2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
24 #include "kvm_cache_regs.h"
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
41 #include <asm/cmpxchg.h>
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
52 bool tdp_enabled
= false;
56 AUDIT_POST_PAGE_FAULT
,
67 module_param(dbg
, bool, 0644);
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
78 #define PTE_PREFETCH_NUM 8
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
83 #define PT64_LEVEL_BITS 9
85 #define PT64_LEVEL_SHIFT(level) \
86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88 #define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
92 #define PT32_LEVEL_BITS 10
94 #define PT32_LEVEL_SHIFT(level) \
95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97 #define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
101 #define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
125 #define ACC_EXEC_MASK 1
126 #define ACC_WRITE_MASK PT_WRITABLE_MASK
127 #define ACC_USER_MASK PT_USER_MASK
128 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130 #include <trace/events/kvm.h>
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
135 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
143 struct pte_list_desc
{
144 u64
*sptes
[PTE_LIST_EXT
];
145 struct pte_list_desc
*more
;
148 struct kvm_shadow_walk_iterator
{
156 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
167 static struct kmem_cache
*pte_list_desc_cache
;
168 static struct kmem_cache
*mmu_page_header_cache
;
169 static struct percpu_counter kvm_total_used_mmu_pages
;
171 static u64 __read_mostly shadow_nx_mask
;
172 static u64 __read_mostly shadow_x_mask
; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask
;
174 static u64 __read_mostly shadow_accessed_mask
;
175 static u64 __read_mostly shadow_dirty_mask
;
176 static u64 __read_mostly shadow_mmio_mask
;
178 static void mmu_spte_set(u64
*sptep
, u64 spte
);
179 static void mmu_free_roots(struct kvm_vcpu
*vcpu
);
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask
)
183 shadow_mmio_mask
= mmio_mask
;
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask
);
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
196 #define MMIO_SPTE_GEN_LOW_SHIFT 2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
199 #define MMIO_GEN_SHIFT 20
200 #define MMIO_GEN_LOW_SHIFT 10
201 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
204 static u64
generation_mmio_spte_mask(unsigned int gen
)
208 WARN_ON(gen
& ~MMIO_GEN_MASK
);
210 mask
= (gen
& MMIO_GEN_LOW_MASK
) << MMIO_SPTE_GEN_LOW_SHIFT
;
211 mask
|= ((u64
)gen
>> MMIO_GEN_LOW_SHIFT
) << MMIO_SPTE_GEN_HIGH_SHIFT
;
215 static unsigned int get_mmio_spte_generation(u64 spte
)
219 spte
&= ~shadow_mmio_mask
;
221 gen
= (spte
>> MMIO_SPTE_GEN_LOW_SHIFT
) & MMIO_GEN_LOW_MASK
;
222 gen
|= (spte
>> MMIO_SPTE_GEN_HIGH_SHIFT
) << MMIO_GEN_LOW_SHIFT
;
226 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu
*vcpu
)
228 return kvm_vcpu_memslots(vcpu
)->generation
& MMIO_GEN_MASK
;
231 static void mark_mmio_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
, u64 gfn
,
234 unsigned int gen
= kvm_current_mmio_generation(vcpu
);
235 u64 mask
= generation_mmio_spte_mask(gen
);
237 access
&= ACC_WRITE_MASK
| ACC_USER_MASK
;
238 mask
|= shadow_mmio_mask
| access
| gfn
<< PAGE_SHIFT
;
240 trace_mark_mmio_spte(sptep
, gfn
, access
, gen
);
241 mmu_spte_set(sptep
, mask
);
244 static bool is_mmio_spte(u64 spte
)
246 return (spte
& shadow_mmio_mask
) == shadow_mmio_mask
;
249 static gfn_t
get_mmio_spte_gfn(u64 spte
)
251 u64 mask
= generation_mmio_spte_mask(MMIO_GEN_MASK
) | shadow_mmio_mask
;
252 return (spte
& ~mask
) >> PAGE_SHIFT
;
255 static unsigned get_mmio_spte_access(u64 spte
)
257 u64 mask
= generation_mmio_spte_mask(MMIO_GEN_MASK
) | shadow_mmio_mask
;
258 return (spte
& ~mask
) & ~PAGE_MASK
;
261 static bool set_mmio_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
, gfn_t gfn
,
262 pfn_t pfn
, unsigned access
)
264 if (unlikely(is_noslot_pfn(pfn
))) {
265 mark_mmio_spte(vcpu
, sptep
, gfn
, access
);
272 static bool check_mmio_spte(struct kvm_vcpu
*vcpu
, u64 spte
)
274 unsigned int kvm_gen
, spte_gen
;
276 kvm_gen
= kvm_current_mmio_generation(vcpu
);
277 spte_gen
= get_mmio_spte_generation(spte
);
279 trace_check_mmio_spte(spte
, kvm_gen
, spte_gen
);
280 return likely(kvm_gen
== spte_gen
);
283 void kvm_mmu_set_mask_ptes(u64 user_mask
, u64 accessed_mask
,
284 u64 dirty_mask
, u64 nx_mask
, u64 x_mask
)
286 shadow_user_mask
= user_mask
;
287 shadow_accessed_mask
= accessed_mask
;
288 shadow_dirty_mask
= dirty_mask
;
289 shadow_nx_mask
= nx_mask
;
290 shadow_x_mask
= x_mask
;
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes
);
294 static int is_cpuid_PSE36(void)
299 static int is_nx(struct kvm_vcpu
*vcpu
)
301 return vcpu
->arch
.efer
& EFER_NX
;
304 static int is_shadow_present_pte(u64 pte
)
306 return pte
& PT_PRESENT_MASK
&& !is_mmio_spte(pte
);
309 static int is_large_pte(u64 pte
)
311 return pte
& PT_PAGE_SIZE_MASK
;
314 static int is_rmap_spte(u64 pte
)
316 return is_shadow_present_pte(pte
);
319 static int is_last_spte(u64 pte
, int level
)
321 if (level
== PT_PAGE_TABLE_LEVEL
)
323 if (is_large_pte(pte
))
328 static pfn_t
spte_to_pfn(u64 pte
)
330 return (pte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
333 static gfn_t
pse36_gfn_delta(u32 gpte
)
335 int shift
= 32 - PT32_DIR_PSE36_SHIFT
- PAGE_SHIFT
;
337 return (gpte
& PT32_DIR_PSE36_MASK
) << shift
;
341 static void __set_spte(u64
*sptep
, u64 spte
)
346 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
351 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
353 return xchg(sptep
, spte
);
356 static u64
__get_spte_lockless(u64
*sptep
)
358 return ACCESS_ONCE(*sptep
);
369 static void count_spte_clear(u64
*sptep
, u64 spte
)
371 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
373 if (is_shadow_present_pte(spte
))
376 /* Ensure the spte is completely set before we increase the count */
378 sp
->clear_spte_count
++;
381 static void __set_spte(u64
*sptep
, u64 spte
)
383 union split_spte
*ssptep
, sspte
;
385 ssptep
= (union split_spte
*)sptep
;
386 sspte
= (union split_spte
)spte
;
388 ssptep
->spte_high
= sspte
.spte_high
;
391 * If we map the spte from nonpresent to present, We should store
392 * the high bits firstly, then set present bit, so cpu can not
393 * fetch this spte while we are setting the spte.
397 ssptep
->spte_low
= sspte
.spte_low
;
400 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
402 union split_spte
*ssptep
, sspte
;
404 ssptep
= (union split_spte
*)sptep
;
405 sspte
= (union split_spte
)spte
;
407 ssptep
->spte_low
= sspte
.spte_low
;
410 * If we map the spte from present to nonpresent, we should clear
411 * present bit firstly to avoid vcpu fetch the old high bits.
415 ssptep
->spte_high
= sspte
.spte_high
;
416 count_spte_clear(sptep
, spte
);
419 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
421 union split_spte
*ssptep
, sspte
, orig
;
423 ssptep
= (union split_spte
*)sptep
;
424 sspte
= (union split_spte
)spte
;
426 /* xchg acts as a barrier before the setting of the high bits */
427 orig
.spte_low
= xchg(&ssptep
->spte_low
, sspte
.spte_low
);
428 orig
.spte_high
= ssptep
->spte_high
;
429 ssptep
->spte_high
= sspte
.spte_high
;
430 count_spte_clear(sptep
, spte
);
436 * The idea using the light way get the spte on x86_32 guest is from
437 * gup_get_pte(arch/x86/mm/gup.c).
439 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440 * coalesces them and we are running out of the MMU lock. Therefore
441 * we need to protect against in-progress updates of the spte.
443 * Reading the spte while an update is in progress may get the old value
444 * for the high part of the spte. The race is fine for a present->non-present
445 * change (because the high part of the spte is ignored for non-present spte),
446 * but for a present->present change we must reread the spte.
448 * All such changes are done in two steps (present->non-present and
449 * non-present->present), hence it is enough to count the number of
450 * present->non-present updates: if it changed while reading the spte,
451 * we might have hit the race. This is done using clear_spte_count.
453 static u64
__get_spte_lockless(u64
*sptep
)
455 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
456 union split_spte spte
, *orig
= (union split_spte
*)sptep
;
460 count
= sp
->clear_spte_count
;
463 spte
.spte_low
= orig
->spte_low
;
466 spte
.spte_high
= orig
->spte_high
;
469 if (unlikely(spte
.spte_low
!= orig
->spte_low
||
470 count
!= sp
->clear_spte_count
))
477 static bool spte_is_locklessly_modifiable(u64 spte
)
479 return (spte
& (SPTE_HOST_WRITEABLE
| SPTE_MMU_WRITEABLE
)) ==
480 (SPTE_HOST_WRITEABLE
| SPTE_MMU_WRITEABLE
);
483 static bool spte_has_volatile_bits(u64 spte
)
486 * Always atomicly update spte if it can be updated
487 * out of mmu-lock, it can ensure dirty bit is not lost,
488 * also, it can help us to get a stable is_writable_pte()
489 * to ensure tlb flush is not missed.
491 if (spte_is_locklessly_modifiable(spte
))
494 if (!shadow_accessed_mask
)
497 if (!is_shadow_present_pte(spte
))
500 if ((spte
& shadow_accessed_mask
) &&
501 (!is_writable_pte(spte
) || (spte
& shadow_dirty_mask
)))
507 static bool spte_is_bit_cleared(u64 old_spte
, u64 new_spte
, u64 bit_mask
)
509 return (old_spte
& bit_mask
) && !(new_spte
& bit_mask
);
512 static bool spte_is_bit_changed(u64 old_spte
, u64 new_spte
, u64 bit_mask
)
514 return (old_spte
& bit_mask
) != (new_spte
& bit_mask
);
517 /* Rules for using mmu_spte_set:
518 * Set the sptep from nonpresent to present.
519 * Note: the sptep being assigned *must* be either not present
520 * or in a state where the hardware will not attempt to update
523 static void mmu_spte_set(u64
*sptep
, u64 new_spte
)
525 WARN_ON(is_shadow_present_pte(*sptep
));
526 __set_spte(sptep
, new_spte
);
529 /* Rules for using mmu_spte_update:
530 * Update the state bits, it means the mapped pfn is not changged.
532 * Whenever we overwrite a writable spte with a read-only one we
533 * should flush remote TLBs. Otherwise rmap_write_protect
534 * will find a read-only spte, even though the writable spte
535 * might be cached on a CPU's TLB, the return value indicates this
538 static bool mmu_spte_update(u64
*sptep
, u64 new_spte
)
540 u64 old_spte
= *sptep
;
543 WARN_ON(!is_rmap_spte(new_spte
));
545 if (!is_shadow_present_pte(old_spte
)) {
546 mmu_spte_set(sptep
, new_spte
);
550 if (!spte_has_volatile_bits(old_spte
))
551 __update_clear_spte_fast(sptep
, new_spte
);
553 old_spte
= __update_clear_spte_slow(sptep
, new_spte
);
556 * For the spte updated out of mmu-lock is safe, since
557 * we always atomicly update it, see the comments in
558 * spte_has_volatile_bits().
560 if (spte_is_locklessly_modifiable(old_spte
) &&
561 !is_writable_pte(new_spte
))
564 if (!shadow_accessed_mask
)
568 * Flush TLB when accessed/dirty bits are changed in the page tables,
569 * to guarantee consistency between TLB and page tables.
571 if (spte_is_bit_changed(old_spte
, new_spte
,
572 shadow_accessed_mask
| shadow_dirty_mask
))
575 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_accessed_mask
))
576 kvm_set_pfn_accessed(spte_to_pfn(old_spte
));
577 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_dirty_mask
))
578 kvm_set_pfn_dirty(spte_to_pfn(old_spte
));
584 * Rules for using mmu_spte_clear_track_bits:
585 * It sets the sptep from present to nonpresent, and track the
586 * state bits, it is used to clear the last level sptep.
588 static int mmu_spte_clear_track_bits(u64
*sptep
)
591 u64 old_spte
= *sptep
;
593 if (!spte_has_volatile_bits(old_spte
))
594 __update_clear_spte_fast(sptep
, 0ull);
596 old_spte
= __update_clear_spte_slow(sptep
, 0ull);
598 if (!is_rmap_spte(old_spte
))
601 pfn
= spte_to_pfn(old_spte
);
604 * KVM does not hold the refcount of the page used by
605 * kvm mmu, before reclaiming the page, we should
606 * unmap it from mmu first.
608 WARN_ON(!kvm_is_reserved_pfn(pfn
) && !page_count(pfn_to_page(pfn
)));
610 if (!shadow_accessed_mask
|| old_spte
& shadow_accessed_mask
)
611 kvm_set_pfn_accessed(pfn
);
612 if (!shadow_dirty_mask
|| (old_spte
& shadow_dirty_mask
))
613 kvm_set_pfn_dirty(pfn
);
618 * Rules for using mmu_spte_clear_no_track:
619 * Directly clear spte without caring the state bits of sptep,
620 * it is used to set the upper level spte.
622 static void mmu_spte_clear_no_track(u64
*sptep
)
624 __update_clear_spte_fast(sptep
, 0ull);
627 static u64
mmu_spte_get_lockless(u64
*sptep
)
629 return __get_spte_lockless(sptep
);
632 static void walk_shadow_page_lockless_begin(struct kvm_vcpu
*vcpu
)
635 * Prevent page table teardown by making any free-er wait during
636 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 vcpu
->mode
= READING_SHADOW_PAGE_TABLES
;
641 * Make sure a following spte read is not reordered ahead of the write
647 static void walk_shadow_page_lockless_end(struct kvm_vcpu
*vcpu
)
650 * Make sure the write to vcpu->mode is not reordered in front of
651 * reads to sptes. If it does, kvm_commit_zap_page() can see us
652 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
659 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
660 struct kmem_cache
*base_cache
, int min
)
664 if (cache
->nobjs
>= min
)
666 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
667 obj
= kmem_cache_zalloc(base_cache
, GFP_KERNEL
);
670 cache
->objects
[cache
->nobjs
++] = obj
;
675 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache
*cache
)
680 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
,
681 struct kmem_cache
*cache
)
684 kmem_cache_free(cache
, mc
->objects
[--mc
->nobjs
]);
687 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache
*cache
,
692 if (cache
->nobjs
>= min
)
694 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
695 page
= (void *)__get_free_page(GFP_KERNEL
);
698 cache
->objects
[cache
->nobjs
++] = page
;
703 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache
*mc
)
706 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
709 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
713 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
714 pte_list_desc_cache
, 8 + PTE_PREFETCH_NUM
);
717 r
= mmu_topup_memory_cache_page(&vcpu
->arch
.mmu_page_cache
, 8);
720 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
721 mmu_page_header_cache
, 4);
726 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
728 mmu_free_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
729 pte_list_desc_cache
);
730 mmu_free_memory_cache_page(&vcpu
->arch
.mmu_page_cache
);
731 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
732 mmu_page_header_cache
);
735 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
)
740 p
= mc
->objects
[--mc
->nobjs
];
744 static struct pte_list_desc
*mmu_alloc_pte_list_desc(struct kvm_vcpu
*vcpu
)
746 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_pte_list_desc_cache
);
749 static void mmu_free_pte_list_desc(struct pte_list_desc
*pte_list_desc
)
751 kmem_cache_free(pte_list_desc_cache
, pte_list_desc
);
754 static gfn_t
kvm_mmu_page_get_gfn(struct kvm_mmu_page
*sp
, int index
)
756 if (!sp
->role
.direct
)
757 return sp
->gfns
[index
];
759 return sp
->gfn
+ (index
<< ((sp
->role
.level
- 1) * PT64_LEVEL_BITS
));
762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page
*sp
, int index
, gfn_t gfn
)
765 BUG_ON(gfn
!= kvm_mmu_page_get_gfn(sp
, index
));
767 sp
->gfns
[index
] = gfn
;
771 * Return the pointer to the large page information for a given gfn,
772 * handling slots that are not large page aligned.
