Merge tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/cmpxchg.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49 #include "trace.h"
50
51 /*
52 * When setting this variable to true it enables Two-Dimensional-Paging
53 * where the hardware walks 2 page tables:
54 * 1. the guest-virtual to guest-physical
55 * 2. while doing 1. it walks guest-physical to host-physical
56 * If the hardware supports that we don't need to do shadow paging.
57 */
58 bool tdp_enabled = false;
59
60 enum {
61 AUDIT_PRE_PAGE_FAULT,
62 AUDIT_POST_PAGE_FAULT,
63 AUDIT_PRE_PTE_WRITE,
64 AUDIT_POST_PTE_WRITE,
65 AUDIT_PRE_SYNC,
66 AUDIT_POST_SYNC
67 };
68
69 #undef MMU_DEBUG
70
71 #ifdef MMU_DEBUG
72 static bool dbg = 0;
73 module_param(dbg, bool, 0644);
74
75 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
77 #define MMU_WARN_ON(x) WARN_ON(x)
78 #else
79 #define pgprintk(x...) do { } while (0)
80 #define rmap_printk(x...) do { } while (0)
81 #define MMU_WARN_ON(x) do { } while (0)
82 #endif
83
84 #define PTE_PREFETCH_NUM 8
85
86 #define PT_FIRST_AVAIL_BITS_SHIFT 10
87 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
88
89 #define PT64_LEVEL_BITS 9
90
91 #define PT64_LEVEL_SHIFT(level) \
92 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
93
94 #define PT64_INDEX(address, level)\
95 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
96
97
98 #define PT32_LEVEL_BITS 10
99
100 #define PT32_LEVEL_SHIFT(level) \
101 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
102
103 #define PT32_LVL_OFFSET_MASK(level) \
104 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
105 * PT32_LEVEL_BITS))) - 1))
106
107 #define PT32_INDEX(address, level)\
108 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
111 #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
112 #define PT64_DIR_BASE_ADDR_MASK \
113 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114 #define PT64_LVL_ADDR_MASK(level) \
115 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
116 * PT64_LEVEL_BITS))) - 1))
117 #define PT64_LVL_OFFSET_MASK(level) \
118 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
119 * PT64_LEVEL_BITS))) - 1))
120
121 #define PT32_BASE_ADDR_MASK PAGE_MASK
122 #define PT32_DIR_BASE_ADDR_MASK \
123 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
124 #define PT32_LVL_ADDR_MASK(level) \
125 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT32_LEVEL_BITS))) - 1))
127
128 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
129 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
130
131 #define ACC_EXEC_MASK 1
132 #define ACC_WRITE_MASK PT_WRITABLE_MASK
133 #define ACC_USER_MASK PT_USER_MASK
134 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
135
136 /* The mask for the R/X bits in EPT PTEs */
137 #define PT64_EPT_READABLE_MASK 0x1ull
138 #define PT64_EPT_EXECUTABLE_MASK 0x4ull
139
140 #include <trace/events/kvm.h>
141
142 #define CREATE_TRACE_POINTS
143 #include "mmutrace.h"
144
145 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
146 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
147
148 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
149
150 /* make pte_list_desc fit well in cache line */
151 #define PTE_LIST_EXT 3
152
153 struct pte_list_desc {
154 u64 *sptes[PTE_LIST_EXT];
155 struct pte_list_desc *more;
156 };
157
158 struct kvm_shadow_walk_iterator {
159 u64 addr;
160 hpa_t shadow_addr;
161 u64 *sptep;
162 int level;
163 unsigned index;
164 };
165
166 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
167 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
168 shadow_walk_okay(&(_walker)); \
169 shadow_walk_next(&(_walker)))
170
171 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
172 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
173 shadow_walk_okay(&(_walker)) && \
174 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
175 __shadow_walk_next(&(_walker), spte))
176
177 static struct kmem_cache *pte_list_desc_cache;
178 static struct kmem_cache *mmu_page_header_cache;
179 static struct percpu_counter kvm_total_used_mmu_pages;
180
181 static u64 __read_mostly shadow_nx_mask;
182 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
183 static u64 __read_mostly shadow_user_mask;
184 static u64 __read_mostly shadow_accessed_mask;
185 static u64 __read_mostly shadow_dirty_mask;
186 static u64 __read_mostly shadow_mmio_mask;
187 static u64 __read_mostly shadow_mmio_value;
188 static u64 __read_mostly shadow_present_mask;
189 static u64 __read_mostly shadow_me_mask;
190
191 /*
192 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
193 * Non-present SPTEs with shadow_acc_track_value set are in place for access
194 * tracking.
195 */
196 static u64 __read_mostly shadow_acc_track_mask;
197 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
198
199 /*
200 * The mask/shift to use for saving the original R/X bits when marking the PTE
201 * as not-present for access tracking purposes. We do not save the W bit as the
202 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
203 * restored only when a write is attempted to the page.
204 */
205 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
206 PT64_EPT_EXECUTABLE_MASK;
207 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
208
209 static void mmu_spte_set(u64 *sptep, u64 spte);
210 static void mmu_free_roots(struct kvm_vcpu *vcpu);
211
212 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
213 {
214 BUG_ON((mmio_mask & mmio_value) != mmio_value);
215 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
216 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
217 }
218 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
219
220 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
221 {
222 return sp->role.ad_disabled;
223 }
224
225 static inline bool spte_ad_enabled(u64 spte)
226 {
227 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
228 return !(spte & shadow_acc_track_value);
229 }
230
231 static inline u64 spte_shadow_accessed_mask(u64 spte)
232 {
233 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
234 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
235 }
236
237 static inline u64 spte_shadow_dirty_mask(u64 spte)
238 {
239 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
240 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
241 }
242
243 static inline bool is_access_track_spte(u64 spte)
244 {
245 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
246 }
247
248 /*
249 * the low bit of the generation number is always presumed to be zero.
250 * This disables mmio caching during memslot updates. The concept is
251 * similar to a seqcount but instead of retrying the access we just punt
252 * and ignore the cache.
253 *
254 * spte bits 3-11 are used as bits 1-9 of the generation number,
255 * the bits 52-61 are used as bits 10-19 of the generation number.
256 */
257 #define MMIO_SPTE_GEN_LOW_SHIFT 2
258 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
259
260 #define MMIO_GEN_SHIFT 20
261 #define MMIO_GEN_LOW_SHIFT 10
262 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
263 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
264
265 static u64 generation_mmio_spte_mask(unsigned int gen)
266 {
267 u64 mask;
268
269 WARN_ON(gen & ~MMIO_GEN_MASK);
270
271 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
272 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
273 return mask;
274 }
275
276 static unsigned int get_mmio_spte_generation(u64 spte)
277 {
278 unsigned int gen;
279
280 spte &= ~shadow_mmio_mask;
281
282 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
283 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
284 return gen;
285 }
286
287 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
288 {
289 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
290 }
291
292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
293 unsigned access)
294 {
295 unsigned int gen = kvm_current_mmio_generation(vcpu);
296 u64 mask = generation_mmio_spte_mask(gen);
297
298 access &= ACC_WRITE_MASK | ACC_USER_MASK;
299 mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
300
301 trace_mark_mmio_spte(sptep, gfn, access, gen);
302 mmu_spte_set(sptep, mask);
303 }
304
305 static bool is_mmio_spte(u64 spte)
306 {
307 return (spte & shadow_mmio_mask) == shadow_mmio_value;
308 }
309
310 static gfn_t get_mmio_spte_gfn(u64 spte)
311 {
312 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
313 return (spte & ~mask) >> PAGE_SHIFT;
314 }
315
316 static unsigned get_mmio_spte_access(u64 spte)
317 {
318 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
319 return (spte & ~mask) & ~PAGE_MASK;
320 }
321
322 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
323 kvm_pfn_t pfn, unsigned access)
324 {
325 if (unlikely(is_noslot_pfn(pfn))) {
326 mark_mmio_spte(vcpu, sptep, gfn, access);
327 return true;
328 }
329
330 return false;
331 }
332
333 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
334 {
335 unsigned int kvm_gen, spte_gen;
336
337 kvm_gen = kvm_current_mmio_generation(vcpu);
338 spte_gen = get_mmio_spte_generation(spte);
339
340 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
341 return likely(kvm_gen == spte_gen);
342 }
343
344 /*
345 * Sets the shadow PTE masks used by the MMU.
346 *
347 * Assumptions:
348 * - Setting either @accessed_mask or @dirty_mask requires setting both
349 * - At least one of @accessed_mask or @acc_track_mask must be set
350 */
351 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
352 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
353 u64 acc_track_mask, u64 me_mask)
354 {
355 BUG_ON(!dirty_mask != !accessed_mask);
356 BUG_ON(!accessed_mask && !acc_track_mask);
357 BUG_ON(acc_track_mask & shadow_acc_track_value);
358
359 shadow_user_mask = user_mask;
360 shadow_accessed_mask = accessed_mask;
361 shadow_dirty_mask = dirty_mask;
362 shadow_nx_mask = nx_mask;
363 shadow_x_mask = x_mask;
364 shadow_present_mask = p_mask;
365 shadow_acc_track_mask = acc_track_mask;
366 shadow_me_mask = me_mask;
367 }
368 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
369
370 void kvm_mmu_clear_all_pte_masks(void)
371 {
372 shadow_user_mask = 0;
373 shadow_accessed_mask = 0;
374 shadow_dirty_mask = 0;
375 shadow_nx_mask = 0;
376 shadow_x_mask = 0;
377 shadow_mmio_mask = 0;
378 shadow_present_mask = 0;
379 shadow_acc_track_mask = 0;
380 }
381
382 static int is_cpuid_PSE36(void)
383 {
384 return 1;
385 }
386
387 static int is_nx(struct kvm_vcpu *vcpu)
388 {
389 return vcpu->arch.efer & EFER_NX;
390 }
391
392 static int is_shadow_present_pte(u64 pte)
393 {
394 return (pte != 0) && !is_mmio_spte(pte);
395 }
396
397 static int is_large_pte(u64 pte)
398 {
399 return pte & PT_PAGE_SIZE_MASK;
400 }
401
402 static int is_last_spte(u64 pte, int level)
403 {
404 if (level == PT_PAGE_TABLE_LEVEL)
405 return 1;
406 if (is_large_pte(pte))
407 return 1;
408 return 0;
409 }
410
411 static bool is_executable_pte(u64 spte)
412 {
413 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
414 }
415
416 static kvm_pfn_t spte_to_pfn(u64 pte)
417 {
418 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
419 }
420
421 static gfn_t pse36_gfn_delta(u32 gpte)
422 {
423 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
424
425 return (gpte & PT32_DIR_PSE36_MASK) << shift;
426 }
427
428 #ifdef CONFIG_X86_64
429 static void __set_spte(u64 *sptep, u64 spte)
430 {
431 WRITE_ONCE(*sptep, spte);
432 }
433
434 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
435 {
436 WRITE_ONCE(*sptep, spte);
437 }
438
439 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
440 {
441 return xchg(sptep, spte);
442 }
443
444 static u64 __get_spte_lockless(u64 *sptep)
445 {
446 return ACCESS_ONCE(*sptep);
447 }
448 #else
449 union split_spte {
450 struct {
451 u32 spte_low;
452 u32 spte_high;
453 };
454 u64 spte;
455 };
456
457 static void count_spte_clear(u64 *sptep, u64 spte)
458 {
459 struct kvm_mmu_page *sp = page_header(__pa(sptep));
460
461 if (is_shadow_present_pte(spte))
462 return;
463
464 /* Ensure the spte is completely set before we increase the count */
465 smp_wmb();
466 sp->clear_spte_count++;
467 }
468
469 static void __set_spte(u64 *sptep, u64 spte)
470 {
471 union split_spte *ssptep, sspte;
472
473 ssptep = (union split_spte *)sptep;
474 sspte = (union split_spte)spte;
475
476 ssptep->spte_high = sspte.spte_high;
477
478 /*
479 * If we map the spte from nonpresent to present, We should store
480 * the high bits firstly, then set present bit, so cpu can not
481 * fetch this spte while we are setting the spte.
482 */
483 smp_wmb();
484
485 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
486 }
487
488 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
489 {
490 union split_spte *ssptep, sspte;
491
492 ssptep = (union split_spte *)sptep;
493 sspte = (union split_spte)spte;
494
495 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
496
497 /*
498 * If we map the spte from present to nonpresent, we should clear
499 * present bit firstly to avoid vcpu fetch the old high bits.
500 */
501 smp_wmb();
502
503 ssptep->spte_high = sspte.spte_high;
504 count_spte_clear(sptep, spte);
505 }
506
507 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
508 {
509 union split_spte *ssptep, sspte, orig;
510
511 ssptep = (union split_spte *)sptep;
512 sspte = (union split_spte)spte;
513
514 /* xchg acts as a barrier before the setting of the high bits */
515 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
516 orig.spte_high = ssptep->spte_high;
517 ssptep->spte_high = sspte.spte_high;
518 count_spte_clear(sptep, spte);
519
520 return orig.spte;
521 }
522
523 /*
524 * The idea using the light way get the spte on x86_32 guest is from
525 * gup_get_pte(arch/x86/mm/gup.c).
526 *
527 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
528 * coalesces them and we are running out of the MMU lock. Therefore
529 * we need to protect against in-progress updates of the spte.
530 *
531 * Reading the spte while an update is in progress may get the old value
532 * for the high part of the spte. The race is fine for a present->non-present
533 * change (because the high part of the spte is ignored for non-present spte),
534 * but for a present->present change we must reread the spte.
535 *
536 * All such changes are done in two steps (present->non-present and
537 * non-present->present), hence it is enough to count the number of
538 * present->non-present updates: if it changed while reading the spte,
539 * we might have hit the race. This is done using clear_spte_count.
540 */
541 static u64 __get_spte_lockless(u64 *sptep)
542 {
543 struct kvm_mmu_page *sp = page_header(__pa(sptep));
544 union split_spte spte, *orig = (union split_spte *)sptep;
545 int count;
546
547 retry:
548 count = sp->clear_spte_count;
549 smp_rmb();
550
551 spte.spte_low = orig->spte_low;
552 smp_rmb();
553
554 spte.spte_high = orig->spte_high;
555 smp_rmb();
556
557 if (unlikely(spte.spte_low != orig->spte_low ||
558 count != sp->clear_spte_count))
559 goto retry;
560
561 return spte.spte;
562 }
563 #endif
564
565 static bool spte_can_locklessly_be_made_writable(u64 spte)
566 {
567 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
568 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
569 }
570
571 static bool spte_has_volatile_bits(u64 spte)
572 {
573 if (!is_shadow_present_pte(spte))
574 return false;
575
576 /*
577 * Always atomically update spte if it can be updated
578 * out of mmu-lock, it can ensure dirty bit is not lost,
579 * also, it can help us to get a stable is_writable_pte()
580 * to ensure tlb flush is not missed.
581 */
582 if (spte_can_locklessly_be_made_writable(spte) ||
583 is_access_track_spte(spte))
584 return true;
585
586 if (spte_ad_enabled(spte)) {
587 if ((spte & shadow_accessed_mask) == 0 ||
588 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
589 return true;
590 }
591
592 return false;
593 }
594
595 static bool is_accessed_spte(u64 spte)
596 {
597 u64 accessed_mask = spte_shadow_accessed_mask(spte);
598
599 return accessed_mask ? spte & accessed_mask
600 : !is_access_track_spte(spte);
601 }
602
603 static bool is_dirty_spte(u64 spte)
604 {
605 u64 dirty_mask = spte_shadow_dirty_mask(spte);
606
607 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
608 }
609
610 /* Rules for using mmu_spte_set:
611 * Set the sptep from nonpresent to present.
612 * Note: the sptep being assigned *must* be either not present
613 * or in a state where the hardware will not attempt to update
614 * the spte.
615 */
616 static void mmu_spte_set(u64 *sptep, u64 new_spte)
617 {
618 WARN_ON(is_shadow_present_pte(*sptep));
619 __set_spte(sptep, new_spte);
620 }
621
622 /*
623 * Update the SPTE (excluding the PFN), but do not track changes in its
624 * accessed/dirty status.
625 */
626 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
627 {
628 u64 old_spte = *sptep;
629
630 WARN_ON(!is_shadow_present_pte(new_spte));
631
632 if (!is_shadow_present_pte(old_spte)) {
633 mmu_spte_set(sptep, new_spte);
634 return old_spte;
635 }
636
637 if (!spte_has_volatile_bits(old_spte))
638 __update_clear_spte_fast(sptep, new_spte);
639 else
640 old_spte = __update_clear_spte_slow(sptep, new_spte);
641
642 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
643
644 return old_spte;
645 }
646
647 /* Rules for using mmu_spte_update:
648 * Update the state bits, it means the mapped pfn is not changed.
649 *
650 * Whenever we overwrite a writable spte with a read-only one we
651 * should flush remote TLBs. Otherwise rmap_write_protect
652 * will find a read-only spte, even though the writable spte
653 * might be cached on a CPU's TLB, the return value indicates this
654 * case.
655 *
656 * Returns true if the TLB needs to be flushed
657 */
658 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
659 {
660 bool flush = false;
661 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
662
663 if (!is_shadow_present_pte(old_spte))
664 return false;
665
666 /*
667 * For the spte updated out of mmu-lock is safe, since
668 * we always atomically update it, see the comments in
669 * spte_has_volatile_bits().
670 */
671 if (spte_can_locklessly_be_made_writable(old_spte) &&
672 !is_writable_pte(new_spte))
673 flush = true;
674
675 /*
676 * Flush TLB when accessed/dirty states are changed in the page tables,
677 * to guarantee consistency between TLB and page tables.
678 */
679
680 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
681 flush = true;
682 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
683 }
684
685 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
686 flush = true;
687 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
688 }
689
690 return flush;
691 }
692
693 /*
694 * Rules for using mmu_spte_clear_track_bits:
695 * It sets the sptep from present to nonpresent, and track the
696 * state bits, it is used to clear the last level sptep.
697 * Returns non-zero if the PTE was previously valid.
698 */
699 static int mmu_spte_clear_track_bits(u64 *sptep)
700 {
701 kvm_pfn_t pfn;
702 u64 old_spte = *sptep;
703
704 if (!spte_has_volatile_bits(old_spte))
705 __update_clear_spte_fast(sptep, 0ull);
706 else
707 old_spte = __update_clear_spte_slow(sptep, 0ull);
708
709 if (!is_shadow_present_pte(old_spte))
710 return 0;
711
712 pfn = spte_to_pfn(old_spte);
713
714 /*
715 * KVM does not hold the refcount of the page used by
716 * kvm mmu, before reclaiming the page, we should
717 * unmap it from mmu first.
