsigned long field
)
588 return vmcs_readl(field
);
591 static u64
vmcs_read64(unsigned long field
)
594 return vmcs_readl(field
);
596 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
600 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
602 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
603 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
607 static void vmcs_writel(unsigned long field
, unsigned long value
)
611 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
612 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
614 vmwrite_error(field
, value
);
617 static void vmcs_write16(unsigned long field
, u16 value
)
619 vmcs_writel(field
, value
);
622 static void vmcs_write32(unsigned long field
, u32 value
)
624 vmcs_writel(field
, value
);
627 static void vmcs_write64(unsigned long field
, u64 value
)
629 vmcs_writel(field
, value
);
630 #ifndef CONFIG_X86_64
632 vmcs_writel(field
+1, value
>> 32);
636 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
638 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
641 static void vmcs_set_bits(unsigned long field
, u32 mask
)
643 vmcs_writel(field
, vmcs_readl(field
) | mask
);
646 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
650 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
) |
651 (1u << NM_VECTOR
) | (1u << DB_VECTOR
);
652 if ((vcpu
->guest_debug
&
653 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
)) ==
654 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
))
655 eb
|= 1u << BP_VECTOR
;
656 if (to_vmx(vcpu
)->rmode
.vm86_active
)
659 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
660 if (vcpu
->fpu_active
)
661 eb
&= ~(1u << NM_VECTOR
);
662 vmcs_write32(EXCEPTION_BITMAP
, eb
);
665 static void clear_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
)
668 struct msr_autoload
*m
= &vmx
->msr_autoload
;
670 if (msr
== MSR_EFER
&& cpu_has_load_ia32_efer
) {
671 vmcs_clear_bits(VM_ENTRY_CONTROLS
, VM_ENTRY_LOAD_IA32_EFER
);
672 vmcs_clear_bits(VM_EXIT_CONTROLS
, VM_EXIT_LOAD_IA32_EFER
);
676 for (i
= 0; i
< m
->nr
; ++i
)
677 if (m
->guest
[i
].index
== msr
)
683 m
->guest
[i
] = m
->guest
[m
->nr
];
684 m
->host
[i
] = m
->host
[m
->nr
];
685 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
686 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
689 static void add_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
,
690 u64 guest_val
, u64 host_val
)
693 struct msr_autoload
*m
= &vmx
->msr_autoload
;
695 if (msr
== MSR_EFER
&& cpu_has_load_ia32_efer
) {
696 vmcs_write64(GUEST_IA32_EFER
, guest_val
);
697 vmcs_write64(HOST_IA32_EFER
, host_val
);
698 vmcs_set_bits(VM_ENTRY_CONTROLS
, VM_ENTRY_LOAD_IA32_EFER
);
699 vmcs_set_bits(VM_EXIT_CONTROLS
, VM_EXIT_LOAD_IA32_EFER
);
703 for (i
= 0; i
< m
->nr
; ++i
)
704 if (m
->guest
[i
].index
== msr
)
709 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
710 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
713 m
->guest
[i
].index
= msr
;
714 m
->guest
[i
].value
= guest_val
;
715 m
->host
[i
].index
= msr
;
716 m
->host
[i
].value
= host_val
;
719 static void reload_tss(void)
722 * VT restores TR but not its size. Useless.
724 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
725 struct desc_struct
*descs
;
727 descs
= (void *)gdt
->address
;
728 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
732 static bool update_transition_efer(struct vcpu_vmx
*vmx
, int efer_offset
)
737 guest_efer
= vmx
->vcpu
.arch
.efer
;
740 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
743 ignore_bits
= EFER_NX
| EFER_SCE
;
745 ignore_bits
|= EFER_LMA
| EFER_LME
;
746 /* SCE is meaningful only in long mode on Intel */
747 if (guest_efer
& EFER_LMA
)
748 ignore_bits
&= ~(u64
)EFER_SCE
;
750 guest_efer
&= ~ignore_bits
;
751 guest_efer
|= host_efer
& ignore_bits
;
752 vmx
->guest_msrs
[efer_offset
].data
= guest_efer
;
753 vmx
->guest_msrs
[efer_offset
].mask
= ~ignore_bits
;
755 clear_atomic_switch_msr(vmx
, MSR_EFER
);
756 /* On ept, can't emulate nx, and must switch nx atomically */
757 if (enable_ept
&& ((vmx
->vcpu
.arch
.efer
^ host_efer
) & EFER_NX
)) {
758 guest_efer
= vmx
->vcpu
.arch
.efer
;
759 if (!(guest_efer
& EFER_LMA
))
760 guest_efer
&= ~EFER_LME
;
761 add_atomic_switch_msr(vmx
, MSR_EFER
, guest_efer
, host_efer
);
768 static unsigned long segment_base(u16 selector
)
770 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
771 struct desc_struct
*d
;
772 unsigned long table_base
;
775 if (!(selector
& ~3))
778 table_base
= gdt
->address
;
780 if (selector
& 4) { /* from ldt */
781 u16 ldt_selector
= kvm_read_ldt();
783 if (!(ldt_selector
& ~3))
786 table_base
= segment_base(ldt_selector
);
788 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
789 v
= get_desc_base(d
);
791 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
792 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
797 static inline unsigned long kvm_read_tr_base(void)
800 asm("str %0" : "=g"(tr
));
801 return segment_base(tr
);
804 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
806 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
809 if (vmx
->host_state
.loaded
)
812 vmx
->host_state
.loaded
= 1;
814 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
815 * allow segment selectors with cpl > 0 or ti == 1.
817 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
818 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
819 savesegment(fs
, vmx
->host_state
.fs_sel
);
820 if (!(vmx
->host_state
.fs_sel
& 7)) {
821 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
822 vmx
->host_state
.fs_reload_needed
= 0;
824 vmcs_write16(HOST_FS_SELECTOR
, 0);
825 vmx
->host_state
.fs_reload_needed
= 1;
827 savesegment(gs
, vmx
->host_state
.gs_sel
);
828 if (!(vmx
->host_state
.gs_sel
& 7))
829 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
831 vmcs_write16(HOST_GS_SELECTOR
, 0);
832 vmx
->host_state
.gs_ldt_reload_needed
= 1;
836 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
837 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
839 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
840 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
844 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
845 if (is_long_mode(&vmx
->vcpu
))
846 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
848 for (i
= 0; i
< vmx
->save_nmsrs
; ++i
)
849 kvm_set_shared_msr(vmx
->guest_msrs
[i
].index
,
850 vmx
->guest_msrs
[i
].data
,
851 vmx
->guest_msrs
[i
].mask
);
854 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
856 if (!vmx
->host_state
.loaded
)
859 ++vmx
->vcpu
.stat
.host_state_reload
;
860 vmx
->host_state
.loaded
= 0;
862 if (is_long_mode(&vmx
->vcpu
))
863 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
865 if (vmx
->host_state
.gs_ldt_reload_needed
) {
866 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
868 load_gs_index(vmx
->host_state
.gs_sel
);
870 loadsegment(gs
, vmx
->host_state
.gs_sel
);
873 if (vmx
->host_state
.fs_reload_needed
)
874 loadsegment(fs
, vmx
->host_state
.fs_sel
);
877 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
879 if (current_thread_info()->status
& TS_USEDFPU
)
881 load_gdt(&__get_cpu_var(host_gdt
));
884 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
887 __vmx_load_host_state(vmx
);
892 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
893 * vcpu mutex is already taken.
895 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
897 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
898 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
901 kvm_cpu_vmxon(phys_addr
);
902 else if (vcpu
->cpu
!= cpu
)
905 if (per_cpu(current_vmcs
, cpu
) != vmx
->vmcs
) {
906 per_cpu(current_vmcs
, cpu
) = vmx
->vmcs
;
907 vmcs_load(vmx
->vmcs
);
910 if (vcpu
->cpu
!= cpu
) {
911 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
912 unsigned long sysenter_esp
;
914 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
916 list_add(&vmx
->local_vcpus_link
,
917 &per_cpu(vcpus_on_cpu
, cpu
));
921 * Linux uses per-cpu TSS and GDT, so set these when switching
924 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
925 vmcs_writel(HOST_GDTR_BASE
, gdt
->address
); /* 22.2.4 */
927 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
928 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
932 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
934 __vmx_load_host_state(to_vmx(vcpu
));
935 if (!vmm_exclusive
) {
936 __vcpu_clear(to_vmx(vcpu
));
941 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
945 if (vcpu
->fpu_active
)
947 vcpu
->fpu_active
= 1;
948 cr0
= vmcs_readl(GUEST_CR0
);
949 cr0
&= ~(X86_CR0_TS
| X86_CR0_MP
);
950 cr0
|= kvm_read_cr0_bits(vcpu
, X86_CR0_TS
| X86_CR0_MP
);
951 vmcs_writel(GUEST_CR0
, cr0
);
952 update_exception_bitmap(vcpu
);
953 vcpu
->arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
954 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
957 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
);
959 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
961 vmx_decache_cr0_guest_bits(vcpu
);
962 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
| X86_CR0_MP
);
963 update_exception_bitmap(vcpu
);
964 vcpu
->arch
.cr0_guest_owned_bits
= 0;
965 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
966 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
969 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
971 unsigned long rflags
, save_rflags
;
973 rflags
= vmcs_readl(GUEST_RFLAGS
);
974 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
975 rflags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
976 save_rflags
= to_vmx(vcpu
)->rmode
.save_rflags
;
977 rflags
|= save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
982 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
984 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
985 to_vmx(vcpu
)->rmode
.save_rflags
= rflags
;
986 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
988 vmcs_writel(GUEST_RFLAGS
, rflags
);
991 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
993 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
996 if (interruptibility
& GUEST_INTR_STATE_STI
)
997 ret
|= KVM_X86_SHADOW_INT_STI
;
998 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
999 ret
|= KVM_X86_SHADOW_INT_MOV_SS
;
1004 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
1006 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
1007 u32 interruptibility
= interruptibility_old
;
1009 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
1011 if (mask
& KVM_X86_SHADOW_INT_MOV_SS
)
1012 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
1013 else if (mask
& KVM_X86_SHADOW_INT_STI
)
1014 interruptibility
|= GUEST_INTR_STATE_STI
;
1016 if ((interruptibility
!= interruptibility_old
))
1017 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
1020 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
1024 rip
= kvm_rip_read(vcpu
);
1025 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
1026 kvm_rip_write(vcpu
, rip
);
1028 /* skipping an emulated instruction also counts */
1029 vmx_set_interrupt_shadow(vcpu
, 0);
1032 static void vmx_clear_hlt(struct kvm_vcpu
*vcpu
)
1034 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1035 * explicitly skip the instruction because if the HLT state is set, then
1036 * the instruction is already executing and RIP has already been
1038 if (!yield_on_hlt
&&
1039 vmcs_read32(GUEST_ACTIVITY_STATE
) == GUEST_ACTIVITY_HLT
)
1040 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
1043 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
1044 bool has_error_code
, u32 error_code
,
1047 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1048 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
1050 if (has_error_code
) {
1051 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
1052 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
1055 if (vmx
->rmode
.vm86_active
) {
1056 if (kvm_inject_realmode_interrupt(vcpu
, nr
) != EMULATE_DONE
)
1057 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
1061 if (kvm_exception_is_soft(nr
)) {
1062 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
1063 vmx
->vcpu
.arch
.event_exit_inst_len
);
1064 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
1066 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
1068 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
1069 vmx_clear_hlt(vcpu
);
1072 static bool vmx_rdtscp_supported(void)
1074 return cpu_has_vmx_rdtscp();
1078 * Swap MSR entry in host/guest MSR entry array.
1080 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
1082 struct shared_msr_entry tmp
;
1084 tmp
= vmx
->guest_msrs
[to
];
1085 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
1086 vmx
->guest_msrs
[from
] = tmp
;
1090 * Set up the vmcs to automatically save and restore system
1091 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1092 * mode, as fiddling with msrs is very expensive.
1094 static void setup_msrs(struct vcpu_vmx
*vmx
)
1096 int save_nmsrs
, index
;
1097 unsigned long *msr_bitmap
;
1099 vmx_load_host_state(vmx
);
1101 #ifdef CONFIG_X86_64
1102 if (is_long_mode(&vmx
->vcpu
)) {
1103 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
1105 move_msr_up(vmx
, index
, save_nmsrs
++);
1106 index
= __find_msr_index(vmx
, MSR_LSTAR
);
1108 move_msr_up(vmx
, index
, save_nmsrs
++);
1109 index
= __find_msr_index(vmx
, MSR_CSTAR
);
1111 move_msr_up(vmx
, index
, save_nmsrs
++);
1112 index
= __find_msr_index(vmx
, MSR_TSC_AUX
);
1113 if (index
>= 0 && vmx
->rdtscp_enabled
)
1114 move_msr_up(vmx
, index
, save_nmsrs
++);
1116 * MSR_STAR is only needed on long mode guests, and only
1117 * if efer.sce is enabled.