774 static struct kvm_lpage_info
*lpage_info_slot(gfn_t gfn
,
775 struct kvm_memory_slot
*slot
,
780 idx
= gfn_to_index(gfn
, slot
->base_gfn
, level
);
781 return &slot
->arch
.lpage_info
[level
- 2][idx
];
784 static void account_shadowed(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
786 struct kvm_memslots
*slots
;
787 struct kvm_memory_slot
*slot
;
788 struct kvm_lpage_info
*linfo
;
793 slots
= kvm_memslots_for_spte_role(kvm
, sp
->role
);
794 slot
= __gfn_to_memslot(slots
, gfn
);
795 for (i
= PT_DIRECTORY_LEVEL
; i
<= PT_MAX_HUGEPAGE_LEVEL
; ++i
) {
796 linfo
= lpage_info_slot(gfn
, slot
, i
);
797 linfo
->write_count
+= 1;
799 kvm
->arch
.indirect_shadow_pages
++;
802 static void unaccount_shadowed(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
804 struct kvm_memslots
*slots
;
805 struct kvm_memory_slot
*slot
;
806 struct kvm_lpage_info
*linfo
;
811 slots
= kvm_memslots_for_spte_role(kvm
, sp
->role
);
812 slot
= __gfn_to_memslot(slots
, gfn
);
813 for (i
= PT_DIRECTORY_LEVEL
; i
<= PT_MAX_HUGEPAGE_LEVEL
; ++i
) {
814 linfo
= lpage_info_slot(gfn
, slot
, i
);
815 linfo
->write_count
-= 1;
816 WARN_ON(linfo
->write_count
< 0);
818 kvm
->arch
.indirect_shadow_pages
--;
821 static int __has_wrprotected_page(gfn_t gfn
, int level
,
822 struct kvm_memory_slot
*slot
)
824 struct kvm_lpage_info
*linfo
;
827 linfo
= lpage_info_slot(gfn
, slot
, level
);
828 return linfo
->write_count
;
834 static int has_wrprotected_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, int level
)
836 struct kvm_memory_slot
*slot
;
838 slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
839 return __has_wrprotected_page(gfn
, level
, slot
);
842 static int host_mapping_level(struct kvm
*kvm
, gfn_t gfn
)
844 unsigned long page_size
;
847 page_size
= kvm_host_page_size(kvm
, gfn
);
849 for (i
= PT_PAGE_TABLE_LEVEL
; i
<= PT_MAX_HUGEPAGE_LEVEL
; ++i
) {
850 if (page_size
>= KVM_HPAGE_SIZE(i
))
859 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot
*slot
,
862 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
864 if (no_dirty_log
&& slot
->dirty_bitmap
)
870 static struct kvm_memory_slot
*
871 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
874 struct kvm_memory_slot
*slot
;
876 slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
877 if (!memslot_valid_for_gpte(slot
, no_dirty_log
))
883 static int mapping_level(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
,
884 bool *force_pt_level
)
886 int host_level
, level
, max_level
;
887 struct kvm_memory_slot
*slot
;
889 if (unlikely(*force_pt_level
))
890 return PT_PAGE_TABLE_LEVEL
;
892 slot
= kvm_vcpu_gfn_to_memslot(vcpu
, large_gfn
);
893 *force_pt_level
= !memslot_valid_for_gpte(slot
, true);
894 if (unlikely(*force_pt_level
))
895 return PT_PAGE_TABLE_LEVEL
;
897 host_level
= host_mapping_level(vcpu
->kvm
, large_gfn
);
899 if (host_level
== PT_PAGE_TABLE_LEVEL
)
902 max_level
= min(kvm_x86_ops
->get_lpage_level(), host_level
);
904 for (level
= PT_DIRECTORY_LEVEL
; level
<= max_level
; ++level
)
905 if (__has_wrprotected_page(large_gfn
, level
, slot
))
912 * Pte mapping structures:
914 * If pte_list bit zero is zero, then pte_list point to the spte.
916 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
917 * pte_list_desc containing more mappings.
919 * Returns the number of pte entries before the spte was added or zero if
920 * the spte was not added.
923 static int pte_list_add(struct kvm_vcpu
*vcpu
, u64
*spte
,
924 unsigned long *pte_list
)
926 struct pte_list_desc
*desc
;
930 rmap_printk("pte_list_add: %p %llx 0->1\n", spte
, *spte
);
931 *pte_list
= (unsigned long)spte
;
932 } else if (!(*pte_list
& 1)) {
933 rmap_printk("pte_list_add: %p %llx 1->many\n", spte
, *spte
);
934 desc
= mmu_alloc_pte_list_desc(vcpu
);
935 desc
->sptes
[0] = (u64
*)*pte_list
;
936 desc
->sptes
[1] = spte
;
937 *pte_list
= (unsigned long)desc
| 1;
940 rmap_printk("pte_list_add: %p %llx many->many\n", spte
, *spte
);
941 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
942 while (desc
->sptes
[PTE_LIST_EXT
-1] && desc
->more
) {
944 count
+= PTE_LIST_EXT
;
946 if (desc
->sptes
[PTE_LIST_EXT
-1]) {
947 desc
->more
= mmu_alloc_pte_list_desc(vcpu
);
950 for (i
= 0; desc
->sptes
[i
]; ++i
)
952 desc
->sptes
[i
] = spte
;
958 pte_list_desc_remove_entry(unsigned long *pte_list
, struct pte_list_desc
*desc
,
959 int i
, struct pte_list_desc
*prev_desc
)
963 for (j
= PTE_LIST_EXT
- 1; !desc
->sptes
[j
] && j
> i
; --j
)
965 desc
->sptes
[i
] = desc
->sptes
[j
];
966 desc
->sptes
[j
] = NULL
;
969 if (!prev_desc
&& !desc
->more
)
970 *pte_list
= (unsigned long)desc
->sptes
[0];
973 prev_desc
->more
= desc
->more
;
975 *pte_list
= (unsigned long)desc
->more
| 1;
976 mmu_free_pte_list_desc(desc
);
979 static void pte_list_remove(u64
*spte
, unsigned long *pte_list
)
981 struct pte_list_desc
*desc
;
982 struct pte_list_desc
*prev_desc
;
986 printk(KERN_ERR
"pte_list_remove: %p 0->BUG\n", spte
);
988 } else if (!(*pte_list
& 1)) {
989 rmap_printk("pte_list_remove: %p 1->0\n", spte
);
990 if ((u64
*)*pte_list
!= spte
) {
991 printk(KERN_ERR
"pte_list_remove: %p 1->BUG\n", spte
);
996 rmap_printk("pte_list_remove: %p many->many\n", spte
);
997 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
1000 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
)
1001 if (desc
->sptes
[i
] == spte
) {
1002 pte_list_desc_remove_entry(pte_list
,
1010 pr_err("pte_list_remove: %p many->many\n", spte
);
1015 typedef void (*pte_list_walk_fn
) (u64
*spte
);
1016 static void pte_list_walk(unsigned long *pte_list
, pte_list_walk_fn fn
)
1018 struct pte_list_desc
*desc
;
1024 if (!(*pte_list
& 1))
1025 return fn((u64
*)*pte_list
);
1027 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
1029 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
)
1035 static unsigned long *__gfn_to_rmap(gfn_t gfn
, int level
,
1036 struct kvm_memory_slot
*slot
)
1040 idx
= gfn_to_index(gfn
, slot
->base_gfn
, level
);
1041 return &slot
->arch
.rmap
[level
- PT_PAGE_TABLE_LEVEL
][idx
];
1045 * Take gfn and return the reverse mapping to it.
1047 static unsigned long *gfn_to_rmap(struct kvm
*kvm
, gfn_t gfn
, struct kvm_mmu_page
*sp
)
1049 struct kvm_memslots
*slots
;
1050 struct kvm_memory_slot
*slot
;
1052 slots
= kvm_memslots_for_spte_role(kvm
, sp
->role
);
1053 slot
= __gfn_to_memslot(slots
, gfn
);
1054 return __gfn_to_rmap(gfn
, sp
->role
.level
, slot
);
1057 static bool rmap_can_add(struct kvm_vcpu
*vcpu
)
1059 struct kvm_mmu_memory_cache
*cache
;
1061 cache
= &vcpu
->arch
.mmu_pte_list_desc_cache
;
1062 return mmu_memory_cache_free_objects(cache
);
1065 static int rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
1067 struct kvm_mmu_page
*sp
;
1068 unsigned long *rmapp
;
1070 sp
= page_header(__pa(spte
));
1071 kvm_mmu_page_set_gfn(sp
, spte
- sp
->spt
, gfn
);
1072 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
);
1073 return pte_list_add(vcpu
, spte
, rmapp
);
1076 static void rmap_remove(struct kvm
*kvm
, u64
*spte
)
1078 struct kvm_mmu_page
*sp
;
1080 unsigned long *rmapp
;
1082 sp
= page_header(__pa(spte
));
1083 gfn
= kvm_mmu_page_get_gfn(sp
, spte
- sp
->spt
);
1084 rmapp
= gfn_to_rmap(kvm
, gfn
, sp
);
1085 pte_list_remove(spte
, rmapp
);
1089 * Used by the following functions to iterate through the sptes linked by a
1090 * rmap. All fields are private and not assumed to be used outside.
1092 struct rmap_iterator
{
1093 /* private fields */
1094 struct pte_list_desc
*desc
; /* holds the sptep if not NULL */
1095 int pos
; /* index of the sptep */
1099 * Iteration must be started by this function. This should also be used after
1100 * removing/dropping sptes from the rmap link because in such cases the
1101 * information in the itererator may not be valid.
1103 * Returns sptep if found, NULL otherwise.
1105 static u64
*rmap_get_first(unsigned long rmap
, struct rmap_iterator
*iter
)
1115 iter
->desc
= (struct pte_list_desc
*)(rmap
& ~1ul);
1117 return iter
->desc
->sptes
[iter
->pos
];
1121 * Must be used with a valid iterator: e.g. after rmap_get_first().
1123 * Returns sptep if found, NULL otherwise.
1125 static u64
*rmap_get_next(struct rmap_iterator
*iter
)
1128 if (iter
->pos
< PTE_LIST_EXT
- 1) {
1132 sptep
= iter
->desc
->sptes
[iter
->pos
];
1137 iter
->desc
= iter
->desc
->more
;
1141 /* desc->sptes[0] cannot be NULL */
1142 return iter
->desc
->sptes
[iter
->pos
];
1149 #define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
1150 for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
1151 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
1152 _spte_ = rmap_get_next(_iter_))
1154 static void drop_spte(struct kvm
*kvm
, u64
*sptep
)
1156 if (mmu_spte_clear_track_bits(sptep
))
1157 rmap_remove(kvm
, sptep
);
1161 static bool __drop_large_spte(struct kvm
*kvm
, u64
*sptep
)
1163 if (is_large_pte(*sptep
)) {
1164 WARN_ON(page_header(__pa(sptep
))->role
.level
==
1165 PT_PAGE_TABLE_LEVEL
);
1166 drop_spte(kvm
, sptep
);
1174 static void drop_large_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
)
1176 if (__drop_large_spte(vcpu
->kvm
, sptep
))
1177 kvm_flush_remote_tlbs(vcpu
->kvm
);
1181 * Write-protect on the specified @sptep, @pt_protect indicates whether
1182 * spte write-protection is caused by protecting shadow page table.
1184 * Note: write protection is difference between dirty logging and spte
1186 * - for dirty logging, the spte can be set to writable at anytime if
1187 * its dirty bitmap is properly set.
1188 * - for spte protection, the spte can be writable only after unsync-ing
1191 * Return true if tlb need be flushed.
1193 static bool spte_write_protect(struct kvm
*kvm
, u64
*sptep
, bool pt_protect
)
1197 if (!is_writable_pte(spte
) &&
1198 !(pt_protect
&& spte_is_locklessly_modifiable(spte
)))
1201 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep
, *sptep
);
1204 spte
&= ~SPTE_MMU_WRITEABLE
;
1205 spte
= spte
& ~PT_WRITABLE_MASK
;
1207 return mmu_spte_update(sptep
, spte
);
1210 static bool __rmap_write_protect(struct kvm
*kvm
, unsigned long *rmapp
,
1214 struct rmap_iterator iter
;
1217 for_each_rmap_spte(rmapp
, &iter
, sptep
)
1218 flush
|= spte_write_protect(kvm
, sptep
, pt_protect
);
1223 static bool spte_clear_dirty(struct kvm
*kvm
, u64
*sptep
)
1227 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep
, *sptep
);
1229 spte
&= ~shadow_dirty_mask
;
1231 return mmu_spte_update(sptep
, spte
);
1234 static bool __rmap_clear_dirty(struct kvm
*kvm
, unsigned long *rmapp
)
1237 struct rmap_iterator iter
;
1240 for_each_rmap_spte(rmapp
, &iter
, sptep
)
1241 flush
|= spte_clear_dirty(kvm
, sptep
);
1246 static bool spte_set_dirty(struct kvm
*kvm
, u64
*sptep
)
1250 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep
, *sptep
);
1252 spte
|= shadow_dirty_mask
;
1254 return mmu_spte_update(sptep
, spte
);
1257 static bool __rmap_set_dirty(struct kvm
*kvm
, unsigned long *rmapp
)
1260 struct rmap_iterator iter
;
1263 for_each_rmap_spte(rmapp
, &iter
, sptep
)
1264 flush
|= spte_set_dirty(kvm
, sptep
);
1270 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1271 * @kvm: kvm instance
1272 * @slot: slot to protect
1273 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1274 * @mask: indicates which pages we should protect
1276 * Used when we do not need to care about huge page mappings: e.g. during dirty
1277 * logging we do not have any such mappings.
1279 static void kvm_mmu_write_protect_pt_masked(struct kvm
*kvm
,
1280 struct kvm_memory_slot
*slot
,
1281 gfn_t gfn_offset
, unsigned long mask
)
1283 unsigned long *rmapp
;
1286 rmapp
= __gfn_to_rmap(slot
->base_gfn
+ gfn_offset
+ __ffs(mask
),
1287 PT_PAGE_TABLE_LEVEL
, slot
);
1288 __rmap_write_protect(kvm
, rmapp
, false);
1290 /* clear the first set bit */
1296 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1297 * @kvm: kvm instance
1298 * @slot: slot to clear D-bit
1299 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1300 * @mask: indicates which pages we should clear D-bit
1302 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1304 void kvm_mmu_clear_dirty_pt_masked(struct kvm
*kvm
,
1305 struct kvm_memory_slot
*slot
,
1306 gfn_t gfn_offset
, unsigned long mask
)
1308 unsigned long *rmapp
;
1311 rmapp
= __gfn_to_rmap(slot
->base_gfn
+ gfn_offset
+ __ffs(mask
),
1312 PT_PAGE_TABLE_LEVEL
, slot
);
1313 __rmap_clear_dirty(kvm
, rmapp
);
1315 /* clear the first set bit */
1319 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked
);
1322 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1325 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1326 * enable dirty logging for them.
1328 * Used when we do not need to care about huge page mappings: e.g. during dirty
1329 * logging we do not have any such mappings.
