Merge branch 'drm-nouveau-fixes' of git://git.freedesktop.org/git/nouveau/linux-2...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/kernel.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/ftrace_event.h>
31 #include <linux/slab.h>
32
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/kvm_para.h>
37
38 #include <asm/virtext.h>
39 #include "trace.h"
40
41 #define __ex(x) __kvm_handle_fault_on_reboot(x)
42
43 MODULE_AUTHOR("Qumranet");
44 MODULE_LICENSE("GPL");
45
46 static const struct x86_cpu_id svm_cpu_id[] = {
47 X86_FEATURE_MATCH(X86_FEATURE_SVM),
48 {}
49 };
50 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
51
52 #define IOPM_ALLOC_ORDER 2
53 #define MSRPM_ALLOC_ORDER 1
54
55 #define SEG_TYPE_LDT 2
56 #define SEG_TYPE_BUSY_TSS16 3
57
58 #define SVM_FEATURE_NPT (1 << 0)
59 #define SVM_FEATURE_LBRV (1 << 1)
60 #define SVM_FEATURE_SVML (1 << 2)
61 #define SVM_FEATURE_NRIP (1 << 3)
62 #define SVM_FEATURE_TSC_RATE (1 << 4)
63 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
64 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
65 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
66 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
67
68 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
69 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
70 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
71
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73
74 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
75 #define TSC_RATIO_MIN 0x0000000000000001ULL
76 #define TSC_RATIO_MAX 0x000000ffffffffffULL
77
78 static bool erratum_383_found __read_mostly;
79
80 static const u32 host_save_user_msrs[] = {
81 #ifdef CONFIG_X86_64
82 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
83 MSR_FS_BASE,
84 #endif
85 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
86 };
87
88 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
89
90 struct kvm_vcpu;
91
92 struct nested_state {
93 struct vmcb *hsave;
94 u64 hsave_msr;
95 u64 vm_cr_msr;
96 u64 vmcb;
97
98 /* These are the merged vectors */
99 u32 *msrpm;
100
101 /* gpa pointers to the real vectors */
102 u64 vmcb_msrpm;
103 u64 vmcb_iopm;
104
105 /* A VMEXIT is required but not yet emulated */
106 bool exit_required;
107
108 /* cache for intercepts of the guest */
109 u32 intercept_cr;
110 u32 intercept_dr;
111 u32 intercept_exceptions;
112 u64 intercept;
113
114 /* Nested Paging related state */
115 u64 nested_cr3;
116 };
117
118 #define MSRPM_OFFSETS 16
119 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
120
121 /*
122 * Set osvw_len to higher value when updated Revision Guides
123 * are published and we know what the new status bits are
124 */
125 static uint64_t osvw_len = 4, osvw_status;
126
127 struct vcpu_svm {
128 struct kvm_vcpu vcpu;
129 struct vmcb *vmcb;
130 unsigned long vmcb_pa;
131 struct svm_cpu_data *svm_data;
132 uint64_t asid_generation;
133 uint64_t sysenter_esp;
134 uint64_t sysenter_eip;
135
136 u64 next_rip;
137
138 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
139 struct {
140 u16 fs;
141 u16 gs;
142 u16 ldt;
143 u64 gs_base;
144 } host;
145
146 u32 *msrpm;
147
148 ulong nmi_iret_rip;
149
150 struct nested_state nested;
151
152 bool nmi_singlestep;
153
154 unsigned int3_injected;
155 unsigned long int3_rip;
156 u32 apf_reason;
157
158 u64 tsc_ratio;
159 };
160
161 static DEFINE_PER_CPU(u64, current_tsc_ratio);
162 #define TSC_RATIO_DEFAULT 0x0100000000ULL
163
164 #define MSR_INVALID 0xffffffffU
165
166 static const struct svm_direct_access_msrs {
167 u32 index; /* Index of the MSR */
168 bool always; /* True if intercept is always on */
169 } direct_access_msrs[] = {
170 { .index = MSR_STAR, .always = true },
171 { .index = MSR_IA32_SYSENTER_CS, .always = true },
172 #ifdef CONFIG_X86_64
173 { .index = MSR_GS_BASE, .always = true },
174 { .index = MSR_FS_BASE, .always = true },
175 { .index = MSR_KERNEL_GS_BASE, .always = true },
176 { .index = MSR_LSTAR, .always = true },
177 { .index = MSR_CSTAR, .always = true },
178 { .index = MSR_SYSCALL_MASK, .always = true },
179 #endif
180 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
181 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
182 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
183 { .index = MSR_IA32_LASTINTTOIP, .always = false },
184 { .index = MSR_INVALID, .always = false },
185 };
186
187 /* enable NPT for AMD64 and X86 with PAE */
188 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
189 static bool npt_enabled = true;
190 #else
191 static bool npt_enabled;
192 #endif
193
194 /* allow nested paging (virtualized MMU) for all guests */
195 static int npt = true;
196 module_param(npt, int, S_IRUGO);
197
198 /* allow nested virtualization in KVM/SVM */
199 static int nested = true;
200 module_param(nested, int, S_IRUGO);
201
202 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
203 static void svm_complete_interrupts(struct vcpu_svm *svm);
204
205 static int nested_svm_exit_handled(struct vcpu_svm *svm);
206 static int nested_svm_intercept(struct vcpu_svm *svm);
207 static int nested_svm_vmexit(struct vcpu_svm *svm);
208 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
209 bool has_error_code, u32 error_code);
210 static u64 __scale_tsc(u64 ratio, u64 tsc);
211
212 enum {
213 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
214 pause filter count */
215 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
216 VMCB_ASID, /* ASID */
217 VMCB_INTR, /* int_ctl, int_vector */
218 VMCB_NPT, /* npt_en, nCR3, gPAT */
219 VMCB_CR, /* CR0, CR3, CR4, EFER */
220 VMCB_DR, /* DR6, DR7 */
221 VMCB_DT, /* GDT, IDT */
222 VMCB_SEG, /* CS, DS, SS, ES, CPL */
223 VMCB_CR2, /* CR2 only */
224 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
225 VMCB_DIRTY_MAX,
226 };
227
228 /* TPR and CR2 are always written before VMRUN */
229 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
230
231 static inline void mark_all_dirty(struct vmcb *vmcb)
232 {
233 vmcb->control.clean = 0;
234 }
235
236 static inline void mark_all_clean(struct vmcb *vmcb)
237 {
238 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
239 & ~VMCB_ALWAYS_DIRTY_MASK;
240 }
241
242 static inline void mark_dirty(struct vmcb *vmcb, int bit)
243 {
244 vmcb->control.clean &= ~(1 << bit);
245 }
246
247 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
248 {
249 return container_of(vcpu, struct vcpu_svm, vcpu);
250 }
251
252 static void recalc_intercepts(struct vcpu_svm *svm)
253 {
254 struct vmcb_control_area *c, *h;
255 struct nested_state *g;
256
257 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
258
259 if (!is_guest_mode(&svm->vcpu))
260 return;
261
262 c = &svm->vmcb->control;
263 h = &svm->nested.hsave->control;
264 g = &svm->nested;
265
266 c->intercept_cr = h->intercept_cr | g->intercept_cr;
267 c->intercept_dr = h->intercept_dr | g->intercept_dr;
268 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
269 c->intercept = h->intercept | g->intercept;
270 }
271
272 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
273 {
274 if (is_guest_mode(&svm->vcpu))
275 return svm->nested.hsave;
276 else
277 return svm->vmcb;
278 }
279
280 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
281 {
282 struct vmcb *vmcb = get_host_vmcb(svm);
283
284 vmcb->control.intercept_cr |= (1U << bit);
285
286 recalc_intercepts(svm);
287 }
288
289 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
290 {
291 struct vmcb *vmcb = get_host_vmcb(svm);
292
293 vmcb->control.intercept_cr &= ~(1U << bit);
294
295 recalc_intercepts(svm);
296 }
297
298 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
299 {
300 struct vmcb *vmcb = get_host_vmcb(svm);
301
302 return vmcb->control.intercept_cr & (1U << bit);
303 }
304
305 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
306 {
307 struct vmcb *vmcb = get_host_vmcb(svm);
308
309 vmcb->control.intercept_dr |= (1U << bit);
310
311 recalc_intercepts(svm);
312 }
313
314 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
315 {
316 struct vmcb *vmcb = get_host_vmcb(svm);
317
318 vmcb->control.intercept_dr &= ~(1U << bit);
319
320 recalc_intercepts(svm);
321 }
322
323 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
324 {
325 struct vmcb *vmcb = get_host_vmcb(svm);
326
327 vmcb->control.intercept_exceptions |= (1U << bit);
328
329 recalc_intercepts(svm);
330 }
331
332 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
333 {
334 struct vmcb *vmcb = get_host_vmcb(svm);
335
336 vmcb->control.intercept_exceptions &= ~(1U << bit);
337
338 recalc_intercepts(svm);
339 }
340
341 static inline void set_intercept(struct vcpu_svm *svm, int bit)
342 {
343 struct vmcb *vmcb = get_host_vmcb(svm);
344
345 vmcb->control.intercept |= (1ULL << bit);
346
347 recalc_intercepts(svm);
348 }
349
350 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
351 {
352 struct vmcb *vmcb = get_host_vmcb(svm);
353
354 vmcb->control.intercept &= ~(1ULL << bit);
355
356 recalc_intercepts(svm);
357 }
358
359 static inline void enable_gif(struct vcpu_svm *svm)
360 {
361 svm->vcpu.arch.hflags |= HF_GIF_MASK;
362 }
363
364 static inline void disable_gif(struct vcpu_svm *svm)
365 {
366 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
367 }
368
369 static inline bool gif_set(struct vcpu_svm *svm)
370 {
371 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
372 }
373
374 static unsigned long iopm_base;
375
376 struct kvm_ldttss_desc {
377 u16 limit0;
378 u16 base0;
379 unsigned base1:8, type:5, dpl:2, p:1;
380 unsigned limit1:4, zero0:3, g:1, base2:8;
381 u32 base3;
382 u32 zero1;
383 } __attribute__((packed));
384
385 struct svm_cpu_data {
386 int cpu;
387
388 u64 asid_generation;
389 u32 max_asid;
390 u32 next_asid;
391 struct kvm_ldttss_desc *tss_desc;
392
393 struct page *save_area;
394 };
395
396 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
397
398 struct svm_init_data {
399 int cpu;
400 int r;
401 };
402
403 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
404
405 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
406 #define MSRS_RANGE_SIZE 2048
407 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
408
409 static u32 svm_msrpm_offset(u32 msr)
410 {
411 u32 offset;
412 int i;
413
414 for (i = 0; i < NUM_MSR_MAPS; i++) {
415 if (msr < msrpm_ranges[i] ||
416 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
417 continue;
418
419 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
420 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
421
422 /* Now we have the u8 offset - but need the u32 offset */
423 return offset / 4;
424 }
425
426 /* MSR not in any range */
427 return MSR_INVALID;
428 }
429
430 #define MAX_INST_SIZE 15
431
432 static inline void clgi(void)
433 {
434 asm volatile (__ex(SVM_CLGI));
435 }
436
437 static inline void stgi(void)
438 {
439 asm volatile (__ex(SVM_STGI));
440 }
441
442 static inline void invlpga(unsigned long addr, u32 asid)
443 {
444 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
445 }
446
447 static int get_npt_level(void)
448 {
449 #ifdef CONFIG_X86_64
450 return PT64_ROOT_LEVEL;
451 #else
452 return PT32E_ROOT_LEVEL;
453 #endif
454 }
455
456 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
457 {
458 vcpu->arch.efer = efer;
459 if (!npt_enabled && !(efer & EFER_LMA))
460 efer &= ~EFER_LME;
461
462 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
463 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
464 }
465
466 static int is_external_interrupt(u32 info)
467 {
468 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
469 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
470 }
471
472 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
473 {
474 struct vcpu_svm *svm = to_svm(vcpu);
475 u32 ret = 0;
476
477 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
478 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
479 return ret & mask;
480 }
481
482 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
483 {
484 struct vcpu_svm *svm = to_svm(vcpu);
485
486 if (mask == 0)
487 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
488 else
489 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
490
491 }
492
493 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
494 {
495 struct vcpu_svm *svm = to_svm(vcpu);
496
497 if (svm->vmcb->control.next_rip != 0)
498 svm->next_rip = svm->vmcb->control.next_rip;
499
500 if (!svm->next_rip) {
501 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
502 EMULATE_DONE)
503 printk(KERN_DEBUG "%s: NOP\n", __func__);
504 return;
505 }
506 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
507 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
508 __func__, kvm_rip_read(vcpu), svm->next_rip);
509
510 kvm_rip_write(vcpu, svm->next_rip);
511 svm_set_interrupt_shadow(vcpu, 0);
512 }
513
514 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
515 bool has_error_code, u32 error_code,
516 bool reinject)
517 {
518 struct vcpu_svm *svm = to_svm(vcpu);
519
520 /*
521 * If we are within a nested VM we'd better #VMEXIT and let the guest
522 * handle the exception
523 */
524 if (!reinject &&
525 nested_svm_check_exception(svm, nr, has_error_code, error_code))
526 return;
527
528 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
529 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
530
531 /*
532 * For guest debugging where we have to reinject #BP if some
533 * INT3 is guest-owned:
534 * Emulate nRIP by moving RIP forward. Will fail if injection
535 * raises a fault that is not intercepted. Still better than
536 * failing in all cases.
537 */
538 skip_emulated_instruction(&svm->vcpu);
539 rip = kvm_rip_read(&svm->vcpu);
540 svm->int3_rip = rip + svm->vmcb->save.cs.base;
541 svm->int3_injected = rip - old_rip;
542 }
543
544 svm->vmcb->control.event_inj = nr
545 | SVM_EVTINJ_VALID
546 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
547 | SVM_EVTINJ_TYPE_EXEPT;
548 svm->vmcb->control.event_inj_err = error_code;
549 }
550
551 static void svm_init_erratum_383(void)
552 {
553 u32 low, high;
554 int err;
555 u64 val;
556
557 if (!cpu_has_amd_erratum(amd_erratum_383))
558 return;
559
560 /* Use _safe variants to not break nested virtualization */
561 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
562 if (err)
563 return;
564
565 val |= (1ULL << 47);
566
567 low = lower_32_bits(val);
568 high = upper_32_bits(val);
569
570 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
571
572 erratum_383_found = true;
573 }
574
575 static void svm_init_osvw(struct kvm_vcpu *vcpu)
576 {
577 /*
578 * Guests should see errata 400 and 415 as fixed (assuming that
579 * HLT and IO instructions are intercepted).
580 */
581 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
582 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
583
584 /*
585 * By increasing VCPU's osvw.length to 3 we are telling the guest that
586 * all osvw.status bits inside that length, including bit 0 (which is
587 * reserved for erratum 298), are valid. However, if host processor's
588 * osvw_len is 0 then osvw_status[0] carries no information. We need to
589 * be conservative here and therefore we tell the guest that erratum 298
590 * is present (because we really don't know).