1119 index
= __find_msr_index(vmx
, MSR_STAR
);
1120 if ((index
>= 0) && (vmx
->vcpu
.arch
.efer
& EFER_SCE
))
1121 move_msr_up(vmx
, index
, save_nmsrs
++);
1124 index
= __find_msr_index(vmx
, MSR_EFER
);
1125 if (index
>= 0 && update_transition_efer(vmx
, index
))
1126 move_msr_up(vmx
, index
, save_nmsrs
++);
1128 vmx
->save_nmsrs
= save_nmsrs
;
1130 if (cpu_has_vmx_msr_bitmap()) {
1131 if (is_long_mode(&vmx
->vcpu
))
1132 msr_bitmap
= vmx_msr_bitmap_longmode
;
1134 msr_bitmap
= vmx_msr_bitmap_legacy
;
1136 vmcs_write64(MSR_BITMAP
, __pa(msr_bitmap
));
1141 * reads and returns guest's timestamp counter "register"
1142 * guest_tsc = host_tsc + tsc_offset -- 21.3
1144 static u64
guest_read_tsc(void)
1146 u64 host_tsc
, tsc_offset
;
1149 tsc_offset
= vmcs_read64(TSC_OFFSET
);
1150 return host_tsc
+ tsc_offset
;
1154 * writes 'offset' into guest's timestamp counter offset register
1156 static void vmx_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1158 vmcs_write64(TSC_OFFSET
, offset
);
1161 static void vmx_adjust_tsc_offset(struct kvm_vcpu
*vcpu
, s64 adjustment
)
1163 u64 offset
= vmcs_read64(TSC_OFFSET
);
1164 vmcs_write64(TSC_OFFSET
, offset
+ adjustment
);
1168 * Reads an msr value (of 'msr_index') into 'pdata'.
1169 * Returns 0 on success, non-0 otherwise.
1170 * Assumes vcpu_load() was already called.
1172 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1175 struct shared_msr_entry
*msr
;
1178 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
1182 switch (msr_index
) {
1183 #ifdef CONFIG_X86_64
1185 data
= vmcs_readl(GUEST_FS_BASE
);
1188 data
= vmcs_readl(GUEST_GS_BASE
);
1190 case MSR_KERNEL_GS_BASE
:
1191 vmx_load_host_state(to_vmx(vcpu
));
1192 data
= to_vmx(vcpu
)->msr_guest_kernel_gs_base
;
1196 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
1198 data
= guest_read_tsc();
1200 case MSR_IA32_SYSENTER_CS
:
1201 data
= vmcs_read32(GUEST_SYSENTER_CS
);
1203 case MSR_IA32_SYSENTER_EIP
:
1204 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
1206 case MSR_IA32_SYSENTER_ESP
:
1207 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
1210 if (!to_vmx(vcpu
)->rdtscp_enabled
)
1212 /* Otherwise falls through */
1214 vmx_load_host_state(to_vmx(vcpu
));
1215 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
1217 vmx_load_host_state(to_vmx(vcpu
));
1221 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
1229 * Writes msr value into into the appropriate "register".
1230 * Returns 0 on success, non-0 otherwise.
1231 * Assumes vcpu_load() was already called.
1233 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
1235 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1236 struct shared_msr_entry
*msr
;
1239 switch (msr_index
) {
1241 vmx_load_host_state(vmx
);
1242 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
1244 #ifdef CONFIG_X86_64
1246 vmcs_writel(GUEST_FS_BASE
, data
);
1249 vmcs_writel(GUEST_GS_BASE
, data
);
1251 case MSR_KERNEL_GS_BASE
:
1252 vmx_load_host_state(vmx
);
1253 vmx
->msr_guest_kernel_gs_base
= data
;
1256 case MSR_IA32_SYSENTER_CS
:
1257 vmcs_write32(GUEST_SYSENTER_CS
, data
);
1259 case MSR_IA32_SYSENTER_EIP
:
1260 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
1262 case MSR_IA32_SYSENTER_ESP
:
1263 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
1266 kvm_write_tsc(vcpu
, data
);
1268 case MSR_IA32_CR_PAT
:
1269 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
1270 vmcs_write64(GUEST_IA32_PAT
, data
);
1271 vcpu
->arch
.pat
= data
;
1274 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
1277 if (!vmx
->rdtscp_enabled
)
1279 /* Check reserved bit, higher 32 bits should be zero */
1280 if ((data
>> 32) != 0)
1282 /* Otherwise falls through */
1284 msr
= find_msr_entry(vmx
, msr_index
);
1286 vmx_load_host_state(vmx
);
1290 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
1296 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
1298 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
1301 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
1304 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
1306 case VCPU_EXREG_PDPTR
:
1308 ept_save_pdptrs(vcpu
);
1315 static void set_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_guest_debug
*dbg
)
1317 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1318 vmcs_writel(GUEST_DR7
, dbg
->arch
.debugreg
[7]);
1320 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
1322 update_exception_bitmap(vcpu
);
1325 static __init
int cpu_has_kvm_support(void)
1327 return cpu_has_vmx();
1330 static __init
int vmx_disabled_by_bios(void)
1334 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
1335 if (msr
& FEATURE_CONTROL_LOCKED
) {
1336 /* launched w/ TXT and VMX disabled */
1337 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
1340 /* launched w/o TXT and VMX only enabled w/ TXT */
1341 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
1342 && (msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
1343 && !tboot_enabled()) {
1344 printk(KERN_WARNING
"kvm: disable TXT in the BIOS or "
1345 "activate TXT before enabling KVM\n");
1348 /* launched w/o TXT and VMX disabled */
1349 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
1350 && !tboot_enabled())
1357 static void kvm_cpu_vmxon(u64 addr
)
1359 asm volatile (ASM_VMX_VMXON_RAX
1360 : : "a"(&addr
), "m"(addr
)
1364 static int hardware_enable(void *garbage
)
1366 int cpu
= raw_smp_processor_id();
1367 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
1370 if (read_cr4() & X86_CR4_VMXE
)
1373 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu
, cpu
));
1374 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
1376 test_bits
= FEATURE_CONTROL_LOCKED
;
1377 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
1378 if (tboot_enabled())
1379 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
;
1381 if ((old
& test_bits
) != test_bits
) {
1382 /* enable and lock */
1383 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
| test_bits
);
1385 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
1387 if (vmm_exclusive
) {
1388 kvm_cpu_vmxon(phys_addr
);
1392 store_gdt(&__get_cpu_var(host_gdt
));
1397 static void vmclear_local_vcpus(void)
1399 int cpu
= raw_smp_processor_id();
1400 struct vcpu_vmx
*vmx
, *n
;
1402 list_for_each_entry_safe(vmx
, n
, &per_cpu(vcpus_on_cpu
, cpu
),
1408 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1411 static void kvm_cpu_vmxoff(void)
1413 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
1416 static void hardware_disable(void *garbage
)
1418 if (vmm_exclusive
) {
1419 vmclear_local_vcpus();
1422 write_cr4(read_cr4() & ~X86_CR4_VMXE
);
1425 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
1426 u32 msr
, u32
*result
)
1428 u32 vmx_msr_low
, vmx_msr_high
;
1429 u32 ctl
= ctl_min
| ctl_opt
;
1431 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
1433 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
1434 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
1436 /* Ensure minimum (required) set of control bits are supported. */
1444 static __init
bool allow_1_setting(u32 msr
, u32 ctl
)
1446 u32 vmx_msr_low
, vmx_msr_high
;
1448 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
1449 return vmx_msr_high
& ctl
;
1452 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
1454 u32 vmx_msr_low
, vmx_msr_high
;
1455 u32 min
, opt
, min2
, opt2
;
1456 u32 _pin_based_exec_control
= 0;
1457 u32 _cpu_based_exec_control
= 0;
1458 u32 _cpu_based_2nd_exec_control
= 0;
1459 u32 _vmexit_control
= 0;
1460 u32 _vmentry_control
= 0;
1462 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
1463 opt
= PIN_BASED_VIRTUAL_NMIS
;
1464 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
1465 &_pin_based_exec_control
) < 0)
1469 #ifdef CONFIG_X86_64
1470 CPU_BASED_CR8_LOAD_EXITING
|
1471 CPU_BASED_CR8_STORE_EXITING
|
1473 CPU_BASED_CR3_LOAD_EXITING
|
1474 CPU_BASED_CR3_STORE_EXITING
|
1475 CPU_BASED_USE_IO_BITMAPS
|
1476 CPU_BASED_MOV_DR_EXITING
|
1477 CPU_BASED_USE_TSC_OFFSETING
|
1478 CPU_BASED_MWAIT_EXITING
|
1479 CPU_BASED_MONITOR_EXITING
|
1480 CPU_BASED_INVLPG_EXITING
;
1483 min
|= CPU_BASED_HLT_EXITING
;
1485 opt
= CPU_BASED_TPR_SHADOW
|
1486 CPU_BASED_USE_MSR_BITMAPS
|
1487 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
1488 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
1489 &_cpu_based_exec_control
) < 0)
1491 #ifdef CONFIG_X86_64
1492 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
1493 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
1494 ~CPU_BASED_CR8_STORE_EXITING
;
1496 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
1498 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
1499 SECONDARY_EXEC_WBINVD_EXITING
|
1500 SECONDARY_EXEC_ENABLE_VPID
|
1501 SECONDARY_EXEC_ENABLE_EPT
|
1502 SECONDARY_EXEC_UNRESTRICTED_GUEST
|
1503 SECONDARY_EXEC_PAUSE_LOOP_EXITING
|
1504 SECONDARY_EXEC_RDTSCP
;
1505 if (adjust_vmx_controls(min2
, opt2
,
1506 MSR_IA32_VMX_PROCBASED_CTLS2
,
1507 &_cpu_based_2nd_exec_control
) < 0)
1510 #ifndef CONFIG_X86_64
1511 if (!(_cpu_based_2nd_exec_control
&
1512 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
1513 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
1515 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
1516 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1518 _cpu_based_exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
1519 CPU_BASED_CR3_STORE_EXITING
|
1520 CPU_BASED_INVLPG_EXITING
);
1521 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
1522 vmx_capability
.ept
, vmx_capability
.vpid
);
1526 #ifdef CONFIG_X86_64
1527 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
1529 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
;
1530 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
1531 &_vmexit_control
) < 0)
1535 opt
= VM_ENTRY_LOAD_IA32_PAT
;
1536 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
1537 &_vmentry_control
) < 0)
1540 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
1542 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1543 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
1546 #ifdef CONFIG_X86_64
1547 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1548 if (vmx_msr_high
& (1u<<16))
1552 /* Require Write-Back (WB) memory type for VMCS accesses. */
1553 if (((vmx_msr_high
>> 18) & 15) != 6)
1556 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
1557 vmcs_conf
->order
= get_order(vmcs_config
.size
);
1558 vmcs_conf
->revision_id
= vmx_msr_low
;
1560 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
1561 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
1562 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
1563 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
1564 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
1566 cpu_has_load_ia32_efer
=
1567 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
1568 VM_ENTRY_LOAD_IA32_EFER
)
1569 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
1570 VM_EXIT_LOAD_IA32_EFER
);
1575 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
1577 int node
= cpu_to_node(cpu
);
1581 pages
= alloc_pages_exact_node(node
, GFP_KERNEL
, vmcs_config
.order
);
1584 vmcs
= page_address(pages
);
1585 memset(vmcs
, 0, vmcs_config
.size
);
1586 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
1590 static struct vmcs
*alloc_vmcs(void)
1592 return alloc_vmcs_cpu(raw_smp_processor_id());
1595 static void free_vmcs(struct vmcs
*vmcs
)
1597 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
1600 static void free_kvm_area(void)
1604 for_each_possible_cpu(cpu
) {
1605 free_vmcs(per_cpu(vmxarea
, cpu
));
1606 per_cpu(vmxarea
, cpu
) = NULL
;
1610 static __init
int alloc_kvm_area(void)
1614 for_each_possible_cpu(cpu
) {
1617 vmcs
= alloc_vmcs_cpu(cpu
);
1623 per_cpu(vmxarea
, cpu
) = vmcs
;
1628 static __init
int hardware_setup(void)
1630 if (setup_vmcs_config(&vmcs_config
) < 0)
1633 if (boot_cpu_has(X86_FEATURE_NX
))
1634 kvm_enable_efer_bits(EFER_NX
);
1636 if (!cpu_has_vmx_vpid())
1639 if (!cpu_has_vmx_ept() ||
1640 !cpu_has_vmx_ept_4levels()) {
1642 enable_unrestricted_guest
= 0;
1645 if (!cpu_has_vmx_unrestricted_guest())
1646 enable_unrestricted_guest
= 0;
1648 if (!cpu_has_vmx_flexpriority())
1649 flexpriority_enabled
= 0;
1651 if (!cpu_has_vmx_tpr_shadow())
1652 kvm_x86_ops
->update_cr8_intercept
= NULL
;
1654 if (enable_ept
&& !cpu_has_vmx_ept_2m_page())
1655 kvm_disable_largepages();
1657 if (!cpu_has_vmx_ple())
1660 return alloc_kvm_area();
1663 static __exit
void hardware_unsetup(void)
1668 static void fix_pmode_dataseg(int seg
, struct kvm_save_segment
*save
)
1670 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1672 if (vmcs_readl(sf
->base
) == save
->base
&& (save
->base
& AR_S_MASK
)) {
1673 vmcs_write16(sf
->selector
, save
->selector
);
1674 vmcs_writel(sf
->base
, save
->base
);
1675 vmcs_write32(sf
->limit
, save
->limit
);
1676 vmcs_write32(sf
->ar_bytes
, save
->ar
);
1678 u32 dpl
= (vmcs_read16(sf
->selector
) & SELECTOR_RPL_MASK
)
1680 vmcs_write32(sf
->ar_bytes
, 0x93 | dpl
);
1684 static void enter_pmode(struct kvm_vcpu
*vcpu
)
1686 unsigned long flags
;
1687 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1689 vmx
->emulation_required
= 1;
1690 vmx
->rmode
.vm86_active
= 0;
1692 vmcs_write16(GUEST_TR_SELECTOR
, vmx
->rmode
.tr
.selector
);
1693 vmcs_writel(GUEST_TR_BASE
, vmx
->rmode
.tr
.base
);
1694 vmcs_write32(GUEST_TR_LIMIT
, vmx
->rmode
.tr
.limit
);
1695 vmcs_write32(GUEST_TR_AR_BYTES
, vmx
->rmode
.tr
.ar
);
1697 flags
= vmcs_readl(GUEST_RFLAGS
);
1698 flags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
1699 flags
|= vmx
->rmode
.save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
1700 vmcs_writel(GUEST_RFLAGS
, flags
);
1702 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
1703 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
1705 update_exception_bitmap(vcpu
);
1707 if (emulate_invalid_guest_state
)
1710 fix_pmode_dataseg(VCPU_SREG_ES
, &vmx
->rmode
.es
);
1711 fix_pmode_dataseg(VCPU_SREG_DS
, &vmx
->rmode
.ds
);
1712 fix_pmode_dataseg(VCPU_SREG_GS
, &vmx
->rmode
.gs
);
1713 fix_pmode_dataseg(VCPU_SREG_FS
, &vmx
->rmode
.fs
);
1715 vmcs_write16(GUEST_SS_SELECTOR
, 0);
1716 vmcs_write32(GUEST_SS_AR_BYTES
, 0x93);
1718 vmcs_write16(GUEST_CS_SELECTOR
,
1719 vmcs_read16(GUEST_CS_SELECTOR
) & ~SELECTOR_RPL_MASK
);
1720 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
1723 static gva_t
rmode_tss_base(struct kvm
*kvm
)
1725 if (!kvm
->arch
.tss_addr
) {
1726 struct kvm_memslots
*slots
;
1729 slots
= kvm_memslots(kvm
);
1730 base_gfn
= slots
->memslots
[0].base_gfn
+
1731 kvm
->memslots
->memslots
[0].npages
- 3;
1732 return base_gfn
<< PAGE_SHIFT
;
1734 return kvm
->arch
.tss_addr
;
1737 static void fix_rmode_seg(int seg
, struct kvm_save_segment
*save
)
1739 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1741 save
->selector
= vmcs_read16(sf
->selector
);
1742 save
->base
= vmcs_readl(sf
->base
);
1743 save
->limit
= vmcs_read32(sf
->limit
);
1744 save
->ar
= vmcs_read32(sf
->ar_bytes
);
1745 vmcs_write16(sf
->selector
, save
->base
>> 4);
1746 vmcs_write32(sf
->base
, save
->base
& 0xffff0);
1747 vmcs_write32(sf
->limit
, 0xffff);
1748 vmcs_write32(sf
->ar_bytes
, 0xf3);
1749 if (save
->base
& 0xf)
1750 printk_once(KERN_WARNING
"kvm: segment base is not paragraph"
1751 " aligned when entering protected mode (seg=%d)",
1755 static void enter_rmode(struct kvm_vcpu
*vcpu
)
1757 unsigned long flags
;
1758 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1760 if (enable_unrestricted_guest
)
1763 vmx
->emulation_required
= 1;
1764 vmx
->rmode
.vm86_active
= 1;
1767 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
1768 * vcpu. Call it here with phys address pointing 16M below 4G.
