x86, apic: remove genapic.h
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / tlb_uv.c
1 /*
2 * SGI UltraViolet TLB flush routines.
3 *
4 * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
5 *
6 * This code is released under the GNU General Public License version 2 or
7 * later.
8 */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/kernel.h>
12
13 #include <asm/mmu_context.h>
14 #include <asm/uv/uv.h>
15 #include <asm/uv/uv_mmrs.h>
16 #include <asm/uv/uv_hub.h>
17 #include <asm/uv/uv_bau.h>
18 #include <asm/apic.h>
19 #include <asm/idle.h>
20 #include <asm/tsc.h>
21 #include <asm/irq_vectors.h>
22
23 #include <asm/apic.h>
24
25 static struct bau_control **uv_bau_table_bases __read_mostly;
26 static int uv_bau_retry_limit __read_mostly;
27
28 /* position of pnode (which is nasid>>1): */
29 static int uv_nshift __read_mostly;
30
31 static unsigned long uv_mmask __read_mostly;
32
33 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
34 static DEFINE_PER_CPU(struct bau_control, bau_control);
35
36 /*
37 * Free a software acknowledge hardware resource by clearing its Pending
38 * bit. This will return a reply to the sender.
39 * If the message has timed out, a reply has already been sent by the
40 * hardware but the resource has not been released. In that case our
41 * clear of the Timeout bit (as well) will free the resource. No reply will
42 * be sent (the hardware will only do one reply per message).
43 */
44 static void uv_reply_to_message(int resource,
45 struct bau_payload_queue_entry *msg,
46 struct bau_msg_status *msp)
47 {
48 unsigned long dw;
49
50 dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
51 msg->replied_to = 1;
52 msg->sw_ack_vector = 0;
53 if (msp)
54 msp->seen_by.bits = 0;
55 uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
56 }
57
58 /*
59 * Do all the things a cpu should do for a TLB shootdown message.
60 * Other cpu's may come here at the same time for this message.
61 */
62 static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
63 int msg_slot, int sw_ack_slot)
64 {
65 unsigned long this_cpu_mask;
66 struct bau_msg_status *msp;
67 int cpu;
68
69 msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
70 cpu = uv_blade_processor_id();
71 msg->number_of_cpus =
72 uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
73 this_cpu_mask = 1UL << cpu;
74 if (msp->seen_by.bits & this_cpu_mask)
75 return;
76 atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
77
78 if (msg->replied_to == 1)
79 return;
80
81 if (msg->address == TLB_FLUSH_ALL) {
82 local_flush_tlb();
83 __get_cpu_var(ptcstats).alltlb++;
84 } else {
85 __flush_tlb_one(msg->address);
86 __get_cpu_var(ptcstats).onetlb++;
87 }
88
89 __get_cpu_var(ptcstats).requestee++;
90
91 atomic_inc_short(&msg->acknowledge_count);
92 if (msg->number_of_cpus == msg->acknowledge_count)
93 uv_reply_to_message(sw_ack_slot, msg, msp);
94 }
95
96 /*
97 * Examine the payload queue on one distribution node to see
98 * which messages have not been seen, and which cpu(s) have not seen them.
99 *
100 * Returns the number of cpu's that have not responded.
101 */
102 static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
103 {
104 struct bau_payload_queue_entry *msg;
105 struct bau_msg_status *msp;
106 int count = 0;
107 int i;
108 int j;
109
110 for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
111 msg++, i++) {
112 if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
113 msp = bau_tablesp->msg_statuses + i;
114 printk(KERN_DEBUG
115 "blade %d: address:%#lx %d of %d, not cpu(s): ",
116 i, msg->address, msg->acknowledge_count,
117 msg->number_of_cpus);
118 for (j = 0; j < msg->number_of_cpus; j++) {
119 if (!((1L << j) & msp->seen_by.bits)) {
120 count++;
121 printk("%d ", j);
122 }
123 }
124 printk("\n");
125 }
126 }
127 return count;
128 }
129
130 /*
131 * Examine the payload queue on all the distribution nodes to see
132 * which messages have not been seen, and which cpu(s) have not seen them.