1331 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm
*kvm
,
1332 struct kvm_memory_slot
*slot
,
1333 gfn_t gfn_offset
, unsigned long mask
)
1335 if (kvm_x86_ops
->enable_log_dirty_pt_masked
)
1336 kvm_x86_ops
->enable_log_dirty_pt_masked(kvm
, slot
, gfn_offset
,
1339 kvm_mmu_write_protect_pt_masked(kvm
, slot
, gfn_offset
, mask
);
1342 static bool rmap_write_protect(struct kvm_vcpu
*vcpu
, u64 gfn
)
1344 struct kvm_memory_slot
*slot
;
1345 unsigned long *rmapp
;
1347 bool write_protected
= false;
1349 slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1351 for (i
= PT_PAGE_TABLE_LEVEL
; i
<= PT_MAX_HUGEPAGE_LEVEL
; ++i
) {
1352 rmapp
= __gfn_to_rmap(gfn
, i
, slot
);
1353 write_protected
|= __rmap_write_protect(vcpu
->kvm
, rmapp
, true);
1356 return write_protected
;
1359 static bool kvm_zap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
)
1362 struct rmap_iterator iter
;
1365 while ((sptep
= rmap_get_first(*rmapp
, &iter
))) {
1366 BUG_ON(!(*sptep
& PT_PRESENT_MASK
));
1367 rmap_printk("%s: spte %p %llx.\n", __func__
, sptep
, *sptep
);
1369 drop_spte(kvm
, sptep
);
1376 static int kvm_unmap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1377 struct kvm_memory_slot
*slot
, gfn_t gfn
, int level
,
1380 return kvm_zap_rmapp(kvm
, rmapp
);
1383 static int kvm_set_pte_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1384 struct kvm_memory_slot
*slot
, gfn_t gfn
, int level
,
1388 struct rmap_iterator iter
;
1391 pte_t
*ptep
= (pte_t
*)data
;
1394 WARN_ON(pte_huge(*ptep
));
1395 new_pfn
= pte_pfn(*ptep
);
1398 for_each_rmap_spte(rmapp
, &iter
, sptep
) {
1399 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1400 sptep
, *sptep
, gfn
, level
);
1404 if (pte_write(*ptep
)) {
1405 drop_spte(kvm
, sptep
);
1408 new_spte
= *sptep
& ~PT64_BASE_ADDR_MASK
;
1409 new_spte
|= (u64
)new_pfn
<< PAGE_SHIFT
;
1411 new_spte
&= ~PT_WRITABLE_MASK
;
1412 new_spte
&= ~SPTE_HOST_WRITEABLE
;
1413 new_spte
&= ~shadow_accessed_mask
;
1415 mmu_spte_clear_track_bits(sptep
);
1416 mmu_spte_set(sptep
, new_spte
);
1421 kvm_flush_remote_tlbs(kvm
);
1426 struct slot_rmap_walk_iterator
{
1428 struct kvm_memory_slot
*slot
;
1434 /* output fields. */
1436 unsigned long *rmap
;
1439 /* private field. */
1440 unsigned long *end_rmap
;
1444 rmap_walk_init_level(struct slot_rmap_walk_iterator
*iterator
, int level
)
1446 iterator
->level
= level
;
1447 iterator
->gfn
= iterator
->start_gfn
;
1448 iterator
->rmap
= __gfn_to_rmap(iterator
->gfn
, level
, iterator
->slot
);
1449 iterator
->end_rmap
= __gfn_to_rmap(iterator
->end_gfn
, level
,
1454 slot_rmap_walk_init(struct slot_rmap_walk_iterator
*iterator
,
1455 struct kvm_memory_slot
*slot
, int start_level
,
1456 int end_level
, gfn_t start_gfn
, gfn_t end_gfn
)
1458 iterator
->slot
= slot
;
1459 iterator
->start_level
= start_level
;
1460 iterator
->end_level
= end_level
;
1461 iterator
->start_gfn
= start_gfn
;
1462 iterator
->end_gfn
= end_gfn
;
1464 rmap_walk_init_level(iterator
, iterator
->start_level
);
1467 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator
*iterator
)
1469 return !!iterator
->rmap
;
1472 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator
*iterator
)
1474 if (++iterator
->rmap
<= iterator
->end_rmap
) {
1475 iterator
->gfn
+= (1UL << KVM_HPAGE_GFN_SHIFT(iterator
->level
));
1479 if (++iterator
->level
> iterator
->end_level
) {
1480 iterator
->rmap
= NULL
;
1484 rmap_walk_init_level(iterator
, iterator
->level
);
1487 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1488 _start_gfn, _end_gfn, _iter_) \
1489 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1490 _end_level_, _start_gfn, _end_gfn); \
1491 slot_rmap_walk_okay(_iter_); \
1492 slot_rmap_walk_next(_iter_))
1494 static int kvm_handle_hva_range(struct kvm
*kvm
,
1495 unsigned long start
,
1498 int (*handler
)(struct kvm
*kvm
,
1499 unsigned long *rmapp
,
1500 struct kvm_memory_slot
*slot
,
1503 unsigned long data
))
1505 struct kvm_memslots
*slots
;
1506 struct kvm_memory_slot
*memslot
;
1507 struct slot_rmap_walk_iterator iterator
;
1511 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
1512 slots
= __kvm_memslots(kvm
, i
);
1513 kvm_for_each_memslot(memslot
, slots
) {
1514 unsigned long hva_start
, hva_end
;
1515 gfn_t gfn_start
, gfn_end
;
1517 hva_start
= max(start
, memslot
->userspace_addr
);
1518 hva_end
= min(end
, memslot
->userspace_addr
+
1519 (memslot
->npages
<< PAGE_SHIFT
));
1520 if (hva_start
>= hva_end
)
1523 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1524 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1526 gfn_start
= hva_to_gfn_memslot(hva_start
, memslot
);
1527 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
1529 for_each_slot_rmap_range(memslot
, PT_PAGE_TABLE_LEVEL
,
1530 PT_MAX_HUGEPAGE_LEVEL
,
1531 gfn_start
, gfn_end
- 1,
1533 ret
|= handler(kvm
, iterator
.rmap
, memslot
,
1534 iterator
.gfn
, iterator
.level
, data
);
1541 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
1543 int (*handler
)(struct kvm
*kvm
, unsigned long *rmapp
,
1544 struct kvm_memory_slot
*slot
,
1545 gfn_t gfn
, int level
,
1546 unsigned long data
))
1548 return kvm_handle_hva_range(kvm
, hva
, hva
+ 1, data
, handler
);
1551 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
1553 return kvm_handle_hva(kvm
, hva
, 0, kvm_unmap_rmapp
);
1556 int kvm_unmap_hva_range(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
1558 return kvm_handle_hva_range(kvm
, start
, end
, 0, kvm_unmap_rmapp
);
1561 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1563 kvm_handle_hva(kvm
, hva
, (unsigned long)&pte
, kvm_set_pte_rmapp
);
1566 static int kvm_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1567 struct kvm_memory_slot
*slot
, gfn_t gfn
, int level
,
1571 struct rmap_iterator
uninitialized_var(iter
);
1574 BUG_ON(!shadow_accessed_mask
);
1576 for_each_rmap_spte(rmapp
, &iter
, sptep
)
1577 if (*sptep
& shadow_accessed_mask
) {
1579 clear_bit((ffs(shadow_accessed_mask
) - 1),
1580 (unsigned long *)sptep
);
1583 trace_kvm_age_page(gfn
, level
, slot
, young
);
1587 static int kvm_test_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1588 struct kvm_memory_slot
*slot
, gfn_t gfn
,
1589 int level
, unsigned long data
)
1592 struct rmap_iterator iter
;
1596 * If there's no access bit in the secondary pte set by the
1597 * hardware it's up to gup-fast/gup to set the access bit in
1598 * the primary pte or in the page structure.
1600 if (!shadow_accessed_mask
)
1603 for_each_rmap_spte(rmapp
, &iter
, sptep
)
1604 if (*sptep
& shadow_accessed_mask
) {
1612 #define RMAP_RECYCLE_THRESHOLD 1000
1614 static void rmap_recycle(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
1616 unsigned long *rmapp
;
1617 struct kvm_mmu_page
*sp
;
1619 sp
= page_header(__pa(spte
));
1621 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
);
1623 kvm_unmap_rmapp(vcpu
->kvm
, rmapp
, NULL
, gfn
, sp
->role
.level
, 0);
1624 kvm_flush_remote_tlbs(vcpu
->kvm
);
1627 int kvm_age_hva(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
1630 * In case of absence of EPT Access and Dirty Bits supports,
1631 * emulate the accessed bit for EPT, by checking if this page has
1632 * an EPT mapping, and clearing it if it does. On the next access,
1633 * a new EPT mapping will be established.
1634 * This has some overhead, but not as much as the cost of swapping
1635 * out actively used pages or breaking up actively used hugepages.
1637 if (!shadow_accessed_mask
) {
1639 * We are holding the kvm->mmu_lock, and we are blowing up
1640 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1641 * This is correct as long as we don't decouple the mmu_lock
1642 * protected regions (like invalidate_range_start|end does).
1644 kvm
->mmu_notifier_seq
++;
1645 return kvm_handle_hva_range(kvm
, start
, end
, 0,
1649 return kvm_handle_hva_range(kvm
, start
, end
, 0, kvm_age_rmapp
);
1652 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
1654 return kvm_handle_hva(kvm
, hva
, 0, kvm_test_age_rmapp
);
1658 static int is_empty_shadow_page(u64
*spt
)
1663 for (pos
= spt
, end
= pos
+ PAGE_SIZE
/ sizeof(u64
); pos
!= end
; pos
++)
1664 if (is_shadow_present_pte(*pos
)) {
1665 printk(KERN_ERR
"%s: %p %llx\n", __func__
,
1674 * This value is the sum of all of the kvm instances's
1675 * kvm->arch.n_used_mmu_pages values. We need a global,
1676 * aggregate version in order to make the slab shrinker
1679 static inline void kvm_mod_used_mmu_pages(struct kvm
*kvm
, int nr
)
1681 kvm
->arch
.n_used_mmu_pages
+= nr
;
1682 percpu_counter_add(&kvm_total_used_mmu_pages
, nr
);
1685 static void kvm_mmu_free_page(struct kvm_mmu_page
*sp
)
1687 MMU_WARN_ON(!is_empty_shadow_page(sp
->spt
));
1688 hlist_del(&sp
->hash_link
);
1689 list_del(&sp
->link
);
1690 free_page((unsigned long)sp
->spt
);
1691 if (!sp
->role
.direct
)
1692 free_page((unsigned long)sp
->gfns
);
1693 kmem_cache_free(mmu_page_header_cache
, sp
);
1696 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
1698 return gfn
& ((1 << KVM_MMU_HASH_SHIFT
) - 1);
1701 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
1702 struct kvm_mmu_page
*sp
, u64
*parent_pte
)
1707 pte_list_add(vcpu
, parent_pte
, &sp
->parent_ptes
);
1710 static void mmu_page_remove_parent_pte(struct kvm_mmu_page
*sp
,
1713 pte_list_remove(parent_pte
, &sp
->parent_ptes
);
1716 static void drop_parent_pte(struct kvm_mmu_page
*sp
,
1719 mmu_page_remove_parent_pte(sp
, parent_pte
);
1720 mmu_spte_clear_no_track(parent_pte
);
1723 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
1724 u64
*parent_pte
, int direct
)
1726 struct kvm_mmu_page
*sp
;
1728 sp
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_header_cache
);
1729 sp
->spt
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
);
1731 sp
->gfns
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
);
1732 set_page_private(virt_to_page(sp
->spt
), (unsigned long)sp
);
1735 * The active_mmu_pages list is the FIFO list, do not move the
1736 * page until it is zapped. kvm_zap_obsolete_pages depends on
1737 * this feature. See the comments in kvm_zap_obsolete_pages().
1739 list_add(&sp
->link
, &vcpu
->kvm
->arch
.active_mmu_pages
);
1740 sp
->parent_ptes
= 0;
1741 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1742 kvm_mod_used_mmu_pages(vcpu
->kvm
, +1);
1746 static void mark_unsync(u64
*spte
);
1747 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page
*sp
)
1749 pte_list_walk(&sp
->parent_ptes
, mark_unsync
);
1752 static void mark_unsync(u64
*spte
)
1754 struct kvm_mmu_page
*sp
;
1757 sp
= page_header(__pa(spte
));
1758 index
= spte
- sp
->spt
;
1759 if (__test_and_set_bit(index
, sp
->unsync_child_bitmap
))
1761 if (sp
->unsync_children
++)
1763 kvm_mmu_mark_parents_unsync(sp
);
1766 static int nonpaging_sync_page(struct kvm_vcpu
*vcpu
,
1767 struct kvm_mmu_page
*sp
)
1772 static void nonpaging_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
1776 static void nonpaging_update_pte(struct kvm_vcpu
*vcpu
,
1777 struct kvm_mmu_page
*sp
, u64
*spte
,
1783 #define KVM_PAGE_ARRAY_NR 16
1785 struct kvm_mmu_pages
{
1786 struct mmu_page_and_offset
{
1787 struct kvm_mmu_page
*sp
;
1789 } page
[KVM_PAGE_ARRAY_NR
];
1793 static int mmu_pages_add(struct kvm_mmu_pages
*pvec
, struct kvm_mmu_page
*sp
,
1799 for (i
=0; i
< pvec
->nr
; i
++)
1800 if (pvec
->page
[i
].sp
== sp
)
1803 pvec
->page
[pvec
->nr
].sp
= sp
;
1804 pvec
->page
[pvec
->nr
].idx
= idx
;
1806 return (pvec
->nr
== KVM_PAGE_ARRAY_NR
);
1809 static int __mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1810 struct kvm_mmu_pages
*pvec
)
1812 int i
, ret
, nr_unsync_leaf
= 0;
1814 for_each_set_bit(i
, sp
->unsync_child_bitmap
, 512) {
1815 struct kvm_mmu_page
*child
;
1816 u64 ent
= sp
->spt
[i
];
1818 if (!is_shadow_present_pte(ent
) || is_large_pte(ent
))
1819 goto clear_child_bitmap
;
1821 child
= page_header(ent
& PT64_BASE_ADDR_MASK
);
1823 if (child
->unsync_children
) {
1824 if (mmu_pages_add(pvec
, child
, i
))
1827 ret
= __mmu_unsync_walk(child
, pvec
);
1829 goto clear_child_bitmap
;
1831 nr_unsync_leaf
+= ret
;
1834 } else if (child
->unsync
) {
1836 if (mmu_pages_add(pvec
, child
, i
))
1839 goto clear_child_bitmap
;
1844 __clear_bit(i
, sp
->unsync_child_bitmap
);
1845 sp
->unsync_children
--;
1846 WARN_ON((int)sp
->unsync_children
< 0);
1850 return nr_unsync_leaf
;
1853 static int mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1854 struct kvm_mmu_pages
*pvec
)
1856 if (!sp
->unsync_children
)
1859 mmu_pages_add(pvec
, sp
, 0);
1860 return __mmu_unsync_walk(sp
, pvec
);
1863 static void kvm_unlink_unsync_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1865 WARN_ON(!sp
->unsync
);
1866 trace_kvm_mmu_sync_page(sp
);
1868 --kvm
->stat
.mmu_unsync
;
1871 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
1872 struct list_head
*invalid_list
);
1873 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
1874 struct list_head
*invalid_list
);
1877 * NOTE: we should pay more attention on the zapped-obsolete page
1878 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1879 * since it has been deleted from active_mmu_pages but still can be found
1882 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1883 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1884 * all the obsolete pages.
1886 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1887 hlist_for_each_entry(_sp, \
1888 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1889 if ((_sp)->gfn != (_gfn)) {} else
1891 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1892 for_each_gfn_sp(_kvm, _sp, _gfn) \
1893 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1895 /* @sp->gfn should be write-protected at the call site */
1896 static int __kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1897 struct list_head
*invalid_list
, bool clear_unsync
)
1899 if (sp
->role
.cr4_pae
!= !!is_pae(vcpu
)) {
1900 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1905 kvm_unlink_unsync_page(vcpu
->kvm
, sp
);
1907 if (vcpu
->arch
.mmu
.sync_page(vcpu
, sp
)) {
1908 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1912 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
1916 static int kvm_sync_page_transient(struct kvm_vcpu
*vcpu
,
1917 struct kvm_mmu_page
*sp
)
1919 LIST_HEAD(invalid_list
);
1922 ret
= __kvm_sync_page(vcpu
, sp
, &invalid_list
, false);
1924 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1929 #ifdef CONFIG_KVM_MMU_AUDIT
1930 #include "mmu_audit.c"
1932 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, int point
) { }
1933 static void mmu_audit_disable(void) { }
1936 static int kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1937 struct list_head
*invalid_list
)
1939 return __kvm_sync_page(vcpu
, sp
, invalid_list
, true);
1942 /* @gfn should be write-protected at the call site */
1943 static void kvm_sync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1945 struct kvm_mmu_page
*s
;
1946 LIST_HEAD(invalid_list
);
1949 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
1953 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
1954 kvm_unlink_unsync_page(vcpu
->kvm
, s
);
1955 if ((s
->role
.cr4_pae
!= !!is_pae(vcpu
)) ||
1956 (vcpu
->arch
.mmu
.sync_page(vcpu
, s
))) {
1957 kvm_mmu_prepare_zap_page(vcpu
->kvm
, s
, &invalid_list
);
1963 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1965 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
1968 struct mmu_page_path
{
1969 struct kvm_mmu_page
*parent
[PT64_ROOT_LEVEL
-1];
1970 unsigned int idx
[PT64_ROOT_LEVEL
-1];
1973 #define for_each_sp(pvec, sp, parents, i) \
1974 for (i = mmu_pages_next(&pvec, &parents, -1), \
1975 sp = pvec.page[i].sp; \
1976 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1977 i = mmu_pages_next(&pvec, &parents, i))
1979 static int mmu_pages_next(struct kvm_mmu_pages
*pvec
,
1980 struct mmu_page_path
*parents
,
1985 for (n
= i
+1; n
< pvec
->nr
; n
++) {
1986 struct kvm_mmu_page
*sp
= pvec
->page
[n
].sp
;
1988 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
1989 parents
->idx
[0] = pvec
->page
[n
].idx
;
1993 parents
->parent
[sp
->role
.level
-2] = sp
;
1994 parents
->idx
[sp
->role
.level
-1] = pvec
->page
[n
].idx
;
2000 static void mmu_pages_clear_parents(struct mmu_page_path
*parents
)
2002 struct kvm_mmu_page
*sp
;
2003 unsigned int level
= 0;
2006 unsigned int idx
= parents
->idx
[level
];
2008 sp
= parents
->parent
[level
];
2012 --sp
->unsync_children
;
2013 WARN_ON((int)sp
->unsync_children
< 0);
2014 __clear_bit(idx
, sp
->unsync_child_bitmap
);
2016 } while (level
< PT64_ROOT_LEVEL
-1 && !sp
->unsync_children
);
2019 static void kvm_mmu_pages_init(struct kvm_mmu_page
*parent
,
2020 struct mmu_page_path
*parents
,
2021 struct kvm_mmu_pages
*pvec
)
2023 parents
->parent
[parent
->role
.level
-1] = NULL
;
2027 static void mmu_sync_children(struct kvm_vcpu
*vcpu
,
2028 struct kvm_mmu_page
*parent
)
2031 struct kvm_mmu_page
*sp
;
2032 struct mmu_page_path parents
;
2033 struct kvm_mmu_pages pages
;
2034 LIST_HEAD(invalid_list
);
2036 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2037 while (mmu_unsync_walk(parent
, &pages
)) {
2038 bool protected = false;
2040 for_each_sp(pages
, sp
, parents
, i
)
2041 protected |= rmap_write_protect(vcpu
, sp
->gfn
);
2044 kvm_flush_remote_tlbs(vcpu
->kvm
);
2046 for_each_sp(pages
, sp
, parents
, i
) {
2047 kvm_sync_page(vcpu
, sp
, &invalid_list
);
2048 mmu_pages_clear_parents(&parents
);
2050 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
2051 cond_resched_lock(&vcpu
->kvm
->mmu_lock
);
2052 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2056 static void init_shadow_page_table(struct kvm_mmu_page
*sp
)
2060 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
2064 static void __clear_sp_write_flooding_count(struct kvm_mmu_page
*sp
)
2066 sp
->write_flooding_count
= 0;
2069 static void clear_sp_write_flooding_count(u64
*spte
)
2071 struct kvm_mmu_page
*sp
= page_header(__pa(spte
));
2073 __clear_sp_write_flooding_count(sp
);
2076 static bool is_obsolete_sp(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
2078 return unlikely(sp
->mmu_valid_gen
!= kvm
->arch
.mmu_valid_gen
);
2081 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
2089 union kvm_mmu_page_role role
;
2091 struct kvm_mmu_page
*sp
;
2092 bool need_sync
= false;
2094 role
= vcpu
->arch
.mmu
.base_role
;
2096 role
.direct
= direct
;
2099 role
.access
= access
;
2100 if (!vcpu
->arch
.mmu
.direct_map
2101 && vcpu
->arch
.mmu
.root_level
<= PT32_ROOT_LEVEL
) {
2102 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
2103 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
2104 role
.quadrant
= quadrant
;
2106 for_each_gfn_sp(vcpu
->kvm
, sp
, gfn
) {
2107 if (is_obsolete_sp(vcpu
->kvm
, sp
))
2110 if (!need_sync
&& sp
->unsync
)
2113 if (sp
->role
.word
!= role
.word
)
2116 if (sp
->unsync
&& kvm_sync_page_transient(vcpu
, sp
))
2119 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
2120 if (sp
->unsync_children
) {
2121 kvm_make_request(KVM_REQ_MMU_SYNC
, vcpu
);
2122 kvm_mmu_mark_parents_unsync(sp
);
2123 } else if (sp
->unsync
)
2124 kvm_mmu_mark_parents_unsync(sp
);
2126 __clear_sp_write_flooding_count(sp
);
2127 trace_kvm_mmu_get_page(sp
, false);
2130 ++vcpu
->kvm
->stat
.mmu_cache_miss
;
2131 sp
= kvm_mmu_alloc_page(vcpu
, parent_pte
, direct
);
2136 hlist_add_head(&sp
->hash_link
,
2137 &vcpu
->kvm
->arch
.mmu_page_hash
[kvm_page_table_hashfn(gfn
)]);
2139 if (rmap_write_protect(vcpu
, gfn
))
2140 kvm_flush_remote_tlbs(vcpu
->kvm
);
2141 if (level
> PT_PAGE_TABLE_LEVEL
&& need_sync
)
2142 kvm_sync_pages(vcpu
, gfn
);
2144 account_shadowed(vcpu
->kvm
, sp
);
2146 sp
->mmu_valid_gen
= vcpu
->kvm
->arch
.mmu_valid_gen
;
2147 init_shadow_page_table(sp
);
2148 trace_kvm_mmu_get_page(sp
, true);
2152 static void shadow_walk_init(struct kvm_shadow_walk_iterator
*iterator
,
2153 struct kvm_vcpu
*vcpu
, u64 addr
)
2155 iterator
->addr
= addr
;
2156 iterator
->shadow_addr
= vcpu
->arch
.mmu
.root_hpa
;
2157 iterator
->level
= vcpu
->arch
.mmu
.shadow_root_level
;
2159 if (iterator
->level
== PT64_ROOT_LEVEL
&&
2160 vcpu
->arch
.mmu
.root_level
< PT64_ROOT_LEVEL
&&
2161 !vcpu
->arch
.mmu
.direct_map
)
2164 if (iterator
->level
== PT32E_ROOT_LEVEL
) {
2165 iterator
->shadow_addr
2166 = vcpu
->arch
.mmu
.pae_root
[(addr
>> 30) & 3];
2167 iterator
->shadow_addr
&= PT64_BASE_ADDR_MASK
;
2169 if (!iterator
->shadow_addr
)
2170 iterator
->level
= 0;
2174 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator
*iterator
)
2176 if (iterator
->level
< PT_PAGE_TABLE_LEVEL
)
2179 iterator
->index
= SHADOW_PT_INDEX(iterator
->addr
, iterator
->level
);
2180 iterator
->sptep
= ((u64
*)__va(iterator
->shadow_addr
)) + iterator
->index
;
2184 static void __shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
,
2187 if (is_last_spte(spte
, iterator
->level
)) {
2188 iterator
->level
= 0;
2192 iterator
->shadow_addr
= spte
& PT64_BASE_ADDR_MASK
;
2196 static void shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
)
2198 return __shadow_walk_next(iterator
, *iterator
->sptep
);
2201 static void link_shadow_page(u64
*sptep
, struct kvm_mmu_page
*sp
, bool accessed
)
2205 BUILD_BUG_ON(VMX_EPT_READABLE_MASK
!= PT_PRESENT_MASK
||
2206 VMX_EPT_WRITABLE_MASK
!= PT_WRITABLE_MASK
);
2208 spte
= __pa(sp
->spt
) | PT_PRESENT_MASK
| PT_WRITABLE_MASK
|
2209 shadow_user_mask
| shadow_x_mask
;
2212 spte
|= shadow_accessed_mask
;
2214 mmu_spte_set(sptep
, spte
);
2217 static void validate_direct_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2218 unsigned direct_access
)
2220 if (is_shadow_present_pte(*sptep
) && !is_large_pte(*sptep
)) {
2221 struct kvm_mmu_page
*child
;
2224 * For the direct sp, if the guest pte's dirty bit
2225 * changed form clean to dirty, it will corrupt the
2226 * sp's access: allow writable in the read-only sp,
2227 * so we should update the spte at this point to get
2228 * a new sp with the correct access.