1770 if (!vcpu
->kvm
->arch
.tss_addr
) {
1771 printk_once(KERN_WARNING
"kvm: KVM_SET_TSS_ADDR need to be "
1772 "called before entering vcpu\n");
1773 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
1774 vmx_set_tss_addr(vcpu
->kvm
, 0xfeffd000);
1775 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1778 vmx
->rmode
.tr
.selector
= vmcs_read16(GUEST_TR_SELECTOR
);
1779 vmx
->rmode
.tr
.base
= vmcs_readl(GUEST_TR_BASE
);
1780 vmcs_writel(GUEST_TR_BASE
, rmode_tss_base(vcpu
->kvm
));
1782 vmx
->rmode
.tr
.limit
= vmcs_read32(GUEST_TR_LIMIT
);
1783 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
1785 vmx
->rmode
.tr
.ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1786 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
1788 flags
= vmcs_readl(GUEST_RFLAGS
);
1789 vmx
->rmode
.save_rflags
= flags
;
1791 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
1793 vmcs_writel(GUEST_RFLAGS
, flags
);
1794 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
1795 update_exception_bitmap(vcpu
);
1797 if (emulate_invalid_guest_state
)
1798 goto continue_rmode
;
1800 vmcs_write16(GUEST_SS_SELECTOR
, vmcs_readl(GUEST_SS_BASE
) >> 4);
1801 vmcs_write32(GUEST_SS_LIMIT
, 0xffff);
1802 vmcs_write32(GUEST_SS_AR_BYTES
, 0xf3);
1804 vmcs_write32(GUEST_CS_AR_BYTES
, 0xf3);
1805 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
1806 if (vmcs_readl(GUEST_CS_BASE
) == 0xffff0000)
1807 vmcs_writel(GUEST_CS_BASE
, 0xf0000);
1808 vmcs_write16(GUEST_CS_SELECTOR
, vmcs_readl(GUEST_CS_BASE
) >> 4);
1810 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.es
);
1811 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.ds
);
1812 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.gs
);
1813 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.fs
);
1816 kvm_mmu_reset_context(vcpu
);
1819 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1821 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1822 struct shared_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
1828 * Force kernel_gs_base reloading before EFER changes, as control
1829 * of this msr depends on is_long_mode().
1831 vmx_load_host_state(to_vmx(vcpu
));
1832 vcpu
->arch
.efer
= efer
;
1833 if (efer
& EFER_LMA
) {
1834 vmcs_write32(VM_ENTRY_CONTROLS
,
1835 vmcs_read32(VM_ENTRY_CONTROLS
) |
1836 VM_ENTRY_IA32E_MODE
);
1839 vmcs_write32(VM_ENTRY_CONTROLS
,
1840 vmcs_read32(VM_ENTRY_CONTROLS
) &
1841 ~VM_ENTRY_IA32E_MODE
);
1843 msr
->data
= efer
& ~EFER_LME
;
1848 #ifdef CONFIG_X86_64
1850 static void enter_lmode(struct kvm_vcpu
*vcpu
)
1854 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1855 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
1856 printk(KERN_DEBUG
"%s: tss fixup for long mode. \n",
1858 vmcs_write32(GUEST_TR_AR_BYTES
,
1859 (guest_tr_ar
& ~AR_TYPE_MASK
)
1860 | AR_TYPE_BUSY_64_TSS
);
1862 vmx_set_efer(vcpu
, vcpu
->arch
.efer
| EFER_LMA
);
1865 static void exit_lmode(struct kvm_vcpu
*vcpu
)
1867 vmcs_write32(VM_ENTRY_CONTROLS
,
1868 vmcs_read32(VM_ENTRY_CONTROLS
)
1869 & ~VM_ENTRY_IA32E_MODE
);
1870 vmx_set_efer(vcpu
, vcpu
->arch
.efer
& ~EFER_LMA
);
1875 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
1877 vpid_sync_context(to_vmx(vcpu
));
1879 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
1881 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
1885 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
1887 ulong cr0_guest_owned_bits
= vcpu
->arch
.cr0_guest_owned_bits
;
1889 vcpu
->arch
.cr0
&= ~cr0_guest_owned_bits
;
1890 vcpu
->arch
.cr0
|= vmcs_readl(GUEST_CR0
) & cr0_guest_owned_bits
;
1893 static void vmx_decache_cr3(struct kvm_vcpu
*vcpu
)
1895 if (enable_ept
&& is_paging(vcpu
))
1896 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
1897 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
1900 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1902 ulong cr4_guest_owned_bits
= vcpu
->arch
.cr4_guest_owned_bits
;
1904 vcpu
->arch
.cr4
&= ~cr4_guest_owned_bits
;
1905 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & cr4_guest_owned_bits
;
1908 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
1910 if (!test_bit(VCPU_EXREG_PDPTR
,
1911 (unsigned long *)&vcpu
->arch
.regs_dirty
))
1914 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
1915 vmcs_write64(GUEST_PDPTR0
, vcpu
->arch
.mmu
.pdptrs
[0]);
1916 vmcs_write64(GUEST_PDPTR1
, vcpu
->arch
.mmu
.pdptrs
[1]);
1917 vmcs_write64(GUEST_PDPTR2
, vcpu
->arch
.mmu
.pdptrs
[2]);
1918 vmcs_write64(GUEST_PDPTR3
, vcpu
->arch
.mmu
.pdptrs
[3]);
1922 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
1924 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
1925 vcpu
->arch
.mmu
.pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
1926 vcpu
->arch
.mmu
.pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
1927 vcpu
->arch
.mmu
.pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
1928 vcpu
->arch
.mmu
.pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
1931 __set_bit(VCPU_EXREG_PDPTR
,
1932 (unsigned long *)&vcpu
->arch
.regs_avail
);
1933 __set_bit(VCPU_EXREG_PDPTR
,
1934 (unsigned long *)&vcpu
->arch
.regs_dirty
);
1937 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
1939 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
1941 struct kvm_vcpu
*vcpu
)
1943 vmx_decache_cr3(vcpu
);
1944 if (!(cr0
& X86_CR0_PG
)) {
1945 /* From paging/starting to nonpaging */
1946 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1947 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
1948 (CPU_BASED_CR3_LOAD_EXITING
|
1949 CPU_BASED_CR3_STORE_EXITING
));
1950 vcpu
->arch
.cr0
= cr0
;
1951 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
1952 } else if (!is_paging(vcpu
)) {
1953 /* From nonpaging to paging */
1954 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1955 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
1956 ~(CPU_BASED_CR3_LOAD_EXITING
|
1957 CPU_BASED_CR3_STORE_EXITING
));
1958 vcpu
->arch
.cr0
= cr0
;
1959 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
1962 if (!(cr0
& X86_CR0_WP
))
1963 *hw_cr0
&= ~X86_CR0_WP
;
1966 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1968 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1969 unsigned long hw_cr0
;
1971 if (enable_unrestricted_guest
)
1972 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST
)
1973 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
1975 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
) | KVM_VM_CR0_ALWAYS_ON
;
1977 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
1980 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
1983 #ifdef CONFIG_X86_64
1984 if (vcpu
->arch
.efer
& EFER_LME
) {
1985 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
1987 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
1993 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
1995 if (!vcpu
->fpu_active
)
1996 hw_cr0
|= X86_CR0_TS
| X86_CR0_MP
;
1998 vmcs_writel(CR0_READ_SHADOW
, cr0
);
1999 vmcs_writel(GUEST_CR0
, hw_cr0
);
2000 vcpu
->arch
.cr0
= cr0
;
2003 static u64
construct_eptp(unsigned long root_hpa
)
2007 /* TODO write the value reading from MSR */
2008 eptp
= VMX_EPT_DEFAULT_MT
|
2009 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
2010 eptp
|= (root_hpa
& PAGE_MASK
);
2015 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
2017 unsigned long guest_cr3
;
2022 eptp
= construct_eptp(cr3
);
2023 vmcs_write64(EPT_POINTER
, eptp
);
2024 guest_cr3
= is_paging(vcpu
) ? kvm_read_cr3(vcpu
) :
2025 vcpu
->kvm
->arch
.ept_identity_map_addr
;
2026 ept_load_pdptrs(vcpu
);
2029 vmx_flush_tlb(vcpu
);
2030 vmcs_writel(GUEST_CR3
, guest_cr3
);
2033 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
2035 unsigned long hw_cr4
= cr4
| (to_vmx(vcpu
)->rmode
.vm86_active
?