133 *
134 * Returns the number of cpu's that have not responded.
135 */
136 static int uv_examine_destinations(struct bau_target_nodemask *distribution)
137 {
138 int sender;
139 int i;
140 int count = 0;
141
142 sender = smp_processor_id();
143 for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
144 if (!bau_node_isset(i, distribution))
145 continue;
146 count += uv_examine_destination(uv_bau_table_bases[i], sender);
147 }
148 return count;
149 }
150
151 /*
152 * wait for completion of a broadcast message
153 *
154 * return COMPLETE, RETRY or GIVEUP
155 */
156 static int uv_wait_completion(struct bau_desc *bau_desc,
157 unsigned long mmr_offset, int right_shift)
158 {
159 int exams = 0;
160 long destination_timeouts = 0;
161 long source_timeouts = 0;
162 unsigned long descriptor_status;
163
164 while ((descriptor_status = (((unsigned long)
165 uv_read_local_mmr(mmr_offset) >>
166 right_shift) & UV_ACT_STATUS_MASK)) !=
167 DESC_STATUS_IDLE) {
168 if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
169 source_timeouts++;
170 if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
171 source_timeouts = 0;
172 __get_cpu_var(ptcstats).s_retry++;
173 return FLUSH_RETRY;
174 }
175 /*
176 * spin here looking for progress at the destinations
177 */
178 if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
179 destination_timeouts++;
180 if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
181 /*
182 * returns number of cpus not responding
183 */
184 if (uv_examine_destinations
185 (&bau_desc->distribution) == 0) {
186 __get_cpu_var(ptcstats).d_retry++;
187 return FLUSH_RETRY;
188 }
189 exams++;
190 if (exams >= uv_bau_retry_limit) {
191 printk(KERN_DEBUG
192 "uv_flush_tlb_others");
193 printk("giving up on cpu %d\n",
194 smp_processor_id());
195 return FLUSH_GIVEUP;
196 }
197 /*
198 * delays can hang the simulator
199 udelay(1000);
200 */
201 destination_timeouts = 0;
202 }
203 }
204 cpu_relax();
205 }
206 return FLUSH_COMPLETE;
207 }
208
209 /**
210 * uv_flush_send_and_wait
211 *
212 * Send a broadcast and wait for a broadcast message to complete.
213 *
214 * The flush_mask contains the cpus the broadcast was sent to.
215 *
216 * Returns NULL if all remote flushing was done. The mask is zeroed.
217 * Returns @flush_mask if some remote flushing remains to be done. The
218 * mask will have some bits still set.
219 */
220 const struct cpumask *uv_flush_send_and_wait(int cpu, int this_blade,
221 struct bau_desc *bau_desc,
222 struct cpumask *flush_mask)
223 {
224 int completion_status = 0;
225 int right_shift;
226 int tries = 0;
227 int blade;
228 int bit;
229 unsigned long mmr_offset;
230 unsigned long index;
231 cycles_t time1;
232 cycles_t time2;
233
234 if (cpu < UV_CPUS_PER_ACT_STATUS) {
235 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
236 right_shift = cpu * UV_ACT_STATUS_SIZE;
237 } else {
238 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
239 right_shift =
240 ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
241 }
242 time1 = get_cycles();
243 do {
244 tries++;
245 index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
246 cpu;
247 uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
248 completion_status = uv_wait_completion(bau_desc, mmr_offset,
249 right_shift);
250 } while (completion_status == FLUSH_RETRY);
251 time2 = get_cycles();
252 __get_cpu_var(ptcstats).sflush += (time2 - time1);
253 if (tries > 1)
254 __get_cpu_var(ptcstats).retriesok++;
255
256 if (completion_status == FLUSH_GIVEUP) {
257 /*
258 * Cause the caller to do an IPI-style TLB shootdown on
259 * the cpu's, all of which are still in the mask.