718 */
719 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
720
721 if (is_accessed_spte(old_spte))
722 kvm_set_pfn_accessed(pfn);
723
724 if (is_dirty_spte(old_spte))
725 kvm_set_pfn_dirty(pfn);
726
727 return 1;
728 }
729
730 /*
731 * Rules for using mmu_spte_clear_no_track:
732 * Directly clear spte without caring the state bits of sptep,
733 * it is used to set the upper level spte.
734 */
735 static void mmu_spte_clear_no_track(u64 *sptep)
736 {
737 __update_clear_spte_fast(sptep, 0ull);
738 }
739
740 static u64 mmu_spte_get_lockless(u64 *sptep)
741 {
742 return __get_spte_lockless(sptep);
743 }
744
745 static u64 mark_spte_for_access_track(u64 spte)
746 {
747 if (spte_ad_enabled(spte))
748 return spte & ~shadow_accessed_mask;
749
750 if (is_access_track_spte(spte))
751 return spte;
752
753 /*
754 * Making an Access Tracking PTE will result in removal of write access
755 * from the PTE. So, verify that we will be able to restore the write
756 * access in the fast page fault path later on.
757 */
758 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
759 !spte_can_locklessly_be_made_writable(spte),
760 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
761
762 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
763 shadow_acc_track_saved_bits_shift),
764 "kvm: Access Tracking saved bit locations are not zero\n");
765
766 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
767 shadow_acc_track_saved_bits_shift;
768 spte &= ~shadow_acc_track_mask;
769
770 return spte;
771 }
772
773 /* Restore an acc-track PTE back to a regular PTE */
774 static u64 restore_acc_track_spte(u64 spte)
775 {
776 u64 new_spte = spte;
777 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
778 & shadow_acc_track_saved_bits_mask;
779
780 WARN_ON_ONCE(spte_ad_enabled(spte));
781 WARN_ON_ONCE(!is_access_track_spte(spte));
782
783 new_spte &= ~shadow_acc_track_mask;
784 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
785 shadow_acc_track_saved_bits_shift);
786 new_spte |= saved_bits;
787
788 return new_spte;
789 }
790
791 /* Returns the Accessed status of the PTE and resets it at the same time. */
792 static bool mmu_spte_age(u64 *sptep)
793 {
794 u64 spte = mmu_spte_get_lockless(sptep);
795
796 if (!is_accessed_spte(spte))
797 return false;
798
799 if (spte_ad_enabled(spte)) {
800 clear_bit((ffs(shadow_accessed_mask) - 1),
801 (unsigned long *)sptep);
802 } else {
803 /*
804 * Capture the dirty status of the page, so that it doesn't get
805 * lost when the SPTE is marked for access tracking.
806 */
807 if (is_writable_pte(spte))
808 kvm_set_pfn_dirty(spte_to_pfn(spte));
809
810 spte = mark_spte_for_access_track(spte);
811 mmu_spte_update_no_track(sptep, spte);
812 }
813
814 return true;
815 }
816
817 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
818 {
819 /*
820 * Prevent page table teardown by making any free-er wait during
821 * kvm_flush_remote_tlbs() IPI to all active vcpus.
822 */
823 local_irq_disable();
824
825 /*
826 * Make sure a following spte read is not reordered ahead of the write
827 * to vcpu->mode.
828 */
829 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
830 }
831
832 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
833 {
834 /*
835 * Make sure the write to vcpu->mode is not reordered in front of
836 * reads to sptes. If it does, kvm_commit_zap_page() can see us
837 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
838 */
839 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
840 local_irq_enable();
841 }
842
843 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
844 struct kmem_cache *base_cache, int min)
845 {
846 void *obj;
847
848 if (cache->nobjs >= min)
849 return 0;
850 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
851 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
852 if (!obj)
853 return -ENOMEM;
854 cache->objects[cache->nobjs++] = obj;
855 }
856 return 0;
857 }
858
859 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
860 {
861 return cache->nobjs;
862 }
863
864 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
865 struct kmem_cache *cache)
866 {
867 while (mc->nobjs)
868 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
869 }
870
871 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
872 int min)
873 {
874 void *page;
875
876 if (cache->nobjs >= min)
877 return 0;
878 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
879 page = (void *)__get_free_page(GFP_KERNEL);
880 if (!page)
881 return -ENOMEM;
882 cache->objects[cache->nobjs++] = page;
883 }
884 return 0;
885 }
886
887 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
888 {
889 while (mc->nobjs)
890 free_page((unsigned long)mc->objects[--mc->nobjs]);
891 }
892
893 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
894 {
895 int r;
896
897 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
898 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
899 if (r)
900 goto out;
901 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
902 if (r)
903 goto out;
904 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
905 mmu_page_header_cache, 4);
906 out:
907 return r;
908 }
909
910 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
911 {
912 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
913 pte_list_desc_cache);
914 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
915 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
916 mmu_page_header_cache);
917 }
918
919 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
920 {
921 void *p;
922
923 BUG_ON(!mc->nobjs);
924 p = mc->objects[--mc->nobjs];
925 return p;
926 }
927
928 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
929 {
930 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
931 }
932
933 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
934 {
935 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
936 }
937
938 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
939 {
940 if (!sp->role.direct)
941 return sp->gfns[index];
942
943 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
944 }
945
946 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
947 {
948 if (sp->role.direct)
949 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
950 else
951 sp->gfns[index] = gfn;
952 }
953
954 /*
955 * Return the pointer to the large page information for a given gfn,
956 * handling slots that are not large page aligned.
957 */
958 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
959 struct kvm_memory_slot *slot,
960 int level)
961 {
962 unsigned long idx;
963
964 idx = gfn_to_index(gfn, slot->base_gfn, level);
965 return &slot->arch.lpage_info[level - 2][idx];
966 }
967
968 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
969 gfn_t gfn, int count)
970 {
971 struct kvm_lpage_info *linfo;
972 int i;
973
974 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
975 linfo = lpage_info_slot(gfn, slot, i);
976 linfo->disallow_lpage += count;
977 WARN_ON(linfo->disallow_lpage < 0);
978 }
979 }
980
981 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
982 {
983 update_gfn_disallow_lpage_count(slot, gfn, 1);
984 }
985
986 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
987 {
988 update_gfn_disallow_lpage_count(slot, gfn, -1);
989 }
990
991 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
992 {
993 struct kvm_memslots *slots;
994 struct kvm_memory_slot *slot;
995 gfn_t gfn;
996
997 kvm->arch.indirect_shadow_pages++;
998 gfn = sp->gfn;
999 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1000 slot = __gfn_to_memslot(slots, gfn);
1001
1002 /* the non-leaf shadow pages are keeping readonly. */
1003 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1004 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1005 KVM_PAGE_TRACK_WRITE);
1006
1007 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1008 }
1009
1010 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1011 {
1012 struct kvm_memslots *slots;
1013 struct kvm_memory_slot *slot;
1014 gfn_t gfn;
1015
1016 kvm->arch.indirect_shadow_pages--;
1017 gfn = sp->gfn;
1018 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1019 slot = __gfn_to_memslot(slots, gfn);
1020 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1021 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1022 KVM_PAGE_TRACK_WRITE);
1023
1024 kvm_mmu_gfn_allow_lpage(slot, gfn);
1025 }
1026
1027 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1028 struct kvm_memory_slot *slot)
1029 {
1030 struct kvm_lpage_info *linfo;
1031
1032 if (slot) {
1033 linfo = lpage_info_slot(gfn, slot, level);
1034 return !!linfo->disallow_lpage;
1035 }
1036
1037 return true;
1038 }
1039
1040 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1041 int level)
1042 {
1043 struct kvm_memory_slot *slot;
1044
1045 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1046 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1047 }
1048
1049 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1050 {
1051 unsigned long page_size;
1052 int i, ret = 0;
1053
1054 page_size = kvm_host_page_size(kvm, gfn);
1055
1056 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1057 if (page_size >= KVM_HPAGE_SIZE(i))
1058 ret = i;
1059 else
1060 break;
1061 }
1062
1063 return ret;
1064 }
1065
1066 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1067 bool no_dirty_log)
1068 {
1069 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1070 return false;
1071 if (no_dirty_log && slot->dirty_bitmap)
1072 return false;
1073
1074 return true;
1075 }
1076
1077 static struct kvm_memory_slot *
1078 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1079 bool no_dirty_log)
1080 {
1081 struct kvm_memory_slot *slot;
1082
1083 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1084 if (!memslot_valid_for_gpte(slot, no_dirty_log))
1085 slot = NULL;
1086
1087 return slot;
1088 }
1089
1090 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1091 bool *force_pt_level)
1092 {
1093 int host_level, level, max_level;
1094 struct kvm_memory_slot *slot;
1095
1096 if (unlikely(*force_pt_level))
1097 return PT_PAGE_TABLE_LEVEL;
1098
1099 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1100 *force_pt_level = !memslot_valid_for_gpte(slot, true);
1101 if (unlikely(*force_pt_level))
1102 return PT_PAGE_TABLE_LEVEL;
1103
1104 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1105
1106 if (host_level == PT_PAGE_TABLE_LEVEL)
1107 return host_level;
1108
1109 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1110
1111 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1112 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1113 break;
1114
1115 return level - 1;
1116 }
1117
1118 /*
1119 * About rmap_head encoding:
1120 *
1121 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1122 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1123 * pte_list_desc containing more mappings.
1124 */
1125
1126 /*
1127 * Returns the number of pointers in the rmap chain, not counting the new one.
1128 */
1129 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1130 struct kvm_rmap_head *rmap_head)
1131 {
1132 struct pte_list_desc *desc;
1133 int i, count = 0;
1134
1135 if (!rmap_head->val) {
1136 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1137 rmap_head->val = (unsigned long)spte;
1138 } else if (!(rmap_head->val & 1)) {
1139 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1140 desc = mmu_alloc_pte_list_desc(vcpu);
1141 desc->sptes[0] = (u64 *)rmap_head->val;
1142 desc->sptes[1] = spte;
1143 rmap_head->val = (unsigned long)desc | 1;
1144 ++count;
1145 } else {
1146 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1147 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1148 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1149 desc = desc->more;
1150 count += PTE_LIST_EXT;
1151 }
1152 if (desc->sptes[PTE_LIST_EXT-1]) {
1153 desc->more = mmu_alloc_pte_list_desc(vcpu);
1154 desc = desc->more;
1155 }
1156 for (i = 0; desc->sptes[i]; ++i)
1157 ++count;
1158 desc->sptes[i] = spte;
1159 }
1160 return count;
1161 }
1162
1163 static void
1164 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1165 struct pte_list_desc *desc, int i,
1166 struct pte_list_desc *prev_desc)
1167 {
1168 int j;
1169
1170 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1171 ;
1172 desc->sptes[i] = desc->sptes[j];
1173 desc->sptes[j] = NULL;
1174 if (j != 0)
1175 return;
1176 if (!prev_desc && !desc->more)
1177 rmap_head->val = (unsigned long)desc->sptes[0];
1178 else
1179 if (prev_desc)
1180 prev_desc->more = desc->more;
1181 else
1182 rmap_head->val = (unsigned long)desc->more | 1;
1183 mmu_free_pte_list_desc(desc);
1184 }
1185
1186 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1187 {
1188 struct pte_list_desc *desc;
1189 struct pte_list_desc *prev_desc;
1190 int i;
1191
1192 if (!rmap_head->val) {
1193 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1194 BUG();
1195 } else if (!(rmap_head->val & 1)) {
1196 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1197 if ((u64 *)rmap_head->val != spte) {
1198 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1199 BUG();
1200 }
1201 rmap_head->val = 0;
1202 } else {
1203 rmap_printk("pte_list_remove: %p many->many\n", spte);
1204 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1205 prev_desc = NULL;
1206 while (desc) {
1207 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1208 if (desc->sptes[i] == spte) {
1209 pte_list_desc_remove_entry(rmap_head,
1210 desc, i, prev_desc);
1211 return;
1212 }
1213 }
1214 prev_desc = desc;
1215 desc = desc->more;
1216 }
1217 pr_err("pte_list_remove: %p many->many\n", spte);
1218 BUG();
1219 }
1220 }
1221
1222 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1223 struct kvm_memory_slot *slot)
1224 {
1225 unsigned long idx;
1226
1227 idx = gfn_to_index(gfn, slot->base_gfn, level);
1228 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1229 }
1230
1231 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1232 struct kvm_mmu_page *sp)
1233 {
1234 struct kvm_memslots *slots;
1235 struct kvm_memory_slot *slot;
1236
1237 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1238 slot = __gfn_to_memslot(slots, gfn);
1239 return __gfn_to_rmap(gfn, sp->role.level, slot);
1240 }
1241
1242 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1243 {
1244 struct kvm_mmu_memory_cache *cache;
1245
1246 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1247 return mmu_memory_cache_free_objects(cache);
1248 }
1249
1250 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1251 {
1252 struct kvm_mmu_page *sp;
1253 struct kvm_rmap_head *rmap_head;
1254
1255 sp = page_header(__pa(spte));
1256 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1257 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1258 return pte_list_add(vcpu, spte, rmap_head);
1259 }
1260
1261 static void rmap_remove(struct kvm *kvm, u64 *spte)
1262 {
1263 struct kvm_mmu_page *sp;
1264 gfn_t gfn;
1265 struct kvm_rmap_head *rmap_head;
1266
1267 sp = page_header(__pa(spte));
1268 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1269 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1270 pte_list_remove(spte, rmap_head);
1271 }
1272
1273 /*
1274 * Used by the following functions to iterate through the sptes linked by a
1275 * rmap. All fields are private and not assumed to be used outside.
1276 */
1277 struct rmap_iterator {
1278 /* private fields */
1279 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1280 int pos; /* index of the sptep */
1281 };
1282
1283 /*
1284 * Iteration must be started by this function. This should also be used after
1285 * removing/dropping sptes from the rmap link because in such cases the
1286 * information in the itererator may not be valid.
1287 *
1288 * Returns sptep if found, NULL otherwise.
1289 */
1290 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1291 struct rmap_iterator *iter)
1292 {
1293 u64 *sptep;
1294
1295 if (!rmap_head->val)
1296 return NULL;
1297
1298 if (!(rmap_head->val & 1)) {
1299 iter->desc = NULL;
1300 sptep = (u64 *)rmap_head->val;
1301 goto out;
1302 }
1303
1304 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1305 iter->pos = 0;
1306 sptep = iter->desc->sptes[iter->pos];
1307 out:
1308 BUG_ON(!is_shadow_present_pte(*sptep));
1309 return sptep;
1310 }
1311
1312 /*
1313 * Must be used with a valid iterator: e.g. after rmap_get_first().
1314 *
1315 * Returns sptep if found, NULL otherwise.
1316 */
1317 static u64 *rmap_get_next(struct rmap_iterator *iter)
1318 {
1319 u64 *sptep;
1320
1321 if (iter->desc) {
1322 if (iter->pos < PTE_LIST_EXT - 1) {
1323 ++iter->pos;
1324 sptep = iter->desc->sptes[iter->pos];
1325 if (sptep)
1326 goto out;
1327 }
1328
1329 iter->desc = iter->desc->more;
1330
1331 if (iter->desc) {
1332 iter->pos = 0;
1333 /* desc->sptes[0] cannot be NULL */
1334 sptep = iter->desc->sptes[iter->pos];
1335 goto out;
1336 }
1337 }
1338
1339 return NULL;
1340 out:
1341 BUG_ON(!is_shadow_present_pte(*sptep));
1342 return sptep;
1343 }
1344
1345 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1346 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1347 _spte_; _spte_ = rmap_get_next(_iter_))
1348
1349 static void drop_spte(struct kvm *kvm, u64 *sptep)
1350 {
1351 if (mmu_spte_clear_track_bits(sptep))
1352 rmap_remove(kvm, sptep);
1353 }
1354
1355
1356 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1357 {
1358 if (is_large_pte(*sptep)) {
1359 WARN_ON(page_header(__pa(sptep))->role.level ==
1360 PT_PAGE_TABLE_LEVEL);
1361 drop_spte(kvm, sptep);
1362 --kvm->stat.lpages;
1363 return true;
1364 }
1365
1366 return false;
1367 }
1368
1369 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1370 {
1371 if (__drop_large_spte(vcpu->kvm, sptep))
1372 kvm_flush_remote_tlbs(vcpu->kvm);
1373 }
1374
1375 /*
1376 * Write-protect on the specified @sptep, @pt_protect indicates whether
1377 * spte write-protection is caused by protecting shadow page table.
1378 *
1379 * Note: write protection is difference between dirty logging and spte
1380 * protection:
1381 * - for dirty logging, the spte can be set to writable at anytime if
1382 * its dirty bitmap is properly set.
1383 * - for spte protection, the spte can be writable only after unsync-ing
1384 * shadow page.
1385 *
1386 * Return true if tlb need be flushed.
1387 */
1388 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1389 {
1390 u64 spte = *sptep;
1391
1392 if (!is_writable_pte(spte) &&
1393 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1394 return false;
1395
1396 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1397
1398 if (pt_protect)
1399 spte &= ~SPTE_MMU_WRITEABLE;
1400 spte = spte & ~PT_WRITABLE_MASK;
1401
1402 return mmu_spte_update(sptep, spte);
1403 }
1404
1405 static bool __rmap_write_protect(struct kvm *kvm,
1406 struct kvm_rmap_head *rmap_head,
1407 bool pt_protect)
1408 {
1409 u64 *sptep;
1410 struct rmap_iterator iter;
1411 bool flush = false;
1412
1413 for_each_rmap_spte(rmap_head, &iter, sptep)
1414 flush |= spte_write_protect(sptep, pt_protect);
1415
1416 return flush;
1417 }
1418
1419 static bool spte_clear_dirty(u64 *sptep)
1420 {
1421 u64 spte = *sptep;
1422
1423 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1424
1425 spte &= ~shadow_dirty_mask;
1426
1427 return mmu_spte_update(sptep, spte);
1428 }
1429
1430 static bool wrprot_ad_disabled_spte(u64 *sptep)
1431 {
1432 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1433 (unsigned long *)sptep);
1434 if (was_writable)
1435 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1436
1437 return was_writable;
1438 }
1439
1440 /*
1441 * Gets the GFN ready for another round of dirty logging by clearing the
1442 * - D bit on ad-enabled SPTEs, and
1443 * - W bit on ad-disabled SPTEs.
1444 * Returns true iff any D or W bits were cleared.