2230 child
= page_header(*sptep
& PT64_BASE_ADDR_MASK
);
2231 if (child
->role
.access
== direct_access
)
2234 drop_parent_pte(child
, sptep
);
2235 kvm_flush_remote_tlbs(vcpu
->kvm
);
2239 static bool mmu_page_zap_pte(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
2243 struct kvm_mmu_page
*child
;
2246 if (is_shadow_present_pte(pte
)) {
2247 if (is_last_spte(pte
, sp
->role
.level
)) {
2248 drop_spte(kvm
, spte
);
2249 if (is_large_pte(pte
))
2252 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2253 drop_parent_pte(child
, spte
);
2258 if (is_mmio_spte(pte
))
2259 mmu_spte_clear_no_track(spte
);
2264 static void kvm_mmu_page_unlink_children(struct kvm
*kvm
,
2265 struct kvm_mmu_page
*sp
)
2269 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
2270 mmu_page_zap_pte(kvm
, sp
, sp
->spt
+ i
);
2273 static void kvm_mmu_put_page(struct kvm_mmu_page
*sp
, u64
*parent_pte
)
2275 mmu_page_remove_parent_pte(sp
, parent_pte
);
2278 static void kvm_mmu_unlink_parents(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
2281 struct rmap_iterator iter
;
2283 while ((sptep
= rmap_get_first(sp
->parent_ptes
, &iter
)))
2284 drop_parent_pte(sp
, sptep
);
2287 static int mmu_zap_unsync_children(struct kvm
*kvm
,
2288 struct kvm_mmu_page
*parent
,
2289 struct list_head
*invalid_list
)
2292 struct mmu_page_path parents
;
2293 struct kvm_mmu_pages pages
;
2295 if (parent
->role
.level
== PT_PAGE_TABLE_LEVEL
)
2298 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2299 while (mmu_unsync_walk(parent
, &pages
)) {
2300 struct kvm_mmu_page
*sp
;
2302 for_each_sp(pages
, sp
, parents
, i
) {
2303 kvm_mmu_prepare_zap_page(kvm
, sp
, invalid_list
);
2304 mmu_pages_clear_parents(&parents
);
2307 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2313 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
2314 struct list_head
*invalid_list
)
2318 trace_kvm_mmu_prepare_zap_page(sp
);
2319 ++kvm
->stat
.mmu_shadow_zapped
;
2320 ret
= mmu_zap_unsync_children(kvm
, sp
, invalid_list
);
2321 kvm_mmu_page_unlink_children(kvm
, sp
);
2322 kvm_mmu_unlink_parents(kvm
, sp
);
2324 if (!sp
->role
.invalid
&& !sp
->role
.direct
)
2325 unaccount_shadowed(kvm
, sp
);
2328 kvm_unlink_unsync_page(kvm
, sp
);
2329 if (!sp
->root_count
) {
2332 list_move(&sp
->link
, invalid_list
);
2333 kvm_mod_used_mmu_pages(kvm
, -1);
2335 list_move(&sp
->link
, &kvm
->arch
.active_mmu_pages
);
2338 * The obsolete pages can not be used on any vcpus.
2339 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2341 if (!sp
->role
.invalid
&& !is_obsolete_sp(kvm
, sp
))
2342 kvm_reload_remote_mmus(kvm
);
2345 sp
->role
.invalid
= 1;
2349 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
2350 struct list_head
*invalid_list
)
2352 struct kvm_mmu_page
*sp
, *nsp
;
2354 if (list_empty(invalid_list
))
2358 * wmb: make sure everyone sees our modifications to the page tables
2359 * rmb: make sure we see changes to vcpu->mode
2364 * Wait for all vcpus to exit guest mode and/or lockless shadow
2367 kvm_flush_remote_tlbs(kvm
);
2369 list_for_each_entry_safe(sp
, nsp
, invalid_list
, link
) {
2370 WARN_ON(!sp
->role
.invalid
|| sp
->root_count
);
2371 kvm_mmu_free_page(sp
);
2375 static bool prepare_zap_oldest_mmu_page(struct kvm
*kvm
,
2376 struct list_head
*invalid_list
)
2378 struct kvm_mmu_page
*sp
;
2380 if (list_empty(&kvm
->arch
.active_mmu_pages
))
2383 sp
= list_entry(kvm
->arch
.active_mmu_pages
.prev
,
2384 struct kvm_mmu_page
, link
);
2385 kvm_mmu_prepare_zap_page(kvm
, sp
, invalid_list
);
2391 * Changing the number of mmu pages allocated to the vm
2392 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2394 void kvm_mmu_change_mmu_pages(struct kvm
*kvm
, unsigned int goal_nr_mmu_pages
)
2396 LIST_HEAD(invalid_list
);
2398 spin_lock(&kvm
->mmu_lock
);
2400 if (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
) {
2401 /* Need to free some mmu pages to achieve the goal. */
2402 while (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
)
2403 if (!prepare_zap_oldest_mmu_page(kvm
, &invalid_list
))
2406 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2407 goal_nr_mmu_pages
= kvm
->arch
.n_used_mmu_pages
;
2410 kvm
->arch
.n_max_mmu_pages
= goal_nr_mmu_pages
;
2412 spin_unlock(&kvm
->mmu_lock
);
2415 int kvm_mmu_unprotect_page(struct kvm
*kvm
, gfn_t gfn
)
2417 struct kvm_mmu_page
*sp
;
2418 LIST_HEAD(invalid_list
);
2421 pgprintk("%s: looking for gfn %llx\n", __func__
, gfn
);
2423 spin_lock(&kvm
->mmu_lock
);
2424 for_each_gfn_indirect_valid_sp(kvm
, sp
, gfn
) {
2425 pgprintk("%s: gfn %llx role %x\n", __func__
, gfn
,
2428 kvm_mmu_prepare_zap_page(kvm
, sp
, &invalid_list
);
2430 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2431 spin_unlock(&kvm
->mmu_lock
);
2435 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page
);
2437 static void __kvm_unsync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
2439 trace_kvm_mmu_unsync_page(sp
);
2440 ++vcpu
->kvm
->stat
.mmu_unsync
;
2443 kvm_mmu_mark_parents_unsync(sp
);
2446 static void kvm_unsync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2448 struct kvm_mmu_page
*s
;
2450 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
2453 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
2454 __kvm_unsync_page(vcpu
, s
);
2458 static int mmu_need_write_protect(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2461 struct kvm_mmu_page
*s
;
2462 bool need_unsync
= false;
2464 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
2468 if (s
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
2475 kvm_unsync_pages(vcpu
, gfn
);
2479 static bool kvm_is_mmio_pfn(pfn_t pfn
)
2482 return !is_zero_pfn(pfn
) && PageReserved(pfn_to_page(pfn
));
2487 static int set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2488 unsigned pte_access
, int level
,
2489 gfn_t gfn
, pfn_t pfn
, bool speculative
,
2490 bool can_unsync
, bool host_writable
)
2495 if (set_mmio_spte(vcpu
, sptep
, gfn
, pfn
, pte_access
))
2498 spte
= PT_PRESENT_MASK
;
2500 spte
|= shadow_accessed_mask
;
2502 if (pte_access
& ACC_EXEC_MASK
)
2503 spte
|= shadow_x_mask
;
2505 spte
|= shadow_nx_mask
;
2507 if (pte_access
& ACC_USER_MASK
)
2508 spte
|= shadow_user_mask
;
2510 if (level
> PT_PAGE_TABLE_LEVEL
)
2511 spte
|= PT_PAGE_SIZE_MASK
;
2513 spte
|= kvm_x86_ops
->get_mt_mask(vcpu
, gfn
,
2514 kvm_is_mmio_pfn(pfn
));
2517 spte
|= SPTE_HOST_WRITEABLE
;
2519 pte_access
&= ~ACC_WRITE_MASK
;
2521 spte
|= (u64
)pfn
<< PAGE_SHIFT
;
2523 if (pte_access
& ACC_WRITE_MASK
) {
2526 * Other vcpu creates new sp in the window between
2527 * mapping_level() and acquiring mmu-lock. We can
2528 * allow guest to retry the access, the mapping can
2529 * be fixed if guest refault.
2531 if (level
> PT_PAGE_TABLE_LEVEL
&&
2532 has_wrprotected_page(vcpu
, gfn
, level
))
2535 spte
|= PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
;
2538 * Optimization: for pte sync, if spte was writable the hash
2539 * lookup is unnecessary (and expensive). Write protection
2540 * is responsibility of mmu_get_page / kvm_sync_page.
2541 * Same reasoning can be applied to dirty page accounting.
2543 if (!can_unsync
&& is_writable_pte(*sptep
))
2546 if (mmu_need_write_protect(vcpu
, gfn
, can_unsync
)) {
2547 pgprintk("%s: found shadow page for %llx, marking ro\n",
2550 pte_access
&= ~ACC_WRITE_MASK
;
2551 spte
&= ~(PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
);
2555 if (pte_access
& ACC_WRITE_MASK
) {
2556 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
2557 spte
|= shadow_dirty_mask
;
2561 if (mmu_spte_update(sptep
, spte
))
2562 kvm_flush_remote_tlbs(vcpu
->kvm
);
2567 static void mmu_set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2568 unsigned pte_access
, int write_fault
, int *emulate
,
2569 int level
, gfn_t gfn
, pfn_t pfn
, bool speculative
,
2572 int was_rmapped
= 0;
2575 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__
,
2576 *sptep
, write_fault
, gfn
);
2578 if (is_rmap_spte(*sptep
)) {
2580 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2581 * the parent of the now unreachable PTE.
2583 if (level
> PT_PAGE_TABLE_LEVEL
&&
2584 !is_large_pte(*sptep
)) {
2585 struct kvm_mmu_page
*child
;
2588 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2589 drop_parent_pte(child
, sptep
);
2590 kvm_flush_remote_tlbs(vcpu
->kvm
);
2591 } else if (pfn
!= spte_to_pfn(*sptep
)) {
2592 pgprintk("hfn old %llx new %llx\n",
2593 spte_to_pfn(*sptep
), pfn
);
2594 drop_spte(vcpu
->kvm
, sptep
);
2595 kvm_flush_remote_tlbs(vcpu
->kvm
);
2600 if (set_spte(vcpu
, sptep
, pte_access
, level
, gfn
, pfn
, speculative
,
2601 true, host_writable
)) {
2604 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
2607 if (unlikely(is_mmio_spte(*sptep
) && emulate
))
2610 pgprintk("%s: setting spte %llx\n", __func__
, *sptep
);
2611 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2612 is_large_pte(*sptep
)? "2MB" : "4kB",
2613 *sptep
& PT_PRESENT_MASK
?"RW":"R", gfn
,
2615 if (!was_rmapped
&& is_large_pte(*sptep
))
2616 ++vcpu
->kvm
->stat
.lpages
;
2618 if (is_shadow_present_pte(*sptep
)) {
2620 rmap_count
= rmap_add(vcpu
, sptep
, gfn
);
2621 if (rmap_count
> RMAP_RECYCLE_THRESHOLD
)
2622 rmap_recycle(vcpu
, sptep
, gfn
);
2626 kvm_release_pfn_clean(pfn
);
2629 static pfn_t
pte_prefetch_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2632 struct kvm_memory_slot
*slot
;
2634 slot
= gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, no_dirty_log
);
2636 return KVM_PFN_ERR_FAULT
;
2638 return gfn_to_pfn_memslot_atomic(slot
, gfn
);
2641 static int direct_pte_prefetch_many(struct kvm_vcpu
*vcpu
,
2642 struct kvm_mmu_page
*sp
,
2643 u64
*start
, u64
*end
)
2645 struct page
*pages
[PTE_PREFETCH_NUM
];
2646 struct kvm_memory_slot
*slot
;
2647 unsigned access
= sp
->role
.access
;
2651 gfn
= kvm_mmu_page_get_gfn(sp
, start
- sp
->spt
);
2652 slot
= gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, access
& ACC_WRITE_MASK
);
2656 ret
= gfn_to_page_many_atomic(slot
, gfn
, pages
, end
- start
);
2660 for (i
= 0; i
< ret
; i
++, gfn
++, start
++)
2661 mmu_set_spte(vcpu
, start
, access
, 0, NULL
,
2662 sp
->role
.level
, gfn
, page_to_pfn(pages
[i
]),
2668 static void __direct_pte_prefetch(struct kvm_vcpu
*vcpu
,
2669 struct kvm_mmu_page
*sp
, u64
*sptep
)
2671 u64
*spte
, *start
= NULL
;
2674 WARN_ON(!sp
->role
.direct
);
2676 i
= (sptep
- sp
->spt
) & ~(PTE_PREFETCH_NUM
- 1);
2679 for (i
= 0; i
< PTE_PREFETCH_NUM
; i
++, spte
++) {
2680 if (is_shadow_present_pte(*spte
) || spte
== sptep
) {
2683 if (direct_pte_prefetch_many(vcpu
, sp
, start
, spte
) < 0)
2691 static void direct_pte_prefetch(struct kvm_vcpu
*vcpu
, u64
*sptep
)
2693 struct kvm_mmu_page
*sp
;
2696 * Since it's no accessed bit on EPT, it's no way to
2697 * distinguish between actually accessed translations
2698 * and prefetched, so disable pte prefetch if EPT is
2701 if (!shadow_accessed_mask
)
2704 sp
= page_header(__pa(sptep
));
2705 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
2708 __direct_pte_prefetch(vcpu
, sp
, sptep
);
2711 static int __direct_map(struct kvm_vcpu
*vcpu
, gpa_t v
, int write
,
2712 int map_writable
, int level
, gfn_t gfn
, pfn_t pfn
,
2715 struct kvm_shadow_walk_iterator iterator
;
2716 struct kvm_mmu_page
*sp
;
2720 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2723 for_each_shadow_entry(vcpu
, (u64
)gfn
<< PAGE_SHIFT
, iterator
) {
2724 if (iterator
.level
== level
) {
2725 mmu_set_spte(vcpu
, iterator
.sptep
, ACC_ALL
,
2726 write
, &emulate
, level
, gfn
, pfn
,
2727 prefault
, map_writable
);
2728 direct_pte_prefetch(vcpu
, iterator
.sptep
);
2729 ++vcpu
->stat
.pf_fixed
;
2733 drop_large_spte(vcpu
, iterator
.sptep
);
2734 if (!is_shadow_present_pte(*iterator
.sptep
)) {
2735 u64 base_addr
= iterator
.addr
;
2737 base_addr
&= PT64_LVL_ADDR_MASK(iterator
.level
);
2738 pseudo_gfn
= base_addr
>> PAGE_SHIFT
;
2739 sp
= kvm_mmu_get_page(vcpu
, pseudo_gfn
, iterator
.addr
,
2741 1, ACC_ALL
, iterator
.sptep
);
2743 link_shadow_page(iterator
.sptep
, sp
, true);
2749 static void kvm_send_hwpoison_signal(unsigned long address
, struct task_struct
*tsk
)
2753 info
.si_signo
= SIGBUS
;
2755 info
.si_code
= BUS_MCEERR_AR
;
2756 info
.si_addr
= (void __user
*)address
;
2757 info
.si_addr_lsb
= PAGE_SHIFT
;
2759 send_sig_info(SIGBUS
, &info
, tsk
);
2762 static int kvm_handle_bad_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, pfn_t pfn
)
2765 * Do not cache the mmio info caused by writing the readonly gfn
2766 * into the spte otherwise read access on readonly gfn also can
2767 * caused mmio page fault and treat it as mmio access.