2036 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
2038 vcpu
->arch
.cr4
= cr4
;
2040 if (!is_paging(vcpu
)) {
2041 hw_cr4
&= ~X86_CR4_PAE
;
2042 hw_cr4
|= X86_CR4_PSE
;
2043 } else if (!(cr4
& X86_CR4_PAE
)) {
2044 hw_cr4
&= ~X86_CR4_PAE
;
2048 vmcs_writel(CR4_READ_SHADOW
, cr4
);
2049 vmcs_writel(GUEST_CR4
, hw_cr4
);
2052 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
2053 struct kvm_segment
*var
, int seg
)
2055 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2056 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
2057 struct kvm_save_segment
*save
;
2060 if (vmx
->rmode
.vm86_active
2061 && (seg
== VCPU_SREG_TR
|| seg
== VCPU_SREG_ES
2062 || seg
== VCPU_SREG_DS
|| seg
== VCPU_SREG_FS
2063 || seg
== VCPU_SREG_GS
)
2064 && !emulate_invalid_guest_state
) {
2066 case VCPU_SREG_TR
: save
= &vmx
->rmode
.tr
; break;
2067 case VCPU_SREG_ES
: save
= &vmx
->rmode
.es
; break;
2068 case VCPU_SREG_DS
: save
= &vmx
->rmode
.ds
; break;
2069 case VCPU_SREG_FS
: save
= &vmx
->rmode
.fs
; break;
2070 case VCPU_SREG_GS
: save
= &vmx
->rmode
.gs
; break;
2073 var
->selector
= save
->selector
;
2074 var
->base
= save
->base
;
2075 var
->limit
= save
->limit
;
2077 if (seg
== VCPU_SREG_TR
2078 || var
->selector
== vmcs_read16(sf
->selector
))
2079 goto use_saved_rmode_seg
;
2081 var
->base
= vmcs_readl(sf
->base
);
2082 var
->limit
= vmcs_read32(sf
->limit
);
2083 var
->selector
= vmcs_read16(sf
->selector
);
2084 ar
= vmcs_read32(sf
->ar_bytes
);
2085 use_saved_rmode_seg
:
2086 if ((ar
& AR_UNUSABLE_MASK
) && !emulate_invalid_guest_state
)
2088 var
->type
= ar
& 15;
2089 var
->s
= (ar
>> 4) & 1;
2090 var
->dpl
= (ar
>> 5) & 3;
2091 var
->present
= (ar
>> 7) & 1;
2092 var
->avl
= (ar
>> 12) & 1;
2093 var
->l
= (ar
>> 13) & 1;
2094 var
->db
= (ar
>> 14) & 1;
2095 var
->g
= (ar
>> 15) & 1;
2096 var
->unusable
= (ar
>> 16) & 1;
2099 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
2101 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
2102 struct kvm_segment s
;
2104 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
2105 vmx_get_segment(vcpu
, &s
, seg
);
2108 return vmcs_readl(sf
->base
);
2111 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
2113 if (!is_protmode(vcpu
))
2116 if (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) /* if virtual 8086 */
2119 return vmcs_read16(GUEST_CS_SELECTOR
) & 3;
2122 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
2129 ar
= var
->type
& 15;
2130 ar
|= (var
->s
& 1) << 4;
2131 ar
|= (var
->dpl
& 3) << 5;
2132 ar
|= (var
->present
& 1) << 7;
2133 ar
|= (var
->avl
& 1) << 12;
2134 ar
|= (var
->l
& 1) << 13;
2135 ar
|= (var
->db
& 1) << 14;
2136 ar
|= (var
->g
& 1) << 15;
2138 if (ar
== 0) /* a 0 value means unusable */
2139 ar
= AR_UNUSABLE_MASK
;
2144 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
2145 struct kvm_segment
*var
, int seg
)
2147 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2148 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
2151 if (vmx
->rmode
.vm86_active
&& seg
== VCPU_SREG_TR
) {
2152 vmcs_write16(sf
->selector
, var
->selector
);
2153 vmx
->rmode
.tr
.selector
= var
->selector
;
2154 vmx
->rmode
.tr
.base
= var
->base
;
2155 vmx
->rmode
.tr
.limit
= var
->limit
;
2156 vmx
->rmode
.tr
.ar
= vmx_segment_access_rights(var
);
2159 vmcs_writel(sf
->base
, var
->base
);
2160 vmcs_write32(sf
->limit
, var
->limit
);
2161 vmcs_write16(sf
->selector
, var
->selector
);
2162 if (vmx
->rmode
.vm86_active
&& var
->s
) {
2164 * Hack real-mode segments into vm86 compatibility.
2166 if (var
->base
== 0xffff0000 && var
->selector
== 0xf000)
2167 vmcs_writel(sf
->base
, 0xf0000);
2170 ar
= vmx_segment_access_rights(var
);
2173 * Fix the "Accessed" bit in AR field of segment registers for older
2175 * IA32 arch specifies that at the time of processor reset the
2176 * "Accessed" bit in the AR field of segment registers is 1. And qemu
2177 * is setting it to 0 in the usedland code. This causes invalid guest
2178 * state vmexit when "unrestricted guest" mode is turned on.
2179 * Fix for this setup issue in cpu_reset is being pushed in the qemu
2180 * tree. Newer qemu binaries with that qemu fix would not need this
2183 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
2184 ar
|= 0x1; /* Accessed */
2186 vmcs_write32(sf
->ar_bytes
, ar
);
2189 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
2191 u32 ar
= vmcs_read32(GUEST_CS_AR_BYTES
);
2193 *db
= (ar
>> 14) & 1;
2194 *l
= (ar
>> 13) & 1;
2197 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2199 dt
->size
= vmcs_read32(GUEST_IDTR_LIMIT
);
2200 dt
->address
= vmcs_readl(GUEST_IDTR_BASE
);
2203 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2205 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->size
);
2206 vmcs_writel(GUEST_IDTR_BASE
, dt
->address
);
2209 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2211 dt
->size
= vmcs_read32(GUEST_GDTR_LIMIT
);
2212 dt
->address
= vmcs_readl(GUEST_GDTR_BASE
);
2215 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2217 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->size
);
2218 vmcs_writel(GUEST_GDTR_BASE
, dt
->address
);
2221 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
2223 struct kvm_segment var
;
2226 vmx_get_segment(vcpu
, &var
, seg
);
2227 ar
= vmx_segment_access_rights(&var
);
2229 if (var
.base
!= (var
.selector
<< 4))
2231 if (var
.limit
!= 0xffff)
2239 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
2241 struct kvm_segment cs
;
2242 unsigned int cs_rpl
;
2244 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
2245 cs_rpl
= cs
.selector
& SELECTOR_RPL_MASK
;
2249 if (~cs
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_ACCESSES_MASK
))
2253 if (cs
.type
& AR_TYPE_WRITEABLE_MASK
) {
2254 if (cs
.dpl
> cs_rpl
)
2257 if (cs
.dpl
!= cs_rpl
)
2263 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2267 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
2269 struct kvm_segment ss
;
2270 unsigned int ss_rpl
;
2272 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
2273 ss_rpl
= ss
.selector
& SELECTOR_RPL_MASK
;
2277 if (ss
.type
!= 3 && ss
.type
!= 7)
2281 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
2289 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
2291 struct kvm_segment var
;
2294 vmx_get_segment(vcpu
, &var
, seg
);
2295 rpl
= var
.selector
& SELECTOR_RPL_MASK
;
2303 if (~var
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_WRITEABLE_MASK
)) {
2304 if (var
.dpl
< rpl
) /* DPL < RPL */
2308 /* TODO: Add other members to kvm_segment_field to allow checking for other access
2314 static bool tr_valid(struct kvm_vcpu
*vcpu
)
2316 struct kvm_segment tr
;
2318 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
2322 if (tr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
2324 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
2332 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
2334 struct kvm_segment ldtr
;
2336 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
2340 if (ldtr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
2350 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
2352 struct kvm_segment cs
, ss
;
2354 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
2355 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
2357 return ((cs
.selector
& SELECTOR_RPL_MASK
) ==
2358 (ss
.selector
& SELECTOR_RPL_MASK
));
2362 * Check if guest state is valid. Returns true if valid, false if
2364 * We assume that registers are always usable
2366 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
2368 /* real mode guest state checks */
2369 if (!is_protmode(vcpu
)) {
2370 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
2372 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
2374 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
2376 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
2378 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
2380 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
2383 /* protected mode guest state checks */
2384 if (!cs_ss_rpl_check(vcpu
))
2386 if (!code_segment_valid(vcpu
))
2388 if (!stack_segment_valid(vcpu
))
2390 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
2392 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
2394 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
2396 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
2398 if (!tr_valid(vcpu
))
2400 if (!ldtr_valid(vcpu
))
2404 * - Add checks on RIP
2405 * - Add checks on RFLAGS
2411 static int init_rmode_tss(struct kvm
*kvm
)
2415 int r
, idx
, ret
= 0;
2417 idx
= srcu_read_lock(&kvm
->srcu
);
2418 fn
= rmode_tss_base(kvm
) >> PAGE_SHIFT
;
2419 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
2422 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
2423 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
2424 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
2427 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
2430 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
2434 r
= kvm_write_guest_page(kvm
, fn
, &data
,
2435 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
2442 srcu_read_unlock(&kvm
->srcu
, idx
);
2446 static int init_rmode_identity_map(struct kvm
*kvm
)
2449 pfn_t identity_map_pfn
;
2454 if (unlikely(!kvm
->arch
.ept_identity_pagetable
)) {
2455 printk(KERN_ERR
"EPT: identity-mapping pagetable "
2456 "haven't been allocated!\n");
2459 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
2462 identity_map_pfn
= kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
;
2463 idx
= srcu_read_lock(&kvm
->srcu
);
2464 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
2467 /* Set up identity-mapping pagetable for EPT in real mode */
2468 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
2469 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
2470 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
2471 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
2472 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
2476 kvm
->arch
.ept_identity_pagetable_done
= true;
2479 srcu_read_unlock(&kvm
->srcu
, idx
);
2483 static void seg_setup(int seg
)
2485 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
2488 vmcs_write16(sf
->selector
, 0);
2489 vmcs_writel(sf
->base
, 0);
2490 vmcs_write32(sf
->limit
, 0xffff);
2491 if (enable_unrestricted_guest
) {
2493 if (seg
== VCPU_SREG_CS
)
2494 ar
|= 0x08; /* code segment */
2498 vmcs_write32(sf
->ar_bytes
, ar
);
2501 static int alloc_apic_access_page(struct kvm
*kvm
)
2503 struct kvm_userspace_memory_region kvm_userspace_mem
;
2506 mutex_lock(&kvm
->slots_lock
);
2507 if (kvm
->arch
.apic_access_page
)
2509 kvm_userspace_mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
2510 kvm_userspace_mem
.flags
= 0;
2511 kvm_userspace_mem
.guest_phys_addr
= 0xfee00000ULL
;
2512 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
2513 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2517 kvm
->arch
.apic_access_page
= gfn_to_page(kvm
, 0xfee00);
2519 mutex_unlock(&kvm
->slots_lock
);
2523 static int alloc_identity_pagetable(struct kvm
*kvm
)
2525 struct kvm_userspace_memory_region kvm_userspace_mem
;
2528 mutex_lock(&kvm
->slots_lock
);
2529 if (kvm
->arch
.ept_identity_pagetable
)
2531 kvm_userspace_mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
2532 kvm_userspace_mem
.flags
= 0;
2533 kvm_userspace_mem
.guest_phys_addr
=
2534 kvm
->arch
.ept_identity_map_addr
;
2535 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
2536 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2540 kvm
->arch
.ept_identity_pagetable
= gfn_to_page(kvm
,
2541 kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
);
2543 mutex_unlock(&kvm
->slots_lock
);
2547 static void allocate_vpid(struct vcpu_vmx
*vmx
)
2554 spin_lock(&vmx_vpid_lock
);
2555 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
2556 if (vpid
< VMX_NR_VPIDS
) {
2558 __set_bit(vpid
, vmx_vpid_bitmap
);
2560 spin_unlock(&vmx_vpid_lock
);
2563 static void free_vpid(struct vcpu_vmx
*vmx
)
2567 spin_lock(&vmx_vpid_lock
);
2569 __clear_bit(vmx
->vpid
, vmx_vpid_bitmap
);
2570 spin_unlock(&vmx_vpid_lock
);
2573 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
, u32 msr
)
2575 int f
= sizeof(unsigned long);
2577 if (!cpu_has_vmx_msr_bitmap())
2581 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2582 * have the write-low and read-high bitmap offsets the wrong way round.
2583 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2585 if (msr
<= 0x1fff) {
2586 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
); /* read-low */
2587 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
); /* write-low */
2588 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
2590 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
); /* read-high */
2591 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
); /* write-high */
2595 static void vmx_disable_intercept_for_msr(u32 msr
, bool longmode_only
)
2598 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy
, msr
);
2599 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode
, msr
);
2603 * Sets up the vmcs for emulated real mode.