1445 */
1446 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1447 {
1448 u64 *sptep;
1449 struct rmap_iterator iter;
1450 bool flush = false;
1451
1452 for_each_rmap_spte(rmap_head, &iter, sptep)
1453 if (spte_ad_enabled(*sptep))
1454 flush |= spte_clear_dirty(sptep);
1455 else
1456 flush |= wrprot_ad_disabled_spte(sptep);
1457
1458 return flush;
1459 }
1460
1461 static bool spte_set_dirty(u64 *sptep)
1462 {
1463 u64 spte = *sptep;
1464
1465 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1466
1467 spte |= shadow_dirty_mask;
1468
1469 return mmu_spte_update(sptep, spte);
1470 }
1471
1472 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1473 {
1474 u64 *sptep;
1475 struct rmap_iterator iter;
1476 bool flush = false;
1477
1478 for_each_rmap_spte(rmap_head, &iter, sptep)
1479 if (spte_ad_enabled(*sptep))
1480 flush |= spte_set_dirty(sptep);
1481
1482 return flush;
1483 }
1484
1485 /**
1486 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1487 * @kvm: kvm instance
1488 * @slot: slot to protect
1489 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1490 * @mask: indicates which pages we should protect
1491 *
1492 * Used when we do not need to care about huge page mappings: e.g. during dirty
1493 * logging we do not have any such mappings.
1494 */
1495 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1496 struct kvm_memory_slot *slot,
1497 gfn_t gfn_offset, unsigned long mask)
1498 {
1499 struct kvm_rmap_head *rmap_head;
1500
1501 while (mask) {
1502 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1503 PT_PAGE_TABLE_LEVEL, slot);
1504 __rmap_write_protect(kvm, rmap_head, false);
1505
1506 /* clear the first set bit */
1507 mask &= mask - 1;
1508 }
1509 }
1510
1511 /**
1512 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1513 * protect the page if the D-bit isn't supported.
1514 * @kvm: kvm instance
1515 * @slot: slot to clear D-bit
1516 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1517 * @mask: indicates which pages we should clear D-bit
1518 *
1519 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1520 */
1521 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1522 struct kvm_memory_slot *slot,
1523 gfn_t gfn_offset, unsigned long mask)
1524 {
1525 struct kvm_rmap_head *rmap_head;
1526
1527 while (mask) {
1528 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1529 PT_PAGE_TABLE_LEVEL, slot);
1530 __rmap_clear_dirty(kvm, rmap_head);
1531
1532 /* clear the first set bit */
1533 mask &= mask - 1;
1534 }
1535 }
1536 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1537
1538 /**
1539 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1540 * PT level pages.
1541 *
1542 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1543 * enable dirty logging for them.
1544 *
1545 * Used when we do not need to care about huge page mappings: e.g. during dirty
1546 * logging we do not have any such mappings.
1547 */
1548 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1549 struct kvm_memory_slot *slot,
1550 gfn_t gfn_offset, unsigned long mask)
1551 {
1552 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1553 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1554 mask);
1555 else
1556 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1557 }
1558
1559 /**
1560 * kvm_arch_write_log_dirty - emulate dirty page logging
1561 * @vcpu: Guest mode vcpu
1562 *
1563 * Emulate arch specific page modification logging for the
1564 * nested hypervisor
1565 */
1566 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1567 {
1568 if (kvm_x86_ops->write_log_dirty)
1569 return kvm_x86_ops->write_log_dirty(vcpu);
1570
1571 return 0;
1572 }
1573
1574 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1575 struct kvm_memory_slot *slot, u64 gfn)
1576 {
1577 struct kvm_rmap_head *rmap_head;
1578 int i;
1579 bool write_protected = false;
1580
1581 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1582 rmap_head = __gfn_to_rmap(gfn, i, slot);
1583 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1584 }
1585
1586 return write_protected;
1587 }
1588
1589 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1590 {
1591 struct kvm_memory_slot *slot;
1592
1593 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1594 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1595 }
1596
1597 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1598 {
1599 u64 *sptep;
1600 struct rmap_iterator iter;
1601 bool flush = false;
1602
1603 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1604 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1605
1606 drop_spte(kvm, sptep);
1607 flush = true;
1608 }
1609
1610 return flush;
1611 }
1612
1613 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1614 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1615 unsigned long data)
1616 {
1617 return kvm_zap_rmapp(kvm, rmap_head);
1618 }
1619
1620 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1621 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1622 unsigned long data)
1623 {
1624 u64 *sptep;
1625 struct rmap_iterator iter;
1626 int need_flush = 0;
1627 u64 new_spte;
1628 pte_t *ptep = (pte_t *)data;
1629 kvm_pfn_t new_pfn;
1630
1631 WARN_ON(pte_huge(*ptep));
1632 new_pfn = pte_pfn(*ptep);
1633
1634 restart:
1635 for_each_rmap_spte(rmap_head, &iter, sptep) {
1636 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1637 sptep, *sptep, gfn, level);
1638
1639 need_flush = 1;
1640
1641 if (pte_write(*ptep)) {
1642 drop_spte(kvm, sptep);
1643 goto restart;
1644 } else {
1645 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1646 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1647
1648 new_spte &= ~PT_WRITABLE_MASK;
1649 new_spte &= ~SPTE_HOST_WRITEABLE;
1650
1651 new_spte = mark_spte_for_access_track(new_spte);
1652
1653 mmu_spte_clear_track_bits(sptep);
1654 mmu_spte_set(sptep, new_spte);
1655 }
1656 }
1657
1658 if (need_flush)
1659 kvm_flush_remote_tlbs(kvm);
1660
1661 return 0;
1662 }
1663
1664 struct slot_rmap_walk_iterator {
1665 /* input fields. */
1666 struct kvm_memory_slot *slot;
1667 gfn_t start_gfn;
1668 gfn_t end_gfn;
1669 int start_level;
1670 int end_level;
1671
1672 /* output fields. */
1673 gfn_t gfn;
1674 struct kvm_rmap_head *rmap;
1675 int level;
1676
1677 /* private field. */
1678 struct kvm_rmap_head *end_rmap;
1679 };
1680
1681 static void
1682 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1683 {
1684 iterator->level = level;
1685 iterator->gfn = iterator->start_gfn;
1686 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1687 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1688 iterator->slot);
1689 }
1690
1691 static void
1692 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1693 struct kvm_memory_slot *slot, int start_level,
1694 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1695 {
1696 iterator->slot = slot;
1697 iterator->start_level = start_level;
1698 iterator->end_level = end_level;
1699 iterator->start_gfn = start_gfn;
1700 iterator->end_gfn = end_gfn;
1701
1702 rmap_walk_init_level(iterator, iterator->start_level);
1703 }
1704
1705 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1706 {
1707 return !!iterator->rmap;
1708 }
1709
1710 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1711 {
1712 if (++iterator->rmap <= iterator->end_rmap) {
1713 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1714 return;
1715 }
1716
1717 if (++iterator->level > iterator->end_level) {
1718 iterator->rmap = NULL;
1719 return;
1720 }
1721
1722 rmap_walk_init_level(iterator, iterator->level);
1723 }
1724
1725 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1726 _start_gfn, _end_gfn, _iter_) \
1727 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1728 _end_level_, _start_gfn, _end_gfn); \
1729 slot_rmap_walk_okay(_iter_); \
1730 slot_rmap_walk_next(_iter_))
1731
1732 static int kvm_handle_hva_range(struct kvm *kvm,
1733 unsigned long start,
1734 unsigned long end,
1735 unsigned long data,
1736 int (*handler)(struct kvm *kvm,
1737 struct kvm_rmap_head *rmap_head,
1738 struct kvm_memory_slot *slot,
1739 gfn_t gfn,
1740 int level,
1741 unsigned long data))
1742 {
1743 struct kvm_memslots *slots;
1744 struct kvm_memory_slot *memslot;
1745 struct slot_rmap_walk_iterator iterator;
1746 int ret = 0;
1747 int i;
1748
1749 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1750 slots = __kvm_memslots(kvm, i);
1751 kvm_for_each_memslot(memslot, slots) {
1752 unsigned long hva_start, hva_end;
1753 gfn_t gfn_start, gfn_end;
1754
1755 hva_start = max(start, memslot->userspace_addr);
1756 hva_end = min(end, memslot->userspace_addr +
1757 (memslot->npages << PAGE_SHIFT));
1758 if (hva_start >= hva_end)
1759 continue;
1760 /*
1761 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1762 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1763 */
1764 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1765 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1766
1767 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1768 PT_MAX_HUGEPAGE_LEVEL,
1769 gfn_start, gfn_end - 1,
1770 &iterator)
1771 ret |= handler(kvm, iterator.rmap, memslot,
1772 iterator.gfn, iterator.level, data);
1773 }
1774 }
1775
1776 return ret;
1777 }
1778
1779 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1780 unsigned long data,
1781 int (*handler)(struct kvm *kvm,
1782 struct kvm_rmap_head *rmap_head,
1783 struct kvm_memory_slot *slot,
1784 gfn_t gfn, int level,
1785 unsigned long data))
1786 {
1787 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1788 }
1789
1790 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1791 {
1792 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1793 }
1794
1795 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1796 {
1797 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1798 }
1799
1800 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1801 {
1802 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1803 }
1804
1805 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1806 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1807 unsigned long data)
1808 {
1809 u64 *sptep;
1810 struct rmap_iterator uninitialized_var(iter);
1811 int young = 0;
1812
1813 for_each_rmap_spte(rmap_head, &iter, sptep)
1814 young |= mmu_spte_age(sptep);
1815
1816 trace_kvm_age_page(gfn, level, slot, young);
1817 return young;
1818 }
1819
1820 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1821 struct kvm_memory_slot *slot, gfn_t gfn,
1822 int level, unsigned long data)
1823 {
1824 u64 *sptep;
1825 struct rmap_iterator iter;
1826
1827 for_each_rmap_spte(rmap_head, &iter, sptep)
1828 if (is_accessed_spte(*sptep))
1829 return 1;
1830 return 0;
1831 }
1832
1833 #define RMAP_RECYCLE_THRESHOLD 1000
1834
1835 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1836 {
1837 struct kvm_rmap_head *rmap_head;
1838 struct kvm_mmu_page *sp;
1839
1840 sp = page_header(__pa(spte));
1841
1842 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1843
1844 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1845 kvm_flush_remote_tlbs(vcpu->kvm);
1846 }
1847
1848 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1849 {
1850 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1851 }
1852
1853 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1854 {
1855 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1856 }
1857
1858 #ifdef MMU_DEBUG
1859 static int is_empty_shadow_page(u64 *spt)
1860 {
1861 u64 *pos;
1862 u64 *end;
1863
1864 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1865 if (is_shadow_present_pte(*pos)) {
1866 printk(KERN_ERR "%s: %p %llx\n", __func__,
1867 pos, *pos);
1868 return 0;
1869 }
1870 return 1;
1871 }
1872 #endif
1873
1874 /*
1875 * This value is the sum of all of the kvm instances's
1876 * kvm->arch.n_used_mmu_pages values. We need a global,
1877 * aggregate version in order to make the slab shrinker
1878 * faster
1879 */
1880 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1881 {
1882 kvm->arch.n_used_mmu_pages += nr;
1883 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1884 }
1885
1886 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1887 {
1888 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1889 hlist_del(&sp->hash_link);
1890 list_del(&sp->link);
1891 free_page((unsigned long)sp->spt);
1892 if (!sp->role.direct)
1893 free_page((unsigned long)sp->gfns);
1894 kmem_cache_free(mmu_page_header_cache, sp);
1895 }
1896
1897 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1898 {
1899 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1900 }
1901
1902 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1903 struct kvm_mmu_page *sp, u64 *parent_pte)
1904 {
1905 if (!parent_pte)
1906 return;
1907
1908 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1909 }
1910
1911 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1912 u64 *parent_pte)
1913 {
1914 pte_list_remove(parent_pte, &sp->parent_ptes);
1915 }
1916
1917 static void drop_parent_pte(struct kvm_mmu_page *sp,
1918 u64 *parent_pte)
1919 {
1920 mmu_page_remove_parent_pte(sp, parent_pte);
1921 mmu_spte_clear_no_track(parent_pte);
1922 }
1923
1924 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1925 {
1926 struct kvm_mmu_page *sp;
1927
1928 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1929 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1930 if (!direct)
1931 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1932 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1933
1934 /*
1935 * The active_mmu_pages list is the FIFO list, do not move the
1936 * page until it is zapped. kvm_zap_obsolete_pages depends on
1937 * this feature. See the comments in kvm_zap_obsolete_pages().
1938 */
1939 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1940 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1941 return sp;
1942 }
1943
1944 static void mark_unsync(u64 *spte);
1945 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1946 {
1947 u64 *sptep;
1948 struct rmap_iterator iter;
1949
1950 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1951 mark_unsync(sptep);
1952 }
1953 }
1954
1955 static void mark_unsync(u64 *spte)
1956 {
1957 struct kvm_mmu_page *sp;
1958 unsigned int index;
1959
1960 sp = page_header(__pa(spte));
1961 index = spte - sp->spt;
1962 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1963 return;
1964 if (sp->unsync_children++)
1965 return;
1966 kvm_mmu_mark_parents_unsync(sp);
1967 }
1968
1969 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1970 struct kvm_mmu_page *sp)
1971 {
1972 return 0;
1973 }
1974
1975 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1976 {
1977 }
1978
1979 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1980 struct kvm_mmu_page *sp, u64 *spte,
1981 const void *pte)
1982 {
1983 WARN_ON(1);
1984 }
1985
1986 #define KVM_PAGE_ARRAY_NR 16
1987
1988 struct kvm_mmu_pages {
1989 struct mmu_page_and_offset {
1990 struct kvm_mmu_page *sp;
1991 unsigned int idx;
1992 } page[KVM_PAGE_ARRAY_NR];
1993 unsigned int nr;
1994 };
1995
1996 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1997 int idx)
1998 {
1999 int i;
2000
2001 if (sp->unsync)
2002 for (i=0; i < pvec->nr; i++)
2003 if (pvec->page[i].sp == sp)
2004 return 0;
2005
2006 pvec->page[pvec->nr].sp = sp;
2007 pvec->page[pvec->nr].idx = idx;
2008 pvec->nr++;
2009 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2010 }
2011
2012 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2013 {
2014 --sp->unsync_children;
2015 WARN_ON((int)sp->unsync_children < 0);
2016 __clear_bit(idx, sp->unsync_child_bitmap);
2017 }
2018
2019 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2020 struct kvm_mmu_pages *pvec)
2021 {
2022 int i, ret, nr_unsync_leaf = 0;
2023
2024 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2025 struct kvm_mmu_page *child;
2026 u64 ent = sp->spt[i];
2027
2028 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2029 clear_unsync_child_bit(sp, i);
2030 continue;
2031 }
2032
2033 child = page_header(ent & PT64_BASE_ADDR_MASK);
2034
2035 if (child->unsync_children) {
2036 if (mmu_pages_add(pvec, child, i))
2037 return -ENOSPC;
2038
2039 ret = __mmu_unsync_walk(child, pvec);
2040 if (!ret) {
2041 clear_unsync_child_bit(sp, i);
2042 continue;
2043 } else if (ret > 0) {
2044 nr_unsync_leaf += ret;
2045 } else
2046 return ret;
2047 } else if (child->unsync) {
2048 nr_unsync_leaf++;
2049 if (mmu_pages_add(pvec, child, i))
2050 return -ENOSPC;
2051 } else
2052 clear_unsync_child_bit(sp, i);
2053 }
2054
2055 return nr_unsync_leaf;
2056 }
2057
2058 #define INVALID_INDEX (-1)
2059
2060 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2061 struct kvm_mmu_pages *pvec)
2062 {
2063 pvec->nr = 0;
2064 if (!sp->unsync_children)
2065 return 0;
2066
2067 mmu_pages_add(pvec, sp, INVALID_INDEX);
2068 return __mmu_unsync_walk(sp, pvec);
2069 }
2070
2071 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2072 {
2073 WARN_ON(!sp->unsync);
2074 trace_kvm_mmu_sync_page(sp);
2075 sp->unsync = 0;
2076 --kvm->stat.mmu_unsync;
2077 }
2078
2079 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2080 struct list_head *invalid_list);
2081 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2082 struct list_head *invalid_list);
2083
2084 /*
2085 * NOTE: we should pay more attention on the zapped-obsolete page
2086 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2087 * since it has been deleted from active_mmu_pages but still can be found
2088 * at hast list.
2089 *
2090 * for_each_valid_sp() has skipped that kind of pages.
2091 */
2092 #define for_each_valid_sp(_kvm, _sp, _gfn) \
2093 hlist_for_each_entry(_sp, \
2094 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2095 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2096 } else
2097
2098 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2099 for_each_valid_sp(_kvm, _sp, _gfn) \
2100 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2101
2102 /* @sp->gfn should be write-protected at the call site */
2103 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2104 struct list_head *invalid_list)
2105 {
2106 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2107 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2108 return false;
2109 }
2110
2111 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2112 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2113 return false;
2114 }
2115
2116 return true;
2117 }
2118
2119 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2120 struct list_head *invalid_list,
2121 bool remote_flush, bool local_flush)
2122 {
2123 if (!list_empty(invalid_list)) {
2124 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2125 return;
2126 }
2127
2128 if (remote_flush)
2129 kvm_flush_remote_tlbs(vcpu->kvm);
2130 else if (local_flush)
2131 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2132 }
2133
2134 #ifdef CONFIG_KVM_MMU_AUDIT
2135 #include "mmu_audit.c"
2136 #else
2137 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2138 static void mmu_audit_disable(void) { }
2139 #endif
2140
2141 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2142 {
2143 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2144 }
2145
2146 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2147 struct list_head *invalid_list)
2148 {
2149 kvm_unlink_unsync_page(vcpu->kvm, sp);
2150 return __kvm_sync_page(vcpu, sp, invalid_list);
2151 }
2152
2153 /* @gfn should be write-protected at the call site */
2154 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2155 struct list_head *invalid_list)
2156 {
2157 struct kvm_mmu_page *s;
2158 bool ret = false;
2159
2160 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2161 if (!s->unsync)
2162 continue;
2163
2164 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2165 ret |= kvm_sync_page(vcpu, s, invalid_list);
2166 }
2167
2168 return ret;
2169 }
2170
2171 struct mmu_page_path {
2172 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2173 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2174 };
2175
2176 #define for_each_sp(pvec, sp, parents, i) \
2177 for (i = mmu_pages_first(&pvec, &parents); \
2178 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2179 i = mmu_pages_next(&pvec, &parents, i))
2180
2181 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2182 struct mmu_page_path *parents,
2183 int i)
2184 {
2185 int n;
2186
2187 for (n = i+1; n < pvec->nr; n++) {
2188 struct kvm_mmu_page *sp = pvec->page[n].sp;
2189 unsigned idx = pvec->page[n].idx;
2190 int level = sp->role.level;
2191
2192 parents->idx[level-1] = idx;
2193 if (level == PT_PAGE_TABLE_LEVEL)
2194 break;
2195
2196 parents->parent[level-2] = sp;
2197 }
2198
2199 return n;
2200 }
2201
2202 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2203 struct mmu_page_path *parents)
2204 {
2205 struct kvm_mmu_page *sp;
2206 int level;
2207
2208 if (pvec->nr == 0)
2209 return 0;
2210
2211 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2212
2213 sp = pvec->page[0].sp;
2214 level = sp->role.level;
2215 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2216
2217 parents->parent[level-2] = sp;
2218
2219 /* Also set up a sentinel. Further entries in pvec are all
2220 * children of sp, so this element is never overwritten.