260 */
261 __get_cpu_var(ptcstats).ptc_i++;
262 return flush_mask;
263 }
264
265 /*
266 * Success, so clear the remote cpu's from the mask so we don't
267 * use the IPI method of shootdown on them.
268 */
269 for_each_cpu(bit, flush_mask) {
270 blade = uv_cpu_to_blade_id(bit);
271 if (blade == this_blade)
272 continue;
273 cpumask_clear_cpu(bit, flush_mask);
274 }
275 if (!cpumask_empty(flush_mask))
276 return flush_mask;
277 return NULL;
278 }
279
280 /**
281 * uv_flush_tlb_others - globally purge translation cache of a virtual
282 * address or all TLB's
283 * @cpumask: mask of all cpu's in which the address is to be removed
284 * @mm: mm_struct containing virtual address range
285 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
286 * @cpu: the current cpu
287 *
288 * This is the entry point for initiating any UV global TLB shootdown.
289 *
290 * Purges the translation caches of all specified processors of the given
291 * virtual address, or purges all TLB's on specified processors.
292 *
293 * The caller has derived the cpumask from the mm_struct. This function
294 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
295 *
296 * The cpumask is converted into a nodemask of the nodes containing
297 * the cpus.
298 *
299 * Note that this function should be called with preemption disabled.
300 *
301 * Returns NULL if all remote flushing was done.
302 * Returns pointer to cpumask if some remote flushing remains to be
303 * done. The returned pointer is valid till preemption is re-enabled.
304 */
305 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
306 struct mm_struct *mm,
307 unsigned long va, unsigned int cpu)
308 {
309 static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask);
310 struct cpumask *flush_mask = &__get_cpu_var(flush_tlb_mask);
311 int i;
312 int bit;
313 int blade;
314 int uv_cpu;
315 int this_blade;
316 int locals = 0;
317 struct bau_desc *bau_desc;
318
319 WARN_ON(!in_atomic());
320
321 cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
322
323 uv_cpu = uv_blade_processor_id();
324 this_blade = uv_numa_blade_id();
325 bau_desc = __get_cpu_var(bau_control).descriptor_base;
326 bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
327
328 bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
329
330 i = 0;
331 for_each_cpu(bit, flush_mask) {
332 blade = uv_cpu_to_blade_id(bit);
333 BUG_ON(blade > (UV_DISTRIBUTION_SIZE - 1));
334 if (blade == this_blade) {
335 locals++;
336 continue;
337 }
338 bau_node_set(blade, &bau_desc->distribution);
339 i++;
340 }
341 if (i == 0) {
342 /*
343 * no off_node flushing; return status for local node
344 */
345 if (locals)
346 return flush_mask;
347 else
348 return NULL;
349 }
350 __get_cpu_var(ptcstats).requestor++;
351 __get_cpu_var(ptcstats).ntargeted += i;
352
353 bau_desc->payload.address = va;
354 bau_desc->payload.sending_cpu = cpu;
355
356 return uv_flush_send_and_wait(uv_cpu, this_blade, bau_desc, flush_mask);
357 }
358
359 /*
360 * The BAU message interrupt comes here. (registered by set_intr_gate)
361 * See entry_64.S
362 *
363 * We received a broadcast assist message.
364 *
365 * Interrupts may have been disabled; this interrupt could represent
366 * the receipt of several messages.
367 *
368 * All cores/threads on this node get this interrupt.
369 * The last one to see it does the s/w ack.