2768 * Return 1 to tell kvm to emulate it.
2770 if (pfn
== KVM_PFN_ERR_RO_FAULT
)
2773 if (pfn
== KVM_PFN_ERR_HWPOISON
) {
2774 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu
, gfn
), current
);
2781 static void transparent_hugepage_adjust(struct kvm_vcpu
*vcpu
,
2782 gfn_t
*gfnp
, pfn_t
*pfnp
, int *levelp
)
2786 int level
= *levelp
;
2789 * Check if it's a transparent hugepage. If this would be an
2790 * hugetlbfs page, level wouldn't be set to
2791 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2794 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
) &&
2795 level
== PT_PAGE_TABLE_LEVEL
&&
2796 PageTransCompound(pfn_to_page(pfn
)) &&
2797 !has_wrprotected_page(vcpu
, gfn
, PT_DIRECTORY_LEVEL
)) {
2800 * mmu_notifier_retry was successful and we hold the
2801 * mmu_lock here, so the pmd can't become splitting
2802 * from under us, and in turn
2803 * __split_huge_page_refcount() can't run from under
2804 * us and we can safely transfer the refcount from
2805 * PG_tail to PG_head as we switch the pfn to tail to
2808 *levelp
= level
= PT_DIRECTORY_LEVEL
;
2809 mask
= KVM_PAGES_PER_HPAGE(level
) - 1;
2810 VM_BUG_ON((gfn
& mask
) != (pfn
& mask
));
2814 kvm_release_pfn_clean(pfn
);
2822 static bool handle_abnormal_pfn(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
,
2823 pfn_t pfn
, unsigned access
, int *ret_val
)
2827 /* The pfn is invalid, report the error! */
2828 if (unlikely(is_error_pfn(pfn
))) {
2829 *ret_val
= kvm_handle_bad_page(vcpu
, gfn
, pfn
);
2833 if (unlikely(is_noslot_pfn(pfn
)))
2834 vcpu_cache_mmio_info(vcpu
, gva
, gfn
, access
);
2841 static bool page_fault_can_be_fast(u32 error_code
)
2844 * Do not fix the mmio spte with invalid generation number which
2845 * need to be updated by slow page fault path.
2847 if (unlikely(error_code
& PFERR_RSVD_MASK
))
2851 * #PF can be fast only if the shadow page table is present and it
2852 * is caused by write-protect, that means we just need change the
2853 * W bit of the spte which can be done out of mmu-lock.
2855 if (!(error_code
& PFERR_PRESENT_MASK
) ||
2856 !(error_code
& PFERR_WRITE_MASK
))
2863 fast_pf_fix_direct_spte(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
2864 u64
*sptep
, u64 spte
)
2868 WARN_ON(!sp
->role
.direct
);
2871 * The gfn of direct spte is stable since it is calculated
2874 gfn
= kvm_mmu_page_get_gfn(sp
, sptep
- sp
->spt
);
2877 * Theoretically we could also set dirty bit (and flush TLB) here in
2878 * order to eliminate unnecessary PML logging. See comments in
2879 * set_spte. But fast_page_fault is very unlikely to happen with PML
2880 * enabled, so we do not do this. This might result in the same GPA
2881 * to be logged in PML buffer again when the write really happens, and
2882 * eventually to be called by mark_page_dirty twice. But it's also no
2883 * harm. This also avoids the TLB flush needed after setting dirty bit
2884 * so non-PML cases won't be impacted.
2886 * Compare with set_spte where instead shadow_dirty_mask is set.
2888 if (cmpxchg64(sptep
, spte
, spte
| PT_WRITABLE_MASK
) == spte
)
2889 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
2896 * - true: let the vcpu to access on the same address again.
2897 * - false: let the real page fault path to fix it.
2899 static bool fast_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
, int level
,
2902 struct kvm_shadow_walk_iterator iterator
;
2903 struct kvm_mmu_page
*sp
;
2907 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2910 if (!page_fault_can_be_fast(error_code
))
2913 walk_shadow_page_lockless_begin(vcpu
);
2914 for_each_shadow_entry_lockless(vcpu
, gva
, iterator
, spte
)
2915 if (!is_shadow_present_pte(spte
) || iterator
.level
< level
)
2919 * If the mapping has been changed, let the vcpu fault on the
2920 * same address again.
2922 if (!is_rmap_spte(spte
)) {
2927 sp
= page_header(__pa(iterator
.sptep
));
2928 if (!is_last_spte(spte
, sp
->role
.level
))
2932 * Check if it is a spurious fault caused by TLB lazily flushed.
2934 * Need not check the access of upper level table entries since
2935 * they are always ACC_ALL.
2937 if (is_writable_pte(spte
)) {
2943 * Currently, to simplify the code, only the spte write-protected
2944 * by dirty-log can be fast fixed.
2946 if (!spte_is_locklessly_modifiable(spte
))
2950 * Do not fix write-permission on the large spte since we only dirty
2951 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2952 * that means other pages are missed if its slot is dirty-logged.
2954 * Instead, we let the slow page fault path create a normal spte to
2957 * See the comments in kvm_arch_commit_memory_region().
2959 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
2963 * Currently, fast page fault only works for direct mapping since
2964 * the gfn is not stable for indirect shadow page.
2965 * See Documentation/virtual/kvm/locking.txt to get more detail.
2967 ret
= fast_pf_fix_direct_spte(vcpu
, sp
, iterator
.sptep
, spte
);
2969 trace_fast_page_fault(vcpu
, gva
, error_code
, iterator
.sptep
,
2971 walk_shadow_page_lockless_end(vcpu
);
2976 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
2977 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
);
2978 static void make_mmu_pages_available(struct kvm_vcpu
*vcpu
);
2980 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, u32 error_code
,
2981 gfn_t gfn
, bool prefault
)
2985 bool force_pt_level
= false;
2987 unsigned long mmu_seq
;
2988 bool map_writable
, write
= error_code
& PFERR_WRITE_MASK
;
2990 level
= mapping_level(vcpu
, gfn
, &force_pt_level
);
2991 if (likely(!force_pt_level
)) {
2993 * This path builds a PAE pagetable - so we can map
2994 * 2mb pages at maximum. Therefore check if the level
2995 * is larger than that.
2997 if (level
> PT_DIRECTORY_LEVEL
)
2998 level
= PT_DIRECTORY_LEVEL
;
3000 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
3003 if (fast_page_fault(vcpu
, v
, level
, error_code
))
3006 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
3009 if (try_async_pf(vcpu
, prefault
, gfn
, v
, &pfn
, write
, &map_writable
))
3012 if (handle_abnormal_pfn(vcpu
, v
, gfn
, pfn
, ACC_ALL
, &r
))
3015 spin_lock(&vcpu
->kvm
->mmu_lock
);
3016 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
3018 make_mmu_pages_available(vcpu
);
3019 if (likely(!force_pt_level
))
3020 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
3021 r
= __direct_map(vcpu
, v
, write
, map_writable
, level
, gfn
, pfn
,
3023 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3029 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3030 kvm_release_pfn_clean(pfn
);
3035 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
3038 struct kvm_mmu_page
*sp
;
3039 LIST_HEAD(invalid_list
);
3041 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3044 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
&&
3045 (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
||
3046 vcpu
->arch
.mmu
.direct_map
)) {
3047 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3049 spin_lock(&vcpu
->kvm
->mmu_lock
);
3050 sp
= page_header(root
);
3052 if (!sp
->root_count
&& sp
->role
.invalid
) {
3053 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, &invalid_list
);
3054 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
3056 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3057 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
3061 spin_lock(&vcpu
->kvm
->mmu_lock
);
3062 for (i
= 0; i
< 4; ++i
) {
3063 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3066 root
&= PT64_BASE_ADDR_MASK
;
3067 sp
= page_header(root
);
3069 if (!sp
->root_count
&& sp
->role
.invalid
)
3070 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
3073 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
3075 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
3076 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3077 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
3080 static int mmu_check_root(struct kvm_vcpu
*vcpu
, gfn_t root_gfn
)
3084 if (!kvm_is_visible_gfn(vcpu
->kvm
, root_gfn
)) {
3085 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3092 static int mmu_alloc_direct_roots(struct kvm_vcpu
*vcpu
)
3094 struct kvm_mmu_page
*sp
;
3097 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3098 spin_lock(&vcpu
->kvm
->mmu_lock
);
3099 make_mmu_pages_available(vcpu
);
3100 sp
= kvm_mmu_get_page(vcpu
, 0, 0, PT64_ROOT_LEVEL
,
3103 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3104 vcpu
->arch
.mmu
.root_hpa
= __pa(sp
->spt
);
3105 } else if (vcpu
->arch
.mmu
.shadow_root_level
== PT32E_ROOT_LEVEL
) {
3106 for (i
= 0; i
< 4; ++i
) {
3107 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3109 MMU_WARN_ON(VALID_PAGE(root
));
3110 spin_lock(&vcpu
->kvm
->mmu_lock
);
3111 make_mmu_pages_available(vcpu
);
3112 sp
= kvm_mmu_get_page(vcpu
, i
<< (30 - PAGE_SHIFT
),
3114 PT32_ROOT_LEVEL
, 1, ACC_ALL
,
3116 root
= __pa(sp
->spt
);
3118 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3119 vcpu
->arch
.mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
3121 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
3128 static int mmu_alloc_shadow_roots(struct kvm_vcpu
*vcpu
)
3130 struct kvm_mmu_page
*sp
;
3135 root_gfn
= vcpu
->arch
.mmu
.get_cr3(vcpu
) >> PAGE_SHIFT
;
3137 if (mmu_check_root(vcpu
, root_gfn
))
3141 * Do we shadow a long mode page table? If so we need to
3142 * write-protect the guests page table root.
3144 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
3145 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3147 MMU_WARN_ON(VALID_PAGE(root
));
3149 spin_lock(&vcpu
->kvm
->mmu_lock
);
3150 make_mmu_pages_available(vcpu
);
3151 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, 0, PT64_ROOT_LEVEL
,
3153 root
= __pa(sp
->spt
);
3155 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3156 vcpu
->arch
.mmu
.root_hpa
= root
;
3161 * We shadow a 32 bit page table. This may be a legacy 2-level
3162 * or a PAE 3-level page table. In either case we need to be aware that
3163 * the shadow page table may be a PAE or a long mode page table.
3165 pm_mask
= PT_PRESENT_MASK
;
3166 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
)
3167 pm_mask
|= PT_ACCESSED_MASK
| PT_WRITABLE_MASK
| PT_USER_MASK
;
3169 for (i
= 0; i
< 4; ++i
) {
3170 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3172 MMU_WARN_ON(VALID_PAGE(root
));
3173 if (vcpu
->arch
.mmu
.root_level
== PT32E_ROOT_LEVEL
) {
3174 pdptr
= vcpu
->arch
.mmu
.get_pdptr(vcpu
, i
);
3175 if (!is_present_gpte(pdptr
)) {
3176 vcpu
->arch
.mmu
.pae_root
[i
] = 0;
3179 root_gfn
= pdptr
>> PAGE_SHIFT
;
3180 if (mmu_check_root(vcpu
, root_gfn
))
3183 spin_lock(&vcpu
->kvm
->mmu_lock
);
3184 make_mmu_pages_available(vcpu
);
3185 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
3188 root
= __pa(sp
->spt
);
3190 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3192 vcpu
->arch
.mmu
.pae_root
[i
] = root
| pm_mask
;
3194 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
3197 * If we shadow a 32 bit page table with a long mode page
3198 * table we enter this path.
3200 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3201 if (vcpu
->arch
.mmu
.lm_root
== NULL
) {
3203 * The additional page necessary for this is only
3204 * allocated on demand.