2605 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
2607 u32 host_sysenter_cs
, msr_low
, msr_high
;
2613 unsigned long kvm_vmx_return
;
2617 vmcs_write64(IO_BITMAP_A
, __pa(vmx_io_bitmap_a
));
2618 vmcs_write64(IO_BITMAP_B
, __pa(vmx_io_bitmap_b
));
2620 if (cpu_has_vmx_msr_bitmap())
2621 vmcs_write64(MSR_BITMAP
, __pa(vmx_msr_bitmap_legacy
));
2623 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
2626 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
2627 vmcs_config
.pin_based_exec_ctrl
);
2629 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
2630 if (!vm_need_tpr_shadow(vmx
->vcpu
.kvm
)) {
2631 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
2632 #ifdef CONFIG_X86_64
2633 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
2634 CPU_BASED_CR8_LOAD_EXITING
;
2638 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
2639 CPU_BASED_CR3_LOAD_EXITING
|
2640 CPU_BASED_INVLPG_EXITING
;
2641 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
2643 if (cpu_has_secondary_exec_ctrls()) {
2644 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
2645 if (!vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
2647 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
2649 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
2651 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
2652 enable_unrestricted_guest
= 0;
2654 if (!enable_unrestricted_guest
)
2655 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
2657 exec_control
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
2658 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
2662 vmcs_write32(PLE_GAP
, ple_gap
);
2663 vmcs_write32(PLE_WINDOW
, ple_window
);
2666 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, !!bypass_guest_pf
);
2667 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, !!bypass_guest_pf
);
2668 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
2670 vmcs_writel(HOST_CR0
, read_cr0() | X86_CR0_TS
); /* 22.2.3 */
2671 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
2672 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2674 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
2675 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2676 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2677 vmcs_write16(HOST_FS_SELECTOR
, 0); /* 22.2.4 */
2678 vmcs_write16(HOST_GS_SELECTOR
, 0); /* 22.2.4 */
2679 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2680 #ifdef CONFIG_X86_64
2681 rdmsrl(MSR_FS_BASE
, a
);
2682 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
2683 rdmsrl(MSR_GS_BASE
, a
);
2684 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
2686 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
2687 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
2690 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
2692 native_store_idt(&dt
);
2693 vmcs_writel(HOST_IDTR_BASE
, dt
.address
); /* 22.2.4 */
2695 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return
));
2696 vmcs_writel(HOST_RIP
, kvm_vmx_return
); /* 22.2.5 */
2697 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
2698 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
2699 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
));
2700 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
2701 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
));
2703 rdmsr(MSR_IA32_SYSENTER_CS
, host_sysenter_cs
, junk
);
2704 vmcs_write32(HOST_IA32_SYSENTER_CS
, host_sysenter_cs
);
2705 rdmsrl(MSR_IA32_SYSENTER_ESP
, a
);
2706 vmcs_writel(HOST_IA32_SYSENTER_ESP
, a
); /* 22.2.3 */
2707 rdmsrl(MSR_IA32_SYSENTER_EIP
, a
);
2708 vmcs_writel(HOST_IA32_SYSENTER_EIP
, a
); /* 22.2.3 */
2710 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
2711 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
2712 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
2713 vmcs_write64(HOST_IA32_PAT
, host_pat
);
2715 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
2716 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
2717 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
2718 /* Write the default value follow host pat */
2719 vmcs_write64(GUEST_IA32_PAT
, host_pat
);
2720 /* Keep arch.pat sync with GUEST_IA32_PAT */
2721 vmx
->vcpu
.arch
.pat
= host_pat
;
2724 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
2725 u32 index
= vmx_msr_index
[i
];
2726 u32 data_low
, data_high
;
2729 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
2731 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
2733 vmx
->guest_msrs
[j
].index
= i
;
2734 vmx
->guest_msrs
[j
].data
= 0;
2735 vmx
->guest_msrs
[j
].mask
= -1ull;
2739 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
2741 /* 22.2.1, 20.8.1 */
2742 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs_config
.vmentry_ctrl
);
2744 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
2745 vmx
->vcpu
.arch
.cr4_guest_owned_bits
= KVM_CR4_GUEST_OWNED_BITS
;
2747 vmx
->vcpu
.arch
.cr4_guest_owned_bits
|= X86_CR4_PGE
;
2748 vmcs_writel(CR4_GUEST_HOST_MASK
, ~vmx
->vcpu
.arch
.cr4_guest_owned_bits
);
2750 kvm_write_tsc(&vmx
->vcpu
, 0);
2755 static int vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
2757 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2761 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
));
2763 vmx
->rmode
.vm86_active
= 0;
2765 vmx
->soft_vnmi_blocked
= 0;
2767 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
2768 kvm_set_cr8(&vmx
->vcpu
, 0);
2769 msr
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
2770 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
2771 msr
|= MSR_IA32_APICBASE_BSP
;
2772 kvm_set_apic_base(&vmx
->vcpu
, msr
);
2774 ret
= fx_init(&vmx
->vcpu
);
2778 seg_setup(VCPU_SREG_CS
);
2780 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2781 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2783 if (kvm_vcpu_is_bsp(&vmx
->vcpu
)) {
2784 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
2785 vmcs_writel(GUEST_CS_BASE
, 0x000f0000);
2787 vmcs_write16(GUEST_CS_SELECTOR
, vmx
->vcpu
.arch
.sipi_vector
<< 8);
2788 vmcs_writel(GUEST_CS_BASE
, vmx
->vcpu
.arch
.sipi_vector
<< 12);
2791 seg_setup(VCPU_SREG_DS
);
2792 seg_setup(VCPU_SREG_ES
);
2793 seg_setup(VCPU_SREG_FS
);
2794 seg_setup(VCPU_SREG_GS
);
2795 seg_setup(VCPU_SREG_SS
);
2797 vmcs_write16(GUEST_TR_SELECTOR
, 0);
2798 vmcs_writel(GUEST_TR_BASE
, 0);
2799 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
2800 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
2802 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
2803 vmcs_writel(GUEST_LDTR_BASE
, 0);
2804 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
2805 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
2807 vmcs_write32(GUEST_SYSENTER_CS
, 0);
2808 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
2809 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
2811 vmcs_writel(GUEST_RFLAGS
, 0x02);
2812 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
2813 kvm_rip_write(vcpu
, 0xfff0);
2815 kvm_rip_write(vcpu
, 0);
2816 kvm_register_write(vcpu
, VCPU_REGS_RSP
, 0);
2818 vmcs_writel(GUEST_DR7
, 0x400);
2820 vmcs_writel(GUEST_GDTR_BASE
, 0);
2821 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
2823 vmcs_writel(GUEST_IDTR_BASE
, 0);
2824 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
2826 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
2827 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
2828 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
2830 /* Special registers */
2831 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
2835 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
2837 if (cpu_has_vmx_tpr_shadow()) {
2838 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
2839 if (vm_need_tpr_shadow(vmx
->vcpu
.kvm
))
2840 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
2841 __pa(vmx
->vcpu
.arch
.apic
->regs
));
2842 vmcs_write32(TPR_THRESHOLD
, 0);
2845 if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
2846 vmcs_write64(APIC_ACCESS_ADDR
,
2847 page_to_phys(vmx
->vcpu
.kvm
->arch
.apic_access_page
));
2850 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
2852 vmx
->vcpu
.arch
.cr0
= X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
;
2853 vmx_set_cr0(&vmx
->vcpu
, kvm_read_cr0(vcpu
)); /* enter rmode */
2854 vmx_set_cr4(&vmx
->vcpu
, 0);
2855 vmx_set_efer(&vmx
->vcpu
, 0);
2856 vmx_fpu_activate(&vmx
->vcpu
);
2857 update_exception_bitmap(&vmx
->vcpu
);
2859 vpid_sync_context(vmx
);
2863 /* HACK: Don't enable emulation on guest boot/reset */
2864 vmx
->emulation_required
= 0;
2870 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
2872 u32 cpu_based_vm_exec_control
;
2874 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2875 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
2876 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2879 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
2881 u32 cpu_based_vm_exec_control
;
2883 if (!cpu_has_virtual_nmis()) {
2884 enable_irq_window(vcpu
);
2888 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_STI
) {
2889 enable_irq_window(vcpu
);
2892 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2893 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
2894 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2897 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
2899 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2901 int irq
= vcpu
->arch
.interrupt
.nr
;
2903 trace_kvm_inj_virq(irq
);
2905 ++vcpu
->stat
.irq_injections
;
2906 if (vmx
->rmode
.vm86_active
) {
2907 if (kvm_inject_realmode_interrupt(vcpu
, irq
) != EMULATE_DONE
)
2908 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2911 intr
= irq
| INTR_INFO_VALID_MASK
;
2912 if (vcpu
->arch
.interrupt
.soft
) {
2913 intr
|= INTR_TYPE_SOFT_INTR
;
2914 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2915 vmx
->vcpu
.arch
.event_exit_inst_len
);
2917 intr
|= INTR_TYPE_EXT_INTR
;
2918 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
2919 vmx_clear_hlt(vcpu
);
2922 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
2924 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2926 if (!cpu_has_virtual_nmis()) {
2928 * Tracking the NMI-blocked state in software is built upon
2929 * finding the next open IRQ window. This, in turn, depends on
2930 * well-behaving guests: They have to keep IRQs disabled at
2931 * least as long as the NMI handler runs. Otherwise we may
2932 * cause NMI nesting, maybe breaking the guest. But as this is
2933 * highly unlikely, we can live with the residual risk.
2935 vmx
->soft_vnmi_blocked
= 1;
2936 vmx
->vnmi_blocked_time
= 0;
2939 ++vcpu
->stat
.nmi_injections
;
2940 if (vmx
->rmode
.vm86_active
) {
2941 if (kvm_inject_realmode_interrupt(vcpu
, NMI_VECTOR
) != EMULATE_DONE
)
2942 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2945 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2946 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
2947 vmx_clear_hlt(vcpu
);
2950 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
2952 if (!cpu_has_virtual_nmis() && to_vmx(vcpu
)->soft_vnmi_blocked
)
2955 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
2956 (GUEST_INTR_STATE_MOV_SS
| GUEST_INTR_STATE_STI
2957 | GUEST_INTR_STATE_NMI
));
2960 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
)
2962 if (!cpu_has_virtual_nmis())
2963 return to_vmx(vcpu
)->soft_vnmi_blocked
;
2964 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_NMI
;
2967 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
2969 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2971 if (!cpu_has_virtual_nmis()) {
2972 if (vmx
->soft_vnmi_blocked
!= masked
) {
2973 vmx
->soft_vnmi_blocked
= masked
;
2974 vmx
->vnmi_blocked_time
= 0;
2978 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
2979 GUEST_INTR_STATE_NMI
);
2981 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
2982 GUEST_INTR_STATE_NMI
);
2986 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
2988 return (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
2989 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
2990 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
2993 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
2996 struct kvm_userspace_memory_region tss_mem
= {
2997 .slot
= TSS_PRIVATE_MEMSLOT
,
2998 .guest_phys_addr
= addr
,
2999 .memory_size
= PAGE_SIZE
* 3,
3003 ret
= kvm_set_memory_region(kvm
, &tss_mem
, 0);
3006 kvm
->arch
.tss_addr
= addr
;
3007 if (!init_rmode_tss(kvm
))
3013 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
3014 int vec
, u32 err_code
)
3017 * Instruction with address size override prefix opcode 0x67
3018 * Cause the #SS fault with 0 error code in VM86 mode.
3020 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0)
3021 if (emulate_instruction(vcpu
, 0) == EMULATE_DONE
)
3024 * Forward all other exceptions that are valid in real mode.
3025 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
3026 * the required debugging infrastructure rework.
3030 if (vcpu
->guest_debug
&
3031 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
3033 kvm_queue_exception(vcpu
, vec
);
3037 * Update instruction length as we may reinject the exception
3038 * from user space while in guest debugging mode.
3040 to_vmx(vcpu
)->vcpu
.arch
.event_exit_inst_len
=
3041 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
3042 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
3053 kvm_queue_exception(vcpu
, vec
);
3060 * Trigger machine check on the host. We assume all the MSRs are already set up
3061 * by the CPU and that we still run on the same CPU as the MCE occurred on.
3062 * We pass a fake environment to the machine check handler because we want
3063 * the guest to be always treated like user space, no matter what context
3064 * it used internally.
3066 static void kvm_machine_check(void)
3068 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3069 struct pt_regs regs
= {
3070 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
3071 .flags
= X86_EFLAGS_IF
,
3074 do_machine_check(®s
, 0);
3078 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
3080 /* already handled by vcpu_run */
3084 static int handle_exception(struct kvm_vcpu
*vcpu
)
3086 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3087 struct kvm_run
*kvm_run
= vcpu
->run
;
3088 u32 intr_info
, ex_no
, error_code
;
3089 unsigned long cr2
, rip
, dr6
;
3091 enum emulation_result er
;
3093 vect_info
= vmx
->idt_vectoring_info
;
3094 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
3096 if (is_machine_check(intr_info
))
3097 return handle_machine_check(vcpu
);
3099 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
3100 !is_page_fault(intr_info
)) {
3101 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
3102 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_SIMUL_EX
;
3103 vcpu
->run
->internal
.ndata
= 2;
3104 vcpu
->run
->internal
.data
[0] = vect_info
;
3105 vcpu
->run
->internal
.data
[1] = intr_info
;
3109 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
)
3110 return 1; /* already handled by vmx_vcpu_run() */
3112 if (is_no_device(intr_info
)) {
3113 vmx_fpu_activate(vcpu
);
3117 if (is_invalid_opcode(intr_info
)) {
3118 er
= emulate_instruction(vcpu
, EMULTYPE_TRAP_UD
);
3119 if (er
!= EMULATE_DONE
)
3120 kvm_queue_exception(vcpu
, UD_VECTOR
);
3125 rip
= kvm_rip_read(vcpu
);
3126 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
3127 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
3128 if (is_page_fault(intr_info
)) {
3129 /* EPT won't cause page fault directly */
3132 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
3133 trace_kvm_page_fault(cr2
, error_code
);
3135 if (kvm_event_needs_reinjection(vcpu
))
3136 kvm_mmu_unprotect_page_virt(vcpu
, cr2
);
3137 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
, NULL
, 0);
3140 if (vmx
->rmode
.vm86_active
&&
3141 handle_rmode_exception(vcpu
, intr_info
& INTR_INFO_VECTOR_MASK
,
3143 if (vcpu
->arch
.halt_request
) {
3144 vcpu
->arch
.halt_request
= 0;
3145 return kvm_emulate_halt(vcpu
);
3150 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
3153 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
3154 if (!(vcpu
->guest_debug
&
3155 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
3156 vcpu
->arch
.dr6
= dr6
| DR6_FIXED_1
;
3157 kvm_queue_exception(vcpu
, DB_VECTOR
);
3160 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
3161 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
3165 * Update instruction length as we may reinject #BP from
3166 * user space while in guest debugging mode. Reading it for
3167 * #DB as well causes no harm, it is not used in that case.
