x86: unify timex.h variants
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / tsc_64.c
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/interrupt.h>
4 #include <linux/init.h>
5 #include <linux/clocksource.h>
6 #include <linux/time.h>
7 #include <linux/acpi.h>
8 #include <linux/cpufreq.h>
9 #include <linux/acpi_pmtmr.h>
10
11 #include <asm/hpet.h>
12 #include <asm/timex.h>
13
14 static int notsc __initdata = 0;
15
16 unsigned int cpu_khz; /* TSC clocks / usec, not used here */
17 EXPORT_SYMBOL(cpu_khz);
18 unsigned int tsc_khz;
19 EXPORT_SYMBOL(tsc_khz);
20
21 static unsigned int cyc2ns_scale __read_mostly;
22
23 static inline void set_cyc2ns_scale(unsigned long khz)
24 {
25 cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / khz;
26 }
27
28 static unsigned long long cycles_2_ns(unsigned long long cyc)
29 {
30 return (cyc * cyc2ns_scale) >> NS_SCALE;
31 }
32
33 unsigned long long sched_clock(void)
34 {
35 unsigned long a = 0;
36
37 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
38 * which means it is not completely exact and may not be monotonous
39 * between CPUs. But the errors should be too small to matter for
40 * scheduling purposes.
41 */
42
43 rdtscll(a);
44 return cycles_2_ns(a);
45 }
46
47 static int tsc_unstable;
48
49 inline int check_tsc_unstable(void)
50 {
51 return tsc_unstable;
52 }
53 #ifdef CONFIG_CPU_FREQ
54
55 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
56 * changes.
57 *
58 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
59 * not that important because current Opteron setups do not support
60 * scaling on SMP anyroads.
61 *
62 * Should fix up last_tsc too. Currently gettimeofday in the
63 * first tick after the change will be slightly wrong.
64 */
65
66 static unsigned int ref_freq;
67 static unsigned long loops_per_jiffy_ref;
68 static unsigned long tsc_khz_ref;
69
70 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
71 void *data)
72 {
73 struct cpufreq_freqs *freq = data;
74 unsigned long *lpj, dummy;
75
76 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
77 return 0;
78
79 lpj = &dummy;
80 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
81 #ifdef CONFIG_SMP
82 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
83 #else
84 lpj = &boot_cpu_data.loops_per_jiffy;
85 #endif
86
87 if (!ref_freq) {
88 ref_freq = freq->old;
89 loops_per_jiffy_ref = *lpj;
90 tsc_khz_ref = tsc_khz;
91 }
92 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
93 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
94 (val == CPUFREQ_RESUMECHANGE)) {
95 *lpj =
96 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
97
98 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
99 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
100 mark_tsc_unstable("cpufreq changes");
101 }
102
103 set_cyc2ns_scale(tsc_khz_ref);
104
105 return 0;
106 }
107
108 static struct notifier_block time_cpufreq_notifier_block = {
109 .notifier_call = time_cpufreq_notifier
110 };
111
112 static int __init cpufreq_tsc(void)
113 {
114 cpufreq_register_notifier(&time_cpufreq_notifier_block,
115 CPUFREQ_TRANSITION_NOTIFIER);
116 return 0;
117 }
118
119 core_initcall(cpufreq_tsc);
120
121 #endif
122
123 #define MAX_RETRIES 5
124 #define SMI_TRESHOLD 50000
125
126 /*
127 * Read TSC and the reference counters. Take care of SMI disturbance
128 */
129 static unsigned long __init tsc_read_refs(unsigned long *pm,
130 unsigned long *hpet)
131 {
132 unsigned long t1, t2;
133 int i;
134
135 for (i = 0; i < MAX_RETRIES; i++) {
136 t1 = get_cycles_sync();
137 if (hpet)
138 *hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
139 else
140 *pm = acpi_pm_read_early();
141 t2 = get_cycles_sync();
142 if ((t2 - t1) < SMI_TRESHOLD)
143 return t2;
144 }
145 return ULONG_MAX;
146 }
147
148 /**