591 */
592 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
593 vcpu->arch.osvw.status |= 1;
594 }
595
596 static int has_svm(void)
597 {
598 const char *msg;
599
600 if (!cpu_has_svm(&msg)) {
601 printk(KERN_INFO "has_svm: %s\n", msg);
602 return 0;
603 }
604
605 return 1;
606 }
607
608 static void svm_hardware_disable(void *garbage)
609 {
610 /* Make sure we clean up behind us */
611 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
612 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
613
614 cpu_svm_disable();
615
616 amd_pmu_disable_virt();
617 }
618
619 static int svm_hardware_enable(void *garbage)
620 {
621
622 struct svm_cpu_data *sd;
623 uint64_t efer;
624 struct desc_ptr gdt_descr;
625 struct desc_struct *gdt;
626 int me = raw_smp_processor_id();
627
628 rdmsrl(MSR_EFER, efer);
629 if (efer & EFER_SVME)
630 return -EBUSY;
631
632 if (!has_svm()) {
633 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
634 me);
635 return -EINVAL;
636 }
637 sd = per_cpu(svm_data, me);
638
639 if (!sd) {
640 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
641 me);
642 return -EINVAL;
643 }
644
645 sd->asid_generation = 1;
646 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
647 sd->next_asid = sd->max_asid + 1;
648
649 native_store_gdt(&gdt_descr);
650 gdt = (struct desc_struct *)gdt_descr.address;
651 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
652
653 wrmsrl(MSR_EFER, efer | EFER_SVME);
654
655 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
656
657 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
658 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
659 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
660 }
661
662
663 /*
664 * Get OSVW bits.
665 *
666 * Note that it is possible to have a system with mixed processor
667 * revisions and therefore different OSVW bits. If bits are not the same
668 * on different processors then choose the worst case (i.e. if erratum
669 * is present on one processor and not on another then assume that the
670 * erratum is present everywhere).
671 */
672 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
673 uint64_t len, status = 0;
674 int err;
675
676 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
677 if (!err)
678 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
679 &err);
680
681 if (err)
682 osvw_status = osvw_len = 0;
683 else {
684 if (len < osvw_len)
685 osvw_len = len;
686 osvw_status |= status;
687 osvw_status &= (1ULL << osvw_len) - 1;
688 }
689 } else
690 osvw_status = osvw_len = 0;
691
692 svm_init_erratum_383();
693
694 amd_pmu_enable_virt();
695
696 return 0;
697 }
698
699 static void svm_cpu_uninit(int cpu)
700 {
701 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
702
703 if (!sd)
704 return;
705
706 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
707 __free_page(sd->save_area);
708 kfree(sd);
709 }
710
711 static int svm_cpu_init(int cpu)
712 {
713 struct svm_cpu_data *sd;
714 int r;
715
716 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
717 if (!sd)
718 return -ENOMEM;
719 sd->cpu = cpu;
720 sd->save_area = alloc_page(GFP_KERNEL);
721 r = -ENOMEM;
722 if (!sd->save_area)
723 goto err_1;
724
725 per_cpu(svm_data, cpu) = sd;
726
727 return 0;
728
729 err_1:
730 kfree(sd);
731 return r;
732
733 }
734
735 static bool valid_msr_intercept(u32 index)
736 {
737 int i;
738
739 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
740 if (direct_access_msrs[i].index == index)
741 return true;
742
743 return false;
744 }
745
746 static void set_msr_interception(u32 *msrpm, unsigned msr,
747 int read, int write)
748 {
749 u8 bit_read, bit_write;
750 unsigned long tmp;
751 u32 offset;
752
753 /*
754 * If this warning triggers extend the direct_access_msrs list at the
755 * beginning of the file
756 */
757 WARN_ON(!valid_msr_intercept(msr));
758
759 offset = svm_msrpm_offset(msr);
760 bit_read = 2 * (msr & 0x0f);
761 bit_write = 2 * (msr & 0x0f) + 1;
762 tmp = msrpm[offset];
763
764 BUG_ON(offset == MSR_INVALID);
765
766 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
767 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
768
769 msrpm[offset] = tmp;
770 }
771
772 static void svm_vcpu_init_msrpm(u32 *msrpm)
773 {
774 int i;
775
776 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
777
778 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
779 if (!direct_access_msrs[i].always)
780 continue;
781
782 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
783 }
784 }
785
786 static void add_msr_offset(u32 offset)
787 {
788 int i;
789
790 for (i = 0; i < MSRPM_OFFSETS; ++i) {
791
792 /* Offset already in list? */
793 if (msrpm_offsets[i] == offset)
794 return;
795
796 /* Slot used by another offset? */
797 if (msrpm_offsets[i] != MSR_INVALID)
798 continue;
799
800 /* Add offset to list */
801 msrpm_offsets[i] = offset;
802
803 return;
804 }
805
806 /*
807 * If this BUG triggers the msrpm_offsets table has an overflow. Just
808 * increase MSRPM_OFFSETS in this case.
809 */
810 BUG();
811 }
812
813 static void init_msrpm_offsets(void)
814 {
815 int i;
816
817 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
818
819 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
820 u32 offset;
821
822 offset = svm_msrpm_offset(direct_access_msrs[i].index);
823 BUG_ON(offset == MSR_INVALID);
824
825 add_msr_offset(offset);
826 }
827 }
828
829 static void svm_enable_lbrv(struct vcpu_svm *svm)
830 {
831 u32 *msrpm = svm->msrpm;
832
833 svm->vmcb->control.lbr_ctl = 1;
834 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
835 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
836 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
837 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
838 }
839
840 static void svm_disable_lbrv(struct vcpu_svm *svm)
841 {
842 u32 *msrpm = svm->msrpm;
843
844 svm->vmcb->control.lbr_ctl = 0;
845 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
846 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
847 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
848 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
849 }
850
851 static __init int svm_hardware_setup(void)
852 {
853 int cpu;
854 struct page *iopm_pages;
855 void *iopm_va;
856 int r;
857
858 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
859
860 if (!iopm_pages)
861 return -ENOMEM;
862
863 iopm_va = page_address(iopm_pages);
864 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
865 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
866
867 init_msrpm_offsets();
868
869 if (boot_cpu_has(X86_FEATURE_NX))
870 kvm_enable_efer_bits(EFER_NX);
871
872 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
873 kvm_enable_efer_bits(EFER_FFXSR);
874
875 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
876 u64 max;
877
878 kvm_has_tsc_control = true;
879
880 /*
881 * Make sure the user can only configure tsc_khz values that
882 * fit into a signed integer.
883 * A min value is not calculated needed because it will always
884 * be 1 on all machines and a value of 0 is used to disable
885 * tsc-scaling for the vcpu.
886 */
887 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
888
889 kvm_max_guest_tsc_khz = max;
890 }
891
892 if (nested) {
893 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
894 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
895 }
896
897 for_each_possible_cpu(cpu) {
898 r = svm_cpu_init(cpu);
899 if (r)
900 goto err;
901 }
902
903 if (!boot_cpu_has(X86_FEATURE_NPT))
904 npt_enabled = false;
905
906 if (npt_enabled && !npt) {
907 printk(KERN_INFO "kvm: Nested Paging disabled\n");
908 npt_enabled = false;
909 }
910
911 if (npt_enabled) {
912 printk(KERN_INFO "kvm: Nested Paging enabled\n");
913 kvm_enable_tdp();
914 } else
915 kvm_disable_tdp();
916
917 return 0;
918
919 err:
920 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
921 iopm_base = 0;
922 return r;
923 }
924
925 static __exit void svm_hardware_unsetup(void)
926 {
927 int cpu;
928
929 for_each_possible_cpu(cpu)
930 svm_cpu_uninit(cpu);
931
932 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
933 iopm_base = 0;
934 }
935
936 static void init_seg(struct vmcb_seg *seg)
937 {
938 seg->selector = 0;
939 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
940 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
941 seg->limit = 0xffff;
942 seg->base = 0;
943 }
944
945 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
946 {
947 seg->selector = 0;
948 seg->attrib = SVM_SELECTOR_P_MASK | type;
949 seg->limit = 0xffff;
950 seg->base = 0;
951 }
952
953 static u64 __scale_tsc(u64 ratio, u64 tsc)
954 {
955 u64 mult, frac, _tsc;
956
957 mult = ratio >> 32;
958 frac = ratio & ((1ULL << 32) - 1);
959
960 _tsc = tsc;
961 _tsc *= mult;
962 _tsc += (tsc >> 32) * frac;
963 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
964
965 return _tsc;
966 }
967
968 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
969 {
970 struct vcpu_svm *svm = to_svm(vcpu);
971 u64 _tsc = tsc;
972
973 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
974 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
975
976 return _tsc;
977 }
978
979 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
980 {
981 struct vcpu_svm *svm = to_svm(vcpu);
982 u64 ratio;
983 u64 khz;
984
985 /* Guest TSC same frequency as host TSC? */
986 if (!scale) {
987 svm->tsc_ratio = TSC_RATIO_DEFAULT;
988 return;
989 }
990
991 /* TSC scaling supported? */
992 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
993 if (user_tsc_khz > tsc_khz) {
994 vcpu->arch.tsc_catchup = 1;
995 vcpu->arch.tsc_always_catchup = 1;
996 } else
997 WARN(1, "user requested TSC rate below hardware speed\n");
998 return;
999 }
1000
1001 khz = user_tsc_khz;
1002
1003 /* TSC scaling required - calculate ratio */
1004 ratio = khz << 32;
1005 do_div(ratio, tsc_khz);
1006
1007 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1008 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1009 user_tsc_khz);
1010 return;
1011 }
1012 svm->tsc_ratio = ratio;
1013 }
1014
1015 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1016 {
1017 struct vcpu_svm *svm = to_svm(vcpu);
1018 u64 g_tsc_offset = 0;
1019
1020 if (is_guest_mode(vcpu)) {
1021 g_tsc_offset = svm->vmcb->control.tsc_offset -
1022 svm->nested.hsave->control.tsc_offset;
1023 svm->nested.hsave->control.tsc_offset = offset;
1024 }
1025
1026 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1027
1028 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1029 }
1030
1031 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1032 {
1033 struct vcpu_svm *svm = to_svm(vcpu);
1034
1035 WARN_ON(adjustment < 0);
1036 if (host)
1037 adjustment = svm_scale_tsc(vcpu, adjustment);
1038
1039 svm->vmcb->control.tsc_offset += adjustment;
1040 if (is_guest_mode(vcpu))
1041 svm->nested.hsave->control.tsc_offset += adjustment;
1042 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1043 }
1044
1045 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1046 {
1047 u64 tsc;
1048
1049 tsc = svm_scale_tsc(vcpu, native_read_tsc());
1050
1051 return target_tsc - tsc;
1052 }
1053
1054 static void init_vmcb(struct vcpu_svm *svm)
1055 {
1056 struct vmcb_control_area *control = &svm->vmcb->control;
1057 struct vmcb_save_area *save = &svm->vmcb->save;
1058
1059 svm->vcpu.fpu_active = 1;
1060 svm->vcpu.arch.hflags = 0;
1061
1062 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1063 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1064 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1065 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1066 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1067 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1068 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1069
1070 set_dr_intercept(svm, INTERCEPT_DR0_READ);
1071 set_dr_intercept(svm, INTERCEPT_DR1_READ);
1072 set_dr_intercept(svm, INTERCEPT_DR2_READ);
1073 set_dr_intercept(svm, INTERCEPT_DR3_READ);
1074 set_dr_intercept(svm, INTERCEPT_DR4_READ);
1075 set_dr_intercept(svm, INTERCEPT_DR5_READ);
1076 set_dr_intercept(svm, INTERCEPT_DR6_READ);
1077 set_dr_intercept(svm, INTERCEPT_DR7_READ);
1078
1079 set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
1080 set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
1081 set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
1082 set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
1083 set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
1084 set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
1085 set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
1086 set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
1087
1088 set_exception_intercept(svm, PF_VECTOR);
1089 set_exception_intercept(svm, UD_VECTOR);
1090 set_exception_intercept(svm, MC_VECTOR);
1091
1092 set_intercept(svm, INTERCEPT_INTR);
1093 set_intercept(svm, INTERCEPT_NMI);
1094 set_intercept(svm, INTERCEPT_SMI);
1095 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1096 set_intercept(svm, INTERCEPT_RDPMC);
1097 set_intercept(svm, INTERCEPT_CPUID);
1098 set_intercept(svm, INTERCEPT_INVD);
1099 set_intercept(svm, INTERCEPT_HLT);
1100 set_intercept(svm, INTERCEPT_INVLPG);
1101 set_intercept(svm, INTERCEPT_INVLPGA);
1102 set_intercept(svm, INTERCEPT_IOIO_PROT);
1103 set_intercept(svm, INTERCEPT_MSR_PROT);
1104 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1105 set_intercept(svm, INTERCEPT_SHUTDOWN);
1106 set_intercept(svm, INTERCEPT_VMRUN);
1107 set_intercept(svm, INTERCEPT_VMMCALL);
1108 set_intercept(svm, INTERCEPT_VMLOAD);
1109 set_intercept(svm, INTERCEPT_VMSAVE);
1110 set_intercept(svm, INTERCEPT_STGI);
1111 set_intercept(svm, INTERCEPT_CLGI);
1112 set_intercept(svm, INTERCEPT_SKINIT);
1113 set_intercept(svm, INTERCEPT_WBINVD);
1114 set_intercept(svm, INTERCEPT_MONITOR);
1115 set_intercept(svm, INTERCEPT_MWAIT);
1116 set_intercept(svm, INTERCEPT_XSETBV);
1117
1118 control->iopm_base_pa = iopm_base;
1119 control->msrpm_base_pa = __pa(svm->msrpm);
1120 control->int_ctl = V_INTR_MASKING_MASK;
1121
1122 init_seg(&save->es);
1123 init_seg(&save->ss);
1124 init_seg(&save->ds);
1125 init_seg(&save->fs);
1126 init_seg(&save->gs);
1127
1128 save->cs.selector = 0xf000;
1129 /* Executable/Readable Code Segment */
1130 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1131 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1132 save->cs.limit = 0xffff;
1133 /*
1134 * cs.base should really be 0xffff0000, but vmx can't handle that, so
1135 * be consistent with it.
1136 *
1137 * Replace when we have real mode working for vmx.
1138 */
1139 save->cs.base = 0xf0000;
1140
1141 save->gdtr.limit = 0xffff;
1142 save->idtr.limit = 0xffff;
1143
1144 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1145 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1146
1147 svm_set_efer(&svm->vcpu, 0);
1148 save->dr6 = 0xffff0ff0;
1149 kvm_set_rflags(&svm->vcpu, 2);
1150 save->rip = 0x0000fff0;
1151 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1152
1153 /*
1154 * This is the guest-visible cr0 value.