3169 vmx
->vcpu
.arch
.event_exit_inst_len
=
3170 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
3171 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
3172 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
3173 kvm_run
->debug
.arch
.exception
= ex_no
;
3176 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
3177 kvm_run
->ex
.exception
= ex_no
;
3178 kvm_run
->ex
.error_code
= error_code
;
3184 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
3186 ++vcpu
->stat
.irq_exits
;
3190 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
3192 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
3196 static int handle_io(struct kvm_vcpu
*vcpu
)
3198 unsigned long exit_qualification
;
3199 int size
, in
, string
;
3202 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3203 string
= (exit_qualification
& 16) != 0;
3204 in
= (exit_qualification
& 8) != 0;
3206 ++vcpu
->stat
.io_exits
;
3209 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
3211 port
= exit_qualification
>> 16;
3212 size
= (exit_qualification
& 7) + 1;
3213 skip_emulated_instruction(vcpu
);
3215 return kvm_fast_pio_out(vcpu
, size
, port
);
3219 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
3222 * Patch in the VMCALL instruction:
3224 hypercall
[0] = 0x0f;
3225 hypercall
[1] = 0x01;
3226 hypercall
[2] = 0xc1;
3229 static int handle_cr(struct kvm_vcpu
*vcpu
)
3231 unsigned long exit_qualification
, val
;
3236 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3237 cr
= exit_qualification
& 15;
3238 reg
= (exit_qualification
>> 8) & 15;
3239 switch ((exit_qualification
>> 4) & 3) {
3240 case 0: /* mov to cr */
3241 val
= kvm_register_read(vcpu
, reg
);
3242 trace_kvm_cr_write(cr
, val
);
3245 err
= kvm_set_cr0(vcpu
, val
);
3246 kvm_complete_insn_gp(vcpu
, err
);
3249 err
= kvm_set_cr3(vcpu
, val
);
3250 kvm_complete_insn_gp(vcpu
, err
);
3253 err
= kvm_set_cr4(vcpu
, val
);
3254 kvm_complete_insn_gp(vcpu
, err
);
3257 u8 cr8_prev
= kvm_get_cr8(vcpu
);
3258 u8 cr8
= kvm_register_read(vcpu
, reg
);
3259 err
= kvm_set_cr8(vcpu
, cr8
);
3260 kvm_complete_insn_gp(vcpu
, err
);
3261 if (irqchip_in_kernel(vcpu
->kvm
))
3263 if (cr8_prev
<= cr8
)
3265 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
3271 vmx_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
3272 trace_kvm_cr_write(0, kvm_read_cr0(vcpu
));
3273 skip_emulated_instruction(vcpu
);
3274 vmx_fpu_activate(vcpu
);
3276 case 1: /*mov from cr*/
3279 val
= kvm_read_cr3(vcpu
);
3280 kvm_register_write(vcpu
, reg
, val
);
3281 trace_kvm_cr_read(cr
, val
);
3282 skip_emulated_instruction(vcpu
);
3285 val
= kvm_get_cr8(vcpu
);
3286 kvm_register_write(vcpu
, reg
, val
);
3287 trace_kvm_cr_read(cr
, val
);
3288 skip_emulated_instruction(vcpu
);
3293 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
3294 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu
) & ~0xful
) | val
);
3295 kvm_lmsw(vcpu
, val
);
3297 skip_emulated_instruction(vcpu
);
3302 vcpu
->run
->exit_reason
= 0;
3303 pr_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
3304 (int)(exit_qualification
>> 4) & 3, cr
);
3308 static int handle_dr(struct kvm_vcpu
*vcpu
)
3310 unsigned long exit_qualification
;
3313 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3314 if (!kvm_require_cpl(vcpu
, 0))
3316 dr
= vmcs_readl(GUEST_DR7
);
3319 * As the vm-exit takes precedence over the debug trap, we
3320 * need to emulate the latter, either for the host or the
3321 * guest debugging itself.
3323 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
3324 vcpu
->run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
3325 vcpu
->run
->debug
.arch
.dr7
= dr
;
3326 vcpu
->run
->debug
.arch
.pc
=
3327 vmcs_readl(GUEST_CS_BASE
) +
3328 vmcs_readl(GUEST_RIP
);
3329 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
3330 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
3333 vcpu
->arch
.dr7
&= ~DR7_GD
;
3334 vcpu
->arch
.dr6
|= DR6_BD
;
3335 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
3336 kvm_queue_exception(vcpu
, DB_VECTOR
);
3341 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3342 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
3343 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
3344 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
3346 if (!kvm_get_dr(vcpu
, dr
, &val
))
3347 kvm_register_write(vcpu
, reg
, val
);
3349 kvm_set_dr(vcpu
, dr
, vcpu
->arch
.regs
[reg
]);
3350 skip_emulated_instruction(vcpu
);
3354 static void vmx_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long val
)
3356 vmcs_writel(GUEST_DR7
, val
);
3359 static int handle_cpuid(struct kvm_vcpu
*vcpu
)
3361 kvm_emulate_cpuid(vcpu
);
3365 static int handle_rdmsr(struct kvm_vcpu
*vcpu
)
3367 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
3370 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
3371 trace_kvm_msr_read_ex(ecx
);
3372 kvm_inject_gp(vcpu
, 0);
3376 trace_kvm_msr_read(ecx
, data
);
3378 /* FIXME: handling of bits 32:63 of rax, rdx */
3379 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = data
& -1u;
3380 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
3381 skip_emulated_instruction(vcpu
);
3385 static int handle_wrmsr(struct kvm_vcpu
*vcpu
)
3387 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
3388 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
3389 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
3391 if (vmx_set_msr(vcpu
, ecx
, data
) != 0) {
3392 trace_kvm_msr_write_ex(ecx
, data
);
3393 kvm_inject_gp(vcpu
, 0);
3397 trace_kvm_msr_write(ecx
, data
);
3398 skip_emulated_instruction(vcpu
);
3402 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
3404 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3408 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
3410 u32 cpu_based_vm_exec_control
;
3412 /* clear pending irq */
3413 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3414 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
3415 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
3417 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3419 ++vcpu
->stat
.irq_window_exits
;
3422 * If the user space waits to inject interrupts, exit as soon as
3425 if (!irqchip_in_kernel(vcpu
->kvm
) &&
3426 vcpu
->run
->request_interrupt_window
&&
3427 !kvm_cpu_has_interrupt(vcpu
)) {
3428 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
3434 static int handle_halt(struct kvm_vcpu
*vcpu
)
3436 skip_emulated_instruction(vcpu
);
3437 return kvm_emulate_halt(vcpu
);
3440 static int handle_vmcall(struct kvm_vcpu
*vcpu
)
3442 skip_emulated_instruction(vcpu
);
3443 kvm_emulate_hypercall(vcpu
);
3447 static int handle_vmx_insn(struct kvm_vcpu
*vcpu
)
3449 kvm_queue_exception(vcpu
, UD_VECTOR
);
3453 static int handle_invd(struct kvm_vcpu
*vcpu
)
3455 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
3458 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
3460 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3462 kvm_mmu_invlpg(vcpu
, exit_qualification
);
3463 skip_emulated_instruction(vcpu
);
3467 static int handle_wbinvd(struct kvm_vcpu
*vcpu
)
3469 skip_emulated_instruction(vcpu
);
3470 kvm_emulate_wbinvd(vcpu
);
3474 static int handle_xsetbv(struct kvm_vcpu
*vcpu
)
3476 u64 new_bv
= kvm_read_edx_eax(vcpu
);
3477 u32 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3479 if (kvm_set_xcr(vcpu
, index
, new_bv
) == 0)
3480 skip_emulated_instruction(vcpu
);
3484 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
3486 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
3489 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
3491 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3492 unsigned long exit_qualification
;
3493 bool has_error_code
= false;
3496 int reason
, type
, idt_v
;
3498 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
3499 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
3501 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3503 reason
= (u32
)exit_qualification
>> 30;
3504 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
3506 case INTR_TYPE_NMI_INTR
:
3507 vcpu
->arch
.nmi_injected
= false;
3508 if (cpu_has_virtual_nmis())
3509 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
3510 GUEST_INTR_STATE_NMI
);
3512 case INTR_TYPE_EXT_INTR
:
3513 case INTR_TYPE_SOFT_INTR
:
3514 kvm_clear_interrupt_queue(vcpu
);
3516 case INTR_TYPE_HARD_EXCEPTION
:
3517 if (vmx
->idt_vectoring_info
&
3518 VECTORING_INFO_DELIVER_CODE_MASK
) {
3519 has_error_code
= true;
3521 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
3524 case INTR_TYPE_SOFT_EXCEPTION
:
3525 kvm_clear_exception_queue(vcpu
);
3531 tss_selector
= exit_qualification
;
3533 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
3534 type
!= INTR_TYPE_EXT_INTR
&&
3535 type
!= INTR_TYPE_NMI_INTR
))
3536 skip_emulated_instruction(vcpu
);
3538 if (kvm_task_switch(vcpu
, tss_selector
, reason
,
3539 has_error_code
, error_code
) == EMULATE_FAIL
) {
3540 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
3541 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
3542 vcpu
->run
->internal
.ndata
= 0;
3546 /* clear all local breakpoint enable flags */
3547 vmcs_writel(GUEST_DR7
, vmcs_readl(GUEST_DR7
) & ~55);
3550 * TODO: What about debug traps on tss switch?
3551 * Are we supposed to inject them and update dr6?
3557 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
3559 unsigned long exit_qualification
;
3563 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3565 if (exit_qualification
& (1 << 6)) {
3566 printk(KERN_ERR
"EPT: GPA exceeds GAW!\n");
3570 gla_validity
= (exit_qualification
>> 7) & 0x3;
3571 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
3572 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
3573 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3574 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
3575 vmcs_readl(GUEST_LINEAR_ADDRESS
));
3576 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
3577 (long unsigned int)exit_qualification
);
3578 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3579 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_VIOLATION
;
3583 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
3584 trace_kvm_page_fault(gpa
, exit_qualification
);
3585 return kvm_mmu_page_fault(vcpu
, gpa
, exit_qualification
& 0x3, NULL
, 0);
3588 static u64
ept_rsvd_mask(u64 spte
, int level
)
3593 for (i
= 51; i
> boot_cpu_data
.x86_phys_bits
; i
--)
3594 mask
|= (1ULL << i
);
3597 /* bits 7:3 reserved */
3599 else if (level
== 2) {
3600 if (spte
& (1ULL << 7))
3601 /* 2MB ref, bits 20:12 reserved */
3604 /* bits 6:3 reserved */
3611 static void ept_misconfig_inspect_spte(struct kvm_vcpu
*vcpu
, u64 spte
,
3614 printk(KERN_ERR
"%s: spte 0x%llx level %d\n", __func__
, spte
, level
);
3616 /* 010b (write-only) */
3617 WARN_ON((spte
& 0x7) == 0x2);
3619 /* 110b (write/execute) */
3620 WARN_ON((spte
& 0x7) == 0x6);
3622 /* 100b (execute-only) and value not supported by logical processor */
3623 if (!cpu_has_vmx_ept_execute_only())
3624 WARN_ON((spte
& 0x7) == 0x4);
3628 u64 rsvd_bits
= spte
& ept_rsvd_mask(spte
, level
);
3630 if (rsvd_bits
!= 0) {
3631 printk(KERN_ERR
"%s: rsvd_bits = 0x%llx\n",
3632 __func__
, rsvd_bits
);
3636 if (level
== 1 || (level
== 2 && (spte
& (1ULL << 7)))) {
3637 u64 ept_mem_type
= (spte
& 0x38) >> 3;
3639 if (ept_mem_type
== 2 || ept_mem_type
== 3 ||
3640 ept_mem_type
== 7) {
3641 printk(KERN_ERR
"%s: ept_mem_type=0x%llx\n",
3642 __func__
, ept_mem_type
);
3649 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
3655 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
3657 printk(KERN_ERR
"EPT: Misconfiguration.\n");
3658 printk(KERN_ERR
"EPT: GPA: 0x%llx\n", gpa
);
3660 nr_sptes
= kvm_mmu_get_spte_hierarchy(vcpu
, gpa
, sptes
);
3662 for (i
= PT64_ROOT_LEVEL
; i
> PT64_ROOT_LEVEL
- nr_sptes
; --i
)
3663 ept_misconfig_inspect_spte(vcpu
, sptes
[i
-1], i
);
3665 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3666 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
3671 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
3673 u32 cpu_based_vm_exec_control
;
3675 /* clear pending NMI */
3676 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3677 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
3678 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
3679 ++vcpu
->stat
.nmi_window_exits
;
3680 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3685 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
3687 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3688 enum emulation_result err
= EMULATE_DONE
;
3691 bool intr_window_requested
;
3693 cpu_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3694 intr_window_requested
= cpu_exec_ctrl
& CPU_BASED_VIRTUAL_INTR_PENDING
;
3696 while (!guest_state_valid(vcpu
)) {
3697 if (intr_window_requested
3698 && (kvm_get_rflags(&vmx
->vcpu
) & X86_EFLAGS_IF
))
3699 return handle_interrupt_window(&vmx
->vcpu
);
3701 err
= emulate_instruction(vcpu
, 0);
3703 if (err
== EMULATE_DO_MMIO
) {
3708 if (err
!= EMULATE_DONE
)
3711 if (signal_pending(current
))
3717 vmx
->emulation_required
= 0;
3723 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3724 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3726 static int handle_pause(struct kvm_vcpu
*vcpu
)
3728 skip_emulated_instruction(vcpu
);
3729 kvm_vcpu_on_spin(vcpu
);
3734 static int handle_invalid_op(struct kvm_vcpu
*vcpu
)
3736 kvm_queue_exception(vcpu
, UD_VECTOR
);
3741 * The exit handlers return 1 if the exit was handled fully and guest execution
3742 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3743 * to be done to userspace and return 0.