149 * tsc_calibrate - calibrate the tsc on boot
150 */
151 void __init tsc_calibrate(void)
152 {
153 unsigned long flags, tsc1, tsc2, tr1, tr2, pm1, pm2, hpet1, hpet2;
154 int hpet = is_hpet_enabled();
155
156 local_irq_save(flags);
157
158 tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL);
159
160 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
161
162 outb(0xb0, 0x43);
163 outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
164 outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42);
165 tr1 = get_cycles_sync();
166 while ((inb(0x61) & 0x20) == 0);
167 tr2 = get_cycles_sync();
168
169 tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL);
170
171 local_irq_restore(flags);
172
173 /*
174 * Preset the result with the raw and inaccurate PIT
175 * calibration value
176 */
177 tsc_khz = (tr2 - tr1) / 50;
178
179 /* hpet or pmtimer available ? */
180 if (!hpet && !pm1 && !pm2) {
181 printk(KERN_INFO "TSC calibrated against PIT\n");
182 return;
183 }
184
185 /* Check, whether the sampling was disturbed by an SMI */
186 if (tsc1 == ULONG_MAX || tsc2 == ULONG_MAX) {
187 printk(KERN_WARNING "TSC calibration disturbed by SMI, "
188 "using PIT calibration result\n");
189 return;
190 }
191
192 tsc2 = (tsc2 - tsc1) * 1000000L;
193
194 if (hpet) {
195 printk(KERN_INFO "TSC calibrated against HPET\n");
196 if (hpet2 < hpet1)
197 hpet2 += 0x100000000;
198 hpet2 -= hpet1;
199 tsc1 = (hpet2 * hpet_readl(HPET_PERIOD)) / 1000000;
200 } else {
201 printk(KERN_INFO "TSC calibrated against PM_TIMER\n");
202 if (pm2 < pm1)
203 pm2 += ACPI_PM_OVRRUN;
204 pm2 -= pm1;
205 tsc1 = (pm2 * 1000000000) / PMTMR_TICKS_PER_SEC;
206 }
207
208 tsc_khz = tsc2 / tsc1;
209 set_cyc2ns_scale(tsc_khz);
210 }
211
212 /*
213 * Make an educated guess if the TSC is trustworthy and synchronized
214 * over all CPUs.
215 */
216 __cpuinit int unsynchronized_tsc(void)
217 {
218 if (tsc_unstable)
219 return 1;
220
221 #ifdef CONFIG_SMP
222 if (apic_is_clustered_box())
223 return 1;
224 #endif
225 /* Most intel systems have synchronized TSCs except for
226 multi node systems */
227 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
228 #ifdef CONFIG_ACPI
229 /* But TSC doesn't tick in C3 so don't use it there */
230 if (acpi_gbl_FADT.header.length > 0 &&
231 acpi_gbl_FADT.C3latency < 1000)
232 return 1;
233 #endif
234 return 0;
235 }
236
237 /* Assume multi socket systems are not synchronized */
238 return num_present_cpus() > 1;
239 }
240
241 int __init notsc_setup(char *s)
242 {
243 notsc = 1;
244 return 1;
245 }
246
247 __setup("notsc", notsc_setup);
248
249
250 /* clock source code: */
251 static cycle_t read_tsc(void)
252 {
253 cycle_t ret = (cycle_t)get_cycles_sync();
254 return ret;
255 }
256
257 static cycle_t __vsyscall_fn vread_tsc(void)
258 {
259 cycle_t ret = (cycle_t)get_cycles_sync();
260 return ret;
261 }
262
263 static struct clocksource clocksource_tsc = {
264 .name = "tsc",
265 .rating = 300,
266 .read = read_tsc,
267 .mask = CLOCKSOURCE_MASK(64),
268 .shift = 22,
269 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
270 CLOCK_SOURCE_MUST_VERIFY,
271 .vread = vread_tsc,
272 };
273
274 void mark_tsc_unstable(char *reason)
275 {
276 if (!tsc_unstable) {
277 tsc_unstable = 1;
278 printk("Marking TSC unstable due to %s\n", reason);
279 /* Change only the rating, when not registered */
280 if (clocksource_tsc.mult)
281 clocksource_change_rating(&clocksource_tsc, 0);
282 else
283 clocksource_tsc.rating = 0;
284 }
285 }
286 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
287
288 void __init init_tsc_clocksource(void)
289 {
290 if (!notsc) {
291 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
292 clocksource_tsc.shift);
293 if (check_tsc_unstable())
294 clocksource_tsc.rating = 0;
295
296 clocksource_register(&clocksource_tsc);
297 }
298 }