3209 lm_root
= (void*)get_zeroed_page(GFP_KERNEL
);
3210 if (lm_root
== NULL
)
3213 lm_root
[0] = __pa(vcpu
->arch
.mmu
.pae_root
) | pm_mask
;
3215 vcpu
->arch
.mmu
.lm_root
= lm_root
;
3218 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.lm_root
);
3224 static int mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
3226 if (vcpu
->arch
.mmu
.direct_map
)
3227 return mmu_alloc_direct_roots(vcpu
);
3229 return mmu_alloc_shadow_roots(vcpu
);
3232 static void mmu_sync_roots(struct kvm_vcpu
*vcpu
)
3235 struct kvm_mmu_page
*sp
;
3237 if (vcpu
->arch
.mmu
.direct_map
)
3240 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3243 vcpu_clear_mmio_info(vcpu
, MMIO_GVA_ANY
);
3244 kvm_mmu_audit(vcpu
, AUDIT_PRE_SYNC
);
3245 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
3246 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3247 sp
= page_header(root
);
3248 mmu_sync_children(vcpu
, sp
);
3249 kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
3252 for (i
= 0; i
< 4; ++i
) {
3253 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3255 if (root
&& VALID_PAGE(root
)) {
3256 root
&= PT64_BASE_ADDR_MASK
;
3257 sp
= page_header(root
);
3258 mmu_sync_children(vcpu
, sp
);
3261 kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
3264 void kvm_mmu_sync_roots(struct kvm_vcpu
*vcpu
)
3266 spin_lock(&vcpu
->kvm
->mmu_lock
);
3267 mmu_sync_roots(vcpu
);
3268 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3270 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots
);
3272 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
3273 u32 access
, struct x86_exception
*exception
)
3276 exception
->error_code
= 0;
3280 static gpa_t
nonpaging_gva_to_gpa_nested(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
3282 struct x86_exception
*exception
)
3285 exception
->error_code
= 0;
3286 return vcpu
->arch
.nested_mmu
.translate_gpa(vcpu
, vaddr
, access
, exception
);
3290 __is_rsvd_bits_set(struct rsvd_bits_validate
*rsvd_check
, u64 pte
, int level
)
3292 int bit7
= (pte
>> 7) & 1, low6
= pte
& 0x3f;
3294 return (pte
& rsvd_check
->rsvd_bits_mask
[bit7
][level
-1]) |
3295 ((rsvd_check
->bad_mt_xwr
& (1ull << low6
)) != 0);
3298 static bool is_rsvd_bits_set(struct kvm_mmu
*mmu
, u64 gpte
, int level
)
3300 return __is_rsvd_bits_set(&mmu
->guest_rsvd_check
, gpte
, level
);
3303 static bool is_shadow_zero_bits_set(struct kvm_mmu
*mmu
, u64 spte
, int level
)
3305 return __is_rsvd_bits_set(&mmu
->shadow_zero_check
, spte
, level
);
3308 static bool quickly_check_mmio_pf(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
3311 return vcpu_match_mmio_gpa(vcpu
, addr
);
3313 return vcpu_match_mmio_gva(vcpu
, addr
);
3316 /* return true if reserved bit is detected on spte. */
3318 walk_shadow_page_get_mmio_spte(struct kvm_vcpu
*vcpu
, u64 addr
, u64
*sptep
)
3320 struct kvm_shadow_walk_iterator iterator
;
3321 u64 sptes
[PT64_ROOT_LEVEL
], spte
= 0ull;
3323 bool reserved
= false;
3325 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3328 walk_shadow_page_lockless_begin(vcpu
);
3330 for (shadow_walk_init(&iterator
, vcpu
, addr
),
3331 leaf
= root
= iterator
.level
;
3332 shadow_walk_okay(&iterator
);
3333 __shadow_walk_next(&iterator
, spte
)) {
3334 spte
= mmu_spte_get_lockless(iterator
.sptep
);
3336 sptes
[leaf
- 1] = spte
;
3339 if (!is_shadow_present_pte(spte
))
3342 reserved
|= is_shadow_zero_bits_set(&vcpu
->arch
.mmu
, spte
,
3346 walk_shadow_page_lockless_end(vcpu
);
3349 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3351 while (root
> leaf
) {
3352 pr_err("------ spte 0x%llx level %d.\n",
3353 sptes
[root
- 1], root
);
3362 int handle_mmio_page_fault(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
3367 if (quickly_check_mmio_pf(vcpu
, addr
, direct
))
3368 return RET_MMIO_PF_EMULATE
;
3370 reserved
= walk_shadow_page_get_mmio_spte(vcpu
, addr
, &spte
);
3371 if (WARN_ON(reserved
))
3372 return RET_MMIO_PF_BUG
;
3374 if (is_mmio_spte(spte
)) {
3375 gfn_t gfn
= get_mmio_spte_gfn(spte
);
3376 unsigned access
= get_mmio_spte_access(spte
);
3378 if (!check_mmio_spte(vcpu
, spte
))
3379 return RET_MMIO_PF_INVALID
;
3384 trace_handle_mmio_page_fault(addr
, gfn
, access
);
3385 vcpu_cache_mmio_info(vcpu
, addr
, gfn
, access
);
3386 return RET_MMIO_PF_EMULATE
;
3390 * If the page table is zapped by other cpus, let CPU fault again on
3393 return RET_MMIO_PF_RETRY
;
3395 EXPORT_SYMBOL_GPL(handle_mmio_page_fault
);
3397 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
3398 u32 error_code
, bool prefault
)
3403 pgprintk("%s: gva %lx error %x\n", __func__
, gva
, error_code
);
3405 if (unlikely(error_code
& PFERR_RSVD_MASK
)) {
3406 r
= handle_mmio_page_fault(vcpu
, gva
, true);
3408 if (likely(r
!= RET_MMIO_PF_INVALID
))
3412 r
= mmu_topup_memory_caches(vcpu
);
3416 MMU_WARN_ON(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3418 gfn
= gva
>> PAGE_SHIFT
;
3420 return nonpaging_map(vcpu
, gva
& PAGE_MASK
,
3421 error_code
, gfn
, prefault
);
3424 static int kvm_arch_setup_async_pf(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
)
3426 struct kvm_arch_async_pf arch
;
3428 arch
.token
= (vcpu
->arch
.apf
.id
++ << 12) | vcpu
->vcpu_id
;
3430 arch
.direct_map
= vcpu
->arch
.mmu
.direct_map
;
3431 arch
.cr3
= vcpu
->arch
.mmu
.get_cr3(vcpu
);
3433 return kvm_setup_async_pf(vcpu
, gva
, kvm_vcpu_gfn_to_hva(vcpu
, gfn
), &arch
);
3436 bool kvm_can_do_async_pf(struct kvm_vcpu
*vcpu
)
3438 if (unlikely(!lapic_in_kernel(vcpu
) ||
3439 kvm_event_needs_reinjection(vcpu
)))
3442 if (is_guest_mode(vcpu
))
3445 return kvm_x86_ops
->interrupt_allowed(vcpu
);
3448 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
3449 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
)
3451 struct kvm_memory_slot
*slot
;
3454 slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
3456 *pfn
= __gfn_to_pfn_memslot(slot
, gfn
, false, &async
, write
, writable
);
3458 return false; /* *pfn has correct page already */
3460 if (!prefault
&& kvm_can_do_async_pf(vcpu
)) {
3461 trace_kvm_try_async_get_page(gva
, gfn
);
3462 if (kvm_find_async_pf_gfn(vcpu
, gfn
)) {
3463 trace_kvm_async_pf_doublefault(gva
, gfn
);
3464 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
3466 } else if (kvm_arch_setup_async_pf(vcpu
, gva
, gfn
))
3470 *pfn
= __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, write
, writable
);
3475 check_hugepage_cache_consistency(struct kvm_vcpu
*vcpu
, gfn_t gfn
, int level
)
3477 int page_num
= KVM_PAGES_PER_HPAGE(level
);
3479 gfn
&= ~(page_num
- 1);
3481 return kvm_mtrr_check_gfn_range_consistency(vcpu
, gfn
, page_num
);
3484 static int tdp_page_fault(struct kvm_vcpu
*vcpu
, gva_t gpa
, u32 error_code
,
3490 bool force_pt_level
;
3491 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
3492 unsigned long mmu_seq
;
3493 int write
= error_code
& PFERR_WRITE_MASK
;
3496 MMU_WARN_ON(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3498 if (unlikely(error_code
& PFERR_RSVD_MASK
)) {
3499 r
= handle_mmio_page_fault(vcpu
, gpa
, true);
3501 if (likely(r
!= RET_MMIO_PF_INVALID
))
3505 r
= mmu_topup_memory_caches(vcpu
);
3509 force_pt_level
= !check_hugepage_cache_consistency(vcpu
, gfn
,
3510 PT_DIRECTORY_LEVEL
);
3511 level
= mapping_level(vcpu
, gfn
, &force_pt_level
);
3512 if (likely(!force_pt_level
)) {
3513 if (level
> PT_DIRECTORY_LEVEL
&&
3514 !check_hugepage_cache_consistency(vcpu
, gfn
, level
))
3515 level
= PT_DIRECTORY_LEVEL
;
3516 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
3519 if (fast_page_fault(vcpu
, gpa
, level
, error_code
))
3522 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
3525 if (try_async_pf(vcpu
, prefault
, gfn
, gpa
, &pfn
, write
, &map_writable
))
3528 if (handle_abnormal_pfn(vcpu
, 0, gfn
, pfn
, ACC_ALL
, &r
))
3531 spin_lock(&vcpu
->kvm
->mmu_lock
);
3532 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
3534 make_mmu_pages_available(vcpu
);
3535 if (likely(!force_pt_level
))
3536 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
3537 r
= __direct_map(vcpu
, gpa
, write
, map_writable
,
3538 level
, gfn
, pfn
, prefault
);
3539 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3544 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3545 kvm_release_pfn_clean(pfn
);
3549 static void nonpaging_init_context(struct kvm_vcpu
*vcpu
,
3550 struct kvm_mmu
*context
)
3552 context
->page_fault
= nonpaging_page_fault
;
3553 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
3554 context
->sync_page
= nonpaging_sync_page
;
3555 context
->invlpg
= nonpaging_invlpg
;
3556 context
->update_pte
= nonpaging_update_pte
;
3557 context
->root_level
= 0;
3558 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
3559 context
->root_hpa
= INVALID_PAGE
;
3560 context
->direct_map
= true;
3561 context
->nx
= false;
3564 void kvm_mmu_new_cr3(struct kvm_vcpu
*vcpu
)
3566 mmu_free_roots(vcpu
);
3569 static unsigned long get_cr3(struct kvm_vcpu
*vcpu
)
3571 return kvm_read_cr3(vcpu
);
3574 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
3575 struct x86_exception
*fault
)
3577 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
3580 static bool sync_mmio_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
, gfn_t gfn
,
3581 unsigned access
, int *nr_present
)
3583 if (unlikely(is_mmio_spte(*sptep
))) {
3584 if (gfn
!= get_mmio_spte_gfn(*sptep
)) {
3585 mmu_spte_clear_no_track(sptep
);
3590 mark_mmio_spte(vcpu
, sptep
, gfn
, access
);
3597 static inline bool is_last_gpte(struct kvm_mmu
*mmu
, unsigned level
, unsigned gpte
)
3602 index
|= (gpte
& PT_PAGE_SIZE_MASK
) >> (PT_PAGE_SIZE_SHIFT
- 2);
3603 return mmu
->last_pte_bitmap
& (1 << index
);
3606 #define PTTYPE_EPT 18 /* arbitrary */
3607 #define PTTYPE PTTYPE_EPT
3608 #include "paging_tmpl.h"
3612 #include "paging_tmpl.h"
3616 #include "paging_tmpl.h"
3620 __reset_rsvds_bits_mask(struct kvm_vcpu
*vcpu
,
3621 struct rsvd_bits_validate
*rsvd_check
,
3622 int maxphyaddr
, int level
, bool nx
, bool gbpages
,
3625 u64 exb_bit_rsvd
= 0;
3626 u64 gbpages_bit_rsvd
= 0;
3627 u64 nonleaf_bit8_rsvd
= 0;
3629 rsvd_check
->bad_mt_xwr
= 0;
3632 exb_bit_rsvd
= rsvd_bits(63, 63);
3634 gbpages_bit_rsvd
= rsvd_bits(7, 7);
3637 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3638 * leaf entries) on AMD CPUs only.
3641 nonleaf_bit8_rsvd
= rsvd_bits(8, 8);
3644 case PT32_ROOT_LEVEL
:
3645 /* no rsvd bits for 2 level 4K page table entries */
3646 rsvd_check
->rsvd_bits_mask
[0][1] = 0;
3647 rsvd_check
->rsvd_bits_mask
[0][0] = 0;
3648 rsvd_check
->rsvd_bits_mask
[1][0] =
3649 rsvd_check
->rsvd_bits_mask
[0][0];
3652 rsvd_check
->rsvd_bits_mask
[1][1] = 0;
3656 if (is_cpuid_PSE36())
3657 /* 36bits PSE 4MB page */
3658 rsvd_check
->rsvd_bits_mask
[1][1] = rsvd_bits(17, 21);
3660 /* 32 bits PSE 4MB page */
3661 rsvd_check
->rsvd_bits_mask
[1][1] = rsvd_bits(13, 21);
3663 case PT32E_ROOT_LEVEL
:
3664 rsvd_check
->rsvd_bits_mask
[0][2] =
3665 rsvd_bits(maxphyaddr
, 63) |
3666 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3667 rsvd_check
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3668 rsvd_bits(maxphyaddr
, 62); /* PDE */
3669 rsvd_check
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3670 rsvd_bits(maxphyaddr
, 62); /* PTE */
3671 rsvd_check
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3672 rsvd_bits(maxphyaddr
, 62) |
3673 rsvd_bits(13, 20); /* large page */
3674 rsvd_check
->rsvd_bits_mask
[1][0] =
3675 rsvd_check
->rsvd_bits_mask
[0][0];
3677 case PT64_ROOT_LEVEL
:
3678 rsvd_check
->rsvd_bits_mask
[0][3] = exb_bit_rsvd
|
3679 nonleaf_bit8_rsvd
| rsvd_bits(7, 7) |
3680 rsvd_bits(maxphyaddr
, 51);
3681 rsvd_check
->rsvd_bits_mask
[0][2] = exb_bit_rsvd
|
3682 nonleaf_bit8_rsvd
| gbpages_bit_rsvd
|
3683 rsvd_bits(maxphyaddr
, 51);
3684 rsvd_check
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3685 rsvd_bits(maxphyaddr
, 51);
3686 rsvd_check
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3687 rsvd_bits(maxphyaddr
, 51);
3688 rsvd_check
->rsvd_bits_mask
[1][3] =
3689 rsvd_check
->rsvd_bits_mask
[0][3];
3690 rsvd_check
->rsvd_bits_mask
[1][2] = exb_bit_rsvd
|
3691 gbpages_bit_rsvd
| rsvd_bits(maxphyaddr
, 51) |
3693 rsvd_check
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3694 rsvd_bits(maxphyaddr
, 51) |
3695 rsvd_bits(13, 20); /* large page */
3696 rsvd_check
->rsvd_bits_mask
[1][0] =
3697 rsvd_check
->rsvd_bits_mask
[0][0];
3702 static void reset_rsvds_bits_mask(struct kvm_vcpu
*vcpu
,
3703 struct kvm_mmu
*context
)
3705 __reset_rsvds_bits_mask(vcpu
, &context
->guest_rsvd_check
,
3706 cpuid_maxphyaddr(vcpu
), context
->root_level
,
3707 context
->nx
, guest_cpuid_has_gbpages(vcpu
),
3708 is_pse(vcpu
), guest_cpuid_is_amd(vcpu
));
3712 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate
*rsvd_check
,
3713 int maxphyaddr
, bool execonly
)
3717 rsvd_check
->rsvd_bits_mask
[0][3] =
3718 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 7);
3719 rsvd_check
->rsvd_bits_mask
[0][2] =
3720 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 6);
3721 rsvd_check
->rsvd_bits_mask
[0][1] =
3722 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 6);
3723 rsvd_check
->rsvd_bits_mask
[0][0] = rsvd_bits(maxphyaddr
, 51);
3726 rsvd_check
->rsvd_bits_mask
[1][3] = rsvd_check
->rsvd_bits_mask
[0][3];
3727 rsvd_check
->rsvd_bits_mask
[1][2] =
3728 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(12, 29);
3729 rsvd_check
->rsvd_bits_mask
[1][1] =
3730 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(12, 20);
3731 rsvd_check
->rsvd_bits_mask
[1][0] = rsvd_check
->rsvd_bits_mask
[0][0];
3733 bad_mt_xwr
= 0xFFull
<< (2 * 8); /* bits 3..5 must not be 2 */
3734 bad_mt_xwr
|= 0xFFull
<< (3 * 8); /* bits 3..5 must not be 3 */
3735 bad_mt_xwr
|= 0xFFull
<< (7 * 8); /* bits 3..5 must not be 7 */
3736 bad_mt_xwr
|= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3737 bad_mt_xwr
|= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3739 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3740 bad_mt_xwr
|= REPEAT_BYTE(1ull << 4);
3742 rsvd_check
->bad_mt_xwr
= bad_mt_xwr
;
3745 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu
*vcpu
,
3746 struct kvm_mmu
*context
, bool execonly
)
3748 __reset_rsvds_bits_mask_ept(&context
->guest_rsvd_check
,
3749 cpuid_maxphyaddr(vcpu
), execonly
);
3753 * the page table on host is the shadow page table for the page
3754 * table in guest or amd nested guest, its mmu features completely
3755 * follow the features in guest.
3758 reset_shadow_zero_bits_mask(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*context
)
3760 bool uses_nx
= context
->nx
|| context
->base_role
.smep_andnot_wp
;
3763 * Passing "true" to the last argument is okay; it adds a check
3764 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3766 __reset_rsvds_bits_mask(vcpu
, &context
->shadow_zero_check
,
3767 boot_cpu_data
.x86_phys_bits
,
3768 context
->shadow_root_level
, uses_nx
,
3769 guest_cpuid_has_gbpages(vcpu
), is_pse(vcpu
),
3772 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask
);
3774 static inline bool boot_cpu_is_amd(void)
3776 WARN_ON_ONCE(!tdp_enabled
);
3777 return shadow_x_mask
== 0;
3781 * the direct page table on host, use as much mmu features as
3782 * possible, however, kvm currently does not do execution-protection.
3785 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu
*vcpu
,
3786 struct kvm_mmu
*context
)
3788 if (boot_cpu_is_amd())
3789 __reset_rsvds_bits_mask(vcpu
, &context
->shadow_zero_check
,
3790 boot_cpu_data
.x86_phys_bits
,
3791 context
->shadow_root_level
, false,
3792 cpu_has_gbpages
, true, true);
3794 __reset_rsvds_bits_mask_ept(&context
->shadow_zero_check
,
3795 boot_cpu_data
.x86_phys_bits
,
3801 * as the comments in reset_shadow_zero_bits_mask() except it
3802 * is the shadow page table for intel nested guest.
3805 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu
*vcpu
,
3806 struct kvm_mmu
*context
, bool execonly
)
3808 __reset_rsvds_bits_mask_ept(&context
->shadow_zero_check
,
3809 boot_cpu_data
.x86_phys_bits
, execonly
);
3812 static void update_permission_bitmask(struct kvm_vcpu
*vcpu
,
3813 struct kvm_mmu
*mmu
, bool ept
)
3815 unsigned bit
, byte
, pfec
;
3817 bool fault
, x
, w
, u
, wf
, uf
, ff
, smapf
, cr4_smap
, cr4_smep
, smap
= 0;
3819 cr4_smep
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
);
3820 cr4_smap
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMAP
);
3821 for (byte
= 0; byte
< ARRAY_SIZE(mmu
->permissions
); ++byte
) {
3824 wf
= pfec
& PFERR_WRITE_MASK
;
3825 uf
= pfec
& PFERR_USER_MASK
;
3826 ff
= pfec
& PFERR_FETCH_MASK
;
3828 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3829 * subject to SMAP restrictions, and cleared otherwise. The
3830 * bit is only meaningful if the SMAP bit is set in CR4.
3832 smapf
= !(pfec
& PFERR_RSVD_MASK
);
3833 for (bit
= 0; bit
< 8; ++bit
) {
3834 x
= bit
& ACC_EXEC_MASK
;
3835 w
= bit
& ACC_WRITE_MASK
;
3836 u
= bit
& ACC_USER_MASK
;
3839 /* Not really needed: !nx will cause pte.nx to fault */
3841 /* Allow supervisor writes if !cr0.wp */
3842 w
|= !is_write_protection(vcpu
) && !uf
;
3843 /* Disallow supervisor fetches of user code if cr4.smep */
3844 x
&= !(cr4_smep
&& u
&& !uf
);
3847 * SMAP:kernel-mode data accesses from user-mode
3848 * mappings should fault. A fault is considered
3849 * as a SMAP violation if all of the following
3850 * conditions are ture:
3851 * - X86_CR4_SMAP is set in CR4
3852 * - An user page is accessed
3853 * - Page fault in kernel mode
3854 * - if CPL = 3 or X86_EFLAGS_AC is clear
3856 * Here, we cover the first three conditions.