3745 static int (*kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
3746 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
3747 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
3748 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
3749 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
3750 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
3751 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
3752 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
3753 [EXIT_REASON_CPUID
] = handle_cpuid
,
3754 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
3755 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
3756 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
3757 [EXIT_REASON_HLT
] = handle_halt
,
3758 [EXIT_REASON_INVD
] = handle_invd
,
3759 [EXIT_REASON_INVLPG
] = handle_invlpg
,
3760 [EXIT_REASON_VMCALL
] = handle_vmcall
,
3761 [EXIT_REASON_VMCLEAR
] = handle_vmx_insn
,
3762 [EXIT_REASON_VMLAUNCH
] = handle_vmx_insn
,
3763 [EXIT_REASON_VMPTRLD
] = handle_vmx_insn
,
3764 [EXIT_REASON_VMPTRST
] = handle_vmx_insn
,
3765 [EXIT_REASON_VMREAD
] = handle_vmx_insn
,
3766 [EXIT_REASON_VMRESUME
] = handle_vmx_insn
,
3767 [EXIT_REASON_VMWRITE
] = handle_vmx_insn
,
3768 [EXIT_REASON_VMOFF
] = handle_vmx_insn
,
3769 [EXIT_REASON_VMON
] = handle_vmx_insn
,
3770 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
3771 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
3772 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
3773 [EXIT_REASON_XSETBV
] = handle_xsetbv
,
3774 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
3775 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
3776 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
3777 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
3778 [EXIT_REASON_PAUSE_INSTRUCTION
] = handle_pause
,
3779 [EXIT_REASON_MWAIT_INSTRUCTION
] = handle_invalid_op
,
3780 [EXIT_REASON_MONITOR_INSTRUCTION
] = handle_invalid_op
,
3783 static const int kvm_vmx_max_exit_handlers
=
3784 ARRAY_SIZE(kvm_vmx_exit_handlers
);
3786 static void vmx_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
3788 *info1
= vmcs_readl(EXIT_QUALIFICATION
);
3789 *info2
= vmcs_read32(VM_EXIT_INTR_INFO
);
3793 * The guest has exited. See if we can fix it or if we need userspace
3796 static int vmx_handle_exit(struct kvm_vcpu
*vcpu
)
3798 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3799 u32 exit_reason
= vmx
->exit_reason
;
3800 u32 vectoring_info
= vmx
->idt_vectoring_info
;
3802 trace_kvm_exit(exit_reason
, vcpu
, KVM_ISA_VMX
);
3804 /* If guest state is invalid, start emulating */
3805 if (vmx
->emulation_required
&& emulate_invalid_guest_state
)
3806 return handle_invalid_guest_state(vcpu
);
3808 if (exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
) {
3809 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3810 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
3815 if (unlikely(vmx
->fail
)) {
3816 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3817 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
3818 = vmcs_read32(VM_INSTRUCTION_ERROR
);
3822 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
3823 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
3824 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
3825 exit_reason
!= EXIT_REASON_TASK_SWITCH
))
3826 printk(KERN_WARNING
"%s: unexpected, valid vectoring info "
3827 "(0x%x) and exit reason is 0x%x\n",
3828 __func__
, vectoring_info
, exit_reason
);
3830 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
)) {
3831 if (vmx_interrupt_allowed(vcpu
)) {
3832 vmx
->soft_vnmi_blocked
= 0;
3833 } else if (vmx
->vnmi_blocked_time
> 1000000000LL &&
3834 vcpu
->arch
.nmi_pending
) {
3836 * This CPU don't support us in finding the end of an
3837 * NMI-blocked window if the guest runs with IRQs
3838 * disabled. So we pull the trigger after 1 s of
3839 * futile waiting, but inform the user about this.
3841 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
3842 "state on VCPU %d after 1 s timeout\n",
3843 __func__
, vcpu
->vcpu_id
);
3844 vmx
->soft_vnmi_blocked
= 0;
3848 if (exit_reason
< kvm_vmx_max_exit_handlers
3849 && kvm_vmx_exit_handlers
[exit_reason
])
3850 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
);
3852 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3853 vcpu
->run
->hw
.hardware_exit_reason
= exit_reason
;
3858 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
3860 if (irr
== -1 || tpr
< irr
) {
3861 vmcs_write32(TPR_THRESHOLD
, 0);
3865 vmcs_write32(TPR_THRESHOLD
, irr
);
3868 static void vmx_complete_atomic_exit(struct vcpu_vmx
*vmx
)
3870 u32 exit_intr_info
= vmx
->exit_intr_info
;
3872 /* Handle machine checks before interrupts are enabled */
3873 if ((vmx
->exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
)
3874 || (vmx
->exit_reason
== EXIT_REASON_EXCEPTION_NMI
3875 && is_machine_check(exit_intr_info
)))
3876 kvm_machine_check();
3878 /* We need to handle NMIs before interrupts are enabled */
3879 if ((exit_intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
&&
3880 (exit_intr_info
& INTR_INFO_VALID_MASK
)) {
3881 kvm_before_handle_nmi(&vmx
->vcpu
);
3883 kvm_after_handle_nmi(&vmx
->vcpu
);
3887 static void vmx_recover_nmi_blocking(struct vcpu_vmx
*vmx
)
3889 u32 exit_intr_info
= vmx
->exit_intr_info
;
3892 bool idtv_info_valid
;
3894 idtv_info_valid
= vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
3896 if (cpu_has_virtual_nmis()) {
3897 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
3898 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
3900 * SDM 3: 27.7.1.2 (September 2008)
3901 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3902 * a guest IRET fault.
3903 * SDM 3: 23.2.2 (September 2008)
3904 * Bit 12 is undefined in any of the following cases:
3905 * If the VM exit sets the valid bit in the IDT-vectoring
3906 * information field.
3907 * If the VM exit is due to a double fault.
3909 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
3910 vector
!= DF_VECTOR
&& !idtv_info_valid
)
3911 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
3912 GUEST_INTR_STATE_NMI
);
3913 } else if (unlikely(vmx
->soft_vnmi_blocked
))
3914 vmx
->vnmi_blocked_time
+=
3915 ktime_to_ns(ktime_sub(ktime_get(), vmx
->entry_time
));
3918 static void __vmx_complete_interrupts(struct vcpu_vmx
*vmx
,
3919 u32 idt_vectoring_info
,
3920 int instr_len_field
,
3921 int error_code_field
)
3925 bool idtv_info_valid
;
3927 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
3929 vmx
->vcpu
.arch
.nmi_injected
= false;
3930 kvm_clear_exception_queue(&vmx
->vcpu
);
3931 kvm_clear_interrupt_queue(&vmx
->vcpu
);
3933 if (!idtv_info_valid
)
3936 kvm_make_request(KVM_REQ_EVENT
, &vmx
->vcpu
);
3938 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
3939 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
3942 case INTR_TYPE_NMI_INTR
:
3943 vmx
->vcpu
.arch
.nmi_injected
= true;
3945 * SDM 3: 27.7.1.2 (September 2008)
3946 * Clear bit "block by NMI" before VM entry if a NMI
3949 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
3950 GUEST_INTR_STATE_NMI
);
3952 case INTR_TYPE_SOFT_EXCEPTION
:
3953 vmx
->vcpu
.arch
.event_exit_inst_len
=
3954 vmcs_read32(instr_len_field
);
3956 case INTR_TYPE_HARD_EXCEPTION
:
3957 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
3958 u32 err
= vmcs_read32(error_code_field
);
3959 kvm_queue_exception_e(&vmx
->vcpu
, vector
, err
);
3961 kvm_queue_exception(&vmx
->vcpu
, vector
);
3963 case INTR_TYPE_SOFT_INTR
:
3964 vmx
->vcpu
.arch
.event_exit_inst_len
=
3965 vmcs_read32(instr_len_field
);
3967 case INTR_TYPE_EXT_INTR
:
3968 kvm_queue_interrupt(&vmx
->vcpu
, vector
,
3969 type
== INTR_TYPE_SOFT_INTR
);
3976 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
3978 __vmx_complete_interrupts(vmx
, vmx
->idt_vectoring_info
,
3979 VM_EXIT_INSTRUCTION_LEN
,
3980 IDT_VECTORING_ERROR_CODE
);
3983 static void vmx_cancel_injection(struct kvm_vcpu
*vcpu
)
3985 __vmx_complete_interrupts(to_vmx(vcpu
),
3986 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
3987 VM_ENTRY_INSTRUCTION_LEN
,
3988 VM_ENTRY_EXCEPTION_ERROR_CODE
);
3990 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
3993 #ifdef CONFIG_X86_64
4001 static void __noclone
vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
4003 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4005 /* Record the guest's net vcpu time for enforced NMI injections. */
4006 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
))
4007 vmx
->entry_time
= ktime_get();
4009 /* Don't enter VMX if guest state is invalid, let the exit handler
4010 start emulation until we arrive back to a valid state */
4011 if (vmx
->emulation_required
&& emulate_invalid_guest_state
)
4014 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
4015 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
4016 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
4017 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
4019 /* When single-stepping over STI and MOV SS, we must clear the
4020 * corresponding interruptibility bits in the guest state. Otherwise
4021 * vmentry fails as it then expects bit 14 (BS) in pending debug
4022 * exceptions being set, but that's not correct for the guest debugging
4024 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
4025 vmx_set_interrupt_shadow(vcpu
, 0);
4028 /* Store host registers */
4029 "push %%"R
"dx; push %%"R
"bp;"
4030 "push %%"R
"cx \n\t" /* placeholder for guest rcx */
4032 "cmp %%"R
"sp, %c[host_rsp](%0) \n\t"
4034 "mov %%"R
"sp, %c[host_rsp](%0) \n\t"
4035 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
4037 /* Reload cr2 if changed */
4038 "mov %c[cr2](%0), %%"R
"ax \n\t"
4039 "mov %%cr2, %%"R
"dx \n\t"
4040 "cmp %%"R
"ax, %%"R
"dx \n\t"
4042 "mov %%"R
"ax, %%cr2 \n\t"
4044 /* Check if vmlaunch of vmresume is needed */
4045 "cmpl $0, %c[launched](%0) \n\t"
4046 /* Load guest registers. Don't clobber flags. */
4047 "mov %c[rax](%0), %%"R
"ax \n\t"
4048 "mov %c[rbx](%0), %%"R
"bx \n\t"
4049 "mov %c[rdx](%0), %%"R
"dx \n\t"
4050 "mov %c[rsi](%0), %%"R
"si \n\t"
4051 "mov %c[rdi](%0), %%"R
"di \n\t"
4052 "mov %c[rbp](%0), %%"R
"bp \n\t"
4053 #ifdef CONFIG_X86_64
4054 "mov %c[r8](%0), %%r8 \n\t"
4055 "mov %c[r9](%0), %%r9 \n\t"
4056 "mov %c[r10](%0), %%r10 \n\t"
4057 "mov %c[r11](%0), %%r11 \n\t"
4058 "mov %c[r12](%0), %%r12 \n\t"
4059 "mov %c[r13](%0), %%r13 \n\t"
4060 "mov %c[r14](%0), %%r14 \n\t"
4061 "mov %c[r15](%0), %%r15 \n\t"
4063 "mov %c[rcx](%0), %%"R
"cx \n\t" /* kills %0 (ecx) */
4065 /* Enter guest mode */
4066 "jne .Llaunched \n\t"
4067 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
4068 "jmp .Lkvm_vmx_return \n\t"
4069 ".Llaunched: " __ex(ASM_VMX_VMRESUME
) "\n\t"
4070 ".Lkvm_vmx_return: "
4071 /* Save guest registers, load host registers, keep flags */
4072 "mov %0, %c[wordsize](%%"R
"sp) \n\t"
4074 "mov %%"R
"ax, %c[rax](%0) \n\t"
4075 "mov %%"R
"bx, %c[rbx](%0) \n\t"
4076 "pop"Q
" %c[rcx](%0) \n\t"
4077 "mov %%"R
"dx, %c[rdx](%0) \n\t"
4078 "mov %%"R
"si, %c[rsi](%0) \n\t"
4079 "mov %%"R
"di, %c[rdi](%0) \n\t"
4080 "mov %%"R
"bp, %c[rbp](%0) \n\t"
4081 #ifdef CONFIG_X86_64
4082 "mov %%r8, %c[r8](%0) \n\t"
4083 "mov %%r9, %c[r9](%0) \n\t"
4084 "mov %%r10, %c[r10](%0) \n\t"
4085 "mov %%r11, %c[r11](%0) \n\t"
4086 "mov %%r12, %c[r12](%0) \n\t"
4087 "mov %%r13, %c[r13](%0) \n\t"
4088 "mov %%r14, %c[r14](%0) \n\t"
4089 "mov %%r15, %c[r15](%0) \n\t"
4091 "mov %%cr2, %%"R
"ax \n\t"
4092 "mov %%"R
"ax, %c[cr2](%0) \n\t"
4094 "pop %%"R
"bp; pop %%"R
"dx \n\t"
4095 "setbe %c[fail](%0) \n\t"
4096 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
4097 [launched
]"i"(offsetof(struct vcpu_vmx
, launched
)),
4098 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
4099 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
4100 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
4101 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
4102 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
4103 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
4104 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
4105 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
4106 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
4107 #ifdef CONFIG_X86_64
4108 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
4109 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
4110 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
4111 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
4112 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
4113 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
4114 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
4115 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
4117 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
)),
4118 [wordsize
]"i"(sizeof(ulong
))
4120 , R
"ax", R
"bx", R
"di", R
"si"
4121 #ifdef CONFIG_X86_64
4122 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4126 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
4127 | (1 << VCPU_EXREG_PDPTR
)
4128 | (1 << VCPU_EXREG_CR3
));
4129 vcpu
->arch
.regs_dirty
= 0;
4131 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
4133 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS
));
4136 vmx
->exit_reason
= vmcs_read32(VM_EXIT_REASON
);
4137 vmx
->exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
4139 vmx_complete_atomic_exit(vmx
);
4140 vmx_recover_nmi_blocking(vmx
);
4141 vmx_complete_interrupts(vmx
);
4147 static void vmx_free_vmcs(struct kvm_vcpu
*vcpu
)
4149 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4153 free_vmcs(vmx
->vmcs
);
4158 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
4160 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4163 vmx_free_vmcs(vcpu
);
4164 kfree(vmx
->guest_msrs
);
4165 kvm_vcpu_uninit(vcpu
);
4166 kmem_cache_free(kvm_vcpu_cache
, vmx
);
4169 static inline void vmcs_init(struct vmcs
*vmcs
)
4171 u64 phys_addr
= __pa(per_cpu(vmxarea
, raw_smp_processor_id()));
4174 kvm_cpu_vmxon(phys_addr
);
4182 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
4185 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
4189 return ERR_PTR(-ENOMEM
);
4193 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
4197 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4198 if (!vmx
->guest_msrs
) {
4203 vmx
->vmcs
= alloc_vmcs();
4207 vmcs_init(vmx
->vmcs
);
4210 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
4211 vmx
->vcpu
.cpu
= cpu
;
4212 err
= vmx_vcpu_setup(vmx
);
4213 vmx_vcpu_put(&vmx
->vcpu
);
4217 if (vm_need_virtualize_apic_accesses(kvm
))
4218 if (alloc_apic_access_page(kvm
) != 0)
4222 if (!kvm
->arch
.ept_identity_map_addr
)
4223 kvm
->arch
.ept_identity_map_addr
=
4224 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
4226 if (alloc_identity_pagetable(kvm
) != 0)
4228 if (!init_rmode_identity_map(kvm
))
4235 free_vmcs(vmx
->vmcs
);
4237 kfree(vmx
->guest_msrs
);
4239 kvm_vcpu_uninit(&vmx
->vcpu
);
4242 kmem_cache_free(kvm_vcpu_cache
, vmx
);
4243 return ERR_PTR(err
);
4246 static void __init
vmx_check_processor_compat(void *rtn
)
4248 struct vmcs_config vmcs_conf
;
4251 if (setup_vmcs_config(&vmcs_conf
) < 0)
4253 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
4254 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
4255 smp_processor_id());
4260 static int get_ept_level(void)
4262 return VMX_EPT_DEFAULT_GAW
+ 1;
4265 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
4269 /* For VT-d and EPT combination
4270 * 1. MMIO: always map as UC
4272 * a. VT-d without snooping control feature: can't guarantee the
4273 * result, try to trust guest.