370 * (the resource will not be freed until noninterruptable cpus see this
371 * interrupt; hardware will timeout the s/w ack and reply ERROR)
372 */
373 void uv_bau_message_interrupt(struct pt_regs *regs)
374 {
375 struct bau_payload_queue_entry *va_queue_first;
376 struct bau_payload_queue_entry *va_queue_last;
377 struct bau_payload_queue_entry *msg;
378 struct pt_regs *old_regs = set_irq_regs(regs);
379 cycles_t time1;
380 cycles_t time2;
381 int msg_slot;
382 int sw_ack_slot;
383 int fw;
384 int count = 0;
385 unsigned long local_pnode;
386
387 ack_APIC_irq();
388 exit_idle();
389 irq_enter();
390
391 time1 = get_cycles();
392
393 local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
394
395 va_queue_first = __get_cpu_var(bau_control).va_queue_first;
396 va_queue_last = __get_cpu_var(bau_control).va_queue_last;
397
398 msg = __get_cpu_var(bau_control).bau_msg_head;
399 while (msg->sw_ack_vector) {
400 count++;
401 fw = msg->sw_ack_vector;
402 msg_slot = msg - va_queue_first;
403 sw_ack_slot = ffs(fw) - 1;
404
405 uv_bau_process_message(msg, msg_slot, sw_ack_slot);
406
407 msg++;
408 if (msg > va_queue_last)
409 msg = va_queue_first;
410 __get_cpu_var(bau_control).bau_msg_head = msg;
411 }
412 if (!count)
413 __get_cpu_var(ptcstats).nomsg++;
414 else if (count > 1)
415 __get_cpu_var(ptcstats).multmsg++;
416
417 time2 = get_cycles();
418 __get_cpu_var(ptcstats).dflush += (time2 - time1);
419
420 irq_exit();
421 set_irq_regs(old_regs);
422 }
423
424 static void uv_enable_timeouts(void)
425 {
426 int i;
427 int blade;
428 int last_blade;
429 int pnode;
430 int cur_cpu = 0;
431 unsigned long apicid;
432
433 last_blade = -1;
434 for_each_online_node(i) {
435 blade = uv_node_to_blade_id(i);
436 if (blade == last_blade)
437 continue;
438 last_blade = blade;
439 apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
440 pnode = uv_blade_to_pnode(blade);
441 cur_cpu += uv_blade_nr_possible_cpus(i);
442 }
443 }
444
445 static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
446 {
447 if (*offset < num_possible_cpus())
448 return offset;
449 return NULL;
450 }
451
452 static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
453 {
454 (*offset)++;
455 if (*offset < num_possible_cpus())
456 return offset;
457 return NULL;
458 }
459
460 static void uv_ptc_seq_stop(struct seq_file *file, void *data)
461 {
462 }
463
464 /*
465 * Display the statistics thru /proc
466 * data points to the cpu number
467 */
468 static int uv_ptc_seq_show(struct seq_file *file, void *data)
469 {
470 struct ptc_stats *stat;
471 int cpu;
472
473 cpu = *(loff_t *)data;
474
475 if (!cpu) {
476 seq_printf(file,
477 "# cpu requestor requestee one all sretry dretry ptc_i ");
478 seq_printf(file,
479 "sw_ack sflush dflush sok dnomsg dmult starget\n");
480 }
481 if (cpu < num_possible_cpus() && cpu_online(cpu)) {
482 stat = &per_cpu(ptcstats, cpu);
483 seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
484 cpu, stat->requestor,
485 stat->requestee, stat->onetlb, stat->alltlb,
486 stat->s_retry, stat->d_retry, stat->ptc_i);
487 seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
488 uv_read_global_mmr64(uv_blade_to_pnode
489 (uv_cpu_to_blade_id(cpu)),
490 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
491 stat->sflush, stat->dflush,
492 stat->retriesok, stat->nomsg,
493 stat->multmsg, stat->ntargeted);
494 }
495
496 return 0;
497 }
498
499 /*
500 * 0: display meaning of the statistics
501 * >0: retry limit