2221 */
2222 parents->parent[level-1] = NULL;
2223 return mmu_pages_next(pvec, parents, 0);
2224 }
2225
2226 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2227 {
2228 struct kvm_mmu_page *sp;
2229 unsigned int level = 0;
2230
2231 do {
2232 unsigned int idx = parents->idx[level];
2233 sp = parents->parent[level];
2234 if (!sp)
2235 return;
2236
2237 WARN_ON(idx == INVALID_INDEX);
2238 clear_unsync_child_bit(sp, idx);
2239 level++;
2240 } while (!sp->unsync_children);
2241 }
2242
2243 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2244 struct kvm_mmu_page *parent)
2245 {
2246 int i;
2247 struct kvm_mmu_page *sp;
2248 struct mmu_page_path parents;
2249 struct kvm_mmu_pages pages;
2250 LIST_HEAD(invalid_list);
2251 bool flush = false;
2252
2253 while (mmu_unsync_walk(parent, &pages)) {
2254 bool protected = false;
2255
2256 for_each_sp(pages, sp, parents, i)
2257 protected |= rmap_write_protect(vcpu, sp->gfn);
2258
2259 if (protected) {
2260 kvm_flush_remote_tlbs(vcpu->kvm);
2261 flush = false;
2262 }
2263
2264 for_each_sp(pages, sp, parents, i) {
2265 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2266 mmu_pages_clear_parents(&parents);
2267 }
2268 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2269 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2270 cond_resched_lock(&vcpu->kvm->mmu_lock);
2271 flush = false;
2272 }
2273 }
2274
2275 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2276 }
2277
2278 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2279 {
2280 atomic_set(&sp->write_flooding_count, 0);
2281 }
2282
2283 static void clear_sp_write_flooding_count(u64 *spte)
2284 {
2285 struct kvm_mmu_page *sp = page_header(__pa(spte));
2286
2287 __clear_sp_write_flooding_count(sp);
2288 }
2289
2290 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2291 gfn_t gfn,
2292 gva_t gaddr,
2293 unsigned level,
2294 int direct,
2295 unsigned access)
2296 {
2297 union kvm_mmu_page_role role;
2298 unsigned quadrant;
2299 struct kvm_mmu_page *sp;
2300 bool need_sync = false;
2301 bool flush = false;
2302 int collisions = 0;
2303 LIST_HEAD(invalid_list);
2304
2305 role = vcpu->arch.mmu.base_role;
2306 role.level = level;
2307 role.direct = direct;
2308 if (role.direct)
2309 role.cr4_pae = 0;
2310 role.access = access;
2311 if (!vcpu->arch.mmu.direct_map
2312 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2313 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2314 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2315 role.quadrant = quadrant;
2316 }
2317 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2318 if (sp->gfn != gfn) {
2319 collisions++;
2320 continue;
2321 }
2322
2323 if (!need_sync && sp->unsync)
2324 need_sync = true;
2325
2326 if (sp->role.word != role.word)
2327 continue;
2328
2329 if (sp->unsync) {
2330 /* The page is good, but __kvm_sync_page might still end
2331 * up zapping it. If so, break in order to rebuild it.
2332 */
2333 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2334 break;
2335
2336 WARN_ON(!list_empty(&invalid_list));
2337 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2338 }
2339
2340 if (sp->unsync_children)
2341 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2342
2343 __clear_sp_write_flooding_count(sp);
2344 trace_kvm_mmu_get_page(sp, false);
2345 goto out;
2346 }
2347
2348 ++vcpu->kvm->stat.mmu_cache_miss;
2349
2350 sp = kvm_mmu_alloc_page(vcpu, direct);
2351
2352 sp->gfn = gfn;
2353 sp->role = role;
2354 hlist_add_head(&sp->hash_link,
2355 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2356 if (!direct) {
2357 /*
2358 * we should do write protection before syncing pages
2359 * otherwise the content of the synced shadow page may
2360 * be inconsistent with guest page table.
2361 */
2362 account_shadowed(vcpu->kvm, sp);
2363 if (level == PT_PAGE_TABLE_LEVEL &&
2364 rmap_write_protect(vcpu, gfn))
2365 kvm_flush_remote_tlbs(vcpu->kvm);
2366
2367 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2368 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2369 }
2370 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2371 clear_page(sp->spt);
2372 trace_kvm_mmu_get_page(sp, true);
2373
2374 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2375 out:
2376 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2377 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2378 return sp;
2379 }
2380
2381 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2382 struct kvm_vcpu *vcpu, u64 addr)
2383 {
2384 iterator->addr = addr;
2385 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2386 iterator->level = vcpu->arch.mmu.shadow_root_level;
2387
2388 if (iterator->level == PT64_ROOT_4LEVEL &&
2389 vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2390 !vcpu->arch.mmu.direct_map)
2391 --iterator->level;
2392
2393 if (iterator->level == PT32E_ROOT_LEVEL) {
2394 iterator->shadow_addr
2395 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2396 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2397 --iterator->level;
2398 if (!iterator->shadow_addr)
2399 iterator->level = 0;
2400 }
2401 }
2402
2403 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2404 {
2405 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2406 return false;
2407
2408 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2409 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2410 return true;
2411 }
2412
2413 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2414 u64 spte)
2415 {
2416 if (is_last_spte(spte, iterator->level)) {
2417 iterator->level = 0;
2418 return;
2419 }
2420
2421 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2422 --iterator->level;
2423 }
2424
2425 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2426 {
2427 return __shadow_walk_next(iterator, *iterator->sptep);
2428 }
2429
2430 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2431 struct kvm_mmu_page *sp)
2432 {
2433 u64 spte;
2434
2435 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2436
2437 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2438 shadow_user_mask | shadow_x_mask | shadow_me_mask;
2439
2440 if (sp_ad_disabled(sp))
2441 spte |= shadow_acc_track_value;
2442 else
2443 spte |= shadow_accessed_mask;
2444
2445 mmu_spte_set(sptep, spte);
2446
2447 mmu_page_add_parent_pte(vcpu, sp, sptep);
2448
2449 if (sp->unsync_children || sp->unsync)
2450 mark_unsync(sptep);
2451 }
2452
2453 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2454 unsigned direct_access)
2455 {
2456 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2457 struct kvm_mmu_page *child;
2458
2459 /*
2460 * For the direct sp, if the guest pte's dirty bit
2461 * changed form clean to dirty, it will corrupt the
2462 * sp's access: allow writable in the read-only sp,
2463 * so we should update the spte at this point to get
2464 * a new sp with the correct access.
2465 */
2466 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2467 if (child->role.access == direct_access)
2468 return;
2469
2470 drop_parent_pte(child, sptep);
2471 kvm_flush_remote_tlbs(vcpu->kvm);
2472 }
2473 }
2474
2475 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2476 u64 *spte)
2477 {
2478 u64 pte;
2479 struct kvm_mmu_page *child;
2480
2481 pte = *spte;
2482 if (is_shadow_present_pte(pte)) {
2483 if (is_last_spte(pte, sp->role.level)) {
2484 drop_spte(kvm, spte);
2485 if (is_large_pte(pte))
2486 --kvm->stat.lpages;
2487 } else {
2488 child = page_header(pte & PT64_BASE_ADDR_MASK);
2489 drop_parent_pte(child, spte);
2490 }
2491 return true;
2492 }
2493
2494 if (is_mmio_spte(pte))
2495 mmu_spte_clear_no_track(spte);
2496
2497 return false;
2498 }
2499
2500 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2501 struct kvm_mmu_page *sp)
2502 {
2503 unsigned i;
2504
2505 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2506 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2507 }
2508
2509 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2510 {
2511 u64 *sptep;
2512 struct rmap_iterator iter;
2513
2514 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2515 drop_parent_pte(sp, sptep);
2516 }
2517
2518 static int mmu_zap_unsync_children(struct kvm *kvm,
2519 struct kvm_mmu_page *parent,
2520 struct list_head *invalid_list)
2521 {
2522 int i, zapped = 0;
2523 struct mmu_page_path parents;
2524 struct kvm_mmu_pages pages;
2525
2526 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2527 return 0;
2528
2529 while (mmu_unsync_walk(parent, &pages)) {
2530 struct kvm_mmu_page *sp;
2531
2532 for_each_sp(pages, sp, parents, i) {
2533 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2534 mmu_pages_clear_parents(&parents);
2535 zapped++;
2536 }
2537 }
2538
2539 return zapped;
2540 }
2541
2542 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2543 struct list_head *invalid_list)
2544 {
2545 int ret;
2546
2547 trace_kvm_mmu_prepare_zap_page(sp);
2548 ++kvm->stat.mmu_shadow_zapped;
2549 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2550 kvm_mmu_page_unlink_children(kvm, sp);
2551 kvm_mmu_unlink_parents(kvm, sp);
2552
2553 if (!sp->role.invalid && !sp->role.direct)
2554 unaccount_shadowed(kvm, sp);
2555
2556 if (sp->unsync)
2557 kvm_unlink_unsync_page(kvm, sp);
2558 if (!sp->root_count) {
2559 /* Count self */
2560 ret++;
2561 list_move(&sp->link, invalid_list);
2562 kvm_mod_used_mmu_pages(kvm, -1);
2563 } else {
2564 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2565
2566 /*
2567 * The obsolete pages can not be used on any vcpus.
2568 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2569 */
2570 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2571 kvm_reload_remote_mmus(kvm);
2572 }
2573
2574 sp->role.invalid = 1;
2575 return ret;
2576 }
2577
2578 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2579 struct list_head *invalid_list)
2580 {
2581 struct kvm_mmu_page *sp, *nsp;
2582
2583 if (list_empty(invalid_list))
2584 return;
2585
2586 /*
2587 * We need to make sure everyone sees our modifications to
2588 * the page tables and see changes to vcpu->mode here. The barrier
2589 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2590 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2591 *
2592 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2593 * guest mode and/or lockless shadow page table walks.
2594 */
2595 kvm_flush_remote_tlbs(kvm);
2596
2597 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2598 WARN_ON(!sp->role.invalid || sp->root_count);
2599 kvm_mmu_free_page(sp);
2600 }
2601 }
2602
2603 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2604 struct list_head *invalid_list)
2605 {
2606 struct kvm_mmu_page *sp;
2607
2608 if (list_empty(&kvm->arch.active_mmu_pages))
2609 return false;
2610
2611 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2612 struct kvm_mmu_page, link);
2613 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2614 }
2615
2616 /*
2617 * Changing the number of mmu pages allocated to the vm
2618 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2619 */
2620 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2621 {
2622 LIST_HEAD(invalid_list);
2623
2624 spin_lock(&kvm->mmu_lock);
2625
2626 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2627 /* Need to free some mmu pages to achieve the goal. */
2628 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2629 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2630 break;
2631
2632 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2633 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2634 }
2635
2636 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2637
2638 spin_unlock(&kvm->mmu_lock);
2639 }
2640
2641 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2642 {
2643 struct kvm_mmu_page *sp;
2644 LIST_HEAD(invalid_list);
2645 int r;
2646
2647 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2648 r = 0;
2649 spin_lock(&kvm->mmu_lock);
2650 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2651 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2652 sp->role.word);
2653 r = 1;
2654 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2655 }
2656 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2657 spin_unlock(&kvm->mmu_lock);
2658
2659 return r;
2660 }
2661 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2662
2663 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2664 {
2665 trace_kvm_mmu_unsync_page(sp);
2666 ++vcpu->kvm->stat.mmu_unsync;
2667 sp->unsync = 1;
2668
2669 kvm_mmu_mark_parents_unsync(sp);
2670 }
2671
2672 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2673 bool can_unsync)
2674 {
2675 struct kvm_mmu_page *sp;
2676
2677 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2678 return true;
2679
2680 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2681 if (!can_unsync)
2682 return true;
2683
2684 if (sp->unsync)
2685 continue;
2686
2687 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2688 kvm_unsync_page(vcpu, sp);
2689 }
2690
2691 return false;
2692 }
2693
2694 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2695 {
2696 if (pfn_valid(pfn))
2697 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2698
2699 return true;
2700 }
2701
2702 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2703 unsigned pte_access, int level,
2704 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2705 bool can_unsync, bool host_writable)
2706 {
2707 u64 spte = 0;
2708 int ret = 0;
2709 struct kvm_mmu_page *sp;
2710
2711 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2712 return 0;
2713
2714 sp = page_header(__pa(sptep));
2715 if (sp_ad_disabled(sp))
2716 spte |= shadow_acc_track_value;
2717
2718 /*
2719 * For the EPT case, shadow_present_mask is 0 if hardware
2720 * supports exec-only page table entries. In that case,
2721 * ACC_USER_MASK and shadow_user_mask are used to represent
2722 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2723 */
2724 spte |= shadow_present_mask;
2725 if (!speculative)
2726 spte |= spte_shadow_accessed_mask(spte);
2727
2728 if (pte_access & ACC_EXEC_MASK)
2729 spte |= shadow_x_mask;
2730 else
2731 spte |= shadow_nx_mask;
2732
2733 if (pte_access & ACC_USER_MASK)
2734 spte |= shadow_user_mask;
2735
2736 if (level > PT_PAGE_TABLE_LEVEL)
2737 spte |= PT_PAGE_SIZE_MASK;
2738 if (tdp_enabled)
2739 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2740 kvm_is_mmio_pfn(pfn));
2741
2742 if (host_writable)
2743 spte |= SPTE_HOST_WRITEABLE;
2744 else
2745 pte_access &= ~ACC_WRITE_MASK;
2746
2747 spte |= (u64)pfn << PAGE_SHIFT;
2748 spte |= shadow_me_mask;
2749
2750 if (pte_access & ACC_WRITE_MASK) {
2751
2752 /*
2753 * Other vcpu creates new sp in the window between
2754 * mapping_level() and acquiring mmu-lock. We can
2755 * allow guest to retry the access, the mapping can
2756 * be fixed if guest refault.
2757 */
2758 if (level > PT_PAGE_TABLE_LEVEL &&
2759 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2760 goto done;
2761
2762 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2763
2764 /*
2765 * Optimization: for pte sync, if spte was writable the hash
2766 * lookup is unnecessary (and expensive). Write protection
2767 * is responsibility of mmu_get_page / kvm_sync_page.
2768 * Same reasoning can be applied to dirty page accounting.
2769 */
2770 if (!can_unsync && is_writable_pte(*sptep))
2771 goto set_pte;
2772
2773 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2774 pgprintk("%s: found shadow page for %llx, marking ro\n",
2775 __func__, gfn);
2776 ret = 1;
2777 pte_access &= ~ACC_WRITE_MASK;
2778 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2779 }
2780 }
2781
2782 if (pte_access & ACC_WRITE_MASK) {
2783 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2784 spte |= spte_shadow_dirty_mask(spte);
2785 }
2786
2787 if (speculative)
2788 spte = mark_spte_for_access_track(spte);
2789
2790 set_pte:
2791 if (mmu_spte_update(sptep, spte))
2792 kvm_flush_remote_tlbs(vcpu->kvm);
2793 done:
2794 return ret;
2795 }
2796
2797 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2798 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2799 bool speculative, bool host_writable)
2800 {
2801 int was_rmapped = 0;
2802 int rmap_count;
2803 bool emulate = false;
2804
2805 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2806 *sptep, write_fault, gfn);
2807
2808 if (is_shadow_present_pte(*sptep)) {
2809 /*
2810 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2811 * the parent of the now unreachable PTE.
2812 */
2813 if (level > PT_PAGE_TABLE_LEVEL &&
2814 !is_large_pte(*sptep)) {
2815 struct kvm_mmu_page *child;
2816 u64 pte = *sptep;
2817
2818 child = page_header(pte & PT64_BASE_ADDR_MASK);
2819 drop_parent_pte(child, sptep);
2820 kvm_flush_remote_tlbs(vcpu->kvm);
2821 } else if (pfn != spte_to_pfn(*sptep)) {
2822 pgprintk("hfn old %llx new %llx\n",
2823 spte_to_pfn(*sptep), pfn);
2824 drop_spte(vcpu->kvm, sptep);
2825 kvm_flush_remote_tlbs(vcpu->kvm);
2826 } else
2827 was_rmapped = 1;
2828 }
2829
2830 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2831 true, host_writable)) {
2832 if (write_fault)
2833 emulate = true;
2834 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2835 }
2836
2837 if (unlikely(is_mmio_spte(*sptep)))
2838 emulate = true;
2839
2840 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2841 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2842 is_large_pte(*sptep)? "2MB" : "4kB",
2843 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2844 *sptep, sptep);
2845 if (!was_rmapped && is_large_pte(*sptep))
2846 ++vcpu->kvm->stat.lpages;
2847
2848 if (is_shadow_present_pte(*sptep)) {
2849 if (!was_rmapped) {
2850 rmap_count = rmap_add(vcpu, sptep, gfn);
2851 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2852 rmap_recycle(vcpu, sptep, gfn);
2853 }
2854 }
2855
2856 kvm_release_pfn_clean(pfn);
2857
2858 return emulate;
2859 }
2860
2861 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2862 bool no_dirty_log)
2863 {
2864 struct kvm_memory_slot *slot;
2865
2866 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2867 if (!slot)
2868 return KVM_PFN_ERR_FAULT;
2869
2870 return gfn_to_pfn_memslot_atomic(slot, gfn);
2871 }
2872
2873 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2874 struct kvm_mmu_page *sp,
2875 u64 *start, u64 *end)
2876 {
2877 struct page *pages[PTE_PREFETCH_NUM];
2878 struct kvm_memory_slot *slot;
2879 unsigned access = sp->role.access;
2880 int i, ret;
2881 gfn_t gfn;
2882
2883 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2884 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2885 if (!slot)
2886 return -1;
2887
2888 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2889 if (ret <= 0)
2890 return -1;
2891
2892 for (i = 0; i < ret; i++, gfn++, start++)
2893 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2894 page_to_pfn(pages[i]), true, true);
2895
2896 return 0;
2897 }
2898
2899 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2900 struct kvm_mmu_page *sp, u64 *sptep)
2901 {
2902 u64 *spte, *start = NULL;
2903 int i;
2904
2905 WARN_ON(!sp->role.direct);
2906
2907 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2908 spte = sp->spt + i;
2909
2910 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2911 if (is_shadow_present_pte(*spte) || spte == sptep) {
2912 if (!start)
2913 continue;
2914 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2915 break;
2916 start = NULL;
2917 } else if (!start)
2918 start = spte;
2919 }
2920 }
2921
2922 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2923 {
2924 struct kvm_mmu_page *sp;
2925
2926 sp = page_header(__pa(sptep));
2927
2928 /*
2929 * Without accessed bits, there's no way to distinguish between
2930 * actually accessed translations and prefetched, so disable pte
2931 * prefetch if accessed bits aren't available.