3857 * The fourth is computed dynamically in
3858 * permission_fault() and is in smapf.
3860 * Also, SMAP does not affect instruction
3861 * fetches, add the !ff check here to make it
3864 smap
= cr4_smap
&& u
&& !uf
&& !ff
;
3866 /* Not really needed: no U/S accesses on ept */
3869 fault
= (ff
&& !x
) || (uf
&& !u
) || (wf
&& !w
) ||
3871 map
|= fault
<< bit
;
3873 mmu
->permissions
[byte
] = map
;
3877 static void update_last_pte_bitmap(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
)
3880 unsigned level
, root_level
= mmu
->root_level
;
3881 const unsigned ps_set_index
= 1 << 2; /* bit 2 of index: ps */
3883 if (root_level
== PT32E_ROOT_LEVEL
)
3885 /* PT_PAGE_TABLE_LEVEL always terminates */
3886 map
= 1 | (1 << ps_set_index
);
3887 for (level
= PT_DIRECTORY_LEVEL
; level
<= root_level
; ++level
) {
3888 if (level
<= PT_PDPE_LEVEL
3889 && (mmu
->root_level
>= PT32E_ROOT_LEVEL
|| is_pse(vcpu
)))
3890 map
|= 1 << (ps_set_index
| (level
- 1));
3892 mmu
->last_pte_bitmap
= map
;
3895 static void paging64_init_context_common(struct kvm_vcpu
*vcpu
,
3896 struct kvm_mmu
*context
,
3899 context
->nx
= is_nx(vcpu
);
3900 context
->root_level
= level
;
3902 reset_rsvds_bits_mask(vcpu
, context
);
3903 update_permission_bitmask(vcpu
, context
, false);
3904 update_last_pte_bitmap(vcpu
, context
);
3906 MMU_WARN_ON(!is_pae(vcpu
));
3907 context
->page_fault
= paging64_page_fault
;
3908 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3909 context
->sync_page
= paging64_sync_page
;
3910 context
->invlpg
= paging64_invlpg
;
3911 context
->update_pte
= paging64_update_pte
;
3912 context
->shadow_root_level
= level
;
3913 context
->root_hpa
= INVALID_PAGE
;
3914 context
->direct_map
= false;
3917 static void paging64_init_context(struct kvm_vcpu
*vcpu
,
3918 struct kvm_mmu
*context
)
3920 paging64_init_context_common(vcpu
, context
, PT64_ROOT_LEVEL
);
3923 static void paging32_init_context(struct kvm_vcpu
*vcpu
,
3924 struct kvm_mmu
*context
)
3926 context
->nx
= false;
3927 context
->root_level
= PT32_ROOT_LEVEL
;
3929 reset_rsvds_bits_mask(vcpu
, context
);
3930 update_permission_bitmask(vcpu
, context
, false);
3931 update_last_pte_bitmap(vcpu
, context
);
3933 context
->page_fault
= paging32_page_fault
;
3934 context
->gva_to_gpa
= paging32_gva_to_gpa
;
3935 context
->sync_page
= paging32_sync_page
;
3936 context
->invlpg
= paging32_invlpg
;
3937 context
->update_pte
= paging32_update_pte
;
3938 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
3939 context
->root_hpa
= INVALID_PAGE
;
3940 context
->direct_map
= false;
3943 static void paging32E_init_context(struct kvm_vcpu
*vcpu
,
3944 struct kvm_mmu
*context
)
3946 paging64_init_context_common(vcpu
, context
, PT32E_ROOT_LEVEL
);
3949 static void init_kvm_tdp_mmu(struct kvm_vcpu
*vcpu
)
3951 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
3953 context
->base_role
.word
= 0;
3954 context
->base_role
.smm
= is_smm(vcpu
);
3955 context
->page_fault
= tdp_page_fault
;
3956 context
->sync_page
= nonpaging_sync_page
;
3957 context
->invlpg
= nonpaging_invlpg
;
3958 context
->update_pte
= nonpaging_update_pte
;
3959 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
3960 context
->root_hpa
= INVALID_PAGE
;
3961 context
->direct_map
= true;
3962 context
->set_cr3
= kvm_x86_ops
->set_tdp_cr3
;
3963 context
->get_cr3
= get_cr3
;
3964 context
->get_pdptr
= kvm_pdptr_read
;
3965 context
->inject_page_fault
= kvm_inject_page_fault
;
3967 if (!is_paging(vcpu
)) {
3968 context
->nx
= false;
3969 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
3970 context
->root_level
= 0;
3971 } else if (is_long_mode(vcpu
)) {
3972 context
->nx
= is_nx(vcpu
);
3973 context
->root_level
= PT64_ROOT_LEVEL
;
3974 reset_rsvds_bits_mask(vcpu
, context
);
3975 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3976 } else if (is_pae(vcpu
)) {
3977 context
->nx
= is_nx(vcpu
);
3978 context
->root_level
= PT32E_ROOT_LEVEL
;
3979 reset_rsvds_bits_mask(vcpu
, context
);
3980 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3982 context
->nx
= false;
3983 context
->root_level
= PT32_ROOT_LEVEL
;
3984 reset_rsvds_bits_mask(vcpu
, context
);
3985 context
->gva_to_gpa
= paging32_gva_to_gpa
;
3988 update_permission_bitmask(vcpu
, context
, false);
3989 update_last_pte_bitmap(vcpu
, context
);
3990 reset_tdp_shadow_zero_bits_mask(vcpu
, context
);
3993 void kvm_init_shadow_mmu(struct kvm_vcpu
*vcpu
)
3995 bool smep
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
);
3996 bool smap
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMAP
);
3997 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
3999 MMU_WARN_ON(VALID_PAGE(context
->root_hpa
));
4001 if (!is_paging(vcpu
))
4002 nonpaging_init_context(vcpu
, context
);
4003 else if (is_long_mode(vcpu
))
4004 paging64_init_context(vcpu
, context
);
4005 else if (is_pae(vcpu
))
4006 paging32E_init_context(vcpu
, context
);
4008 paging32_init_context(vcpu
, context
);
4010 context
->base_role
.nxe
= is_nx(vcpu
);
4011 context
->base_role
.cr4_pae
= !!is_pae(vcpu
);
4012 context
->base_role
.cr0_wp
= is_write_protection(vcpu
);
4013 context
->base_role
.smep_andnot_wp
4014 = smep
&& !is_write_protection(vcpu
);
4015 context
->base_role
.smap_andnot_wp
4016 = smap
&& !is_write_protection(vcpu
);
4017 context
->base_role
.smm
= is_smm(vcpu
);
4018 reset_shadow_zero_bits_mask(vcpu
, context
);
4020 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu
);
4022 void kvm_init_shadow_ept_mmu(struct kvm_vcpu
*vcpu
, bool execonly
)
4024 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
4026 MMU_WARN_ON(VALID_PAGE(context
->root_hpa
));
4028 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
4031 context
->page_fault
= ept_page_fault
;
4032 context
->gva_to_gpa
= ept_gva_to_gpa
;
4033 context
->sync_page
= ept_sync_page
;
4034 context
->invlpg
= ept_invlpg
;
4035 context
->update_pte
= ept_update_pte
;
4036 context
->root_level
= context
->shadow_root_level
;
4037 context
->root_hpa
= INVALID_PAGE
;
4038 context
->direct_map
= false;
4040 update_permission_bitmask(vcpu
, context
, true);
4041 reset_rsvds_bits_mask_ept(vcpu
, context
, execonly
);
4042 reset_ept_shadow_zero_bits_mask(vcpu
, context
, execonly
);
4044 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu
);
4046 static void init_kvm_softmmu(struct kvm_vcpu
*vcpu
)
4048 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
4050 kvm_init_shadow_mmu(vcpu
);
4051 context
->set_cr3
= kvm_x86_ops
->set_cr3
;
4052 context
->get_cr3
= get_cr3
;
4053 context
->get_pdptr
= kvm_pdptr_read
;
4054 context
->inject_page_fault
= kvm_inject_page_fault
;
4057 static void init_kvm_nested_mmu(struct kvm_vcpu
*vcpu
)
4059 struct kvm_mmu
*g_context
= &vcpu
->arch
.nested_mmu
;
4061 g_context
->get_cr3
= get_cr3
;
4062 g_context
->get_pdptr
= kvm_pdptr_read
;
4063 g_context
->inject_page_fault
= kvm_inject_page_fault
;
4066 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4067 * translation of l2_gpa to l1_gpa addresses is done using the
4068 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4069 * functions between mmu and nested_mmu are swapped.
4071 if (!is_paging(vcpu
)) {
4072 g_context
->nx
= false;
4073 g_context
->root_level
= 0;
4074 g_context
->gva_to_gpa
= nonpaging_gva_to_gpa_nested
;
4075 } else if (is_long_mode(vcpu
)) {
4076 g_context
->nx
= is_nx(vcpu
);
4077 g_context
->root_level
= PT64_ROOT_LEVEL
;
4078 reset_rsvds_bits_mask(vcpu
, g_context
);
4079 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
4080 } else if (is_pae(vcpu
)) {
4081 g_context
->nx
= is_nx(vcpu
);
4082 g_context
->root_level
= PT32E_ROOT_LEVEL
;
4083 reset_rsvds_bits_mask(vcpu
, g_context
);
4084 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
4086 g_context
->nx
= false;
4087 g_context
->root_level
= PT32_ROOT_LEVEL
;
4088 reset_rsvds_bits_mask(vcpu
, g_context
);
4089 g_context
->gva_to_gpa
= paging32_gva_to_gpa_nested
;
4092 update_permission_bitmask(vcpu
, g_context
, false);
4093 update_last_pte_bitmap(vcpu
, g_context
);
4096 static void init_kvm_mmu(struct kvm_vcpu
*vcpu
)
4098 if (mmu_is_nested(vcpu
))
4099 init_kvm_nested_mmu(vcpu
);
4100 else if (tdp_enabled
)
4101 init_kvm_tdp_mmu(vcpu
);
4103 init_kvm_softmmu(vcpu
);
4106 void kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
4108 kvm_mmu_unload(vcpu
);
4111 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context
);
4113 int kvm_mmu_load(struct kvm_vcpu
*vcpu
)
4117 r
= mmu_topup_memory_caches(vcpu
);
4120 r
= mmu_alloc_roots(vcpu
);
4121 kvm_mmu_sync_roots(vcpu
);
4124 /* set_cr3() should ensure TLB has been flushed */
4125 vcpu
->arch
.mmu
.set_cr3(vcpu
, vcpu
->arch
.mmu
.root_hpa
);
4129 EXPORT_SYMBOL_GPL(kvm_mmu_load
);
4131 void kvm_mmu_unload(struct kvm_vcpu
*vcpu
)
4133 mmu_free_roots(vcpu
);
4134 WARN_ON(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
4136 EXPORT_SYMBOL_GPL(kvm_mmu_unload
);
4138 static void mmu_pte_write_new_pte(struct kvm_vcpu
*vcpu
,
4139 struct kvm_mmu_page
*sp
, u64
*spte
,
4142 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
) {
4143 ++vcpu
->kvm
->stat
.mmu_pde_zapped
;
4147 ++vcpu
->kvm
->stat
.mmu_pte_updated
;
4148 vcpu
->arch
.mmu
.update_pte(vcpu
, sp
, spte
, new);
4151 static bool need_remote_flush(u64 old
, u64
new)
4153 if (!is_shadow_present_pte(old
))
4155 if (!is_shadow_present_pte(new))
4157 if ((old
^ new) & PT64_BASE_ADDR_MASK
)
4159 old
^= shadow_nx_mask
;
4160 new ^= shadow_nx_mask
;
4161 return (old
& ~new & PT64_PERM_MASK
) != 0;
4164 static void mmu_pte_write_flush_tlb(struct kvm_vcpu
*vcpu
, bool zap_page
,
4165 bool remote_flush
, bool local_flush
)
4171 kvm_flush_remote_tlbs(vcpu
->kvm
);
4172 else if (local_flush
)
4173 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
4176 static u64
mmu_pte_write_fetch_gpte(struct kvm_vcpu
*vcpu
, gpa_t
*gpa
,
4177 const u8
*new, int *bytes
)
4183 * Assume that the pte write on a page table of the same type
4184 * as the current vcpu paging mode since we update the sptes only
4185 * when they have the same mode.
4187 if (is_pae(vcpu
) && *bytes
== 4) {
4188 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4191 r
= kvm_vcpu_read_guest(vcpu
, *gpa
, &gentry
, 8);
4194 new = (const u8
*)&gentry
;
4199 gentry
= *(const u32
*)new;
4202 gentry
= *(const u64
*)new;
4213 * If we're seeing too many writes to a page, it may no longer be a page table,
4214 * or we may be forking, in which case it is better to unmap the page.
4216 static bool detect_write_flooding(struct kvm_mmu_page
*sp
)
4219 * Skip write-flooding detected for the sp whose level is 1, because
4220 * it can become unsync, then the guest page is not write-protected.
4222 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
)
4225 return ++sp
->write_flooding_count
>= 3;
4229 * Misaligned accesses are too much trouble to fix up; also, they usually
4230 * indicate a page is not used as a page table.
4232 static bool detect_write_misaligned(struct kvm_mmu_page
*sp
, gpa_t gpa
,
4235 unsigned offset
, pte_size
, misaligned
;
4237 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4238 gpa
, bytes
, sp
->role
.word
);
4240 offset
= offset_in_page(gpa
);
4241 pte_size
= sp
->role
.cr4_pae
? 8 : 4;
4244 * Sometimes, the OS only writes the last one bytes to update status
4245 * bits, for example, in linux, andb instruction is used in clear_bit().
4247 if (!(offset
& (pte_size
- 1)) && bytes
== 1)
4250 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
4251 misaligned
|= bytes
< 4;
4256 static u64
*get_written_sptes(struct kvm_mmu_page
*sp
, gpa_t gpa
, int *nspte
)
4258 unsigned page_offset
, quadrant
;
4262 page_offset
= offset_in_page(gpa
);
4263 level
= sp
->role
.level
;
4265 if (!sp
->role
.cr4_pae
) {
4266 page_offset
<<= 1; /* 32->64 */
4268 * A 32-bit pde maps 4MB while the shadow pdes map
4269 * only 2MB. So we need to double the offset again
4270 * and zap two pdes instead of one.
4272 if (level
== PT32_ROOT_LEVEL
) {
4273 page_offset
&= ~7; /* kill rounding error */
4277 quadrant
= page_offset
>> PAGE_SHIFT
;
4278 page_offset
&= ~PAGE_MASK
;
4279 if (quadrant
!= sp
->role
.quadrant
)
4283 spte
= &sp
->spt
[page_offset
/ sizeof(*spte
)];
4287 void kvm_mmu_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4288 const u8
*new, int bytes
)
4290 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
4291 struct kvm_mmu_page
*sp
;
4292 LIST_HEAD(invalid_list
);
4293 u64 entry
, gentry
, *spte
;
4295 bool remote_flush
, local_flush
, zap_page
;
4296 union kvm_mmu_page_role mask
= { };
4301 mask
.smep_andnot_wp
= 1;
4302 mask
.smap_andnot_wp
= 1;
4306 * If we don't have indirect shadow pages, it means no page is
4307 * write-protected, so we can exit simply.
4309 if (!ACCESS_ONCE(vcpu
->kvm
->arch
.indirect_shadow_pages
))
4312 zap_page
= remote_flush
= local_flush
= false;
4314 pgprintk("%s: gpa %llx bytes %d\n", __func__
, gpa
, bytes
);
4316 gentry
= mmu_pte_write_fetch_gpte(vcpu
, &gpa
, new, &bytes
);
4319 * No need to care whether allocation memory is successful
4320 * or not since pte prefetch is skiped if it does not have
4321 * enough objects in the cache.