1155 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1156 */
1157 svm->vcpu.arch.cr0 = 0;
1158 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1159
1160 save->cr4 = X86_CR4_PAE;
1161 /* rdx = ?? */
1162
1163 if (npt_enabled) {
1164 /* Setup VMCB for Nested Paging */
1165 control->nested_ctl = 1;
1166 clr_intercept(svm, INTERCEPT_INVLPG);
1167 clr_exception_intercept(svm, PF_VECTOR);
1168 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1169 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1170 save->g_pat = 0x0007040600070406ULL;
1171 save->cr3 = 0;
1172 save->cr4 = 0;
1173 }
1174 svm->asid_generation = 0;
1175
1176 svm->nested.vmcb = 0;
1177 svm->vcpu.arch.hflags = 0;
1178
1179 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1180 control->pause_filter_count = 3000;
1181 set_intercept(svm, INTERCEPT_PAUSE);
1182 }
1183
1184 mark_all_dirty(svm->vmcb);
1185
1186 enable_gif(svm);
1187 }
1188
1189 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1190 {
1191 struct vcpu_svm *svm = to_svm(vcpu);
1192
1193 init_vmcb(svm);
1194
1195 if (!kvm_vcpu_is_bsp(vcpu)) {
1196 kvm_rip_write(vcpu, 0);
1197 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1198 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1199 }
1200 vcpu->arch.regs_avail = ~0;
1201 vcpu->arch.regs_dirty = ~0;
1202
1203 return 0;
1204 }
1205
1206 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1207 {
1208 struct vcpu_svm *svm;
1209 struct page *page;
1210 struct page *msrpm_pages;
1211 struct page *hsave_page;
1212 struct page *nested_msrpm_pages;
1213 int err;
1214
1215 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1216 if (!svm) {
1217 err = -ENOMEM;
1218 goto out;
1219 }
1220
1221 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1222
1223 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1224 if (err)
1225 goto free_svm;
1226
1227 err = -ENOMEM;
1228 page = alloc_page(GFP_KERNEL);
1229 if (!page)
1230 goto uninit;
1231
1232 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1233 if (!msrpm_pages)
1234 goto free_page1;
1235
1236 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1237 if (!nested_msrpm_pages)
1238 goto free_page2;
1239
1240 hsave_page = alloc_page(GFP_KERNEL);
1241 if (!hsave_page)
1242 goto free_page3;
1243
1244 svm->nested.hsave = page_address(hsave_page);
1245
1246 svm->msrpm = page_address(msrpm_pages);
1247 svm_vcpu_init_msrpm(svm->msrpm);
1248
1249 svm->nested.msrpm = page_address(nested_msrpm_pages);
1250 svm_vcpu_init_msrpm(svm->nested.msrpm);
1251
1252 svm->vmcb = page_address(page);
1253 clear_page(svm->vmcb);
1254 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1255 svm->asid_generation = 0;
1256 init_vmcb(svm);
1257 kvm_write_tsc(&svm->vcpu, 0);
1258
1259 err = fx_init(&svm->vcpu);
1260 if (err)
1261 goto free_page4;
1262
1263 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1264 if (kvm_vcpu_is_bsp(&svm->vcpu))
1265 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1266
1267 svm_init_osvw(&svm->vcpu);
1268
1269 return &svm->vcpu;
1270
1271 free_page4:
1272 __free_page(hsave_page);
1273 free_page3:
1274 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1275 free_page2:
1276 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1277 free_page1:
1278 __free_page(page);
1279 uninit:
1280 kvm_vcpu_uninit(&svm->vcpu);
1281 free_svm:
1282 kmem_cache_free(kvm_vcpu_cache, svm);
1283 out:
1284 return ERR_PTR(err);
1285 }
1286
1287 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1288 {
1289 struct vcpu_svm *svm = to_svm(vcpu);
1290
1291 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1292 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1293 __free_page(virt_to_page(svm->nested.hsave));
1294 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1295 kvm_vcpu_uninit(vcpu);
1296 kmem_cache_free(kvm_vcpu_cache, svm);
1297 }
1298
1299 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1300 {
1301 struct vcpu_svm *svm = to_svm(vcpu);
1302 int i;
1303
1304 if (unlikely(cpu != vcpu->cpu)) {
1305 svm->asid_generation = 0;
1306 mark_all_dirty(svm->vmcb);
1307 }
1308
1309 #ifdef CONFIG_X86_64
1310 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1311 #endif
1312 savesegment(fs, svm->host.fs);
1313 savesegment(gs, svm->host.gs);
1314 svm->host.ldt = kvm_read_ldt();
1315
1316 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1317 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1318
1319 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1320 svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1321 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1322 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1323 }
1324 }
1325
1326 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1327 {
1328 struct vcpu_svm *svm = to_svm(vcpu);
1329 int i;
1330
1331 ++vcpu->stat.host_state_reload;
1332 kvm_load_ldt(svm->host.ldt);
1333 #ifdef CONFIG_X86_64
1334 loadsegment(fs, svm->host.fs);
1335 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1336 load_gs_index(svm->host.gs);
1337 #else
1338 #ifdef CONFIG_X86_32_LAZY_GS
1339 loadsegment(gs, svm->host.gs);
1340 #endif
1341 #endif
1342 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1343 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1344 }
1345
1346 static void svm_update_cpl(struct kvm_vcpu *vcpu)
1347 {
1348 struct vcpu_svm *svm = to_svm(vcpu);
1349 int cpl;
1350
1351 if (!is_protmode(vcpu))
1352 cpl = 0;
1353 else if (svm->vmcb->save.rflags & X86_EFLAGS_VM)
1354 cpl = 3;
1355 else
1356 cpl = svm->vmcb->save.cs.selector & 0x3;
1357
1358 svm->vmcb->save.cpl = cpl;
1359 }
1360
1361 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1362 {
1363 return to_svm(vcpu)->vmcb->save.rflags;
1364 }
1365
1366 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1367 {
1368 unsigned long old_rflags = to_svm(vcpu)->vmcb->save.rflags;
1369
1370 to_svm(vcpu)->vmcb->save.rflags = rflags;
1371 if ((old_rflags ^ rflags) & X86_EFLAGS_VM)
1372 svm_update_cpl(vcpu);
1373 }
1374
1375 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1376 {
1377 switch (reg) {
1378 case VCPU_EXREG_PDPTR:
1379 BUG_ON(!npt_enabled);
1380 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1381 break;
1382 default:
1383 BUG();
1384 }
1385 }
1386
1387 static void svm_set_vintr(struct vcpu_svm *svm)
1388 {
1389 set_intercept(svm, INTERCEPT_VINTR);
1390 }
1391
1392 static void svm_clear_vintr(struct vcpu_svm *svm)
1393 {
1394 clr_intercept(svm, INTERCEPT_VINTR);
1395 }
1396
1397 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1398 {
1399 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1400
1401 switch (seg) {
1402 case VCPU_SREG_CS: return &save->cs;
1403 case VCPU_SREG_DS: return &save->ds;
1404 case VCPU_SREG_ES: return &save->es;
1405 case VCPU_SREG_FS: return &save->fs;
1406 case VCPU_SREG_GS: return &save->gs;
1407 case VCPU_SREG_SS: return &save->ss;
1408 case VCPU_SREG_TR: return &save->tr;
1409 case VCPU_SREG_LDTR: return &save->ldtr;
1410 }
1411 BUG();
1412 return NULL;
1413 }
1414
1415 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1416 {
1417 struct vmcb_seg *s = svm_seg(vcpu, seg);
1418
1419 return s->base;
1420 }
1421
1422 static void svm_get_segment(struct kvm_vcpu *vcpu,
1423 struct kvm_segment *var, int seg)
1424 {
1425 struct vmcb_seg *s = svm_seg(vcpu, seg);
1426
1427 var->base = s->base;
1428 var->limit = s->limit;
1429 var->selector = s->selector;
1430 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1431 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1432 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1433 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1434 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1435 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1436 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1437 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1438
1439 /*
1440 * AMD's VMCB does not have an explicit unusable field, so emulate it
1441 * for cross vendor migration purposes by "not present"
1442 */
1443 var->unusable = !var->present || (var->type == 0);
1444
1445 switch (seg) {
1446 case VCPU_SREG_CS:
1447 /*
1448 * SVM always stores 0 for the 'G' bit in the CS selector in
1449 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1450 * Intel's VMENTRY has a check on the 'G' bit.
1451 */
1452 var->g = s->limit > 0xfffff;
1453 break;
1454 case VCPU_SREG_TR:
1455 /*
1456 * Work around a bug where the busy flag in the tr selector
1457 * isn't exposed
1458 */
1459 var->type |= 0x2;
1460 break;
1461 case VCPU_SREG_DS:
1462 case VCPU_SREG_ES:
1463 case VCPU_SREG_FS:
1464 case VCPU_SREG_GS:
1465 /*
1466 * The accessed bit must always be set in the segment
1467 * descriptor cache, although it can be cleared in the
1468 * descriptor, the cached bit always remains at 1. Since
1469 * Intel has a check on this, set it here to support
1470 * cross-vendor migration.
1471 */
1472 if (!var->unusable)
1473 var->type |= 0x1;
1474 break;
1475 case VCPU_SREG_SS:
1476 /*
1477 * On AMD CPUs sometimes the DB bit in the segment
1478 * descriptor is left as 1, although the whole segment has
1479 * been made unusable. Clear it here to pass an Intel VMX
1480 * entry check when cross vendor migrating.
1481 */
1482 if (var->unusable)
1483 var->db = 0;
1484 break;
1485 }
1486 }
1487
1488 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1489 {
1490 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1491
1492 return save->cpl;
1493 }
1494
1495 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1496 {
1497 struct vcpu_svm *svm = to_svm(vcpu);
1498
1499 dt->size = svm->vmcb->save.idtr.limit;
1500 dt->address = svm->vmcb->save.idtr.base;
1501 }
1502
1503 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1504 {
1505 struct vcpu_svm *svm = to_svm(vcpu);
1506
1507 svm->vmcb->save.idtr.limit = dt->size;
1508 svm->vmcb->save.idtr.base = dt->address ;
1509 mark_dirty(svm->vmcb, VMCB_DT);
1510 }
1511
1512 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1513 {
1514 struct vcpu_svm *svm = to_svm(vcpu);
1515
1516 dt->size = svm->vmcb->save.gdtr.limit;
1517 dt->address = svm->vmcb->save.gdtr.base;
1518 }
1519
1520 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1521 {
1522 struct vcpu_svm *svm = to_svm(vcpu);
1523
1524 svm->vmcb->save.gdtr.limit = dt->size;
1525 svm->vmcb->save.gdtr.base = dt->address ;
1526 mark_dirty(svm->vmcb, VMCB_DT);
1527 }
1528
1529 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1530 {
1531 }
1532
1533 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1534 {
1535 }
1536
1537 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1538 {
1539 }
1540
1541 static void update_cr0_intercept(struct vcpu_svm *svm)
1542 {
1543 ulong gcr0 = svm->vcpu.arch.cr0;
1544 u64 *hcr0 = &svm->vmcb->save.cr0;
1545
1546 if (!svm->vcpu.fpu_active)
1547 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1548 else
1549 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1550 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1551
1552 mark_dirty(svm->vmcb, VMCB_CR);
1553
1554 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1555 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1556 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1557 } else {
1558 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1559 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1560 }
1561 }
1562
1563 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1564 {
1565 struct vcpu_svm *svm = to_svm(vcpu);
1566
1567 #ifdef CONFIG_X86_64
1568 if (vcpu->arch.efer & EFER_LME) {
1569 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1570 vcpu->arch.efer |= EFER_LMA;
1571 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1572 }
1573
1574 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1575 vcpu->arch.efer &= ~EFER_LMA;
1576 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1577 }
1578 }
1579 #endif
1580 vcpu->arch.cr0 = cr0;
1581
1582 if (!npt_enabled)
1583 cr0 |= X86_CR0_PG | X86_CR0_WP;
1584
1585 if (!vcpu->fpu_active)
1586 cr0 |= X86_CR0_TS;
1587 /*
1588 * re-enable caching here because the QEMU bios
1589 * does not do it - this results in some delay at
1590 * reboot
1591 */
1592 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1593 svm->vmcb->save.cr0 = cr0;
1594 mark_dirty(svm->vmcb, VMCB_CR);
1595 update_cr0_intercept(svm);
1596 }
1597
1598 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1599 {
1600 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1601 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1602
1603 if (cr4 & X86_CR4_VMXE)
1604 return 1;
1605
1606 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1607 svm_flush_tlb(vcpu);
1608
1609 vcpu->arch.cr4 = cr4;
1610 if (!npt_enabled)
1611 cr4 |= X86_CR4_PAE;
1612 cr4 |= host_cr4_mce;
1613 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1614 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1615 return 0;
1616 }
1617
1618 static void svm_set_segment(struct kvm_vcpu *vcpu,
1619 struct kvm_segment *var, int seg)
1620 {
1621 struct vcpu_svm *svm = to_svm(vcpu);
1622 struct vmcb_seg *s = svm_seg(vcpu, seg);
1623
1624 s->base = var->base;
1625 s->limit = var->limit;
1626 s->selector = var->selector;
1627 if (var->unusable)
1628 s->attrib = 0;
1629 else {
1630 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1631 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1632 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1633 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1634 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1635 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1636 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1637 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1638 }
1639 if (seg == VCPU_SREG_CS)
1640 svm_update_cpl(vcpu);
1641
1642 mark_dirty(svm->vmcb, VMCB_SEG);
1643 }
1644
1645 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1646 {
1647 struct vcpu_svm *svm = to_svm(vcpu);
1648
1649 clr_exception_intercept(svm, DB_VECTOR);
1650 clr_exception_intercept(svm, BP_VECTOR);
1651
1652 if (svm->nmi_singlestep)
1653 set_exception_intercept(svm, DB_VECTOR);
1654
1655 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1656 if (vcpu->guest_debug &
1657 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1658 set_exception_intercept(svm, DB_VECTOR);
1659 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1660 set_exception_intercept(svm, BP_VECTOR);
1661 } else
1662 vcpu->guest_debug = 0;
1663 }
1664
1665 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1666 {
1667 if (sd->next_asid > sd->max_asid) {
1668 ++sd->asid_generation;
1669 sd->next_asid = 1;
1670 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1671 }
1672
1673 svm->asid_generation = sd->asid_generation;
1674 svm->vmcb->control.asid = sd->next_asid++;
1675
1676 mark_dirty(svm->vmcb, VMCB_ASID);
1677 }
1678
1679 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1680 {
1681 struct vcpu_svm *svm = to_svm(vcpu);
1682
1683 svm->vmcb->save.dr7 = value;
1684 mark_dirty(svm->vmcb, VMCB_DR);
1685 }
1686
1687 static int pf_interception(struct vcpu_svm *svm)
1688 {
1689 u64 fault_address = svm->vmcb->control.exit_info_2;
1690 u32 error_code;
1691 int r = 1;
1692
1693 switch (svm->apf_reason) {
1694 default:
1695 error_code = svm->vmcb->control.exit_info_1;
1696
1697 trace_kvm_page_fault(fault_address, error_code);
1698 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1699 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1700 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1701 svm->vmcb->control.insn_bytes,
1702 svm->vmcb->control.insn_len);
1703 break;
1704 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1705 svm->apf_reason = 0;
1706 local_irq_disable();
1707 kvm_async_pf_task_wait(fault_address);
1708 local_irq_enable();
1709 break;
1710 case KVM_PV_REASON_PAGE_READY:
1711 svm->apf_reason = 0;
1712 local_irq_disable();
1713 kvm_async_pf_task_wake(fault_address);
1714 local_irq_enable();
1715 break;
1716 }
1717 return r;
1718 }
1719
1720 static int db_interception(struct vcpu_svm *svm)
1721 {
1722 struct kvm_run *kvm_run = svm->vcpu.run;
1723
1724 if (!(svm->vcpu.guest_debug &
1725 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1726 !svm->nmi_singlestep) {
1727 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1728 return 1;
1729 }
1730
1731 if (svm->nmi_singlestep) {
1732 svm->nmi_singlestep = false;
1733 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1734 svm->vmcb->save.rflags &=
1735 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1736 update_db_bp_intercept(&svm->vcpu);
1737 }
1738
1739 if (svm->vcpu.guest_debug &
1740 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1741 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1742 kvm_run->debug.arch.pc =
1743 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1744 kvm_run->debug.arch.exception = DB_VECTOR;
1745 return 0;
1746 }
1747
1748 return 1;
1749 }
1750
1751 static int bp_interception(struct vcpu_svm *svm)
1752 {
1753 struct kvm_run *kvm_run = svm->vcpu.run;
1754
1755 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1756 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1757 kvm_run->debug.arch.exception = BP_VECTOR;
1758 return 0;
1759 }
1760
1761 static int ud_interception(struct vcpu_svm *svm)
1762 {
1763 int er;
1764
1765 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1766 if (er != EMULATE_DONE)
1767 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1768 return 1;
1769 }
1770
1771 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1772 {
1773 struct vcpu_svm *svm = to_svm(vcpu);
1774
1775 clr_exception_intercept(svm, NM_VECTOR);
1776
1777 svm->vcpu.fpu_active = 1;
1778 update_cr0_intercept(svm);
1779 }
1780
1781 static int nm_interception(struct vcpu_svm *svm)
1782 {
1783 svm_fpu_activate(&svm->vcpu);
1784 return 1;
1785 }
1786
1787 static bool is_erratum_383(void)
1788 {
1789 int err, i;
1790 u64 value;
1791
1792 if (!erratum_383_found)
1793 return false;
1794
1795 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1796 if (err)
1797 return false;
1798
1799 /* Bit 62 may or may not be set for this mce */
1800 value &= ~(1ULL << 62);
1801
1802 if (value != 0xb600000000010015ULL)
1803 return false;
1804
1805 /* Clear MCi_STATUS registers */
1806 for (i = 0; i < 6; ++i)
1807 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1808
1809 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1810 if (!err) {
1811 u32 low, high;
1812
1813 value &= ~(1ULL << 2);
1814 low = lower_32_bits(value);
1815 high = upper_32_bits(value);
1816
1817 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1818 }
1819
1820 /* Flush tlb to evict multi-match entries */
1821 __flush_tlb_all();
1822
1823 return true;
1824 }
1825
1826 static void svm_handle_mce(struct vcpu_svm *svm)
1827 {
1828 if (is_erratum_383()) {
1829 /*
1830 * Erratum 383 triggered. Guest state is corrupt so kill the
1831 * guest.