2932 */
2933 if (sp_ad_disabled(sp))
2934 return;
2935
2936 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2937 return;
2938
2939 __direct_pte_prefetch(vcpu, sp, sptep);
2940 }
2941
2942 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2943 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2944 {
2945 struct kvm_shadow_walk_iterator iterator;
2946 struct kvm_mmu_page *sp;
2947 int emulate = 0;
2948 gfn_t pseudo_gfn;
2949
2950 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2951 return 0;
2952
2953 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2954 if (iterator.level == level) {
2955 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2956 write, level, gfn, pfn, prefault,
2957 map_writable);
2958 direct_pte_prefetch(vcpu, iterator.sptep);
2959 ++vcpu->stat.pf_fixed;
2960 break;
2961 }
2962
2963 drop_large_spte(vcpu, iterator.sptep);
2964 if (!is_shadow_present_pte(*iterator.sptep)) {
2965 u64 base_addr = iterator.addr;
2966
2967 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2968 pseudo_gfn = base_addr >> PAGE_SHIFT;
2969 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2970 iterator.level - 1, 1, ACC_ALL);
2971
2972 link_shadow_page(vcpu, iterator.sptep, sp);
2973 }
2974 }
2975 return emulate;
2976 }
2977
2978 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2979 {
2980 siginfo_t info;
2981
2982 info.si_signo = SIGBUS;
2983 info.si_errno = 0;
2984 info.si_code = BUS_MCEERR_AR;
2985 info.si_addr = (void __user *)address;
2986 info.si_addr_lsb = PAGE_SHIFT;
2987
2988 send_sig_info(SIGBUS, &info, tsk);
2989 }
2990
2991 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2992 {
2993 /*
2994 * Do not cache the mmio info caused by writing the readonly gfn
2995 * into the spte otherwise read access on readonly gfn also can
2996 * caused mmio page fault and treat it as mmio access.
2997 * Return 1 to tell kvm to emulate it.
2998 */
2999 if (pfn == KVM_PFN_ERR_RO_FAULT)
3000 return 1;
3001
3002 if (pfn == KVM_PFN_ERR_HWPOISON) {
3003 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3004 return 0;
3005 }
3006
3007 return -EFAULT;
3008 }
3009
3010 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3011 gfn_t *gfnp, kvm_pfn_t *pfnp,
3012 int *levelp)
3013 {
3014 kvm_pfn_t pfn = *pfnp;
3015 gfn_t gfn = *gfnp;
3016 int level = *levelp;
3017
3018 /*
3019 * Check if it's a transparent hugepage. If this would be an
3020 * hugetlbfs page, level wouldn't be set to
3021 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3022 * here.
3023 */
3024 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3025 level == PT_PAGE_TABLE_LEVEL &&
3026 PageTransCompoundMap(pfn_to_page(pfn)) &&
3027 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3028 unsigned long mask;
3029 /*
3030 * mmu_notifier_retry was successful and we hold the
3031 * mmu_lock here, so the pmd can't become splitting
3032 * from under us, and in turn
3033 * __split_huge_page_refcount() can't run from under
3034 * us and we can safely transfer the refcount from
3035 * PG_tail to PG_head as we switch the pfn to tail to
3036 * head.
3037 */
3038 *levelp = level = PT_DIRECTORY_LEVEL;
3039 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3040 VM_BUG_ON((gfn & mask) != (pfn & mask));
3041 if (pfn & mask) {
3042 gfn &= ~mask;
3043 *gfnp = gfn;
3044 kvm_release_pfn_clean(pfn);
3045 pfn &= ~mask;
3046 kvm_get_pfn(pfn);
3047 *pfnp = pfn;
3048 }
3049 }
3050 }
3051
3052 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3053 kvm_pfn_t pfn, unsigned access, int *ret_val)
3054 {
3055 /* The pfn is invalid, report the error! */
3056 if (unlikely(is_error_pfn(pfn))) {
3057 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3058 return true;
3059 }
3060
3061 if (unlikely(is_noslot_pfn(pfn)))
3062 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3063
3064 return false;
3065 }
3066
3067 static bool page_fault_can_be_fast(u32 error_code)
3068 {
3069 /*
3070 * Do not fix the mmio spte with invalid generation number which
3071 * need to be updated by slow page fault path.
3072 */
3073 if (unlikely(error_code & PFERR_RSVD_MASK))
3074 return false;
3075
3076 /* See if the page fault is due to an NX violation */
3077 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3078 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3079 return false;
3080
3081 /*
3082 * #PF can be fast if:
3083 * 1. The shadow page table entry is not present, which could mean that
3084 * the fault is potentially caused by access tracking (if enabled).
3085 * 2. The shadow page table entry is present and the fault
3086 * is caused by write-protect, that means we just need change the W
3087 * bit of the spte which can be done out of mmu-lock.
3088 *
3089 * However, if access tracking is disabled we know that a non-present
3090 * page must be a genuine page fault where we have to create a new SPTE.
3091 * So, if access tracking is disabled, we return true only for write
3092 * accesses to a present page.
3093 */
3094
3095 return shadow_acc_track_mask != 0 ||
3096 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3097 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3098 }
3099
3100 /*
3101 * Returns true if the SPTE was fixed successfully. Otherwise,
3102 * someone else modified the SPTE from its original value.
3103 */
3104 static bool
3105 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3106 u64 *sptep, u64 old_spte, u64 new_spte)
3107 {
3108 gfn_t gfn;
3109
3110 WARN_ON(!sp->role.direct);
3111
3112 /*
3113 * Theoretically we could also set dirty bit (and flush TLB) here in
3114 * order to eliminate unnecessary PML logging. See comments in
3115 * set_spte. But fast_page_fault is very unlikely to happen with PML
3116 * enabled, so we do not do this. This might result in the same GPA
3117 * to be logged in PML buffer again when the write really happens, and
3118 * eventually to be called by mark_page_dirty twice. But it's also no
3119 * harm. This also avoids the TLB flush needed after setting dirty bit
3120 * so non-PML cases won't be impacted.
3121 *
3122 * Compare with set_spte where instead shadow_dirty_mask is set.
3123 */
3124 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3125 return false;
3126
3127 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3128 /*
3129 * The gfn of direct spte is stable since it is
3130 * calculated by sp->gfn.
3131 */
3132 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3133 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3134 }
3135
3136 return true;
3137 }
3138
3139 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3140 {
3141 if (fault_err_code & PFERR_FETCH_MASK)
3142 return is_executable_pte(spte);
3143
3144 if (fault_err_code & PFERR_WRITE_MASK)
3145 return is_writable_pte(spte);
3146
3147 /* Fault was on Read access */
3148 return spte & PT_PRESENT_MASK;
3149 }
3150
3151 /*
3152 * Return value:
3153 * - true: let the vcpu to access on the same address again.
3154 * - false: let the real page fault path to fix it.
3155 */
3156 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3157 u32 error_code)
3158 {
3159 struct kvm_shadow_walk_iterator iterator;
3160 struct kvm_mmu_page *sp;
3161 bool fault_handled = false;
3162 u64 spte = 0ull;
3163 uint retry_count = 0;
3164
3165 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3166 return false;
3167
3168 if (!page_fault_can_be_fast(error_code))
3169 return false;
3170
3171 walk_shadow_page_lockless_begin(vcpu);
3172
3173 do {
3174 u64 new_spte;
3175
3176 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3177 if (!is_shadow_present_pte(spte) ||
3178 iterator.level < level)
3179 break;
3180
3181 sp = page_header(__pa(iterator.sptep));
3182 if (!is_last_spte(spte, sp->role.level))
3183 break;
3184
3185 /*
3186 * Check whether the memory access that caused the fault would
3187 * still cause it if it were to be performed right now. If not,
3188 * then this is a spurious fault caused by TLB lazily flushed,
3189 * or some other CPU has already fixed the PTE after the
3190 * current CPU took the fault.
3191 *
3192 * Need not check the access of upper level table entries since
3193 * they are always ACC_ALL.
3194 */
3195 if (is_access_allowed(error_code, spte)) {
3196 fault_handled = true;
3197 break;
3198 }
3199
3200 new_spte = spte;
3201
3202 if (is_access_track_spte(spte))
3203 new_spte = restore_acc_track_spte(new_spte);
3204
3205 /*
3206 * Currently, to simplify the code, write-protection can
3207 * be removed in the fast path only if the SPTE was
3208 * write-protected for dirty-logging or access tracking.
3209 */
3210 if ((error_code & PFERR_WRITE_MASK) &&
3211 spte_can_locklessly_be_made_writable(spte))
3212 {
3213 new_spte |= PT_WRITABLE_MASK;
3214
3215 /*
3216 * Do not fix write-permission on the large spte. Since
3217 * we only dirty the first page into the dirty-bitmap in
3218 * fast_pf_fix_direct_spte(), other pages are missed
3219 * if its slot has dirty logging enabled.
3220 *
3221 * Instead, we let the slow page fault path create a
3222 * normal spte to fix the access.
3223 *
3224 * See the comments in kvm_arch_commit_memory_region().
3225 */
3226 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3227 break;
3228 }
3229
3230 /* Verify that the fault can be handled in the fast path */
3231 if (new_spte == spte ||
3232 !is_access_allowed(error_code, new_spte))
3233 break;
3234
3235 /*
3236 * Currently, fast page fault only works for direct mapping
3237 * since the gfn is not stable for indirect shadow page. See
3238 * Documentation/virtual/kvm/locking.txt to get more detail.
3239 */
3240 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3241 iterator.sptep, spte,
3242 new_spte);
3243 if (fault_handled)
3244 break;
3245
3246 if (++retry_count > 4) {
3247 printk_once(KERN_WARNING
3248 "kvm: Fast #PF retrying more than 4 times.\n");
3249 break;
3250 }
3251
3252 } while (true);
3253
3254 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3255 spte, fault_handled);
3256 walk_shadow_page_lockless_end(vcpu);
3257
3258 return fault_handled;
3259 }
3260
3261 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3262 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3263 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3264
3265 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3266 gfn_t gfn, bool prefault)
3267 {
3268 int r;
3269 int level;
3270 bool force_pt_level = false;
3271 kvm_pfn_t pfn;
3272 unsigned long mmu_seq;
3273 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3274
3275 level = mapping_level(vcpu, gfn, &force_pt_level);
3276 if (likely(!force_pt_level)) {
3277 /*
3278 * This path builds a PAE pagetable - so we can map
3279 * 2mb pages at maximum. Therefore check if the level
3280 * is larger than that.
3281 */
3282 if (level > PT_DIRECTORY_LEVEL)
3283 level = PT_DIRECTORY_LEVEL;
3284
3285 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3286 }
3287
3288 if (fast_page_fault(vcpu, v, level, error_code))
3289 return 0;
3290
3291 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3292 smp_rmb();
3293
3294 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3295 return 0;
3296
3297 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3298 return r;
3299
3300 spin_lock(&vcpu->kvm->mmu_lock);
3301 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3302 goto out_unlock;
3303 if (make_mmu_pages_available(vcpu) < 0)
3304 goto out_unlock;
3305 if (likely(!force_pt_level))
3306 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3307 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3308 spin_unlock(&vcpu->kvm->mmu_lock);
3309
3310 return r;
3311
3312 out_unlock:
3313 spin_unlock(&vcpu->kvm->mmu_lock);
3314 kvm_release_pfn_clean(pfn);
3315 return 0;
3316 }
3317
3318
3319 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3320 {
3321 int i;
3322 struct kvm_mmu_page *sp;
3323 LIST_HEAD(invalid_list);
3324
3325 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3326 return;
3327
3328 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL &&
3329 (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL ||
3330 vcpu->arch.mmu.direct_map)) {
3331 hpa_t root = vcpu->arch.mmu.root_hpa;
3332
3333 spin_lock(&vcpu->kvm->mmu_lock);
3334 sp = page_header(root);
3335 --sp->root_count;
3336 if (!sp->root_count && sp->role.invalid) {
3337 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3338 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3339 }
3340 spin_unlock(&vcpu->kvm->mmu_lock);
3341 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3342 return;
3343 }
3344
3345 spin_lock(&vcpu->kvm->mmu_lock);
3346 for (i = 0; i < 4; ++i) {
3347 hpa_t root = vcpu->arch.mmu.pae_root[i];
3348
3349 if (root) {
3350 root &= PT64_BASE_ADDR_MASK;
3351 sp = page_header(root);
3352 --sp->root_count;
3353 if (!sp->root_count && sp->role.invalid)
3354 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3355 &invalid_list);
3356 }
3357 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3358 }
3359 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3360 spin_unlock(&vcpu->kvm->mmu_lock);
3361 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3362 }
3363
3364 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3365 {
3366 int ret = 0;
3367
3368 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3369 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3370 ret = 1;
3371 }
3372
3373 return ret;
3374 }
3375
3376 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3377 {
3378 struct kvm_mmu_page *sp;
3379 unsigned i;
3380
3381 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3382 spin_lock(&vcpu->kvm->mmu_lock);
3383 if(make_mmu_pages_available(vcpu) < 0) {
3384 spin_unlock(&vcpu->kvm->mmu_lock);
3385 return 1;
3386 }
3387 sp = kvm_mmu_get_page(vcpu, 0, 0,
3388 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3389 ++sp->root_count;
3390 spin_unlock(&vcpu->kvm->mmu_lock);
3391 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3392 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3393 for (i = 0; i < 4; ++i) {
3394 hpa_t root = vcpu->arch.mmu.pae_root[i];
3395
3396 MMU_WARN_ON(VALID_PAGE(root));
3397 spin_lock(&vcpu->kvm->mmu_lock);
3398 if (make_mmu_pages_available(vcpu) < 0) {
3399 spin_unlock(&vcpu->kvm->mmu_lock);
3400 return 1;
3401 }
3402 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3403 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3404 root = __pa(sp->spt);
3405 ++sp->root_count;
3406 spin_unlock(&vcpu->kvm->mmu_lock);
3407 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3408 }
3409 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3410 } else
3411 BUG();
3412
3413 return 0;
3414 }
3415
3416 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3417 {
3418 struct kvm_mmu_page *sp;
3419 u64 pdptr, pm_mask;
3420 gfn_t root_gfn;
3421 int i;
3422
3423 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3424
3425 if (mmu_check_root(vcpu, root_gfn))
3426 return 1;
3427
3428 /*
3429 * Do we shadow a long mode page table? If so we need to
3430 * write-protect the guests page table root.
3431 */
3432 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3433 hpa_t root = vcpu->arch.mmu.root_hpa;
3434
3435 MMU_WARN_ON(VALID_PAGE(root));
3436
3437 spin_lock(&vcpu->kvm->mmu_lock);
3438 if (make_mmu_pages_available(vcpu) < 0) {
3439 spin_unlock(&vcpu->kvm->mmu_lock);
3440 return 1;
3441 }
3442 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3443 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3444 root = __pa(sp->spt);
3445 ++sp->root_count;
3446 spin_unlock(&vcpu->kvm->mmu_lock);
3447 vcpu->arch.mmu.root_hpa = root;
3448 return 0;
3449 }
3450
3451 /*
3452 * We shadow a 32 bit page table. This may be a legacy 2-level
3453 * or a PAE 3-level page table. In either case we need to be aware that
3454 * the shadow page table may be a PAE or a long mode page table.
3455 */
3456 pm_mask = PT_PRESENT_MASK;
3457 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3458 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3459
3460 for (i = 0; i < 4; ++i) {
3461 hpa_t root = vcpu->arch.mmu.pae_root[i];
3462
3463 MMU_WARN_ON(VALID_PAGE(root));
3464 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3465 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3466 if (!(pdptr & PT_PRESENT_MASK)) {
3467 vcpu->arch.mmu.pae_root[i] = 0;
3468 continue;
3469 }
3470 root_gfn = pdptr >> PAGE_SHIFT;
3471 if (mmu_check_root(vcpu, root_gfn))
3472 return 1;
3473 }
3474 spin_lock(&vcpu->kvm->mmu_lock);
3475 if (make_mmu_pages_available(vcpu) < 0) {
3476 spin_unlock(&vcpu->kvm->mmu_lock);
3477 return 1;
3478 }
3479 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3480 0, ACC_ALL);
3481 root = __pa(sp->spt);
3482 ++sp->root_count;
3483 spin_unlock(&vcpu->kvm->mmu_lock);
3484
3485 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3486 }
3487 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3488
3489 /*
3490 * If we shadow a 32 bit page table with a long mode page
3491 * table we enter this path.
3492 */
3493 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3494 if (vcpu->arch.mmu.lm_root == NULL) {
3495 /*
3496 * The additional page necessary for this is only
3497 * allocated on demand.