4323 mmu_topup_memory_caches(vcpu
);
4325 spin_lock(&vcpu
->kvm
->mmu_lock
);
4326 ++vcpu
->kvm
->stat
.mmu_pte_write
;
4327 kvm_mmu_audit(vcpu
, AUDIT_PRE_PTE_WRITE
);
4329 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, sp
, gfn
) {
4330 if (detect_write_misaligned(sp
, gpa
, bytes
) ||
4331 detect_write_flooding(sp
)) {
4332 zap_page
|= !!kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
4334 ++vcpu
->kvm
->stat
.mmu_flooded
;
4338 spte
= get_written_sptes(sp
, gpa
, &npte
);
4345 mmu_page_zap_pte(vcpu
->kvm
, sp
, spte
);
4347 !((sp
->role
.word
^ vcpu
->arch
.mmu
.base_role
.word
)
4348 & mask
.word
) && rmap_can_add(vcpu
))
4349 mmu_pte_write_new_pte(vcpu
, sp
, spte
, &gentry
);
4350 if (need_remote_flush(entry
, *spte
))
4351 remote_flush
= true;
4355 mmu_pte_write_flush_tlb(vcpu
, zap_page
, remote_flush
, local_flush
);
4356 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
4357 kvm_mmu_audit(vcpu
, AUDIT_POST_PTE_WRITE
);
4358 spin_unlock(&vcpu
->kvm
->mmu_lock
);
4361 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
4366 if (vcpu
->arch
.mmu
.direct_map
)
4369 gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, gva
, NULL
);
4371 r
= kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4375 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt
);
4377 static void make_mmu_pages_available(struct kvm_vcpu
*vcpu
)
4379 LIST_HEAD(invalid_list
);
4381 if (likely(kvm_mmu_available_pages(vcpu
->kvm
) >= KVM_MIN_FREE_MMU_PAGES
))
4384 while (kvm_mmu_available_pages(vcpu
->kvm
) < KVM_REFILL_PAGES
) {
4385 if (!prepare_zap_oldest_mmu_page(vcpu
->kvm
, &invalid_list
))
4388 ++vcpu
->kvm
->stat
.mmu_recycled
;
4390 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
4393 static bool is_mmio_page_fault(struct kvm_vcpu
*vcpu
, gva_t addr
)
4395 if (vcpu
->arch
.mmu
.direct_map
|| mmu_is_nested(vcpu
))
4396 return vcpu_match_mmio_gpa(vcpu
, addr
);
4398 return vcpu_match_mmio_gva(vcpu
, addr
);
4401 int kvm_mmu_page_fault(struct kvm_vcpu
*vcpu
, gva_t cr2
, u32 error_code
,
4402 void *insn
, int insn_len
)
4404 int r
, emulation_type
= EMULTYPE_RETRY
;
4405 enum emulation_result er
;
4407 r
= vcpu
->arch
.mmu
.page_fault(vcpu
, cr2
, error_code
, false);
4416 if (is_mmio_page_fault(vcpu
, cr2
))
4419 er
= x86_emulate_instruction(vcpu
, cr2
, emulation_type
, insn
, insn_len
);
4424 case EMULATE_USER_EXIT
:
4425 ++vcpu
->stat
.mmio_exits
;
4435 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault
);
4437 void kvm_mmu_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
4439 vcpu
->arch
.mmu
.invlpg(vcpu
, gva
);
4440 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
4441 ++vcpu
->stat
.invlpg
;
4443 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg
);
4445 void kvm_enable_tdp(void)
4449 EXPORT_SYMBOL_GPL(kvm_enable_tdp
);
4451 void kvm_disable_tdp(void)
4453 tdp_enabled
= false;
4455 EXPORT_SYMBOL_GPL(kvm_disable_tdp
);
4457 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
4459 free_page((unsigned long)vcpu
->arch
.mmu
.pae_root
);
4460 if (vcpu
->arch
.mmu
.lm_root
!= NULL
)
4461 free_page((unsigned long)vcpu
->arch
.mmu
.lm_root
);
4464 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
4470 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4471 * Therefore we need to allocate shadow page tables in the first
4472 * 4GB of memory, which happens to fit the DMA32 zone.
4474 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
4478 vcpu
->arch
.mmu
.pae_root
= page_address(page
);
4479 for (i
= 0; i
< 4; ++i
)
4480 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
4485 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
4487 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
4488 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4489 vcpu
->arch
.mmu
.translate_gpa
= translate_gpa
;
4490 vcpu
->arch
.nested_mmu
.translate_gpa
= translate_nested_gpa
;
4492 return alloc_mmu_pages(vcpu
);
4495 void kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
4497 MMU_WARN_ON(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
4502 /* The return value indicates if tlb flush on all vcpus is needed. */
4503 typedef bool (*slot_level_handler
) (struct kvm
*kvm
, unsigned long *rmap
);
4505 /* The caller should hold mmu-lock before calling this function. */
4507 slot_handle_level_range(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
4508 slot_level_handler fn
, int start_level
, int end_level
,
4509 gfn_t start_gfn
, gfn_t end_gfn
, bool lock_flush_tlb
)
4511 struct slot_rmap_walk_iterator iterator
;
4514 for_each_slot_rmap_range(memslot
, start_level
, end_level
, start_gfn
,
4515 end_gfn
, &iterator
) {
4517 flush
|= fn(kvm
, iterator
.rmap
);
4519 if (need_resched() || spin_needbreak(&kvm
->mmu_lock
)) {
4520 if (flush
&& lock_flush_tlb
) {
4521 kvm_flush_remote_tlbs(kvm
);
4524 cond_resched_lock(&kvm
->mmu_lock
);
4528 if (flush
&& lock_flush_tlb
) {
4529 kvm_flush_remote_tlbs(kvm
);
4537 slot_handle_level(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
4538 slot_level_handler fn
, int start_level
, int end_level
,
4539 bool lock_flush_tlb
)
4541 return slot_handle_level_range(kvm
, memslot
, fn
, start_level
,
4542 end_level
, memslot
->base_gfn
,
4543 memslot
->base_gfn
+ memslot
->npages
- 1,
4548 slot_handle_all_level(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
4549 slot_level_handler fn
, bool lock_flush_tlb
)
4551 return slot_handle_level(kvm
, memslot
, fn
, PT_PAGE_TABLE_LEVEL
,
4552 PT_MAX_HUGEPAGE_LEVEL
, lock_flush_tlb
);
4556 slot_handle_large_level(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
4557 slot_level_handler fn
, bool lock_flush_tlb
)
4559 return slot_handle_level(kvm
, memslot
, fn
, PT_PAGE_TABLE_LEVEL
+ 1,
4560 PT_MAX_HUGEPAGE_LEVEL
, lock_flush_tlb
);
4564 slot_handle_leaf(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
4565 slot_level_handler fn
, bool lock_flush_tlb
)
4567 return slot_handle_level(kvm
, memslot
, fn
, PT_PAGE_TABLE_LEVEL
,
4568 PT_PAGE_TABLE_LEVEL
, lock_flush_tlb
);
4571 void kvm_zap_gfn_range(struct kvm
*kvm
, gfn_t gfn_start
, gfn_t gfn_end
)
4573 struct kvm_memslots
*slots
;
4574 struct kvm_memory_slot
*memslot
;
4577 spin_lock(&kvm
->mmu_lock
);
4578 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
4579 slots
= __kvm_memslots(kvm
, i
);
4580 kvm_for_each_memslot(memslot
, slots
) {
4583 start
= max(gfn_start
, memslot
->base_gfn
);
4584 end
= min(gfn_end
, memslot
->base_gfn
+ memslot
->npages
);
4588 slot_handle_level_range(kvm
, memslot
, kvm_zap_rmapp
,
4589 PT_PAGE_TABLE_LEVEL
, PT_MAX_HUGEPAGE_LEVEL
,
4590 start
, end
- 1, true);
4594 spin_unlock(&kvm
->mmu_lock
);
4597 static bool slot_rmap_write_protect(struct kvm
*kvm
, unsigned long *rmapp
)
4599 return __rmap_write_protect(kvm
, rmapp
, false);
4602 void kvm_mmu_slot_remove_write_access(struct kvm
*kvm
,
4603 struct kvm_memory_slot
*memslot
)
4607 spin_lock(&kvm
->mmu_lock
);
4608 flush
= slot_handle_all_level(kvm
, memslot
, slot_rmap_write_protect
,
4610 spin_unlock(&kvm
->mmu_lock
);
4613 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4614 * which do tlb flush out of mmu-lock should be serialized by
4615 * kvm->slots_lock otherwise tlb flush would be missed.
4617 lockdep_assert_held(&kvm
->slots_lock
);
4620 * We can flush all the TLBs out of the mmu lock without TLB
4621 * corruption since we just change the spte from writable to
4622 * readonly so that we only need to care the case of changing
4623 * spte from present to present (changing the spte from present
4624 * to nonpresent will flush all the TLBs immediately), in other
4625 * words, the only case we care is mmu_spte_update() where we
4626 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4627 * instead of PT_WRITABLE_MASK, that means it does not depend
4628 * on PT_WRITABLE_MASK anymore.
4631 kvm_flush_remote_tlbs(kvm
);
4634 static bool kvm_mmu_zap_collapsible_spte(struct kvm
*kvm
,
4635 unsigned long *rmapp
)
4638 struct rmap_iterator iter
;
4639 int need_tlb_flush
= 0;
4641 struct kvm_mmu_page
*sp
;
4644 for_each_rmap_spte(rmapp
, &iter
, sptep
) {
4645 sp
= page_header(__pa(sptep
));
4646 pfn
= spte_to_pfn(*sptep
);
4649 * We cannot do huge page mapping for indirect shadow pages,
4650 * which are found on the last rmap (level = 1) when not using
4651 * tdp; such shadow pages are synced with the page table in
4652 * the guest, and the guest page table is using 4K page size
4653 * mapping if the indirect sp has level = 1.
4655 if (sp
->role
.direct
&&
4656 !kvm_is_reserved_pfn(pfn
) &&
4657 PageTransCompound(pfn_to_page(pfn
))) {
4658 drop_spte(kvm
, sptep
);
4664 return need_tlb_flush
;
4667 void kvm_mmu_zap_collapsible_sptes(struct kvm
*kvm
,
4668 const struct kvm_memory_slot
*memslot
)
4670 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
4671 spin_lock(&kvm
->mmu_lock
);
4672 slot_handle_leaf(kvm
, (struct kvm_memory_slot
*)memslot
,
4673 kvm_mmu_zap_collapsible_spte
, true);
4674 spin_unlock(&kvm
->mmu_lock
);
4677 void kvm_mmu_slot_leaf_clear_dirty(struct kvm
*kvm
,
4678 struct kvm_memory_slot
*memslot
)
4682 spin_lock(&kvm
->mmu_lock
);
4683 flush
= slot_handle_leaf(kvm
, memslot
, __rmap_clear_dirty
, false);
4684 spin_unlock(&kvm
->mmu_lock
);
4686 lockdep_assert_held(&kvm
->slots_lock
);
4689 * It's also safe to flush TLBs out of mmu lock here as currently this
4690 * function is only used for dirty logging, in which case flushing TLB
4691 * out of mmu lock also guarantees no dirty pages will be lost in
4695 kvm_flush_remote_tlbs(kvm
);
4697 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty
);
4699 void kvm_mmu_slot_largepage_remove_write_access(struct kvm
*kvm
,
4700 struct kvm_memory_slot
*memslot
)
4704 spin_lock(&kvm
->mmu_lock
);
4705 flush
= slot_handle_large_level(kvm
, memslot
, slot_rmap_write_protect
,
4707 spin_unlock(&kvm
->mmu_lock
);
4709 /* see kvm_mmu_slot_remove_write_access */
4710 lockdep_assert_held(&kvm
->slots_lock
);
4713 kvm_flush_remote_tlbs(kvm
);
4715 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access
);
4717 void kvm_mmu_slot_set_dirty(struct kvm
*kvm
,
4718 struct kvm_memory_slot
*memslot
)
4722 spin_lock(&kvm
->mmu_lock
);
4723 flush
= slot_handle_all_level(kvm
, memslot
, __rmap_set_dirty
, false);
4724 spin_unlock(&kvm
->mmu_lock
);
4726 lockdep_assert_held(&kvm
->slots_lock
);
4728 /* see kvm_mmu_slot_leaf_clear_dirty */
4730 kvm_flush_remote_tlbs(kvm
);
4732 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty
);
4734 #define BATCH_ZAP_PAGES 10
4735 static void kvm_zap_obsolete_pages(struct kvm
*kvm
)
4737 struct kvm_mmu_page
*sp
, *node
;
4741 list_for_each_entry_safe_reverse(sp
, node
,
4742 &kvm
->arch
.active_mmu_pages
, link
) {
4746 * No obsolete page exists before new created page since
4747 * active_mmu_pages is the FIFO list.
4749 if (!is_obsolete_sp(kvm
, sp
))
4753 * Since we are reversely walking the list and the invalid
4754 * list will be moved to the head, skip the invalid page
4755 * can help us to avoid the infinity list walking.
4757 if (sp
->role
.invalid
)
4761 * Need not flush tlb since we only zap the sp with invalid
4762 * generation number.
4764 if (batch
>= BATCH_ZAP_PAGES
&&
4765 cond_resched_lock(&kvm
->mmu_lock
)) {
4770 ret
= kvm_mmu_prepare_zap_page(kvm
, sp
,
4771 &kvm
->arch
.zapped_obsolete_pages
);
4779 * Should flush tlb before free page tables since lockless-walking
4780 * may use the pages.
4782 kvm_mmu_commit_zap_page(kvm
, &kvm
->arch
.zapped_obsolete_pages
);
4786 * Fast invalidate all shadow pages and use lock-break technique
4787 * to zap obsolete pages.
4789 * It's required when memslot is being deleted or VM is being
4790 * destroyed, in these cases, we should ensure that KVM MMU does
4791 * not use any resource of the being-deleted slot or all slots
4792 * after calling the function.
4794 void kvm_mmu_invalidate_zap_all_pages(struct kvm
*kvm
)
4796 spin_lock(&kvm
->mmu_lock
);
4797 trace_kvm_mmu_invalidate_zap_all_pages(kvm
);
4798 kvm
->arch
.mmu_valid_gen
++;
4801 * Notify all vcpus to reload its shadow page table
4802 * and flush TLB. Then all vcpus will switch to new
4803 * shadow page table with the new mmu_valid_gen.
4805 * Note: we should do this under the protection of
4806 * mmu-lock, otherwise, vcpu would purge shadow page
4807 * but miss tlb flush.
4809 kvm_reload_remote_mmus(kvm
);
4811 kvm_zap_obsolete_pages(kvm
);
4812 spin_unlock(&kvm
->mmu_lock
);
4815 static bool kvm_has_zapped_obsolete_pages(struct kvm
*kvm
)
4817 return unlikely(!list_empty_careful(&kvm
->arch
.zapped_obsolete_pages
));
4820 void kvm_mmu_invalidate_mmio_sptes(struct kvm
*kvm
, struct kvm_memslots
*slots
)
4823 * The very rare case: if the generation-number is round,
4824 * zap all shadow pages.
4826 if (unlikely((slots
->generation
& MMIO_GEN_MASK
) == 0)) {
4827 printk_ratelimited(KERN_DEBUG
"kvm: zapping shadow pages for mmio generation wraparound\n");
4828 kvm_mmu_invalidate_zap_all_pages(kvm
);
4832 static unsigned long
4833 mmu_shrink_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
4836 int nr_to_scan
= sc
->nr_to_scan
;
4837 unsigned long freed
= 0;
4839 spin_lock(&kvm_lock
);
4841 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4843 LIST_HEAD(invalid_list
);
4846 * Never scan more than sc->nr_to_scan VM instances.
4847 * Will not hit this condition practically since we do not try
4848 * to shrink more than one VM and it is very unlikely to see
4849 * !n_used_mmu_pages so many times.
4854 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4855 * here. We may skip a VM instance errorneosly, but we do not
4856 * want to shrink a VM that only started to populate its MMU
4859 if (!kvm
->arch
.n_used_mmu_pages
&&
4860 !kvm_has_zapped_obsolete_pages(kvm
))
4863 idx
= srcu_read_lock(&kvm
->srcu
);
4864 spin_lock(&kvm
->mmu_lock
);
4866 if (kvm_has_zapped_obsolete_pages(kvm
)) {
4867 kvm_mmu_commit_zap_page(kvm
,
4868 &kvm
->arch
.zapped_obsolete_pages
);
4872 if (prepare_zap_oldest_mmu_page(kvm
, &invalid_list
))
4874 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
4877 spin_unlock(&kvm
->mmu_lock
);
4878 srcu_read_unlock(&kvm
->srcu
, idx
);
4881 * unfair on small ones
4882 * per-vm shrinkers cry out
4883 * sadness comes quickly
4885 list_move_tail(&kvm
->vm_list
, &vm_list
);
4889 spin_unlock(&kvm_lock
);
4893 static unsigned long
4894 mmu_shrink_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
4896 return percpu_counter_read_positive(&kvm_total_used_mmu_pages
);
4899 static struct shrinker mmu_shrinker
= {
4900 .count_objects
= mmu_shrink_count
,
4901 .scan_objects
= mmu_shrink_scan
,
4902 .seeks
= DEFAULT_SEEKS
* 10,
4905 static void mmu_destroy_caches(void)
4907 if (pte_list_desc_cache
)
4908 kmem_cache_destroy(pte_list_desc_cache
);
4909 if (mmu_page_header_cache
)
4910 kmem_cache_destroy(mmu_page_header_cache
);
4913 int kvm_mmu_module_init(void)
4915 pte_list_desc_cache
= kmem_cache_create("pte_list_desc",
4916 sizeof(struct pte_list_desc
),
4918 if (!pte_list_desc_cache
)
4921 mmu_page_header_cache
= kmem_cache_create("kvm_mmu_page_header",
4922 sizeof(struct kvm_mmu_page
),
4924 if (!mmu_page_header_cache
)
4927 if (percpu_counter_init(&kvm_total_used_mmu_pages
, 0, GFP_KERNEL
))
4930 register_shrinker(&mmu_shrinker
);
4935 mmu_destroy_caches();
4940 * Caculate mmu pages needed for kvm.
4942 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm
*kvm
)
4944 unsigned int nr_mmu_pages
;
4945 unsigned int nr_pages
= 0;
4946 struct kvm_memslots
*slots
;
4947 struct kvm_memory_slot
*memslot
;
4950 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
4951 slots
= __kvm_memslots(kvm
, i
);
4953 kvm_for_each_memslot(memslot
, slots
)
4954 nr_pages
+= memslot
->npages
;
4957 nr_mmu_pages
= nr_pages
* KVM_PERMILLE_MMU_PAGES
/ 1000;
4958 nr_mmu_pages
= max(nr_mmu_pages
,
4959 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES
);
4961 return nr_mmu_pages
;
4964 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
4966 kvm_mmu_unload(vcpu
);
4967 free_mmu_pages(vcpu
);
4968 mmu_free_memory_caches(vcpu
);
4971 void kvm_mmu_module_exit(void)
4973 mmu_destroy_caches();
4974 percpu_counter_destroy(&kvm_total_used_mmu_pages
);
4975 unregister_shrinker(&mmu_shrinker
);
4976 mmu_audit_disable();