1832 */
1833 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1834
1835 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1836
1837 return;
1838 }
1839
1840 /*
1841 * On an #MC intercept the MCE handler is not called automatically in
1842 * the host. So do it by hand here.
1843 */
1844 asm volatile (
1845 "int $0x12\n");
1846 /* not sure if we ever come back to this point */
1847
1848 return;
1849 }
1850
1851 static int mc_interception(struct vcpu_svm *svm)
1852 {
1853 return 1;
1854 }
1855
1856 static int shutdown_interception(struct vcpu_svm *svm)
1857 {
1858 struct kvm_run *kvm_run = svm->vcpu.run;
1859
1860 /*
1861 * VMCB is undefined after a SHUTDOWN intercept
1862 * so reinitialize it.
1863 */
1864 clear_page(svm->vmcb);
1865 init_vmcb(svm);
1866
1867 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1868 return 0;
1869 }
1870
1871 static int io_interception(struct vcpu_svm *svm)
1872 {
1873 struct kvm_vcpu *vcpu = &svm->vcpu;
1874 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1875 int size, in, string;
1876 unsigned port;
1877
1878 ++svm->vcpu.stat.io_exits;
1879 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1880 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1881 if (string || in)
1882 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1883
1884 port = io_info >> 16;
1885 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1886 svm->next_rip = svm->vmcb->control.exit_info_2;
1887 skip_emulated_instruction(&svm->vcpu);
1888
1889 return kvm_fast_pio_out(vcpu, size, port);
1890 }
1891
1892 static int nmi_interception(struct vcpu_svm *svm)
1893 {
1894 return 1;
1895 }
1896
1897 static int intr_interception(struct vcpu_svm *svm)
1898 {
1899 ++svm->vcpu.stat.irq_exits;
1900 return 1;
1901 }
1902
1903 static int nop_on_interception(struct vcpu_svm *svm)
1904 {
1905 return 1;
1906 }
1907
1908 static int halt_interception(struct vcpu_svm *svm)
1909 {
1910 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1911 skip_emulated_instruction(&svm->vcpu);
1912 return kvm_emulate_halt(&svm->vcpu);
1913 }
1914
1915 static int vmmcall_interception(struct vcpu_svm *svm)
1916 {
1917 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1918 skip_emulated_instruction(&svm->vcpu);
1919 kvm_emulate_hypercall(&svm->vcpu);
1920 return 1;
1921 }
1922
1923 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1924 {
1925 struct vcpu_svm *svm = to_svm(vcpu);
1926
1927 return svm->nested.nested_cr3;
1928 }
1929
1930 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1931 {
1932 struct vcpu_svm *svm = to_svm(vcpu);
1933 u64 cr3 = svm->nested.nested_cr3;
1934 u64 pdpte;
1935 int ret;
1936
1937 ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1938 offset_in_page(cr3) + index * 8, 8);
1939 if (ret)
1940 return 0;
1941 return pdpte;
1942 }
1943
1944 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1945 unsigned long root)
1946 {
1947 struct vcpu_svm *svm = to_svm(vcpu);
1948
1949 svm->vmcb->control.nested_cr3 = root;
1950 mark_dirty(svm->vmcb, VMCB_NPT);
1951 svm_flush_tlb(vcpu);
1952 }
1953
1954 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1955 struct x86_exception *fault)
1956 {
1957 struct vcpu_svm *svm = to_svm(vcpu);
1958
1959 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1960 svm->vmcb->control.exit_code_hi = 0;
1961 svm->vmcb->control.exit_info_1 = fault->error_code;
1962 svm->vmcb->control.exit_info_2 = fault->address;
1963
1964 nested_svm_vmexit(svm);
1965 }
1966
1967 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1968 {
1969 int r;
1970
1971 r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1972
1973 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
1974 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
1975 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
1976 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1977 vcpu->arch.mmu.shadow_root_level = get_npt_level();
1978 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
1979
1980 return r;
1981 }
1982
1983 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1984 {
1985 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1986 }
1987
1988 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1989 {
1990 if (!(svm->vcpu.arch.efer & EFER_SVME)
1991 || !is_paging(&svm->vcpu)) {
1992 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1993 return 1;
1994 }
1995
1996 if (svm->vmcb->save.cpl) {
1997 kvm_inject_gp(&svm->vcpu, 0);
1998 return 1;
1999 }
2000
2001 return 0;
2002 }
2003
2004 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2005 bool has_error_code, u32 error_code)
2006 {
2007 int vmexit;
2008
2009 if (!is_guest_mode(&svm->vcpu))
2010 return 0;
2011
2012 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2013 svm->vmcb->control.exit_code_hi = 0;
2014 svm->vmcb->control.exit_info_1 = error_code;
2015 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2016
2017 vmexit = nested_svm_intercept(svm);
2018 if (vmexit == NESTED_EXIT_DONE)
2019 svm->nested.exit_required = true;
2020
2021 return vmexit;
2022 }
2023
2024 /* This function returns true if it is save to enable the irq window */
2025 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2026 {
2027 if (!is_guest_mode(&svm->vcpu))
2028 return true;
2029
2030 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2031 return true;
2032
2033 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2034 return false;
2035
2036 /*
2037 * if vmexit was already requested (by intercepted exception
2038 * for instance) do not overwrite it with "external interrupt"
2039 * vmexit.
2040 */
2041 if (svm->nested.exit_required)
2042 return false;
2043
2044 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2045 svm->vmcb->control.exit_info_1 = 0;
2046 svm->vmcb->control.exit_info_2 = 0;
2047
2048 if (svm->nested.intercept & 1ULL) {
2049 /*
2050 * The #vmexit can't be emulated here directly because this
2051 * code path runs with irqs and preemption disabled. A
2052 * #vmexit emulation might sleep. Only signal request for
2053 * the #vmexit here.
2054 */
2055 svm->nested.exit_required = true;
2056 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2057 return false;
2058 }
2059
2060 return true;
2061 }
2062
2063 /* This function returns true if it is save to enable the nmi window */
2064 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2065 {
2066 if (!is_guest_mode(&svm->vcpu))
2067 return true;
2068
2069 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2070 return true;
2071
2072 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2073 svm->nested.exit_required = true;
2074
2075 return false;
2076 }
2077
2078 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2079 {
2080 struct page *page;
2081
2082 might_sleep();
2083
2084 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2085 if (is_error_page(page))
2086 goto error;
2087
2088 *_page = page;
2089
2090 return kmap(page);
2091
2092 error:
2093 kvm_inject_gp(&svm->vcpu, 0);
2094
2095 return NULL;
2096 }
2097
2098 static void nested_svm_unmap(struct page *page)
2099 {
2100 kunmap(page);
2101 kvm_release_page_dirty(page);
2102 }
2103
2104 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2105 {
2106 unsigned port;
2107 u8 val, bit;
2108 u64 gpa;
2109
2110 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2111 return NESTED_EXIT_HOST;
2112
2113 port = svm->vmcb->control.exit_info_1 >> 16;
2114 gpa = svm->nested.vmcb_iopm + (port / 8);
2115 bit = port % 8;
2116 val = 0;
2117
2118 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2119 val &= (1 << bit);
2120
2121 return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2122 }
2123
2124 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2125 {
2126 u32 offset, msr, value;
2127 int write, mask;
2128
2129 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2130 return NESTED_EXIT_HOST;
2131
2132 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2133 offset = svm_msrpm_offset(msr);
2134 write = svm->vmcb->control.exit_info_1 & 1;
2135 mask = 1 << ((2 * (msr & 0xf)) + write);
2136
2137 if (offset == MSR_INVALID)
2138 return NESTED_EXIT_DONE;
2139
2140 /* Offset is in 32 bit units but need in 8 bit units */
2141 offset *= 4;
2142
2143 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2144 return NESTED_EXIT_DONE;
2145
2146 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2147 }
2148
2149 static int nested_svm_exit_special(struct vcpu_svm *svm)
2150 {
2151 u32 exit_code = svm->vmcb->control.exit_code;
2152
2153 switch (exit_code) {
2154 case SVM_EXIT_INTR:
2155 case SVM_EXIT_NMI:
2156 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2157 return NESTED_EXIT_HOST;
2158 case SVM_EXIT_NPF:
2159 /* For now we are always handling NPFs when using them */
2160 if (npt_enabled)
2161 return NESTED_EXIT_HOST;
2162 break;
2163 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2164 /* When we're shadowing, trap PFs, but not async PF */
2165 if (!npt_enabled && svm->apf_reason == 0)
2166 return NESTED_EXIT_HOST;
2167 break;
2168 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2169 nm_interception(svm);
2170 break;
2171 default:
2172 break;
2173 }
2174
2175 return NESTED_EXIT_CONTINUE;
2176 }
2177
2178 /*
2179 * If this function returns true, this #vmexit was already handled
2180 */
2181 static int nested_svm_intercept(struct vcpu_svm *svm)
2182 {
2183 u32 exit_code = svm->vmcb->control.exit_code;
2184 int vmexit = NESTED_EXIT_HOST;
2185
2186 switch (exit_code) {
2187 case SVM_EXIT_MSR:
2188 vmexit = nested_svm_exit_handled_msr(svm);
2189 break;
2190 case SVM_EXIT_IOIO:
2191 vmexit = nested_svm_intercept_ioio(svm);
2192 break;
2193 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2194 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2195 if (svm->nested.intercept_cr & bit)
2196 vmexit = NESTED_EXIT_DONE;
2197 break;
2198 }
2199 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2200 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2201 if (svm->nested.intercept_dr & bit)
2202 vmexit = NESTED_EXIT_DONE;
2203 break;
2204 }
2205 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2206 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2207 if (svm->nested.intercept_exceptions & excp_bits)
2208 vmexit = NESTED_EXIT_DONE;
2209 /* async page fault always cause vmexit */
2210 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2211 svm->apf_reason != 0)
2212 vmexit = NESTED_EXIT_DONE;
2213 break;
2214 }
2215 case SVM_EXIT_ERR: {
2216 vmexit = NESTED_EXIT_DONE;
2217 break;
2218 }
2219 default: {
2220 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2221 if (svm->nested.intercept & exit_bits)
2222 vmexit = NESTED_EXIT_DONE;
2223 }
2224 }
2225
2226 return vmexit;
2227 }
2228
2229 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2230 {
2231 int vmexit;
2232
2233 vmexit = nested_svm_intercept(svm);
2234
2235 if (vmexit == NESTED_EXIT_DONE)
2236 nested_svm_vmexit(svm);
2237
2238 return vmexit;
2239 }
2240
2241 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2242 {
2243 struct vmcb_control_area *dst = &dst_vmcb->control;
2244 struct vmcb_control_area *from = &from_vmcb->control;
2245
2246 dst->intercept_cr = from->intercept_cr;
2247 dst->intercept_dr = from->intercept_dr;
2248 dst->intercept_exceptions = from->intercept_exceptions;
2249 dst->intercept = from->intercept;
2250 dst->iopm_base_pa = from->iopm_base_pa;
2251 dst->msrpm_base_pa = from->msrpm_base_pa;
2252 dst->tsc_offset = from->tsc_offset;
2253 dst->asid = from->asid;
2254 dst->tlb_ctl = from->tlb_ctl;
2255 dst->int_ctl = from->int_ctl;
2256 dst->int_vector = from->int_vector;
2257 dst->int_state = from->int_state;
2258 dst->exit_code = from->exit_code;
2259 dst->exit_code_hi = from->exit_code_hi;
2260 dst->exit_info_1 = from->exit_info_1;
2261 dst->exit_info_2 = from->exit_info_2;
2262 dst->exit_int_info = from->exit_int_info;
2263 dst->exit_int_info_err = from->exit_int_info_err;
2264 dst->nested_ctl = from->nested_ctl;
2265 dst->event_inj = from->event_inj;
2266 dst->event_inj_err = from->event_inj_err;
2267 dst->nested_cr3 = from->nested_cr3;
2268 dst->lbr_ctl = from->lbr_ctl;
2269 }
2270
2271 static int nested_svm_vmexit(struct vcpu_svm *svm)
2272 {
2273 struct vmcb *nested_vmcb;
2274 struct vmcb *hsave = svm->nested.hsave;
2275 struct vmcb *vmcb = svm->vmcb;
2276 struct page *page;
2277
2278 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2279 vmcb->control.exit_info_1,
2280 vmcb->control.exit_info_2,
2281 vmcb->control.exit_int_info,
2282 vmcb->control.exit_int_info_err,
2283 KVM_ISA_SVM);
2284
2285 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2286 if (!nested_vmcb)
2287 return 1;
2288
2289 /* Exit Guest-Mode */
2290 leave_guest_mode(&svm->vcpu);
2291 svm->nested.vmcb = 0;
2292
2293 /* Give the current vmcb to the guest */
2294 disable_gif(svm);
2295
2296 nested_vmcb->save.es = vmcb->save.es;
2297 nested_vmcb->save.cs = vmcb->save.cs;
2298 nested_vmcb->save.ss = vmcb->save.ss;
2299 nested_vmcb->save.ds = vmcb->save.ds;
2300 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2301 nested_vmcb->save.idtr = vmcb->save.idtr;
2302 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2303 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2304 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2305 nested_vmcb->save.cr2 = vmcb->save.cr2;
2306 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2307 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2308 nested_vmcb->save.rip = vmcb->save.rip;
2309 nested_vmcb->save.rsp = vmcb->save.rsp;
2310 nested_vmcb->save.rax = vmcb->save.rax;
2311 nested_vmcb->save.dr7 = vmcb->save.dr7;
2312 nested_vmcb->save.dr6 = vmcb->save.dr6;
2313 nested_vmcb->save.cpl = vmcb->save.cpl;
2314
2315 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2316 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2317 nested_vmcb->control.int_state = vmcb->control.int_state;
2318 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2319 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2320 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2321 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2322 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2323 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2324 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2325
2326 /*
2327 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2328 * to make sure that we do not lose injected events. So check event_inj
2329 * here and copy it to exit_int_info if it is valid.