3498 */
3499
3500 u64 *lm_root;
3501
3502 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3503 if (lm_root == NULL)
3504 return 1;
3505
3506 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3507
3508 vcpu->arch.mmu.lm_root = lm_root;
3509 }
3510
3511 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3512 }
3513
3514 return 0;
3515 }
3516
3517 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3518 {
3519 if (vcpu->arch.mmu.direct_map)
3520 return mmu_alloc_direct_roots(vcpu);
3521 else
3522 return mmu_alloc_shadow_roots(vcpu);
3523 }
3524
3525 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3526 {
3527 int i;
3528 struct kvm_mmu_page *sp;
3529
3530 if (vcpu->arch.mmu.direct_map)
3531 return;
3532
3533 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3534 return;
3535
3536 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3537 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3538 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3539 hpa_t root = vcpu->arch.mmu.root_hpa;
3540 sp = page_header(root);
3541 mmu_sync_children(vcpu, sp);
3542 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3543 return;
3544 }
3545 for (i = 0; i < 4; ++i) {
3546 hpa_t root = vcpu->arch.mmu.pae_root[i];
3547
3548 if (root && VALID_PAGE(root)) {
3549 root &= PT64_BASE_ADDR_MASK;
3550 sp = page_header(root);
3551 mmu_sync_children(vcpu, sp);
3552 }
3553 }
3554 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3555 }
3556
3557 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3558 {
3559 spin_lock(&vcpu->kvm->mmu_lock);
3560 mmu_sync_roots(vcpu);
3561 spin_unlock(&vcpu->kvm->mmu_lock);
3562 }
3563 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3564
3565 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3566 u32 access, struct x86_exception *exception)
3567 {
3568 if (exception)
3569 exception->error_code = 0;
3570 return vaddr;
3571 }
3572
3573 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3574 u32 access,
3575 struct x86_exception *exception)
3576 {
3577 if (exception)
3578 exception->error_code = 0;
3579 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3580 }
3581
3582 static bool
3583 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3584 {
3585 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3586
3587 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3588 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3589 }
3590
3591 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3592 {
3593 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3594 }
3595
3596 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3597 {
3598 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3599 }
3600
3601 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3602 {
3603 /*
3604 * A nested guest cannot use the MMIO cache if it is using nested
3605 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3606 */
3607 if (mmu_is_nested(vcpu))
3608 return false;
3609
3610 if (direct)
3611 return vcpu_match_mmio_gpa(vcpu, addr);
3612
3613 return vcpu_match_mmio_gva(vcpu, addr);
3614 }
3615
3616 /* return true if reserved bit is detected on spte. */
3617 static bool
3618 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3619 {
3620 struct kvm_shadow_walk_iterator iterator;
3621 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3622 int root, leaf;
3623 bool reserved = false;
3624
3625 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3626 goto exit;
3627
3628 walk_shadow_page_lockless_begin(vcpu);
3629
3630 for (shadow_walk_init(&iterator, vcpu, addr),
3631 leaf = root = iterator.level;
3632 shadow_walk_okay(&iterator);
3633 __shadow_walk_next(&iterator, spte)) {
3634 spte = mmu_spte_get_lockless(iterator.sptep);
3635
3636 sptes[leaf - 1] = spte;
3637 leaf--;
3638
3639 if (!is_shadow_present_pte(spte))
3640 break;
3641
3642 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3643 iterator.level);
3644 }
3645
3646 walk_shadow_page_lockless_end(vcpu);
3647
3648 if (reserved) {
3649 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3650 __func__, addr);
3651 while (root > leaf) {
3652 pr_err("------ spte 0x%llx level %d.\n",
3653 sptes[root - 1], root);
3654 root--;
3655 }
3656 }
3657 exit:
3658 *sptep = spte;
3659 return reserved;
3660 }
3661
3662 /*
3663 * Return values of handle_mmio_page_fault:
3664 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
3665 * directly.
3666 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
3667 * fault path update the mmio spte.
3668 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
3669 * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
3670 */
3671 enum {
3672 RET_MMIO_PF_EMULATE = 1,
3673 RET_MMIO_PF_INVALID = 2,
3674 RET_MMIO_PF_RETRY = 0,
3675 RET_MMIO_PF_BUG = -1
3676 };
3677
3678 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3679 {
3680 u64 spte;
3681 bool reserved;
3682
3683 if (mmio_info_in_cache(vcpu, addr, direct))
3684 return RET_MMIO_PF_EMULATE;
3685
3686 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3687 if (WARN_ON(reserved))
3688 return RET_MMIO_PF_BUG;
3689
3690 if (is_mmio_spte(spte)) {
3691 gfn_t gfn = get_mmio_spte_gfn(spte);
3692 unsigned access = get_mmio_spte_access(spte);
3693
3694 if (!check_mmio_spte(vcpu, spte))
3695 return RET_MMIO_PF_INVALID;
3696
3697 if (direct)
3698 addr = 0;
3699
3700 trace_handle_mmio_page_fault(addr, gfn, access);
3701 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3702 return RET_MMIO_PF_EMULATE;
3703 }
3704
3705 /*
3706 * If the page table is zapped by other cpus, let CPU fault again on
3707 * the address.
3708 */
3709 return RET_MMIO_PF_RETRY;
3710 }
3711 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3712
3713 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3714 u32 error_code, gfn_t gfn)
3715 {
3716 if (unlikely(error_code & PFERR_RSVD_MASK))
3717 return false;
3718
3719 if (!(error_code & PFERR_PRESENT_MASK) ||
3720 !(error_code & PFERR_WRITE_MASK))
3721 return false;
3722
3723 /*
3724 * guest is writing the page which is write tracked which can
3725 * not be fixed by page fault handler.
3726 */
3727 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3728 return true;
3729
3730 return false;
3731 }
3732
3733 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3734 {
3735 struct kvm_shadow_walk_iterator iterator;
3736 u64 spte;
3737
3738 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3739 return;
3740
3741 walk_shadow_page_lockless_begin(vcpu);
3742 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3743 clear_sp_write_flooding_count(iterator.sptep);
3744 if (!is_shadow_present_pte(spte))
3745 break;
3746 }
3747 walk_shadow_page_lockless_end(vcpu);
3748 }
3749
3750 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3751 u32 error_code, bool prefault)
3752 {
3753 gfn_t gfn = gva >> PAGE_SHIFT;
3754 int r;
3755
3756 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3757
3758 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3759 return 1;
3760
3761 r = mmu_topup_memory_caches(vcpu);
3762 if (r)
3763 return r;
3764
3765 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3766
3767
3768 return nonpaging_map(vcpu, gva & PAGE_MASK,
3769 error_code, gfn, prefault);
3770 }
3771
3772 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3773 {
3774 struct kvm_arch_async_pf arch;
3775
3776 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3777 arch.gfn = gfn;
3778 arch.direct_map = vcpu->arch.mmu.direct_map;
3779 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3780
3781 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3782 }
3783
3784 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3785 {
3786 if (unlikely(!lapic_in_kernel(vcpu) ||
3787 kvm_event_needs_reinjection(vcpu)))
3788 return false;
3789
3790 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3791 return false;
3792
3793 return kvm_x86_ops->interrupt_allowed(vcpu);
3794 }
3795
3796 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3797 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3798 {
3799 struct kvm_memory_slot *slot;
3800 bool async;
3801
3802 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3803 async = false;
3804 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3805 if (!async)
3806 return false; /* *pfn has correct page already */
3807
3808 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3809 trace_kvm_try_async_get_page(gva, gfn);
3810 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3811 trace_kvm_async_pf_doublefault(gva, gfn);
3812 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3813 return true;
3814 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3815 return true;
3816 }
3817
3818 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3819 return false;
3820 }
3821
3822 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3823 u64 fault_address, char *insn, int insn_len,
3824 bool need_unprotect)
3825 {
3826 int r = 1;
3827
3828 switch (vcpu->arch.apf.host_apf_reason) {
3829 default:
3830 trace_kvm_page_fault(fault_address, error_code);
3831
3832 if (need_unprotect && kvm_event_needs_reinjection(vcpu))
3833 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3834 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3835 insn_len);
3836 break;
3837 case KVM_PV_REASON_PAGE_NOT_PRESENT:
3838 vcpu->arch.apf.host_apf_reason = 0;
3839 local_irq_disable();
3840 kvm_async_pf_task_wait(fault_address);
3841 local_irq_enable();
3842 break;
3843 case KVM_PV_REASON_PAGE_READY:
3844 vcpu->arch.apf.host_apf_reason = 0;
3845 local_irq_disable();
3846 kvm_async_pf_task_wake(fault_address);
3847 local_irq_enable();
3848 break;
3849 }
3850 return r;
3851 }
3852 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3853
3854 static bool
3855 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3856 {
3857 int page_num = KVM_PAGES_PER_HPAGE(level);
3858
3859 gfn &= ~(page_num - 1);
3860
3861 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3862 }
3863
3864 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3865 bool prefault)
3866 {
3867 kvm_pfn_t pfn;
3868 int r;
3869 int level;
3870 bool force_pt_level;
3871 gfn_t gfn = gpa >> PAGE_SHIFT;
3872 unsigned long mmu_seq;
3873 int write = error_code & PFERR_WRITE_MASK;
3874 bool map_writable;
3875
3876 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3877
3878 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3879 return 1;
3880
3881 r = mmu_topup_memory_caches(vcpu);
3882 if (r)
3883 return r;
3884
3885 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3886 PT_DIRECTORY_LEVEL);
3887 level = mapping_level(vcpu, gfn, &force_pt_level);
3888 if (likely(!force_pt_level)) {
3889 if (level > PT_DIRECTORY_LEVEL &&
3890 !check_hugepage_cache_consistency(vcpu, gfn, level))
3891 level = PT_DIRECTORY_LEVEL;
3892 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3893 }
3894
3895 if (fast_page_fault(vcpu, gpa, level, error_code))
3896 return 0;
3897
3898 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3899 smp_rmb();
3900
3901 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3902 return 0;
3903
3904 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3905 return r;
3906
3907 spin_lock(&vcpu->kvm->mmu_lock);
3908 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3909 goto out_unlock;
3910 if (make_mmu_pages_available(vcpu) < 0)
3911 goto out_unlock;
3912 if (likely(!force_pt_level))
3913 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3914 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3915 spin_unlock(&vcpu->kvm->mmu_lock);
3916
3917 return r;
3918
3919 out_unlock:
3920 spin_unlock(&vcpu->kvm->mmu_lock);
3921 kvm_release_pfn_clean(pfn);
3922 return 0;
3923 }
3924
3925 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3926 struct kvm_mmu *context)
3927 {
3928 context->page_fault = nonpaging_page_fault;
3929 context->gva_to_gpa = nonpaging_gva_to_gpa;
3930 context->sync_page = nonpaging_sync_page;
3931 context->invlpg = nonpaging_invlpg;
3932 context->update_pte = nonpaging_update_pte;
3933 context->root_level = 0;
3934 context->shadow_root_level = PT32E_ROOT_LEVEL;
3935 context->root_hpa = INVALID_PAGE;
3936 context->direct_map = true;
3937 context->nx = false;
3938 }
3939
3940 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3941 {
3942 mmu_free_roots(vcpu);
3943 }
3944
3945 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3946 {
3947 return kvm_read_cr3(vcpu);
3948 }
3949
3950 static void inject_page_fault(struct kvm_vcpu *vcpu,
3951 struct x86_exception *fault)
3952 {
3953 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3954 }
3955
3956 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3957 unsigned access, int *nr_present)
3958 {
3959 if (unlikely(is_mmio_spte(*sptep))) {
3960 if (gfn != get_mmio_spte_gfn(*sptep)) {
3961 mmu_spte_clear_no_track(sptep);
3962 return true;
3963 }
3964
3965 (*nr_present)++;
3966 mark_mmio_spte(vcpu, sptep, gfn, access);
3967 return true;
3968 }
3969
3970 return false;
3971 }
3972
3973 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3974 unsigned level, unsigned gpte)
3975 {
3976 /*
3977 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3978 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3979 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3980 */
3981 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3982
3983 /*
3984 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3985 * If it is clear, there are no large pages at this level, so clear
3986 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3987 */
3988 gpte &= level - mmu->last_nonleaf_level;
3989
3990 return gpte & PT_PAGE_SIZE_MASK;
3991 }
3992
3993 #define PTTYPE_EPT 18 /* arbitrary */
3994 #define PTTYPE PTTYPE_EPT
3995 #include "paging_tmpl.h"
3996 #undef PTTYPE
3997
3998 #define PTTYPE 64
3999 #include "paging_tmpl.h"
4000 #undef PTTYPE
4001
4002 #define PTTYPE 32
4003 #include "paging_tmpl.h"
4004 #undef PTTYPE
4005
4006 static void
4007 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4008 struct rsvd_bits_validate *rsvd_check,
4009 int maxphyaddr, int level, bool nx, bool gbpages,
4010 bool pse, bool amd)
4011 {
4012 u64 exb_bit_rsvd = 0;
4013 u64 gbpages_bit_rsvd = 0;
4014 u64 nonleaf_bit8_rsvd = 0;
4015
4016 rsvd_check->bad_mt_xwr = 0;
4017
4018 if (!nx)
4019 exb_bit_rsvd = rsvd_bits(63, 63);
4020 if (!gbpages)
4021 gbpages_bit_rsvd = rsvd_bits(7, 7);
4022
4023 /*
4024 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4025 * leaf entries) on AMD CPUs only.
4026 */
4027 if (amd)
4028 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4029
4030 switch (level) {
4031 case PT32_ROOT_LEVEL:
4032 /* no rsvd bits for 2 level 4K page table entries */
4033 rsvd_check->rsvd_bits_mask[0][1] = 0;
4034 rsvd_check->rsvd_bits_mask[0][0] = 0;
4035 rsvd_check->rsvd_bits_mask[1][0] =
4036 rsvd_check->rsvd_bits_mask[0][0];
4037
4038 if (!pse) {
4039 rsvd_check->rsvd_bits_mask[1][1] = 0;
4040 break;
4041 }
4042
4043 if (is_cpuid_PSE36())
4044 /* 36bits PSE 4MB page */
4045 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4046 else
4047 /* 32 bits PSE 4MB page */
4048 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4049 break;
4050 case PT32E_ROOT_LEVEL:
4051 rsvd_check->rsvd_bits_mask[0][2] =
4052 rsvd_bits(maxphyaddr, 63) |
4053 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4054 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4055 rsvd_bits(maxphyaddr, 62); /* PDE */
4056 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4057 rsvd_bits(maxphyaddr, 62); /* PTE */
4058 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4059 rsvd_bits(maxphyaddr, 62) |
4060 rsvd_bits(13, 20); /* large page */
4061 rsvd_check->rsvd_bits_mask[1][0] =
4062 rsvd_check->rsvd_bits_mask[0][0];
4063 break;
4064 case PT64_ROOT_5LEVEL:
4065 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4066 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4067 rsvd_bits(maxphyaddr, 51);
4068 rsvd_check->rsvd_bits_mask[1][4] =
4069 rsvd_check->rsvd_bits_mask[0][4];
4070 case PT64_ROOT_4LEVEL:
4071 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4072 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4073 rsvd_bits(maxphyaddr, 51);
4074 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4075 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4076 rsvd_bits(maxphyaddr, 51);
4077 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4078 rsvd_bits(maxphyaddr, 51);
4079 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4080 rsvd_bits(maxphyaddr, 51);
4081 rsvd_check->rsvd_bits_mask[1][3] =
4082 rsvd_check->rsvd_bits_mask[0][3];
4083 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4084 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4085 rsvd_bits(13, 29);
4086 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4087 rsvd_bits(maxphyaddr, 51) |
4088 rsvd_bits(13, 20); /* large page */
4089 rsvd_check->rsvd_bits_mask[1][0] =
4090 rsvd_check->rsvd_bits_mask[0][0];
4091 break;
4092 }
4093 }
4094
4095 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4096 struct kvm_mmu *context)
4097 {
4098 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4099 cpuid_maxphyaddr(vcpu), context->root_level,
4100 context->nx,
4101 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4102 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4103 }
4104
4105 static void
4106 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4107 int maxphyaddr, bool execonly)
4108 {
4109 u64 bad_mt_xwr;
4110
4111 rsvd_check->rsvd_bits_mask[0][4] =
4112 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4113 rsvd_check->rsvd_bits_mask[0][3] =
4114 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4115 rsvd_check->rsvd_bits_mask[0][2] =
4116 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4117 rsvd_check->rsvd_bits_mask[0][1] =
4118 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4119 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4120
4121 /* large page */
4122 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4123 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4124 rsvd_check->rsvd_bits_mask[1][2] =
4125 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4126 rsvd_check->rsvd_bits_mask[1][1] =
4127 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4128 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4129
4130 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4131 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4132 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4133 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4134 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4135 if (!execonly) {
4136 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4137 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4138 }
4139 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4140 }
4141
4142 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4143 struct kvm_mmu *context, bool execonly)
4144 {
4145 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4146 cpuid_maxphyaddr(vcpu), execonly);
4147 }
4148
4149 /*
4150 * the page table on host is the shadow page table for the page
4151 * table in guest or amd nested guest, its mmu features completely
4152 * follow the features in guest.
4153 */
4154 void
4155 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4156 {
4157 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4158 struct rsvd_bits_validate *shadow_zero_check;
4159 int i;
4160
4161 /*
4162 * Passing "true" to the last argument is okay; it adds a check
4163 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4164 */
4165 shadow_zero_check = &context->shadow_zero_check;
4166 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4167 boot_cpu_data.x86_phys_bits,
4168 context->shadow_root_level, uses_nx,
4169 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4170 is_pse(vcpu), true);
4171
4172 if (!shadow_me_mask)
4173 return;
4174
4175 for (i = context->shadow_root_level; --i >= 0;) {
4176 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4177 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4178 }
4179
4180 }
4181 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4182
4183 static inline bool boot_cpu_is_amd(void)
4184 {
4185 WARN_ON_ONCE(!tdp_enabled);
4186 return shadow_x_mask == 0;
4187 }
4188
4189 /*
4190 * the direct page table on host, use as much mmu features as
4191 * possible, however, kvm currently does not do execution-protection.
4192 */
4193 static void
4194 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4195 struct kvm_mmu *context)
4196 {
4197 struct rsvd_bits_validate *shadow_zero_check;
4198 int i;
4199
4200 shadow_zero_check = &context->shadow_zero_check;
4201
4202 if (boot_cpu_is_amd())
4203 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4204 boot_cpu_data.x86_phys_bits,
4205 context->shadow_root_level, false,
4206 boot_cpu_has(X86_FEATURE_GBPAGES),
4207 true, true);
4208 else
4209 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4210 boot_cpu_data.x86_phys_bits,
4211 false);
4212
4213 if (!shadow_me_mask)
4214 return;
4215
4216 for (i = context->shadow_root_level; --i >= 0;) {
4217 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4218 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4219 }
4220 }
4221
4222 /*
4223 * as the comments in reset_shadow_zero_bits_mask() except it
4224 * is the shadow page table for intel nested guest.
4225 */
4226 static void
4227 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4228 struct kvm_mmu *context, bool execonly)
4229 {
4230 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4231 boot_cpu_data.x86_phys_bits, execonly);
4232 }
4233
4234 #define BYTE_MASK(access) \
4235 ((1 & (access) ? 2 : 0) | \
4236 (2 & (access) ? 4 : 0) | \
4237 (3 & (access) ? 8 : 0) | \
4238 (4 & (access) ? 16 : 0) | \
4239 (5 & (access) ? 32 : 0) | \
4240 (6 & (access) ? 64 : 0) | \
4241 (7 & (access) ? 128 : 0))
4242
4243
4244 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4245 struct kvm_mmu *mmu, bool ept)
4246 {
4247 unsigned byte;
4248
4249 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4250 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4251 const u8 u = BYTE_MASK(ACC_USER_MASK);
4252
4253 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4254 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4255 bool cr0_wp = is_write_protection(vcpu);
4256
4257 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4258 unsigned pfec = byte << 1;
4259
4260 /*
4261 * Each "*f" variable has a 1 bit for each UWX value
4262 * that causes a fault with the given PFEC.