4274 * b. VT-d with snooping control feature: snooping control feature of
4275 * VT-d engine can guarantee the cache correctness. Just set it
4276 * to WB to keep consistent with host. So the same as item 3.
4277 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4278 * consistent with host MTRR
4281 ret
= MTRR_TYPE_UNCACHABLE
<< VMX_EPT_MT_EPTE_SHIFT
;
4282 else if (vcpu
->kvm
->arch
.iommu_domain
&&
4283 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
))
4284 ret
= kvm_get_guest_memory_type(vcpu
, gfn
) <<
4285 VMX_EPT_MT_EPTE_SHIFT
;
4287 ret
= (MTRR_TYPE_WRBACK
<< VMX_EPT_MT_EPTE_SHIFT
)
4293 #define _ER(x) { EXIT_REASON_##x, #x }
4295 static const struct trace_print_flags vmx_exit_reasons_str
[] = {
4297 _ER(EXTERNAL_INTERRUPT
),
4299 _ER(PENDING_INTERRUPT
),
4319 _ER(IO_INSTRUCTION
),
4322 _ER(MWAIT_INSTRUCTION
),
4323 _ER(MONITOR_INSTRUCTION
),
4324 _ER(PAUSE_INSTRUCTION
),
4325 _ER(MCE_DURING_VMENTRY
),
4326 _ER(TPR_BELOW_THRESHOLD
),
4336 static int vmx_get_lpage_level(void)
4338 if (enable_ept
&& !cpu_has_vmx_ept_1g_page())
4339 return PT_DIRECTORY_LEVEL
;
4341 /* For shadow and EPT supported 1GB page */
4342 return PT_PDPE_LEVEL
;
4345 static void vmx_cpuid_update(struct kvm_vcpu
*vcpu
)
4347 struct kvm_cpuid_entry2
*best
;
4348 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4351 vmx
->rdtscp_enabled
= false;
4352 if (vmx_rdtscp_supported()) {
4353 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
4354 if (exec_control
& SECONDARY_EXEC_RDTSCP
) {
4355 best
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
4356 if (best
&& (best
->edx
& bit(X86_FEATURE_RDTSCP
)))
4357 vmx
->rdtscp_enabled
= true;
4359 exec_control
&= ~SECONDARY_EXEC_RDTSCP
;
4360 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
4367 static void vmx_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
4371 static struct kvm_x86_ops vmx_x86_ops
= {
4372 .cpu_has_kvm_support
= cpu_has_kvm_support
,
4373 .disabled_by_bios
= vmx_disabled_by_bios
,
4374 .hardware_setup
= hardware_setup
,
4375 .hardware_unsetup
= hardware_unsetup
,
4376 .check_processor_compatibility
= vmx_check_processor_compat
,
4377 .hardware_enable
= hardware_enable
,
4378 .hardware_disable
= hardware_disable
,
4379 .cpu_has_accelerated_tpr
= report_flexpriority
,
4381 .vcpu_create
= vmx_create_vcpu
,
4382 .vcpu_free
= vmx_free_vcpu
,
4383 .vcpu_reset
= vmx_vcpu_reset
,
4385 .prepare_guest_switch
= vmx_save_host_state
,
4386 .vcpu_load
= vmx_vcpu_load
,
4387 .vcpu_put
= vmx_vcpu_put
,
4389 .set_guest_debug
= set_guest_debug
,
4390 .get_msr
= vmx_get_msr
,
4391 .set_msr
= vmx_set_msr
,
4392 .get_segment_base
= vmx_get_segment_base
,
4393 .get_segment
= vmx_get_segment
,
4394 .set_segment
= vmx_set_segment
,
4395 .get_cpl
= vmx_get_cpl
,
4396 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
4397 .decache_cr0_guest_bits
= vmx_decache_cr0_guest_bits
,
4398 .decache_cr3
= vmx_decache_cr3
,
4399 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
4400 .set_cr0
= vmx_set_cr0
,
4401 .set_cr3
= vmx_set_cr3
,
4402 .set_cr4
= vmx_set_cr4
,
4403 .set_efer
= vmx_set_efer
,
4404 .get_idt
= vmx_get_idt
,
4405 .set_idt
= vmx_set_idt
,
4406 .get_gdt
= vmx_get_gdt
,
4407 .set_gdt
= vmx_set_gdt
,
4408 .set_dr7
= vmx_set_dr7
,
4409 .cache_reg
= vmx_cache_reg
,
4410 .get_rflags
= vmx_get_rflags
,
4411 .set_rflags
= vmx_set_rflags
,
4412 .fpu_activate
= vmx_fpu_activate
,
4413 .fpu_deactivate
= vmx_fpu_deactivate
,
4415 .tlb_flush
= vmx_flush_tlb
,
4417 .run
= vmx_vcpu_run
,
4418 .handle_exit
= vmx_handle_exit
,
4419 .skip_emulated_instruction
= skip_emulated_instruction
,
4420 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
4421 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
4422 .patch_hypercall
= vmx_patch_hypercall
,
4423 .set_irq
= vmx_inject_irq
,
4424 .set_nmi
= vmx_inject_nmi
,
4425 .queue_exception
= vmx_queue_exception
,
4426 .cancel_injection
= vmx_cancel_injection
,
4427 .interrupt_allowed
= vmx_interrupt_allowed
,
4428 .nmi_allowed
= vmx_nmi_allowed
,
4429 .get_nmi_mask
= vmx_get_nmi_mask
,
4430 .set_nmi_mask
= vmx_set_nmi_mask
,
4431 .enable_nmi_window
= enable_nmi_window
,
4432 .enable_irq_window
= enable_irq_window
,
4433 .update_cr8_intercept
= update_cr8_intercept
,
4435 .set_tss_addr
= vmx_set_tss_addr
,
4436 .get_tdp_level
= get_ept_level
,
4437 .get_mt_mask
= vmx_get_mt_mask
,
4439 .get_exit_info
= vmx_get_exit_info
,
4440 .exit_reasons_str
= vmx_exit_reasons_str
,
4442 .get_lpage_level
= vmx_get_lpage_level
,
4444 .cpuid_update
= vmx_cpuid_update
,
4446 .rdtscp_supported
= vmx_rdtscp_supported
,
4448 .set_supported_cpuid
= vmx_set_supported_cpuid
,
4450 .has_wbinvd_exit
= cpu_has_vmx_wbinvd_exit
,
4452 .write_tsc_offset
= vmx_write_tsc_offset
,
4453 .adjust_tsc_offset
= vmx_adjust_tsc_offset
,
4455 .set_tdp_cr3
= vmx_set_cr3
,
4458 static int __init
vmx_init(void)
4462 rdmsrl_safe(MSR_EFER
, &host_efer
);
4464 for (i
= 0; i
< NR_VMX_MSR
; ++i
)
4465 kvm_define_shared_msr(i
, vmx_msr_index
[i
]);
4467 vmx_io_bitmap_a
= (unsigned long *)__get_free_page(GFP_KERNEL
);
4468 if (!vmx_io_bitmap_a
)
4471 vmx_io_bitmap_b
= (unsigned long *)__get_free_page(GFP_KERNEL
);
4472 if (!vmx_io_bitmap_b
) {
4477 vmx_msr_bitmap_legacy
= (unsigned long *)__get_free_page(GFP_KERNEL
);
4478 if (!vmx_msr_bitmap_legacy
) {
4483 vmx_msr_bitmap_longmode
= (unsigned long *)__get_free_page(GFP_KERNEL
);
4484 if (!vmx_msr_bitmap_longmode
) {
4490 * Allow direct access to the PC debug port (it is often used for I/O
4491 * delays, but the vmexits simply slow things down).
4493 memset(vmx_io_bitmap_a
, 0xff, PAGE_SIZE
);
4494 clear_bit(0x80, vmx_io_bitmap_a
);
4496 memset(vmx_io_bitmap_b
, 0xff, PAGE_SIZE
);
4498 memset(vmx_msr_bitmap_legacy
, 0xff, PAGE_SIZE
);
4499 memset(vmx_msr_bitmap_longmode
, 0xff, PAGE_SIZE
);
4501 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
4503 r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
),
4504 __alignof__(struct vcpu_vmx
), THIS_MODULE
);
4508 vmx_disable_intercept_for_msr(MSR_FS_BASE
, false);
4509 vmx_disable_intercept_for_msr(MSR_GS_BASE
, false);
4510 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE
, true);
4511 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS
, false);
4512 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP
, false);
4513 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP
, false);
4516 bypass_guest_pf
= 0;
4517 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4518 VMX_EPT_EXECUTABLE_MASK
);
4523 if (bypass_guest_pf
)
4524 kvm_mmu_set_nonpresent_ptes(~0xffeull
, 0ull);
4529 free_page((unsigned long)vmx_msr_bitmap_longmode
);
4531 free_page((unsigned long)vmx_msr_bitmap_legacy
);
4533 free_page((unsigned long)vmx_io_bitmap_b
);
4535 free_page((unsigned long)vmx_io_bitmap_a
);
4539 static void __exit
vmx_exit(void)
4541 free_page((unsigned long)vmx_msr_bitmap_legacy
);
4542 free_page((unsigned long)vmx_msr_bitmap_longmode
);
4543 free_page((unsigned long)vmx_io_bitmap_b
);
4544 free_page((unsigned long)vmx_io_bitmap_a
);
4549 module_init(vmx_init
)
4550 module_exit(vmx_exit
)