2330 * Exit_int_info and event_inj can't be both valid because the case
2331 * below only happens on a VMRUN instruction intercept which has
2332 * no valid exit_int_info set.
2333 */
2334 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2335 struct vmcb_control_area *nc = &nested_vmcb->control;
2336
2337 nc->exit_int_info = vmcb->control.event_inj;
2338 nc->exit_int_info_err = vmcb->control.event_inj_err;
2339 }
2340
2341 nested_vmcb->control.tlb_ctl = 0;
2342 nested_vmcb->control.event_inj = 0;
2343 nested_vmcb->control.event_inj_err = 0;
2344
2345 /* We always set V_INTR_MASKING and remember the old value in hflags */
2346 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2347 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2348
2349 /* Restore the original control entries */
2350 copy_vmcb_control_area(vmcb, hsave);
2351
2352 kvm_clear_exception_queue(&svm->vcpu);
2353 kvm_clear_interrupt_queue(&svm->vcpu);
2354
2355 svm->nested.nested_cr3 = 0;
2356
2357 /* Restore selected save entries */
2358 svm->vmcb->save.es = hsave->save.es;
2359 svm->vmcb->save.cs = hsave->save.cs;
2360 svm->vmcb->save.ss = hsave->save.ss;
2361 svm->vmcb->save.ds = hsave->save.ds;
2362 svm->vmcb->save.gdtr = hsave->save.gdtr;
2363 svm->vmcb->save.idtr = hsave->save.idtr;
2364 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2365 svm_set_efer(&svm->vcpu, hsave->save.efer);
2366 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2367 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2368 if (npt_enabled) {
2369 svm->vmcb->save.cr3 = hsave->save.cr3;
2370 svm->vcpu.arch.cr3 = hsave->save.cr3;
2371 } else {
2372 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2373 }
2374 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2375 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2376 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2377 svm->vmcb->save.dr7 = 0;
2378 svm->vmcb->save.cpl = 0;
2379 svm->vmcb->control.exit_int_info = 0;
2380
2381 mark_all_dirty(svm->vmcb);
2382
2383 nested_svm_unmap(page);
2384
2385 nested_svm_uninit_mmu_context(&svm->vcpu);
2386 kvm_mmu_reset_context(&svm->vcpu);
2387 kvm_mmu_load(&svm->vcpu);
2388
2389 return 0;
2390 }
2391
2392 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2393 {
2394 /*
2395 * This function merges the msr permission bitmaps of kvm and the
2396 * nested vmcb. It is optimized in that it only merges the parts where
2397 * the kvm msr permission bitmap may contain zero bits
2398 */
2399 int i;
2400
2401 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2402 return true;
2403
2404 for (i = 0; i < MSRPM_OFFSETS; i++) {
2405 u32 value, p;
2406 u64 offset;
2407
2408 if (msrpm_offsets[i] == 0xffffffff)
2409 break;
2410
2411 p = msrpm_offsets[i];
2412 offset = svm->nested.vmcb_msrpm + (p * 4);
2413
2414 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2415 return false;
2416
2417 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2418 }
2419
2420 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2421
2422 return true;
2423 }
2424
2425 static bool nested_vmcb_checks(struct vmcb *vmcb)
2426 {
2427 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2428 return false;
2429
2430 if (vmcb->control.asid == 0)
2431 return false;
2432
2433 if (vmcb->control.nested_ctl && !npt_enabled)
2434 return false;
2435
2436 return true;
2437 }
2438
2439 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2440 {
2441 struct vmcb *nested_vmcb;
2442 struct vmcb *hsave = svm->nested.hsave;
2443 struct vmcb *vmcb = svm->vmcb;
2444 struct page *page;
2445 u64 vmcb_gpa;
2446
2447 vmcb_gpa = svm->vmcb->save.rax;
2448
2449 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2450 if (!nested_vmcb)
2451 return false;
2452
2453 if (!nested_vmcb_checks(nested_vmcb)) {
2454 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2455 nested_vmcb->control.exit_code_hi = 0;
2456 nested_vmcb->control.exit_info_1 = 0;
2457 nested_vmcb->control.exit_info_2 = 0;
2458
2459 nested_svm_unmap(page);
2460
2461 return false;
2462 }
2463
2464 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2465 nested_vmcb->save.rip,
2466 nested_vmcb->control.int_ctl,
2467 nested_vmcb->control.event_inj,
2468 nested_vmcb->control.nested_ctl);
2469
2470 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2471 nested_vmcb->control.intercept_cr >> 16,
2472 nested_vmcb->control.intercept_exceptions,
2473 nested_vmcb->control.intercept);
2474
2475 /* Clear internal status */
2476 kvm_clear_exception_queue(&svm->vcpu);
2477 kvm_clear_interrupt_queue(&svm->vcpu);
2478
2479 /*
2480 * Save the old vmcb, so we don't need to pick what we save, but can
2481 * restore everything when a VMEXIT occurs
2482 */
2483 hsave->save.es = vmcb->save.es;
2484 hsave->save.cs = vmcb->save.cs;
2485 hsave->save.ss = vmcb->save.ss;
2486 hsave->save.ds = vmcb->save.ds;
2487 hsave->save.gdtr = vmcb->save.gdtr;
2488 hsave->save.idtr = vmcb->save.idtr;
2489 hsave->save.efer = svm->vcpu.arch.efer;
2490 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2491 hsave->save.cr4 = svm->vcpu.arch.cr4;
2492 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2493 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2494 hsave->save.rsp = vmcb->save.rsp;
2495 hsave->save.rax = vmcb->save.rax;
2496 if (npt_enabled)
2497 hsave->save.cr3 = vmcb->save.cr3;
2498 else
2499 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2500
2501 copy_vmcb_control_area(hsave, vmcb);
2502
2503 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2504 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2505 else
2506 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2507
2508 if (nested_vmcb->control.nested_ctl) {
2509 kvm_mmu_unload(&svm->vcpu);
2510 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2511 nested_svm_init_mmu_context(&svm->vcpu);
2512 }
2513
2514 /* Load the nested guest state */
2515 svm->vmcb->save.es = nested_vmcb->save.es;
2516 svm->vmcb->save.cs = nested_vmcb->save.cs;
2517 svm->vmcb->save.ss = nested_vmcb->save.ss;
2518 svm->vmcb->save.ds = nested_vmcb->save.ds;
2519 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2520 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2521 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2522 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2523 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2524 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2525 if (npt_enabled) {
2526 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2527 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2528 } else
2529 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2530
2531 /* Guest paging mode is active - reset mmu */
2532 kvm_mmu_reset_context(&svm->vcpu);
2533
2534 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2535 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2536 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2537 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2538
2539 /* In case we don't even reach vcpu_run, the fields are not updated */
2540 svm->vmcb->save.rax = nested_vmcb->save.rax;
2541 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2542 svm->vmcb->save.rip = nested_vmcb->save.rip;
2543 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2544 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2545 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2546
2547 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2548 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2549
2550 /* cache intercepts */
2551 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2552 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2553 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2554 svm->nested.intercept = nested_vmcb->control.intercept;
2555
2556 svm_flush_tlb(&svm->vcpu);
2557 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2558 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2559 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2560 else
2561 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2562
2563 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2564 /* We only want the cr8 intercept bits of the guest */
2565 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2566 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2567 }
2568
2569 /* We don't want to see VMMCALLs from a nested guest */
2570 clr_intercept(svm, INTERCEPT_VMMCALL);
2571
2572 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2573 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2574 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2575 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2576 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2577 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2578
2579 nested_svm_unmap(page);
2580
2581 /* Enter Guest-Mode */
2582 enter_guest_mode(&svm->vcpu);
2583
2584 /*
2585 * Merge guest and host intercepts - must be called with vcpu in
2586 * guest-mode to take affect here
2587 */
2588 recalc_intercepts(svm);
2589
2590 svm->nested.vmcb = vmcb_gpa;
2591
2592 enable_gif(svm);
2593
2594 mark_all_dirty(svm->vmcb);
2595
2596 return true;
2597 }
2598
2599 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2600 {
2601 to_vmcb->save.fs = from_vmcb->save.fs;
2602 to_vmcb->save.gs = from_vmcb->save.gs;
2603 to_vmcb->save.tr = from_vmcb->save.tr;
2604 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2605 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2606 to_vmcb->save.star = from_vmcb->save.star;
2607 to_vmcb->save.lstar = from_vmcb->save.lstar;
2608 to_vmcb->save.cstar = from_vmcb->save.cstar;
2609 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2610 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2611 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2612 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2613 }
2614
2615 static int vmload_interception(struct vcpu_svm *svm)
2616 {
2617 struct vmcb *nested_vmcb;
2618 struct page *page;
2619
2620 if (nested_svm_check_permissions(svm))
2621 return 1;
2622
2623 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2624 if (!nested_vmcb)
2625 return 1;
2626
2627 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2628 skip_emulated_instruction(&svm->vcpu);
2629
2630 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2631 nested_svm_unmap(page);
2632
2633 return 1;
2634 }
2635
2636 static int vmsave_interception(struct vcpu_svm *svm)
2637 {
2638 struct vmcb *nested_vmcb;
2639 struct page *page;
2640
2641 if (nested_svm_check_permissions(svm))
2642 return 1;
2643
2644 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2645 if (!nested_vmcb)
2646 return 1;
2647
2648 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2649 skip_emulated_instruction(&svm->vcpu);
2650
2651 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2652 nested_svm_unmap(page);
2653
2654 return 1;
2655 }
2656
2657 static int vmrun_interception(struct vcpu_svm *svm)
2658 {
2659 if (nested_svm_check_permissions(svm))
2660 return 1;
2661
2662 /* Save rip after vmrun instruction */
2663 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2664
2665 if (!nested_svm_vmrun(svm))
2666 return 1;
2667
2668 if (!nested_svm_vmrun_msrpm(svm))
2669 goto failed;
2670
2671 return 1;
2672
2673 failed:
2674
2675 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2676 svm->vmcb->control.exit_code_hi = 0;
2677 svm->vmcb->control.exit_info_1 = 0;
2678 svm->vmcb->control.exit_info_2 = 0;
2679
2680 nested_svm_vmexit(svm);
2681
2682 return 1;
2683 }
2684
2685 static int stgi_interception(struct vcpu_svm *svm)
2686 {
2687 if (nested_svm_check_permissions(svm))
2688 return 1;
2689
2690 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2691 skip_emulated_instruction(&svm->vcpu);
2692 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2693
2694 enable_gif(svm);
2695
2696 return 1;
2697 }
2698
2699 static int clgi_interception(struct vcpu_svm *svm)
2700 {
2701 if (nested_svm_check_permissions(svm))
2702 return 1;
2703
2704 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2705 skip_emulated_instruction(&svm->vcpu);
2706
2707 disable_gif(svm);
2708
2709 /* After a CLGI no interrupts should come */
2710 svm_clear_vintr(svm);
2711 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2712
2713 mark_dirty(svm->vmcb, VMCB_INTR);
2714
2715 return 1;
2716 }
2717
2718 static int invlpga_interception(struct vcpu_svm *svm)
2719 {
2720 struct kvm_vcpu *vcpu = &svm->vcpu;
2721
2722 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2723 vcpu->arch.regs[VCPU_REGS_RAX]);
2724
2725 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2726 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2727
2728 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2729 skip_emulated_instruction(&svm->vcpu);
2730 return 1;
2731 }
2732
2733 static int skinit_interception(struct vcpu_svm *svm)
2734 {
2735 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2736
2737 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2738 return 1;
2739 }
2740
2741 static int xsetbv_interception(struct vcpu_svm *svm)
2742 {
2743 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2744 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2745
2746 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2747 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2748 skip_emulated_instruction(&svm->vcpu);
2749 }
2750
2751 return 1;
2752 }
2753
2754 static int invalid_op_interception(struct vcpu_svm *svm)
2755 {
2756 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2757 return 1;
2758 }
2759
2760 static int task_switch_interception(struct vcpu_svm *svm)
2761 {
2762 u16 tss_selector;
2763 int reason;
2764 int int_type = svm->vmcb->control.exit_int_info &
2765 SVM_EXITINTINFO_TYPE_MASK;
2766 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2767 uint32_t type =
2768 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2769 uint32_t idt_v =
2770 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2771 bool has_error_code = false;
2772 u32 error_code = 0;
2773
2774 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2775
2776 if (svm->vmcb->control.exit_info_2 &
2777 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2778 reason = TASK_SWITCH_IRET;
2779 else if (svm->vmcb->control.exit_info_2 &
2780 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2781 reason = TASK_SWITCH_JMP;
2782 else if (idt_v)
2783 reason = TASK_SWITCH_GATE;
2784 else
2785 reason = TASK_SWITCH_CALL;
2786
2787 if (reason == TASK_SWITCH_GATE) {
2788 switch (type) {
2789 case SVM_EXITINTINFO_TYPE_NMI:
2790 svm->vcpu.arch.nmi_injected = false;
2791 break;
2792 case SVM_EXITINTINFO_TYPE_EXEPT:
2793 if (svm->vmcb->control.exit_info_2 &
2794 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2795 has_error_code = true;
2796 error_code =
2797 (u32)svm->vmcb->control.exit_info_2;
2798 }
2799 kvm_clear_exception_queue(&svm->vcpu);
2800 break;
2801 case SVM_EXITINTINFO_TYPE_INTR:
2802 kvm_clear_interrupt_queue(&svm->vcpu);
2803 break;
2804 default:
2805 break;
2806 }
2807 }