4263 */
4264
4265 /* Faults from writes to non-writable pages */
4266 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4267 /* Faults from user mode accesses to supervisor pages */
4268 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4269 /* Faults from fetches of non-executable pages*/
4270 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4271 /* Faults from kernel mode fetches of user pages */
4272 u8 smepf = 0;
4273 /* Faults from kernel mode accesses of user pages */
4274 u8 smapf = 0;
4275
4276 if (!ept) {
4277 /* Faults from kernel mode accesses to user pages */
4278 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4279
4280 /* Not really needed: !nx will cause pte.nx to fault */
4281 if (!mmu->nx)
4282 ff = 0;
4283
4284 /* Allow supervisor writes if !cr0.wp */
4285 if (!cr0_wp)
4286 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4287
4288 /* Disallow supervisor fetches of user code if cr4.smep */
4289 if (cr4_smep)
4290 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4291
4292 /*
4293 * SMAP:kernel-mode data accesses from user-mode
4294 * mappings should fault. A fault is considered
4295 * as a SMAP violation if all of the following
4296 * conditions are ture:
4297 * - X86_CR4_SMAP is set in CR4
4298 * - A user page is accessed
4299 * - The access is not a fetch
4300 * - Page fault in kernel mode
4301 * - if CPL = 3 or X86_EFLAGS_AC is clear
4302 *
4303 * Here, we cover the first three conditions.
4304 * The fourth is computed dynamically in permission_fault();
4305 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4306 * *not* subject to SMAP restrictions.
4307 */
4308 if (cr4_smap)
4309 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4310 }
4311
4312 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4313 }
4314 }
4315
4316 /*
4317 * PKU is an additional mechanism by which the paging controls access to
4318 * user-mode addresses based on the value in the PKRU register. Protection
4319 * key violations are reported through a bit in the page fault error code.
4320 * Unlike other bits of the error code, the PK bit is not known at the
4321 * call site of e.g. gva_to_gpa; it must be computed directly in
4322 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4323 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4324 *
4325 * In particular the following conditions come from the error code, the
4326 * page tables and the machine state:
4327 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4328 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4329 * - PK is always zero if U=0 in the page tables
4330 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4331 *
4332 * The PKRU bitmask caches the result of these four conditions. The error
4333 * code (minus the P bit) and the page table's U bit form an index into the
4334 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4335 * with the two bits of the PKRU register corresponding to the protection key.
4336 * For the first three conditions above the bits will be 00, thus masking
4337 * away both AD and WD. For all reads or if the last condition holds, WD
4338 * only will be masked away.
4339 */
4340 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4341 bool ept)
4342 {
4343 unsigned bit;
4344 bool wp;
4345
4346 if (ept) {
4347 mmu->pkru_mask = 0;
4348 return;
4349 }
4350
4351 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4352 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4353 mmu->pkru_mask = 0;
4354 return;
4355 }
4356
4357 wp = is_write_protection(vcpu);
4358
4359 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4360 unsigned pfec, pkey_bits;
4361 bool check_pkey, check_write, ff, uf, wf, pte_user;
4362
4363 pfec = bit << 1;
4364 ff = pfec & PFERR_FETCH_MASK;
4365 uf = pfec & PFERR_USER_MASK;
4366 wf = pfec & PFERR_WRITE_MASK;
4367
4368 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4369 pte_user = pfec & PFERR_RSVD_MASK;
4370
4371 /*
4372 * Only need to check the access which is not an
4373 * instruction fetch and is to a user page.
4374 */
4375 check_pkey = (!ff && pte_user);
4376 /*
4377 * write access is controlled by PKRU if it is a
4378 * user access or CR0.WP = 1.
4379 */
4380 check_write = check_pkey && wf && (uf || wp);
4381
4382 /* PKRU.AD stops both read and write access. */
4383 pkey_bits = !!check_pkey;
4384 /* PKRU.WD stops write access. */
4385 pkey_bits |= (!!check_write) << 1;
4386
4387 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4388 }
4389 }
4390
4391 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4392 {
4393 unsigned root_level = mmu->root_level;
4394
4395 mmu->last_nonleaf_level = root_level;
4396 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4397 mmu->last_nonleaf_level++;
4398 }
4399
4400 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4401 struct kvm_mmu *context,
4402 int level)
4403 {
4404 context->nx = is_nx(vcpu);
4405 context->root_level = level;
4406
4407 reset_rsvds_bits_mask(vcpu, context);
4408 update_permission_bitmask(vcpu, context, false);
4409 update_pkru_bitmask(vcpu, context, false);
4410 update_last_nonleaf_level(vcpu, context);
4411
4412 MMU_WARN_ON(!is_pae(vcpu));
4413 context->page_fault = paging64_page_fault;
4414 context->gva_to_gpa = paging64_gva_to_gpa;
4415 context->sync_page = paging64_sync_page;
4416 context->invlpg = paging64_invlpg;
4417 context->update_pte = paging64_update_pte;
4418 context->shadow_root_level = level;
4419 context->root_hpa = INVALID_PAGE;
4420 context->direct_map = false;
4421 }
4422
4423 static void paging64_init_context(struct kvm_vcpu *vcpu,
4424 struct kvm_mmu *context)
4425 {
4426 int root_level = is_la57_mode(vcpu) ?
4427 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4428
4429 paging64_init_context_common(vcpu, context, root_level);
4430 }
4431
4432 static void paging32_init_context(struct kvm_vcpu *vcpu,
4433 struct kvm_mmu *context)
4434 {
4435 context->nx = false;
4436 context->root_level = PT32_ROOT_LEVEL;
4437
4438 reset_rsvds_bits_mask(vcpu, context);
4439 update_permission_bitmask(vcpu, context, false);
4440 update_pkru_bitmask(vcpu, context, false);
4441 update_last_nonleaf_level(vcpu, context);
4442
4443 context->page_fault = paging32_page_fault;
4444 context->gva_to_gpa = paging32_gva_to_gpa;
4445 context->sync_page = paging32_sync_page;
4446 context->invlpg = paging32_invlpg;
4447 context->update_pte = paging32_update_pte;
4448 context->shadow_root_level = PT32E_ROOT_LEVEL;
4449 context->root_hpa = INVALID_PAGE;
4450 context->direct_map = false;
4451 }
4452
4453 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4454 struct kvm_mmu *context)
4455 {
4456 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4457 }
4458
4459 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4460 {
4461 struct kvm_mmu *context = &vcpu->arch.mmu;
4462
4463 context->base_role.word = 0;
4464 context->base_role.smm = is_smm(vcpu);
4465 context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4466 context->page_fault = tdp_page_fault;
4467 context->sync_page = nonpaging_sync_page;
4468 context->invlpg = nonpaging_invlpg;
4469 context->update_pte = nonpaging_update_pte;
4470 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4471 context->root_hpa = INVALID_PAGE;
4472 context->direct_map = true;
4473 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4474 context->get_cr3 = get_cr3;
4475 context->get_pdptr = kvm_pdptr_read;
4476 context->inject_page_fault = kvm_inject_page_fault;
4477
4478 if (!is_paging(vcpu)) {
4479 context->nx = false;
4480 context->gva_to_gpa = nonpaging_gva_to_gpa;
4481 context->root_level = 0;
4482 } else if (is_long_mode(vcpu)) {
4483 context->nx = is_nx(vcpu);
4484 context->root_level = is_la57_mode(vcpu) ?
4485 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4486 reset_rsvds_bits_mask(vcpu, context);
4487 context->gva_to_gpa = paging64_gva_to_gpa;
4488 } else if (is_pae(vcpu)) {
4489 context->nx = is_nx(vcpu);
4490 context->root_level = PT32E_ROOT_LEVEL;
4491 reset_rsvds_bits_mask(vcpu, context);
4492 context->gva_to_gpa = paging64_gva_to_gpa;
4493 } else {
4494 context->nx = false;
4495 context->root_level = PT32_ROOT_LEVEL;
4496 reset_rsvds_bits_mask(vcpu, context);
4497 context->gva_to_gpa = paging32_gva_to_gpa;
4498 }
4499
4500 update_permission_bitmask(vcpu, context, false);
4501 update_pkru_bitmask(vcpu, context, false);
4502 update_last_nonleaf_level(vcpu, context);
4503 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4504 }
4505
4506 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4507 {
4508 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4509 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4510 struct kvm_mmu *context = &vcpu->arch.mmu;
4511
4512 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4513
4514 if (!is_paging(vcpu))
4515 nonpaging_init_context(vcpu, context);
4516 else if (is_long_mode(vcpu))
4517 paging64_init_context(vcpu, context);
4518 else if (is_pae(vcpu))
4519 paging32E_init_context(vcpu, context);
4520 else
4521 paging32_init_context(vcpu, context);
4522
4523 context->base_role.nxe = is_nx(vcpu);
4524 context->base_role.cr4_pae = !!is_pae(vcpu);
4525 context->base_role.cr0_wp = is_write_protection(vcpu);
4526 context->base_role.smep_andnot_wp
4527 = smep && !is_write_protection(vcpu);
4528 context->base_role.smap_andnot_wp
4529 = smap && !is_write_protection(vcpu);
4530 context->base_role.smm = is_smm(vcpu);
4531 reset_shadow_zero_bits_mask(vcpu, context);
4532 }
4533 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4534
4535 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4536 bool accessed_dirty)
4537 {
4538 struct kvm_mmu *context = &vcpu->arch.mmu;
4539
4540 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4541
4542 context->shadow_root_level = PT64_ROOT_4LEVEL;
4543
4544 context->nx = true;
4545 context->ept_ad = accessed_dirty;
4546 context->page_fault = ept_page_fault;
4547 context->gva_to_gpa = ept_gva_to_gpa;
4548 context->sync_page = ept_sync_page;
4549 context->invlpg = ept_invlpg;
4550 context->update_pte = ept_update_pte;
4551 context->root_level = PT64_ROOT_4LEVEL;
4552 context->root_hpa = INVALID_PAGE;
4553 context->direct_map = false;
4554 context->base_role.ad_disabled = !accessed_dirty;
4555
4556 update_permission_bitmask(vcpu, context, true);
4557 update_pkru_bitmask(vcpu, context, true);
4558 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4559 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4560 }
4561 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4562
4563 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4564 {
4565 struct kvm_mmu *context = &vcpu->arch.mmu;
4566
4567 kvm_init_shadow_mmu(vcpu);
4568 context->set_cr3 = kvm_x86_ops->set_cr3;
4569 context->get_cr3 = get_cr3;
4570 context->get_pdptr = kvm_pdptr_read;
4571 context->inject_page_fault = kvm_inject_page_fault;
4572 }
4573
4574 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4575 {
4576 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4577
4578 g_context->get_cr3 = get_cr3;
4579 g_context->get_pdptr = kvm_pdptr_read;
4580 g_context->inject_page_fault = kvm_inject_page_fault;
4581
4582 /*
4583 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4584 * L1's nested page tables (e.g. EPT12). The nested translation
4585 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4586 * L2's page tables as the first level of translation and L1's
4587 * nested page tables as the second level of translation. Basically
4588 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4589 */
4590 if (!is_paging(vcpu)) {
4591 g_context->nx = false;
4592 g_context->root_level = 0;
4593 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4594 } else if (is_long_mode(vcpu)) {
4595 g_context->nx = is_nx(vcpu);
4596 g_context->root_level = is_la57_mode(vcpu) ?
4597 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4598 reset_rsvds_bits_mask(vcpu, g_context);
4599 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4600 } else if (is_pae(vcpu)) {
4601 g_context->nx = is_nx(vcpu);
4602 g_context->root_level = PT32E_ROOT_LEVEL;
4603 reset_rsvds_bits_mask(vcpu, g_context);
4604 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4605 } else {
4606 g_context->nx = false;
4607 g_context->root_level = PT32_ROOT_LEVEL;
4608 reset_rsvds_bits_mask(vcpu, g_context);
4609 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4610 }
4611
4612 update_permission_bitmask(vcpu, g_context, false);
4613 update_pkru_bitmask(vcpu, g_context, false);
4614 update_last_nonleaf_level(vcpu, g_context);
4615 }
4616
4617 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4618 {
4619 if (mmu_is_nested(vcpu))
4620 init_kvm_nested_mmu(vcpu);
4621 else if (tdp_enabled)
4622 init_kvm_tdp_mmu(vcpu);
4623 else
4624 init_kvm_softmmu(vcpu);
4625 }
4626
4627 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4628 {
4629 kvm_mmu_unload(vcpu);
4630 init_kvm_mmu(vcpu);
4631 }
4632 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4633
4634 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4635 {
4636 int r;
4637
4638 r = mmu_topup_memory_caches(vcpu);
4639 if (r)
4640 goto out;
4641 r = mmu_alloc_roots(vcpu);
4642 kvm_mmu_sync_roots(vcpu);
4643 if (r)
4644 goto out;
4645 /* set_cr3() should ensure TLB has been flushed */
4646 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4647 out:
4648 return r;
4649 }
4650 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4651
4652 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4653 {
4654 mmu_free_roots(vcpu);
4655 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4656 }
4657 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4658
4659 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4660 struct kvm_mmu_page *sp, u64 *spte,
4661 const void *new)
4662 {
4663 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4664 ++vcpu->kvm->stat.mmu_pde_zapped;
4665 return;
4666 }
4667
4668 ++vcpu->kvm->stat.mmu_pte_updated;
4669 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4670 }
4671
4672 static bool need_remote_flush(u64 old, u64 new)
4673 {
4674 if (!is_shadow_present_pte(old))
4675 return false;
4676 if (!is_shadow_present_pte(new))
4677 return true;
4678 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4679 return true;
4680 old ^= shadow_nx_mask;
4681 new ^= shadow_nx_mask;
4682 return (old & ~new & PT64_PERM_MASK) != 0;
4683 }
4684
4685 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4686 const u8 *new, int *bytes)
4687 {
4688 u64 gentry;
4689 int r;
4690
4691 /*
4692 * Assume that the pte write on a page table of the same type
4693 * as the current vcpu paging mode since we update the sptes only
4694 * when they have the same mode.
4695 */
4696 if (is_pae(vcpu) && *bytes == 4) {
4697 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4698 *gpa &= ~(gpa_t)7;
4699 *bytes = 8;
4700 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4701 if (r)
4702 gentry = 0;
4703 new = (const u8 *)&gentry;
4704 }
4705
4706 switch (*bytes) {
4707 case 4:
4708 gentry = *(const u32 *)new;
4709 break;
4710 case 8:
4711 gentry = *(const u64 *)new;
4712 break;
4713 default:
4714 gentry = 0;
4715 break;
4716 }
4717
4718 return gentry;
4719 }
4720
4721 /*
4722 * If we're seeing too many writes to a page, it may no longer be a page table,
4723 * or we may be forking, in which case it is better to unmap the page.
4724 */
4725 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4726 {
4727 /*
4728 * Skip write-flooding detected for the sp whose level is 1, because
4729 * it can become unsync, then the guest page is not write-protected.
4730 */
4731 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4732 return false;
4733
4734 atomic_inc(&sp->write_flooding_count);
4735 return atomic_read(&sp->write_flooding_count) >= 3;
4736 }
4737
4738 /*
4739 * Misaligned accesses are too much trouble to fix up; also, they usually
4740 * indicate a page is not used as a page table.
4741 */
4742 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4743 int bytes)
4744 {
4745 unsigned offset, pte_size, misaligned;
4746
4747 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4748 gpa, bytes, sp->role.word);
4749
4750 offset = offset_in_page(gpa);
4751 pte_size = sp->role.cr4_pae ? 8 : 4;
4752
4753 /*
4754 * Sometimes, the OS only writes the last one bytes to update status
4755 * bits, for example, in linux, andb instruction is used in clear_bit().
4756 */
4757 if (!(offset & (pte_size - 1)) && bytes == 1)
4758 return false;
4759
4760 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4761 misaligned |= bytes < 4;
4762
4763 return misaligned;
4764 }
4765
4766 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4767 {
4768 unsigned page_offset, quadrant;
4769 u64 *spte;
4770 int level;
4771
4772 page_offset = offset_in_page(gpa);
4773 level = sp->role.level;
4774 *nspte = 1;
4775 if (!sp->role.cr4_pae) {
4776 page_offset <<= 1; /* 32->64 */
4777 /*
4778 * A 32-bit pde maps 4MB while the shadow pdes map
4779 * only 2MB. So we need to double the offset again
4780 * and zap two pdes instead of one.
4781 */
4782 if (level == PT32_ROOT_LEVEL) {
4783 page_offset &= ~7; /* kill rounding error */
4784 page_offset <<= 1;
4785 *nspte = 2;
4786 }
4787 quadrant = page_offset >> PAGE_SHIFT;
4788 page_offset &= ~PAGE_MASK;
4789 if (quadrant != sp->role.quadrant)
4790 return NULL;
4791 }
4792
4793 spte = &sp->spt[page_offset / sizeof(*spte)];
4794 return spte;
4795 }
4796
4797 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4798 const u8 *new, int bytes,
4799 struct kvm_page_track_notifier_node *node)
4800 {
4801 gfn_t gfn = gpa >> PAGE_SHIFT;
4802 struct kvm_mmu_page *sp;
4803 LIST_HEAD(invalid_list);
4804 u64 entry, gentry, *spte;
4805 int npte;
4806 bool remote_flush, local_flush;
4807 union kvm_mmu_page_role mask = { };
4808
4809 mask.cr0_wp = 1;
4810 mask.cr4_pae = 1;
4811 mask.nxe = 1;
4812 mask.smep_andnot_wp = 1;
4813 mask.smap_andnot_wp = 1;
4814 mask.smm = 1;
4815 mask.ad_disabled = 1;
4816
4817 /*
4818 * If we don't have indirect shadow pages, it means no page is
4819 * write-protected, so we can exit simply.
4820 */
4821 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4822 return;
4823
4824 remote_flush = local_flush = false;
4825
4826 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4827
4828 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4829
4830 /*
4831 * No need to care whether allocation memory is successful
4832 * or not since pte prefetch is skiped if it does not have
4833 * enough objects in the cache.
4834 */
4835 mmu_topup_memory_caches(vcpu);
4836
4837 spin_lock(&vcpu->kvm->mmu_lock);
4838 ++vcpu->kvm->stat.mmu_pte_write;
4839 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4840
4841 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4842 if (detect_write_misaligned(sp, gpa, bytes) ||
4843 detect_write_flooding(sp)) {
4844 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4845 ++vcpu->kvm->stat.mmu_flooded;
4846 continue;
4847 }
4848
4849 spte = get_written_sptes(sp, gpa, &npte);
4850 if (!spte)
4851 continue;
4852
4853 local_flush = true;
4854 while (npte--) {
4855 entry = *spte;
4856 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4857 if (gentry &&
4858 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4859 & mask.word) && rmap_can_add(vcpu))
4860 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4861 if (need_remote_flush(entry, *spte))
4862 remote_flush = true;
4863 ++spte;
4864 }
4865 }
4866 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4867 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4868 spin_unlock(&vcpu->kvm->mmu_lock);
4869 }
4870
4871 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4872 {
4873 gpa_t gpa;
4874 int r;
4875
4876 if (vcpu->arch.mmu.direct_map)
4877 return 0;
4878
4879 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4880
4881 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4882
4883 return r;
4884 }
4885 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4886
4887 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
4888 {
4889 LIST_HEAD(invalid_list);
4890
4891 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4892 return 0;
4893
4894 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4895 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4896 break;
4897
4898 ++vcpu->kvm->stat.mmu_recycled;
4899 }
4900 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4901
4902 if (!kvm_mmu_available_pages(vcpu->kvm))
4903 return -ENOSPC;
4904 return 0;
4905 }
4906
4907 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4908 void *insn, int insn_len)
4909 {
4910 int r, emulation_type = EMULTYPE_RETRY;
4911 enum emulation_result er;
4912 bool direct = vcpu->arch.mmu.direct_map;
4913
4914 /* With shadow page tables, fault_address contains a GVA or nGPA. */
4915 if (vcpu->arch.mmu.direct_map) {
4916 vcpu->arch.gpa_available = true;
4917 vcpu->arch.gpa_val = cr2;
4918 }
4919
4920 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4921 r = handle_mmio_page_fault(vcpu, cr2, direct);
4922 if (r == RET_MMIO_PF_EMULATE) {
4923 emulation_type = 0;
4924 goto emulate;
4925 }
4926 if (r == RET_MMIO_PF_RETRY)
4927 return 1;
4928 if (r < 0)
4929 return r;
4930 /* Must be RET_MMIO_PF_INVALID. */
4931 }
4932
4933 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4934 false);
4935 if (r < 0)
4936 return r;
4937 if (!r)
4938 return 1;
4939
4940 /*
4941 * Before emulating the instruction, check if the error code
4942 * was due to a RO violation while translating the guest page.
4943 * This can occur when using nested virtualization with nested
4944 * paging in both guests. If true, we simply unprotect the page
4945 * and resume the guest.
4946 */
4947 if (vcpu->arch.mmu.direct_map &&
4948 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
4949 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4950 return 1;
4951 }
4952
4953 if (mmio_info_in_cache(vcpu, cr2, direct))
4954 emulation_type = 0;
4955 emulate:
4956 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4957
4958 switch (er) {
4959 case EMULATE_DONE:
4960 return 1;
4961 case EMULATE_USER_EXIT:
4962 ++vcpu->stat.mmio_exits;
4963 /* fall through */
4964 case EMULATE_FAIL:
4965 return 0;
4966 default:
4967 BUG();
4968 }
4969 }
4970 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4971
4972 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4973 {
4974 vcpu->arch.mmu.invlpg(vcpu, gva);
4975 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4976 ++vcpu->stat.invlpg;
4977 }
4978 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4979
4980 void kvm_enable_tdp(void)
4981 {
4982 tdp_enabled = true;
4983 }
4984 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4985
4986 void kvm_disable_tdp(void)
4987 {
4988 tdp_enabled = false;
4989 }
4990 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4991
4992 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4993 {
4994 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4995 if (vcpu->arch.mmu.lm_root != NULL)
4996 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4997 }
4998
4999 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5000 {
5001 struct page *page;
5002 int i;
5003
5004 /*
5005 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5006 * Therefore we need to allocate shadow page tables in the first
5007 * 4GB of memory, which happens to fit the DMA32 zone.
5008 */
5009 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5010 if (!page)
5011 return -ENOMEM;
5012
5013 vcpu->arch.mmu.pae_root = page_address(page);
5014 for (i = 0; i < 4; ++i)
5015 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5016
5017 return 0;
5018 }
5019
5020 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5021 {
5022 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5023 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5024 vcpu->arch.mmu.translate_gpa = translate_gpa;
5025 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5026
5027 return alloc_mmu_pages(vcpu);
5028 }
5029
5030 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5031 {
5032 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5033
5034 init_kvm_mmu(vcpu);
5035 }
5036
5037 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5038 struct kvm_memory_slot *slot,
5039 struct kvm_page_track_notifier_node *node)
5040 {
5041 kvm_mmu_invalidate_zap_all_pages(kvm);
5042 }
5043
5044 void kvm_mmu_init_vm(struct kvm *kvm)
5045 {
5046 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5047
5048 node->track_write = kvm_mmu_pte_write;
5049 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5050 kvm_page_track_register_notifier(kvm, node);
5051 }
5052
5053 void kvm_mmu_uninit_vm(struct kvm *kvm)
5054 {
5055 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5056
5057 kvm_page_track_unregister_notifier(kvm, node);
5058 }
5059
5060 /* The return value indicates if tlb flush on all vcpus is needed. */
5061 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5062
5063 /* The caller should hold mmu-lock before calling this function. */
5064 static bool
5065 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5066 slot_level_handler fn, int start_level, int end_level,
5067 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5068 {
5069 struct slot_rmap_walk_iterator iterator;
5070 bool flush = false;
5071
5072 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5073 end_gfn, &iterator) {
5074 if (iterator.rmap)
5075 flush |= fn(kvm, iterator.rmap);
5076
5077 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5078 if (flush && lock_flush_tlb) {
5079 kvm_flush_remote_tlbs(kvm);
5080 flush = false;
5081 }
5082 cond_resched_lock(&kvm->mmu_lock);
5083 }
5084 }
5085
5086 if (flush && lock_flush_tlb) {
5087 kvm_flush_remote_tlbs(kvm);
5088 flush = false;
5089 }
5090
5091 return flush;
5092 }
5093
5094 static bool
5095 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5096 slot_level_handler fn, int start_level, int end_level,
5097 bool lock_flush_tlb)
5098 {
5099 return slot_handle_level_range(kvm, memslot, fn, start_level,
5100 end_level, memslot->base_gfn,
5101 memslot->base_gfn + memslot->npages - 1,
5102 lock_flush_tlb);
5103 }
5104
5105 static bool
5106 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5107 slot_level_handler fn, bool lock_flush_tlb)
5108 {
5109 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5110 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5111 }
5112
5113 static bool
5114 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5115 slot_level_handler fn, bool lock_flush_tlb)
5116 {
5117 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5118 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5119 }
5120
5121 static bool
5122 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5123 slot_level_handler fn, bool lock_flush_tlb)
5124 {
5125 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5126 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5127 }
5128
5129 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5130 {
5131 struct kvm_memslots *slots;
5132 struct kvm_memory_slot *memslot;
5133 int i;
5134
5135 spin_lock(&kvm->mmu_lock);
5136 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5137 slots = __kvm_memslots(kvm, i);
5138 kvm_for_each_memslot(memslot, slots) {
5139 gfn_t start, end;
5140
5141 start = max(gfn_start, memslot->base_gfn);
5142 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5143 if (start >= end)
5144 continue;
5145
5146 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5147 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5148 start, end - 1, true);
5149 }
5150 }
5151
5152 spin_unlock(&kvm->mmu_lock);
5153 }
5154
5155 static bool slot_rmap_write_protect(struct kvm *kvm,
5156 struct kvm_rmap_head *rmap_head)
5157 {
5158 return __rmap_write_protect(kvm, rmap_head, false);
5159 }
5160
5161 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5162 struct kvm_memory_slot *memslot)
5163 {
5164 bool flush;
5165
5166 spin_lock(&kvm->mmu_lock);
5167 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5168 false);
5169 spin_unlock(&kvm->mmu_lock);
5170
5171 /*
5172 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5173 * which do tlb flush out of mmu-lock should be serialized by
5174 * kvm->slots_lock otherwise tlb flush would be missed.
5175 */
5176 lockdep_assert_held(&kvm->slots_lock);
5177
5178 /*
5179 * We can flush all the TLBs out of the mmu lock without TLB
5180 * corruption since we just change the spte from writable to
5181 * readonly so that we only need to care the case of changing
5182 * spte from present to present (changing the spte from present
5183 * to nonpresent will flush all the TLBs immediately), in other
5184 * words, the only case we care is mmu_spte_update() where we
5185 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5186 * instead of PT_WRITABLE_MASK, that means it does not depend
5187 * on PT_WRITABLE_MASK anymore.
5188 */
5189 if (flush)
5190 kvm_flush_remote_tlbs(kvm);
5191 }
5192
5193 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5194 struct kvm_rmap_head *rmap_head)
5195 {
5196 u64 *sptep;
5197 struct rmap_iterator iter;
5198 int need_tlb_flush = 0;
5199 kvm_pfn_t pfn;
5200 struct kvm_mmu_page *sp;
5201
5202 restart:
5203 for_each_rmap_spte(rmap_head, &iter, sptep) {
5204 sp = page_header(__pa(sptep));
5205 pfn = spte_to_pfn(*sptep);
5206
5207 /*
5208 * We cannot do huge page mapping for indirect shadow pages,
5209 * which are found on the last rmap (level = 1) when not using
5210 * tdp; such shadow pages are synced with the page table in
5211 * the guest, and the guest page table is using 4K page size
5212 * mapping if the indirect sp has level = 1.
5213 */
5214 if (sp->role.direct &&
5215 !kvm_is_reserved_pfn(pfn) &&
5216 PageTransCompoundMap(pfn_to_page(pfn))) {
5217 drop_spte(kvm, sptep);
5218 need_tlb_flush = 1;
5219 goto restart;
5220 }
5221 }
5222
5223 return need_tlb_flush;
5224 }
5225
5226 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5227 const struct kvm_memory_slot *memslot)
5228 {
5229 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5230 spin_lock(&kvm->mmu_lock);
5231 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5232 kvm_mmu_zap_collapsible_spte, true);
5233 spin_unlock(&kvm->mmu_lock);
5234 }
5235
5236 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5237 struct kvm_memory_slot *memslot)
5238 {
5239 bool flush;
5240
5241 spin_lock(&kvm->mmu_lock);
5242 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5243 spin_unlock(&kvm->mmu_lock);
5244
5245 lockdep_assert_held(&kvm->slots_lock);
5246
5247 /*
5248 * It's also safe to flush TLBs out of mmu lock here as currently this
5249 * function is only used for dirty logging, in which case flushing TLB
5250 * out of mmu lock also guarantees no dirty pages will be lost in
5251 * dirty_bitmap.
5252 */
5253 if (flush)
5254 kvm_flush_remote_tlbs(kvm);
5255 }
5256 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5257
5258 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5259 struct kvm_memory_slot *memslot)
5260 {
5261 bool flush;
5262
5263 spin_lock(&kvm->mmu_lock);
5264 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5265 false);
5266 spin_unlock(&kvm->mmu_lock);
5267
5268 /* see kvm_mmu_slot_remove_write_access */
5269 lockdep_assert_held(&kvm->slots_lock);
5270
5271 if (flush)
5272 kvm_flush_remote_tlbs(kvm);
5273 }
5274 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5275
5276 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5277 struct kvm_memory_slot *memslot)
5278 {
5279 bool flush;
5280
5281 spin_lock(&kvm->mmu_lock);
5282 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5283 spin_unlock(&kvm->mmu_lock);
5284
5285 lockdep_assert_held(&kvm->slots_lock);
5286
5287 /* see kvm_mmu_slot_leaf_clear_dirty */
5288 if (flush)
5289 kvm_flush_remote_tlbs(kvm);
5290 }
5291 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5292
5293 #define BATCH_ZAP_PAGES 10
5294 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5295 {
5296 struct kvm_mmu_page *sp, *node;
5297 int batch = 0;
5298
5299 restart:
5300 list_for_each_entry_safe_reverse(sp, node,
5301 &kvm->arch.active_mmu_pages, link) {
5302 int ret;
5303
5304 /*
5305 * No obsolete page exists before new created page since
5306 * active_mmu_pages is the FIFO list.
5307 */
5308 if (!is_obsolete_sp(kvm, sp))
5309 break;
5310
5311 /*
5312 * Since we are reversely walking the list and the invalid
5313 * list will be moved to the head, skip the invalid page
5314 * can help us to avoid the infinity list walking.
5315 */
5316 if (sp->role.invalid)
5317 continue;
5318
5319 /*
5320 * Need not flush tlb since we only zap the sp with invalid
5321 * generation number.
5322 */
5323 if (batch >= BATCH_ZAP_PAGES &&
5324 cond_resched_lock(&kvm->mmu_lock)) {
5325 batch = 0;
5326 goto restart;
5327 }
5328
5329 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5330 &kvm->arch.zapped_obsolete_pages);
5331 batch += ret;
5332
5333 if (ret)
5334 goto restart;
5335 }
5336
5337 /*
5338 * Should flush tlb before free page tables since lockless-walking
5339 * may use the pages.
5340 */
5341 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5342 }
5343
5344 /*
5345 * Fast invalidate all shadow pages and use lock-break technique
5346 * to zap obsolete pages.
5347 *
5348 * It's required when memslot is being deleted or VM is being
5349 * destroyed, in these cases, we should ensure that KVM MMU does
5350 * not use any resource of the being-deleted slot or all slots
5351 * after calling the function.
5352 */
5353 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5354 {
5355 spin_lock(&kvm->mmu_lock);
5356 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5357 kvm->arch.mmu_valid_gen++;
5358
5359 /*
5360 * Notify all vcpus to reload its shadow page table
5361 * and flush TLB. Then all vcpus will switch to new
5362 * shadow page table with the new mmu_valid_gen.
5363 *
5364 * Note: we should do this under the protection of
5365 * mmu-lock, otherwise, vcpu would purge shadow page
5366 * but miss tlb flush.
5367 */
5368 kvm_reload_remote_mmus(kvm);
5369
5370 kvm_zap_obsolete_pages(kvm);
5371 spin_unlock(&kvm->mmu_lock);
5372 }
5373
5374 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5375 {
5376 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5377 }
5378
5379 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5380 {
5381 /*
5382 * The very rare case: if the generation-number is round,
5383 * zap all shadow pages.
5384 */
5385 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5386 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5387 kvm_mmu_invalidate_zap_all_pages(kvm);
5388 }
5389 }
5390
5391 static unsigned long
5392 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5393 {
5394 struct kvm *kvm;
5395 int nr_to_scan = sc->nr_to_scan;
5396 unsigned long freed = 0;
5397
5398 spin_lock(&kvm_lock);
5399
5400 list_for_each_entry(kvm, &vm_list, vm_list) {
5401 int idx;
5402 LIST_HEAD(invalid_list);
5403
5404 /*
5405 * Never scan more than sc->nr_to_scan VM instances.
5406 * Will not hit this condition practically since we do not try
5407 * to shrink more than one VM and it is very unlikely to see
5408 * !n_used_mmu_pages so many times.
5409 */
5410 if (!nr_to_scan--)
5411 break;
5412 /*
5413 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5414 * here. We may skip a VM instance errorneosly, but we do not
5415 * want to shrink a VM that only started to populate its MMU
5416 * anyway.
5417 */
5418 if (!kvm->arch.n_used_mmu_pages &&
5419 !kvm_has_zapped_obsolete_pages(kvm))
5420 continue;
5421
5422 idx = srcu_read_lock(&kvm->srcu);
5423 spin_lock(&kvm->mmu_lock);
5424
5425 if (kvm_has_zapped_obsolete_pages(kvm)) {
5426 kvm_mmu_commit_zap_page(kvm,
5427 &kvm->arch.zapped_obsolete_pages);
5428 goto unlock;
5429 }
5430
5431 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5432 freed++;
5433 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5434
5435 unlock:
5436 spin_unlock(&kvm->mmu_lock);
5437 srcu_read_unlock(&kvm->srcu, idx);
5438
5439 /*
5440 * unfair on small ones
5441 * per-vm shrinkers cry out
5442 * sadness comes quickly
5443 */
5444 list_move_tail(&kvm->vm_list, &vm_list);
5445 break;
5446 }
5447
5448 spin_unlock(&kvm_lock);
5449 return freed;
5450 }
5451
5452 static unsigned long
5453 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5454 {
5455 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5456 }
5457
5458 static struct shrinker mmu_shrinker = {
5459 .count_objects = mmu_shrink_count,
5460 .scan_objects = mmu_shrink_scan,
5461 .seeks = DEFAULT_SEEKS * 10,
5462 };
5463
5464 static void mmu_destroy_caches(void)
5465 {
5466 if (pte_list_desc_cache)
5467 kmem_cache_destroy(pte_list_desc_cache);
5468 if (mmu_page_header_cache)
5469 kmem_cache_destroy(mmu_page_header_cache);
5470 }
5471
5472 int kvm_mmu_module_init(void)
5473 {
5474 kvm_mmu_clear_all_pte_masks();
5475
5476 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5477 sizeof(struct pte_list_desc),
5478 0, 0, NULL);
5479 if (!pte_list_desc_cache)
5480 goto nomem;
5481
5482 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5483 sizeof(struct kvm_mmu_page),
5484 0, 0, NULL);
5485 if (!mmu_page_header_cache)
5486 goto nomem;
5487
5488 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5489 goto nomem;
5490
5491 register_shrinker(&mmu_shrinker);
5492
5493 return 0;
5494
5495 nomem:
5496 mmu_destroy_caches();
5497 return -ENOMEM;
5498 }
5499
5500 /*
5501 * Caculate mmu pages needed for kvm.
5502 */
5503 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5504 {
5505 unsigned int nr_mmu_pages;
5506 unsigned int nr_pages = 0;
5507 struct kvm_memslots *slots;
5508 struct kvm_memory_slot *memslot;
5509 int i;
5510
5511 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5512 slots = __kvm_memslots(kvm, i);
5513
5514 kvm_for_each_memslot(memslot, slots)
5515 nr_pages += memslot->npages;
5516 }
5517
5518 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5519 nr_mmu_pages = max(nr_mmu_pages,
5520 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5521
5522 return nr_mmu_pages;
5523 }
5524
5525 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5526 {
5527 kvm_mmu_unload(vcpu);
5528 free_mmu_pages(vcpu);
5529 mmu_free_memory_caches(vcpu);
5530 }
5531
5532 void kvm_mmu_module_exit(void)
5533 {
5534 mmu_destroy_caches();
5535 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5536 unregister_shrinker(&mmu_shrinker);
5537 mmu_audit_disable();
5538 }