2808
2809 if (reason != TASK_SWITCH_GATE ||
2810 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2811 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2812 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2813 skip_emulated_instruction(&svm->vcpu);
2814
2815 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2816 int_vec = -1;
2817
2818 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2819 has_error_code, error_code) == EMULATE_FAIL) {
2820 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2821 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2822 svm->vcpu.run->internal.ndata = 0;
2823 return 0;
2824 }
2825 return 1;
2826 }
2827
2828 static int cpuid_interception(struct vcpu_svm *svm)
2829 {
2830 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2831 kvm_emulate_cpuid(&svm->vcpu);
2832 return 1;
2833 }
2834
2835 static int iret_interception(struct vcpu_svm *svm)
2836 {
2837 ++svm->vcpu.stat.nmi_window_exits;
2838 clr_intercept(svm, INTERCEPT_IRET);
2839 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2840 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2841 return 1;
2842 }
2843
2844 static int invlpg_interception(struct vcpu_svm *svm)
2845 {
2846 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2847 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2848
2849 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2850 skip_emulated_instruction(&svm->vcpu);
2851 return 1;
2852 }
2853
2854 static int emulate_on_interception(struct vcpu_svm *svm)
2855 {
2856 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2857 }
2858
2859 static int rdpmc_interception(struct vcpu_svm *svm)
2860 {
2861 int err;
2862
2863 if (!static_cpu_has(X86_FEATURE_NRIPS))
2864 return emulate_on_interception(svm);
2865
2866 err = kvm_rdpmc(&svm->vcpu);
2867 kvm_complete_insn_gp(&svm->vcpu, err);
2868
2869 return 1;
2870 }
2871
2872 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2873 {
2874 unsigned long cr0 = svm->vcpu.arch.cr0;
2875 bool ret = false;
2876 u64 intercept;
2877
2878 intercept = svm->nested.intercept;
2879
2880 if (!is_guest_mode(&svm->vcpu) ||
2881 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2882 return false;
2883
2884 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2885 val &= ~SVM_CR0_SELECTIVE_MASK;
2886
2887 if (cr0 ^ val) {
2888 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2889 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2890 }
2891
2892 return ret;
2893 }
2894
2895 #define CR_VALID (1ULL << 63)
2896
2897 static int cr_interception(struct vcpu_svm *svm)
2898 {
2899 int reg, cr;
2900 unsigned long val;
2901 int err;
2902
2903 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2904 return emulate_on_interception(svm);
2905
2906 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2907 return emulate_on_interception(svm);
2908
2909 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2910 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2911
2912 err = 0;
2913 if (cr >= 16) { /* mov to cr */
2914 cr -= 16;
2915 val = kvm_register_read(&svm->vcpu, reg);
2916 switch (cr) {
2917 case 0:
2918 if (!check_selective_cr0_intercepted(svm, val))
2919 err = kvm_set_cr0(&svm->vcpu, val);
2920 else
2921 return 1;
2922
2923 break;
2924 case 3:
2925 err = kvm_set_cr3(&svm->vcpu, val);
2926 break;
2927 case 4:
2928 err = kvm_set_cr4(&svm->vcpu, val);
2929 break;
2930 case 8:
2931 err = kvm_set_cr8(&svm->vcpu, val);
2932 break;
2933 default:
2934 WARN(1, "unhandled write to CR%d", cr);
2935 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2936 return 1;
2937 }
2938 } else { /* mov from cr */
2939 switch (cr) {
2940 case 0:
2941 val = kvm_read_cr0(&svm->vcpu);
2942 break;
2943 case 2:
2944 val = svm->vcpu.arch.cr2;
2945 break;
2946 case 3:
2947 val = kvm_read_cr3(&svm->vcpu);
2948 break;
2949 case 4:
2950 val = kvm_read_cr4(&svm->vcpu);
2951 break;
2952 case 8:
2953 val = kvm_get_cr8(&svm->vcpu);
2954 break;
2955 default:
2956 WARN(1, "unhandled read from CR%d", cr);
2957 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2958 return 1;
2959 }
2960 kvm_register_write(&svm->vcpu, reg, val);
2961 }
2962 kvm_complete_insn_gp(&svm->vcpu, err);
2963
2964 return 1;
2965 }
2966
2967 static int dr_interception(struct vcpu_svm *svm)
2968 {
2969 int reg, dr;
2970 unsigned long val;
2971 int err;
2972
2973 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2974 return emulate_on_interception(svm);
2975
2976 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2977 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2978
2979 if (dr >= 16) { /* mov to DRn */
2980 val = kvm_register_read(&svm->vcpu, reg);
2981 kvm_set_dr(&svm->vcpu, dr - 16, val);
2982 } else {
2983 err = kvm_get_dr(&svm->vcpu, dr, &val);
2984 if (!err)
2985 kvm_register_write(&svm->vcpu, reg, val);
2986 }
2987
2988 skip_emulated_instruction(&svm->vcpu);
2989
2990 return 1;
2991 }
2992
2993 static int cr8_write_interception(struct vcpu_svm *svm)
2994 {
2995 struct kvm_run *kvm_run = svm->vcpu.run;
2996 int r;
2997
2998 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2999 /* instruction emulation calls kvm_set_cr8() */
3000 r = cr_interception(svm);
3001 if (irqchip_in_kernel(svm->vcpu.kvm)) {
3002 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3003 return r;
3004 }
3005 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3006 return r;
3007 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3008 return 0;
3009 }
3010
3011 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu)
3012 {
3013 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3014 return vmcb->control.tsc_offset +
3015 svm_scale_tsc(vcpu, native_read_tsc());
3016 }
3017
3018 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3019 {
3020 struct vcpu_svm *svm = to_svm(vcpu);
3021
3022 switch (ecx) {
3023 case MSR_IA32_TSC: {
3024 *data = svm->vmcb->control.tsc_offset +
3025 svm_scale_tsc(vcpu, native_read_tsc());
3026
3027 break;
3028 }
3029 case MSR_STAR:
3030 *data = svm->vmcb->save.star;
3031 break;
3032 #ifdef CONFIG_X86_64
3033 case MSR_LSTAR:
3034 *data = svm->vmcb->save.lstar;
3035 break;
3036 case MSR_CSTAR:
3037 *data = svm->vmcb->save.cstar;
3038 break;
3039 case MSR_KERNEL_GS_BASE:
3040 *data = svm->vmcb->save.kernel_gs_base;
3041 break;
3042 case MSR_SYSCALL_MASK:
3043 *data = svm->vmcb->save.sfmask;
3044 break;
3045 #endif
3046 case MSR_IA32_SYSENTER_CS:
3047 *data = svm->vmcb->save.sysenter_cs;
3048 break;
3049 case MSR_IA32_SYSENTER_EIP:
3050 *data = svm->sysenter_eip;
3051 break;
3052 case MSR_IA32_SYSENTER_ESP:
3053 *data = svm->sysenter_esp;
3054 break;
3055 /*
3056 * Nobody will change the following 5 values in the VMCB so we can
3057 * safely return them on rdmsr. They will always be 0 until LBRV is
3058 * implemented.
3059 */
3060 case MSR_IA32_DEBUGCTLMSR:
3061 *data = svm->vmcb->save.dbgctl;
3062 break;
3063 case MSR_IA32_LASTBRANCHFROMIP:
3064 *data = svm->vmcb->save.br_from;
3065 break;
3066 case MSR_IA32_LASTBRANCHTOIP:
3067 *data = svm->vmcb->save.br_to;
3068 break;
3069 case MSR_IA32_LASTINTFROMIP:
3070 *data = svm->vmcb->save.last_excp_from;
3071 break;
3072 case MSR_IA32_LASTINTTOIP:
3073 *data = svm->vmcb->save.last_excp_to;
3074 break;
3075 case MSR_VM_HSAVE_PA:
3076 *data = svm->nested.hsave_msr;
3077 break;
3078 case MSR_VM_CR:
3079 *data = svm->nested.vm_cr_msr;
3080 break;
3081 case MSR_IA32_UCODE_REV:
3082 *data = 0x01000065;
3083 break;
3084 default:
3085 return kvm_get_msr_common(vcpu, ecx, data);
3086 }
3087 return 0;
3088 }
3089
3090 static int rdmsr_interception(struct vcpu_svm *svm)
3091 {
3092 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3093 u64 data;
3094
3095 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3096 trace_kvm_msr_read_ex(ecx);
3097 kvm_inject_gp(&svm->vcpu, 0);
3098 } else {
3099 trace_kvm_msr_read(ecx, data);
3100
3101 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3102 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3103 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3104 skip_emulated_instruction(&svm->vcpu);
3105 }
3106 return 1;
3107 }
3108
3109 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3110 {
3111 struct vcpu_svm *svm = to_svm(vcpu);
3112 int svm_dis, chg_mask;
3113
3114 if (data & ~SVM_VM_CR_VALID_MASK)
3115 return 1;
3116
3117 chg_mask = SVM_VM_CR_VALID_MASK;
3118
3119 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3120 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3121
3122 svm->nested.vm_cr_msr &= ~chg_mask;
3123 svm->nested.vm_cr_msr |= (data & chg_mask);
3124
3125 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3126
3127 /* check for svm_disable while efer.svme is set */
3128 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3129 return 1;
3130
3131 return 0;
3132 }
3133
3134 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
3135 {
3136 struct vcpu_svm *svm = to_svm(vcpu);
3137
3138 switch (ecx) {
3139 case MSR_IA32_TSC:
3140 kvm_write_tsc(vcpu, data);
3141 break;
3142 case MSR_STAR:
3143 svm->vmcb->save.star = data;
3144 break;
3145 #ifdef CONFIG_X86_64
3146 case MSR_LSTAR:
3147 svm->vmcb->save.lstar = data;
3148 break;
3149 case MSR_CSTAR:
3150 svm->vmcb->save.cstar = data;
3151 break;
3152 case MSR_KERNEL_GS_BASE:
3153 svm->vmcb->save.kernel_gs_base = data;
3154 break;
3155 case MSR_SYSCALL_MASK:
3156 svm->vmcb->save.sfmask = data;
3157 break;
3158 #endif
3159 case MSR_IA32_SYSENTER_CS:
3160 svm->vmcb->save.sysenter_cs = data;
3161 break;
3162 case MSR_IA32_SYSENTER_EIP:
3163 svm->sysenter_eip = data;
3164 svm->vmcb->save.sysenter_eip = data;
3165 break;
3166 case MSR_IA32_SYSENTER_ESP:
3167 svm->sysenter_esp = data;
3168 svm->vmcb->save.sysenter_esp = data;
3169 break;
3170 case MSR_IA32_DEBUGCTLMSR:
3171 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3172 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3173 __func__, data);
3174 break;
3175 }
3176 if (data & DEBUGCTL_RESERVED_BITS)
3177 return 1;
3178
3179 svm->vmcb->save.dbgctl = data;
3180 mark_dirty(svm->vmcb, VMCB_LBR);
3181 if (data & (1ULL<<0))
3182 svm_enable_lbrv(svm);
3183 else
3184 svm_disable_lbrv(svm);
3185 break;
3186 case MSR_VM_HSAVE_PA:
3187 svm->nested.hsave_msr = data;
3188 break;
3189 case MSR_VM_CR:
3190 return svm_set_vm_cr(vcpu, data);
3191 case MSR_VM_IGNNE:
3192 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3193 break;
3194 default:
3195 return kvm_set_msr_common(vcpu, ecx, data);
3196 }
3197 return 0;
3198 }
3199
3200 static int wrmsr_interception(struct vcpu_svm *svm)
3201 {
3202 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3203 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3204 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3205
3206
3207 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3208 if (svm_set_msr(&svm->vcpu, ecx, data)) {
3209 trace_kvm_msr_write_ex(ecx, data);
3210 kvm_inject_gp(&svm->vcpu, 0);
3211 } else {
3212 trace_kvm_msr_write(ecx, data);
3213 skip_emulated_instruction(&svm->vcpu);
3214 }
3215 return 1;
3216 }
3217
3218 static int msr_interception(struct vcpu_svm *svm)
3219 {
3220 if (svm->vmcb->control.exit_info_1)
3221 return wrmsr_interception(svm);
3222 else
3223 return rdmsr_interception(svm);
3224 }
3225
3226 static int interrupt_window_interception(struct vcpu_svm *svm)
3227 {
3228 struct kvm_run *kvm_run = svm->vcpu.run;
3229
3230 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3231 svm_clear_vintr(svm);
3232 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3233 mark_dirty(svm->vmcb, VMCB_INTR);
3234 ++svm->vcpu.stat.irq_window_exits;
3235 /*
3236 * If the user space waits to inject interrupts, exit as soon as
3237 * possible
3238 */
3239 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3240 kvm_run->request_interrupt_window &&
3241 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3242 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3243 return 0;
3244 }
3245
3246 return 1;
3247 }
3248
3249 static int pause_interception(struct vcpu_svm *svm)
3250 {
3251 kvm_vcpu_on_spin(&(svm->vcpu));
3252 return 1;
3253 }
3254
3255 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3256 [SVM_EXIT_READ_CR0] = cr_interception,
3257 [SVM_EXIT_READ_CR3] = cr_interception,
3258 [SVM_EXIT_READ_CR4] = cr_interception,
3259 [SVM_EXIT_READ_CR8] = cr_interception,
3260 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
3261 [SVM_EXIT_WRITE_CR0] = cr_interception,
3262 [SVM_EXIT_WRITE_CR3] = cr_interception,
3263 [SVM_EXIT_WRITE_CR4] = cr_interception,
3264 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3265 [SVM_EXIT_READ_DR0] = dr_interception,
3266 [SVM_EXIT_READ_DR1] = dr_interception,
3267 [SVM_EXIT_READ_DR2] = dr_interception,
3268 [SVM_EXIT_READ_DR3] = dr_interception,
3269 [SVM_EXIT_READ_DR4] = dr_interception,
3270 [SVM_EXIT_READ_DR5] = dr_interception,
3271 [SVM_EXIT_READ_DR6] = dr_interception,
3272 [SVM_EXIT_READ_DR7] = dr_interception,
3273 [SVM_EXIT_WRITE_DR0] = dr_interception,
3274 [SVM_EXIT_WRITE_DR1] = dr_interception,
3275 [SVM_EXIT_WRITE_DR2] = dr_interception,
3276 [SVM_EXIT_WRITE_DR3] = dr_interception,
3277 [SVM_EXIT_WRITE_DR4] = dr_interception,
3278 [SVM_EXIT_WRITE_DR5] = dr_interception,
3279 [SVM_EXIT_WRITE_DR6] = dr_interception,
3280 [SVM_EXIT_WRITE_DR7] = dr_interception,
3281 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3282 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3283 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3284 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3285 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3286 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3287 [SVM_EXIT_INTR] = intr_interception,
3288 [SVM_EXIT_NMI] = nmi_interception,
3289 [SVM_EXIT_SMI] = nop_on_interception,
3290 [SVM_EXIT_INIT] = nop_on_interception,
3291 [SVM_EXIT_VINTR] = interrupt_window_interception,
3292 [SVM_EXIT_RDPMC] = rdpmc_interception,
3293 [SVM_EXIT_CPUID] = cpuid_interception,
3294 [SVM_EXIT_IRET] = iret_interception,
3295 [SVM_EXIT_INVD] = emulate_on_interception,
3296 [SVM_EXIT_PAUSE] = pause_interception,
3297 [SVM_EXIT_HLT] = halt_interception,
3298 [SVM_EXIT_INVLPG] = invlpg_interception,
3299 [SVM_EXIT_INVLPGA] = invlpga_interception,
3300 [SVM_EXIT_IOIO] = io_interception,
3301 [SVM_EXIT_MSR] = msr_interception,
3302 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3303 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3304 [SVM_EXIT_VMRUN] = vmrun_interception,
3305 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3306 [SVM_EXIT_VMLOAD] = vmload_interception,
3307 [SVM_EXIT_VMSAVE] = vmsave_interception,
3308 [SVM_EXIT_STGI] = stgi_interception,
3309 [SVM_EXIT_CLGI] = clgi_interception,
3310 [SVM_EXIT_SKINIT] = skinit_interception,
3311 [SVM_EXIT_WBINVD] = emulate_on_interception,
3312 [SVM_EXIT_MONITOR] = invalid_op_interception,
3313 [SVM_EXIT_MWAIT] = invalid_op_interception,
3314 [SVM_EXIT_XSETBV] = xsetbv_interception,
3315 [SVM_EXIT_NPF] = pf_interception,
3316 };
3317
3318 static void dump_vmcb(struct kvm_vcpu *vcpu)
3319 {
3320 struct vcpu_svm *svm = to_svm(vcpu);
3321 struct vmcb_control_area *control = &svm->vmcb->control;
3322 struct vmcb_save_area *save = &svm->vmcb->save;
3323
3324 pr_err("VMCB Control Area:\n");
3325 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3326 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3327 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3328 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3329 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3330 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3331 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3332 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3333 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3334 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3335 pr_err("%-20s%d\n", "asid:", control->asid);
3336 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3337 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3338 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3339 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3340 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3341 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3342 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3343 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3344 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3345 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3346 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3347 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3348 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3349 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3350 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3351 pr_err("VMCB State Save Area:\n");
3352 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3353 "es:",
3354 save->es.selector, save->es.attrib,
3355 save->es.limit, save->es.base);
3356 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3357 "cs:",
3358 save->cs.selector, save->cs.attrib,
3359 save->cs.limit, save->cs.base);
3360 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3361 "ss:",
3362 save->ss.selector, save->ss.attrib,
3363 save->ss.limit, save->ss.base);
3364 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3365 "ds:",
3366 save->ds.selector, save->ds.attrib,
3367 save->ds.limit, save->ds.base);
3368 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3369 "fs:",
3370 save->fs.selector, save->fs.attrib,
3371 save->fs.limit, save->fs.base);
3372 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3373 "gs:",
3374 save->gs.selector, save->gs.attrib,
3375 save->gs.limit, save->gs.base);
3376 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3377 "gdtr:",
3378 save->gdtr.selector, save->gdtr.attrib,
3379 save->gdtr.limit, save->gdtr.base);
3380 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3381 "ldtr:",
3382 save->ldtr.selector, save->ldtr.attrib,
3383 save->ldtr.limit, save->ldtr.base);
3384 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3385 "idtr:",
3386 save->idtr.selector, save->idtr.attrib,
3387 save->idtr.limit, save->idtr.base);
3388 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3389 "tr:",
3390 save->tr.selector, save->tr.attrib,
3391 save->tr.limit, save->tr.base);
3392 pr_err("cpl: %d efer: %016llx\n",
3393 save->cpl, save->efer);
3394 pr_err("%-15s %016llx %-13s %016llx\n",
3395 "cr0:", save->cr0, "cr2:", save->cr2);
3396 pr_err("%-15s %016llx %-13s %016llx\n",
3397 "cr3:", save->cr3, "cr4:", save->cr4);
3398 pr_err("%-15s %016llx %-13s %016llx\n",
3399 "dr6:", save->dr6, "dr7:", save->dr7);
3400 pr_err("%-15s %016llx %-13s %016llx\n",
3401 "rip:", save->rip, "rflags:", save->rflags);
3402 pr_err("%-15s %016llx %-13s %016llx\n",
3403 "rsp:", save->rsp, "rax:", save->rax);
3404 pr_err("%-15s %016llx %-13s %016llx\n",
3405 "star:", save->star, "lstar:", save->lstar);
3406 pr_err("%-15s %016llx %-13s %016llx\n",
3407 "cstar:", save->cstar, "sfmask:", save->sfmask);
3408 pr_err("%-15s %016llx %-13s %016llx\n",
3409 "kernel_gs_base:", save->kernel_gs_base,
3410 "sysenter_cs:", save->sysenter_cs);
3411 pr_err("%-15s %016llx %-13s %016llx\n",
3412 "sysenter_esp:", save->sysenter_esp,
3413 "sysenter_eip:", save->sysenter_eip);
3414 pr_err("%-15s %016llx %-13s %016llx\n",
3415 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3416 pr_err("%-15s %016llx %-13s %016llx\n",
3417 "br_from:", save->br_from, "br_to:", save->br_to);
3418 pr_err("%-15s %016llx %-13s %016llx\n",
3419 "excp_from:", save->last_excp_from,
3420 "excp_to:", save->last_excp_to);
3421 }
3422
3423 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3424 {
3425 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3426
3427 *info1 = control->exit_info_1;
3428 *info2 = control->exit_info_2;
3429 }
3430
3431 static int handle_exit(struct kvm_vcpu *vcpu)
3432 {
3433 struct vcpu_svm *svm = to_svm(vcpu);
3434 struct kvm_run *kvm_run = vcpu->run;
3435 u32 exit_code = svm->vmcb->control.exit_code;
3436
3437 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3438 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3439 if (npt_enabled)
3440 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3441
3442 if (unlikely(svm->nested.exit_required)) {
3443 nested_svm_vmexit(svm);
3444 svm->nested.exit_required = false;
3445
3446 return 1;
3447 }
3448
3449 if (is_guest_mode(vcpu)) {
3450 int vmexit;
3451
3452 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3453 svm->vmcb->control.exit_info_1,
3454 svm->vmcb->control.exit_info_2,
3455 svm->vmcb->control.exit_int_info,
3456 svm->vmcb->control.exit_int_info_err,
3457 KVM_ISA_SVM);
3458
3459 vmexit = nested_svm_exit_special(svm);
3460
3461 if (vmexit == NESTED_EXIT_CONTINUE)
3462 vmexit = nested_svm_exit_handled(svm);
3463
3464 if (vmexit == NESTED_EXIT_DONE)
3465 return 1;
3466 }
3467
3468 svm_complete_interrupts(svm);
3469
3470 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3471 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3472 kvm_run->fail_entry.hardware_entry_failure_reason
3473 = svm->vmcb->control.exit_code;
3474 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3475 dump_vmcb(vcpu);
3476 return 0;
3477 }
3478
3479 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3480 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3481 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3482 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3483 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3484 "exit_code 0x%x\n",
3485 __func__, svm->vmcb->control.exit_int_info,
3486 exit_code);
3487
3488 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3489 || !svm_exit_handlers[exit_code]) {
3490 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3491 kvm_run->hw.hardware_exit_reason = exit_code;
3492 return 0;
3493 }
3494
3495 return svm_exit_handlers[exit_code](svm);
3496 }
3497
3498 static void reload_tss(struct kvm_vcpu *vcpu)
3499 {
3500 int cpu = raw_smp_processor_id();
3501
3502 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3503 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3504 load_TR_desc();
3505 }
3506
3507 static void pre_svm_run(struct vcpu_svm *svm)
3508 {
3509 int cpu = raw_smp_processor_id();
3510
3511 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3512
3513 /* FIXME: handle wraparound of asid_generation */
3514 if (svm->asid_generation != sd->asid_generation)
3515 new_asid(svm, sd);
3516 }
3517
3518 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3519 {
3520 struct vcpu_svm *svm = to_svm(vcpu);
3521
3522 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3523 vcpu->arch.hflags |= HF_NMI_MASK;
3524 set_intercept(svm, INTERCEPT_IRET);
3525 ++vcpu->stat.nmi_injections;
3526 }
3527
3528 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3529 {
3530 struct vmcb_control_area *control;
3531
3532 control = &svm->vmcb->control;
3533 control->int_vector = irq;
3534 control->int_ctl &= ~V_INTR_PRIO_MASK;
3535 control->int_ctl |= V_IRQ_MASK |
3536 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3537 mark_dirty(svm->vmcb, VMCB_INTR);
3538 }
3539
3540 static void svm_set_irq(struct kvm_vcpu *vcpu)
3541 {
3542 struct vcpu_svm *svm = to_svm(vcpu);
3543
3544 BUG_ON(!(gif_set(svm)));
3545
3546 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3547 ++vcpu->stat.irq_injections;
3548
3549 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3550 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3551 }
3552
3553 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3554 {
3555 struct vcpu_svm *svm = to_svm(vcpu);
3556
3557 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3558 return;
3559
3560 if (irr == -1)
3561 return;
3562
3563 if (tpr >= irr)
3564 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3565 }
3566
3567 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3568 {
3569 struct vcpu_svm *svm = to_svm(vcpu);
3570 struct vmcb *vmcb = svm->vmcb;
3571 int ret;
3572 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3573 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3574 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3575
3576 return ret;
3577 }
3578
3579 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3580 {
3581 struct vcpu_svm *svm = to_svm(vcpu);
3582
3583 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3584 }
3585
3586 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3587 {
3588 struct vcpu_svm *svm = to_svm(vcpu);
3589
3590 if (masked) {
3591 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3592 set_intercept(svm, INTERCEPT_IRET);
3593 } else {
3594 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3595 clr_intercept(svm, INTERCEPT_IRET);
3596 }
3597 }
3598
3599 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3600 {
3601 struct vcpu_svm *svm = to_svm(vcpu);
3602 struct vmcb *vmcb = svm->vmcb;
3603 int ret;
3604
3605 if (!gif_set(svm) ||
3606 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3607 return 0;
3608
3609 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3610
3611 if (is_guest_mode(vcpu))
3612 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3613
3614 return ret;
3615 }
3616
3617 static void enable_irq_window(struct kvm_vcpu *vcpu)
3618 {
3619 struct vcpu_svm *svm = to_svm(vcpu);
3620
3621 /*
3622 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3623 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3624 * get that intercept, this function will be called again though and
3625 * we'll get the vintr intercept.
3626 */
3627 if (gif_set(svm) && nested_svm_intr(svm)) {
3628 svm_set_vintr(svm);
3629 svm_inject_irq(svm, 0x0);
3630 }
3631 }
3632
3633 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3634 {
3635 struct vcpu_svm *svm = to_svm(vcpu);
3636
3637 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3638 == HF_NMI_MASK)
3639 return; /* IRET will cause a vm exit */
3640
3641 /*
3642 * Something prevents NMI from been injected. Single step over possible
3643 * problem (IRET or exception injection or interrupt shadow)
3644 */
3645 svm->nmi_singlestep = true;
3646 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3647 update_db_bp_intercept(vcpu);
3648 }
3649
3650 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3651 {
3652 return 0;
3653 }
3654
3655 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3656 {
3657 struct vcpu_svm *svm = to_svm(vcpu);
3658
3659 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3660 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3661 else
3662 svm->asid_generation--;
3663 }
3664
3665 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3666 {
3667 }
3668
3669 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3670 {
3671 struct vcpu_svm *svm = to_svm(vcpu);
3672
3673 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3674 return;
3675
3676 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3677 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3678 kvm_set_cr8(vcpu, cr8);
3679 }
3680 }
3681
3682 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3683 {
3684 struct vcpu_svm *svm = to_svm(vcpu);
3685 u64 cr8;
3686
3687 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3688 return;
3689
3690 cr8 = kvm_get_cr8(vcpu);
3691 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3692 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3693 }
3694
3695 static void svm_complete_interrupts(struct vcpu_svm *svm)
3696 {
3697 u8 vector;
3698 int type;
3699 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3700 unsigned int3_injected = svm->int3_injected;
3701
3702 svm->int3_injected = 0;
3703
3704 /*
3705 * If we've made progress since setting HF_IRET_MASK, we've
3706 * executed an IRET and can allow NMI injection.
3707 */
3708 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3709 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3710 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3711 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3712 }
3713
3714 svm->vcpu.arch.nmi_injected = false;
3715 kvm_clear_exception_queue(&svm->vcpu);
3716 kvm_clear_interrupt_queue(&svm->vcpu);
3717
3718 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3719 return;
3720
3721 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3722
3723 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3724 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3725
3726 switch (type) {
3727 case SVM_EXITINTINFO_TYPE_NMI:
3728 svm->vcpu.arch.nmi_injected = true;
3729 break;
3730 case SVM_EXITINTINFO_TYPE_EXEPT:
3731 /*
3732 * In case of software exceptions, do not reinject the vector,
3733 * but re-execute the instruction instead. Rewind RIP first
3734 * if we emulated INT3 before.
3735 */
3736 if (kvm_exception_is_soft(vector)) {
3737 if (vector == BP_VECTOR && int3_injected &&
3738 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3739 kvm_rip_write(&svm->vcpu,
3740 kvm_rip_read(&svm->vcpu) -
3741 int3_injected);
3742 break;
3743 }
3744 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3745 u32 err = svm->vmcb->control.exit_int_info_err;
3746 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3747
3748 } else
3749 kvm_requeue_exception(&svm->vcpu, vector);
3750 break;
3751 case SVM_EXITINTINFO_TYPE_INTR:
3752 kvm_queue_interrupt(&svm->vcpu, vector, false);
3753 break;
3754 default:
3755 break;
3756 }
3757 }
3758
3759 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3760 {
3761 struct vcpu_svm *svm = to_svm(vcpu);
3762 struct vmcb_control_area *control = &svm->vmcb->control;
3763
3764 control->exit_int_info = control->event_inj;
3765 control->exit_int_info_err = control->event_inj_err;
3766 control->event_inj = 0;
3767 svm_complete_interrupts(svm);
3768 }
3769
3770 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3771 {
3772 struct vcpu_svm *svm = to_svm(vcpu);
3773
3774 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3775 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3776 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3777
3778 /*
3779 * A vmexit emulation is required before the vcpu can be executed
3780 * again.
3781 */
3782 if (unlikely(svm->nested.exit_required))
3783 return;
3784
3785 pre_svm_run(svm);
3786
3787 sync_lapic_to_cr8(vcpu);
3788
3789 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3790
3791 clgi();
3792
3793 local_irq_enable();
3794
3795 asm volatile (
3796 "push %%" _ASM_BP "; \n\t"
3797 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3798 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3799 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3800 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3801 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3802 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3803 #ifdef CONFIG_X86_64
3804 "mov %c[r8](%[svm]), %%r8 \n\t"
3805 "mov %c[r9](%[svm]), %%r9 \n\t"
3806 "mov %c[r10](%[svm]), %%r10 \n\t"
3807 "mov %c[r11](%[svm]), %%r11 \n\t"
3808 "mov %c[r12](%[svm]), %%r12 \n\t"
3809 "mov %c[r13](%[svm]), %%r13 \n\t"
3810 "mov %c[r14](%[svm]), %%r14 \n\t"
3811 "mov %c[r15](%[svm]), %%r15 \n\t"
3812 #endif
3813
3814 /* Enter guest mode */
3815 "push %%" _ASM_AX " \n\t"
3816 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3817 __ex(SVM_VMLOAD) "\n\t"
3818 __ex(SVM_VMRUN) "\n\t"
3819 __ex(SVM_VMSAVE) "\n\t"
3820 "pop %%" _ASM_AX " \n\t"
3821
3822 /* Save guest registers, load host registers */
3823 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3824 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3825 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3826 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3827 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3828 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3829 #ifdef CONFIG_X86_64
3830 "mov %%r8, %c[r8](%[svm]) \n\t"
3831 "mov %%r9, %c[r9](%[svm]) \n\t"
3832 "mov %%r10, %c[r10](%[svm]) \n\t"
3833 "mov %%r11, %c[r11](%[svm]) \n\t"
3834 "mov %%r12, %c[r12](%[svm]) \n\t"
3835 "mov %%r13, %c[r13](%[svm]) \n\t"
3836 "mov %%r14, %c[r14](%[svm]) \n\t"
3837 "mov %%r15, %c[r15](%[svm]) \n\t"
3838 #endif
3839 "pop %%" _ASM_BP
3840 :
3841 : [svm]"a"(svm),
3842 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3843 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3844 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3845 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3846 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3847 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3848 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3849 #ifdef CONFIG_X86_64
3850 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3851 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3852 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3853 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3854 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3855 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3856 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3857 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3858 #endif
3859 : "cc", "memory"
3860 #ifdef CONFIG_X86_64
3861 , "rbx", "rcx", "rdx", "rsi", "rdi"
3862 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3863 #else
3864 , "ebx", "ecx", "edx", "esi", "edi"
3865 #endif
3866 );
3867
3868 #ifdef CONFIG_X86_64
3869 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3870 #else
3871 loadsegment(fs, svm->host.fs);
3872 #ifndef CONFIG_X86_32_LAZY_GS
3873 loadsegment(gs, svm->host.gs);
3874 #endif
3875 #endif
3876
3877 reload_tss(vcpu);
3878
3879 local_irq_disable();
3880
3881 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3882 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3883 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3884 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3885
3886 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3887
3888 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3889 kvm_before_handle_nmi(&svm->vcpu);
3890
3891 stgi();
3892
3893 /* Any pending NMI will happen here */
3894
3895 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3896 kvm_after_handle_nmi(&svm->vcpu);
3897
3898 sync_cr8_to_lapic(vcpu);
3899
3900 svm->next_rip = 0;
3901
3902 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3903
3904 /* if exit due to PF check for async PF */
3905 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3906 svm->apf_reason = kvm_read_and_reset_pf_reason();
3907
3908 if (npt_enabled) {
3909 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3910 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3911 }
3912
3913 /*
3914 * We need to handle MC intercepts here before the vcpu has a chance to
3915 * change the physical cpu
3916 */
3917 if (unlikely(svm->vmcb->control.exit_code ==
3918 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3919 svm_handle_mce(svm);
3920
3921 mark_all_clean(svm->vmcb);
3922 }
3923
3924 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3925 {
3926 struct vcpu_svm *svm = to_svm(vcpu);
3927
3928 svm->vmcb->save.cr3 = root;
3929 mark_dirty(svm->vmcb, VMCB_CR);
3930 svm_flush_tlb(vcpu);
3931 }
3932
3933 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3934 {
3935 struct vcpu_svm *svm = to_svm(vcpu);
3936
3937 svm->vmcb->control.nested_cr3 = root;
3938 mark_dirty(svm->vmcb, VMCB_NPT);
3939
3940 /* Also sync guest cr3 here in case we live migrate */
3941 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3942 mark_dirty(svm->vmcb, VMCB_CR);
3943
3944 svm_flush_tlb(vcpu);
3945 }
3946
3947 static int is_disabled(void)
3948 {
3949 u64 vm_cr;
3950
3951 rdmsrl(MSR_VM_CR, vm_cr);
3952 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3953 return 1;
3954
3955 return 0;
3956 }
3957
3958 static void
3959 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3960 {
3961 /*
3962 * Patch in the VMMCALL instruction:
3963 */
3964 hypercall[0] = 0x0f;
3965 hypercall[1] = 0x01;
3966 hypercall[2] = 0xd9;
3967 }
3968
3969 static void svm_check_processor_compat(void *rtn)
3970 {
3971 *(int *)rtn = 0;
3972 }
3973
3974 static bool svm_cpu_has_accelerated_tpr(void)
3975 {
3976 return false;
3977 }
3978
3979 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3980 {
3981 return 0;
3982 }
3983
3984 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3985 {
3986 }
3987
3988 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3989 {
3990 switch (func) {
3991 case 0x80000001:
3992 if (nested)
3993 entry->ecx |= (1 << 2); /* Set SVM bit */
3994 break;
3995 case 0x8000000A:
3996 entry->eax = 1; /* SVM revision 1 */
3997 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3998 ASID emulation to nested SVM */
3999 entry->ecx = 0; /* Reserved */
4000 entry->edx = 0; /* Per default do not support any
4001 additional features */
4002
4003 /* Support next_rip if host supports it */
4004 if (boot_cpu_has(X86_FEATURE_NRIPS))
4005 entry->edx |= SVM_FEATURE_NRIP;
4006
4007 /* Support NPT for the guest if enabled */
4008 if (npt_enabled)
4009 entry->edx |= SVM_FEATURE_NPT;
4010
4011 break;
4012 }
4013 }
4014
4015 static int svm_get_lpage_level(void)
4016 {
4017 return PT_PDPE_LEVEL;
4018 }
4019
4020 static bool svm_rdtscp_supported(void)
4021 {
4022 return false;
4023 }
4024
4025 static bool svm_invpcid_supported(void)
4026 {
4027 return false;
4028 }
4029
4030 static bool svm_has_wbinvd_exit(void)
4031 {
4032 return true;
4033 }
4034
4035 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4036 {
4037 struct vcpu_svm *svm = to_svm(vcpu);
4038
4039 set_exception_intercept(svm, NM_VECTOR);
4040 update_cr0_intercept(svm);
4041 }
4042
4043 #define PRE_EX(exit) { .exit_code = (exit), \
4044 .stage = X86_ICPT_PRE_EXCEPT, }
4045 #define POST_EX(exit) { .exit_code = (exit), \
4046 .stage = X86_ICPT_POST_EXCEPT, }
4047 #define POST_MEM(exit) { .exit_code = (exit), \
4048 .stage = X86_ICPT_POST_MEMACCESS, }
4049
4050 static const struct __x86_intercept {
4051 u32 exit_code;
4052 enum x86_intercept_stage stage;
4053 } x86_intercept_map[] = {
4054 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4055 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4056 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4057 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4058 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4059 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4060 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4061 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4062 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4063 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4064 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4065 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4066 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4067 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4068 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4069 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4070 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4071 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4072 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4073 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4074 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4075 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4076 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4077 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4078 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4079 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4080 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4081 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4082 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4083 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4084 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4085 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4086 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4087 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4088 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4089 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4090 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4091 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4092 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4093 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4094 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4095 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4096 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4097 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4098 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4099 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4100 };
4101
4102 #undef PRE_EX
4103 #undef POST_EX
4104 #undef POST_MEM
4105
4106 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4107 struct x86_instruction_info *info,
4108 enum x86_intercept_stage stage)
4109 {
4110 struct vcpu_svm *svm = to_svm(vcpu);
4111 int vmexit, ret = X86EMUL_CONTINUE;
4112 struct __x86_intercept icpt_info;
4113 struct vmcb *vmcb = svm->vmcb;
4114
4115 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4116 goto out;
4117
4118 icpt_info = x86_intercept_map[info->intercept];
4119
4120 if (stage != icpt_info.stage)
4121 goto out;
4122
4123 switch (icpt_info.exit_code) {
4124 case SVM_EXIT_READ_CR0:
4125 if (info->intercept == x86_intercept_cr_read)
4126 icpt_info.exit_code += info->modrm_reg;
4127 break;
4128 case SVM_EXIT_WRITE_CR0: {
4129 unsigned long cr0, val;
4130 u64 intercept;
4131
4132 if (info->intercept == x86_intercept_cr_write)
4133 icpt_info.exit_code += info->modrm_reg;
4134
4135 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4136 break;
4137
4138 intercept = svm->nested.intercept;
4139
4140 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4141 break;
4142
4143 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4144 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4145
4146 if (info->intercept == x86_intercept_lmsw) {
4147 cr0 &= 0xfUL;
4148 val &= 0xfUL;
4149 /* lmsw can't clear PE - catch this here */
4150 if (cr0 & X86_CR0_PE)
4151 val |= X86_CR0_PE;
4152 }
4153
4154 if (cr0 ^ val)
4155 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4156
4157 break;
4158 }
4159 case SVM_EXIT_READ_DR0:
4160 case SVM_EXIT_WRITE_DR0:
4161 icpt_info.exit_code += info->modrm_reg;
4162 break;
4163 case SVM_EXIT_MSR:
4164 if (info->intercept == x86_intercept_wrmsr)
4165 vmcb->control.exit_info_1 = 1;
4166 else
4167 vmcb->control.exit_info_1 = 0;
4168 break;
4169 case SVM_EXIT_PAUSE:
4170 /*
4171 * We get this for NOP only, but pause
4172 * is rep not, check this here
4173 */
4174 if (info->rep_prefix != REPE_PREFIX)
4175 goto out;
4176 case SVM_EXIT_IOIO: {
4177 u64 exit_info;
4178 u32 bytes;
4179
4180 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4181
4182 if (info->intercept == x86_intercept_in ||
4183 info->intercept == x86_intercept_ins) {
4184 exit_info |= SVM_IOIO_TYPE_MASK;
4185 bytes = info->src_bytes;
4186 } else {
4187 bytes = info->dst_bytes;
4188 }
4189
4190 if (info->intercept == x86_intercept_outs ||
4191 info->intercept == x86_intercept_ins)
4192 exit_info |= SVM_IOIO_STR_MASK;
4193
4194 if (info->rep_prefix)
4195 exit_info |= SVM_IOIO_REP_MASK;
4196
4197 bytes = min(bytes, 4u);
4198
4199 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4200
4201 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4202
4203 vmcb->control.exit_info_1 = exit_info;
4204 vmcb->control.exit_info_2 = info->next_rip;
4205
4206 break;
4207 }
4208 default:
4209 break;
4210 }
4211
4212 vmcb->control.next_rip = info->next_rip;
4213 vmcb->control.exit_code = icpt_info.exit_code;
4214 vmexit = nested_svm_exit_handled(svm);
4215
4216 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4217 : X86EMUL_CONTINUE;
4218
4219 out:
4220 return ret;
4221 }
4222
4223 static struct kvm_x86_ops svm_x86_ops = {
4224 .cpu_has_kvm_support = has_svm,
4225 .disabled_by_bios = is_disabled,
4226 .hardware_setup = svm_hardware_setup,
4227 .hardware_unsetup = svm_hardware_unsetup,
4228 .check_processor_compatibility = svm_check_processor_compat,
4229 .hardware_enable = svm_hardware_enable,
4230 .hardware_disable = svm_hardware_disable,
4231 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4232
4233 .vcpu_create = svm_create_vcpu,
4234 .vcpu_free = svm_free_vcpu,
4235 .vcpu_reset = svm_vcpu_reset,
4236
4237 .prepare_guest_switch = svm_prepare_guest_switch,
4238 .vcpu_load = svm_vcpu_load,
4239 .vcpu_put = svm_vcpu_put,
4240
4241 .update_db_bp_intercept = update_db_bp_intercept,
4242 .get_msr = svm_get_msr,
4243 .set_msr = svm_set_msr,
4244 .get_segment_base = svm_get_segment_base,
4245 .get_segment = svm_get_segment,
4246 .set_segment = svm_set_segment,
4247 .get_cpl = svm_get_cpl,
4248 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4249 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4250 .decache_cr3 = svm_decache_cr3,
4251 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4252 .set_cr0 = svm_set_cr0,
4253 .set_cr3 = svm_set_cr3,
4254 .set_cr4 = svm_set_cr4,
4255 .set_efer = svm_set_efer,
4256 .get_idt = svm_get_idt,
4257 .set_idt = svm_set_idt,
4258 .get_gdt = svm_get_gdt,
4259 .set_gdt = svm_set_gdt,
4260 .set_dr7 = svm_set_dr7,
4261 .cache_reg = svm_cache_reg,
4262 .get_rflags = svm_get_rflags,
4263 .set_rflags = svm_set_rflags,
4264 .fpu_activate = svm_fpu_activate,
4265 .fpu_deactivate = svm_fpu_deactivate,
4266
4267 .tlb_flush = svm_flush_tlb,
4268
4269 .run = svm_vcpu_run,
4270 .handle_exit = handle_exit,
4271 .skip_emulated_instruction = skip_emulated_instruction,
4272 .set_interrupt_shadow = svm_set_interrupt_shadow,
4273 .get_interrupt_shadow = svm_get_interrupt_shadow,
4274 .patch_hypercall = svm_patch_hypercall,
4275 .set_irq = svm_set_irq,
4276 .set_nmi = svm_inject_nmi,
4277 .queue_exception = svm_queue_exception,
4278 .cancel_injection = svm_cancel_injection,
4279 .interrupt_allowed = svm_interrupt_allowed,
4280 .nmi_allowed = svm_nmi_allowed,
4281 .get_nmi_mask = svm_get_nmi_mask,
4282 .set_nmi_mask = svm_set_nmi_mask,
4283 .enable_nmi_window = enable_nmi_window,
4284 .enable_irq_window = enable_irq_window,
4285 .update_cr8_intercept = update_cr8_intercept,
4286
4287 .set_tss_addr = svm_set_tss_addr,
4288 .get_tdp_level = get_npt_level,
4289 .get_mt_mask = svm_get_mt_mask,
4290
4291 .get_exit_info = svm_get_exit_info,
4292
4293 .get_lpage_level = svm_get_lpage_level,
4294
4295 .cpuid_update = svm_cpuid_update,
4296
4297 .rdtscp_supported = svm_rdtscp_supported,
4298 .invpcid_supported = svm_invpcid_supported,
4299
4300 .set_supported_cpuid = svm_set_supported_cpuid,
4301
4302 .has_wbinvd_exit = svm_has_wbinvd_exit,
4303
4304 .set_tsc_khz = svm_set_tsc_khz,
4305 .write_tsc_offset = svm_write_tsc_offset,
4306 .adjust_tsc_offset = svm_adjust_tsc_offset,
4307 .compute_tsc_offset = svm_compute_tsc_offset,
4308 .read_l1_tsc = svm_read_l1_tsc,
4309
4310 .set_tdp_cr3 = set_tdp_cr3,
4311
4312 .check_intercept = svm_check_intercept,
4313 };
4314
4315 static int __init svm_init(void)
4316 {
4317 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4318 __alignof__(struct vcpu_svm), THIS_MODULE);
4319 }
4320
4321 static void __exit svm_exit(void)
4322 {
4323 kvm_exit();
4324 }
4325
4326 module_init(svm_init)
4327 module_exit(svm_exit)