502 */
503 static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
504 size_t count, loff_t *data)
505 {
506 long newmode;
507 char optstr[64];
508
509 if (count == 0 || count > sizeof(optstr))
510 return -EINVAL;
511 if (copy_from_user(optstr, user, count))
512 return -EFAULT;
513 optstr[count - 1] = '\0';
514 if (strict_strtoul(optstr, 10, &newmode) < 0) {
515 printk(KERN_DEBUG "%s is invalid\n", optstr);
516 return -EINVAL;
517 }
518
519 if (newmode == 0) {
520 printk(KERN_DEBUG "# cpu: cpu number\n");
521 printk(KERN_DEBUG
522 "requestor: times this cpu was the flush requestor\n");
523 printk(KERN_DEBUG
524 "requestee: times this cpu was requested to flush its TLBs\n");
525 printk(KERN_DEBUG
526 "one: times requested to flush a single address\n");
527 printk(KERN_DEBUG
528 "all: times requested to flush all TLB's\n");
529 printk(KERN_DEBUG
530 "sretry: number of retries of source-side timeouts\n");
531 printk(KERN_DEBUG
532 "dretry: number of retries of destination-side timeouts\n");
533 printk(KERN_DEBUG
534 "ptc_i: times UV fell through to IPI-style flushes\n");
535 printk(KERN_DEBUG
536 "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
537 printk(KERN_DEBUG
538 "sflush_us: cycles spent in uv_flush_tlb_others()\n");
539 printk(KERN_DEBUG
540 "dflush_us: cycles spent in handling flush requests\n");
541 printk(KERN_DEBUG "sok: successes on retry\n");
542 printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
543 printk(KERN_DEBUG
544 "dmult: interrupts with multiple messages\n");
545 printk(KERN_DEBUG "starget: nodes targeted\n");
546 } else {
547 uv_bau_retry_limit = newmode;
548 printk(KERN_DEBUG "timeout retry limit:%d\n",
549 uv_bau_retry_limit);
550 }
551
552 return count;
553 }
554
555 static const struct seq_operations uv_ptc_seq_ops = {
556 .start = uv_ptc_seq_start,
557 .next = uv_ptc_seq_next,
558 .stop = uv_ptc_seq_stop,
559 .show = uv_ptc_seq_show
560 };
561
562 static int uv_ptc_proc_open(struct inode *inode, struct file *file)
563 {
564 return seq_open(file, &uv_ptc_seq_ops);
565 }
566
567 static const struct file_operations proc_uv_ptc_operations = {
568 .open = uv_ptc_proc_open,
569 .read = seq_read,
570 .write = uv_ptc_proc_write,
571 .llseek = seq_lseek,
572 .release = seq_release,
573 };
574
575 static int __init uv_ptc_init(void)
576 {
577 struct proc_dir_entry *proc_uv_ptc;
578
579 if (!is_uv_system())
580 return 0;
581
582 proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
583 if (!proc_uv_ptc) {
584 printk(KERN_ERR "unable to create %s proc entry\n",
585 UV_PTC_BASENAME);
586 return -EINVAL;
587 }
588 proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
589 return 0;
590 }
591
592 /*
593 * begin the initialization of the per-blade control structures
594 */
595 static struct bau_control * __init uv_table_bases_init(int blade, int node)
596 {
597 int i;
598 struct bau_msg_status *msp;
599 struct bau_control *bau_tabp;
600
601 bau_tabp =
602 kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
603 BUG_ON(!bau_tabp);
604
605 bau_tabp->msg_statuses =
606 kmalloc_node(sizeof(struct bau_msg_status) *
607 DEST_Q_SIZE, GFP_KERNEL, node);
608 BUG_ON(!bau_tabp->msg_statuses);
609
610 for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
611 bau_cpubits_clear(&msp->seen_by, (int)
612 uv_blade_nr_possible_cpus(blade));
613
614 uv_bau_table_bases[blade] = bau_tabp;
615
616 return bau_tabp;
617 }
618
619 /*
620 * finish the initialization of the per-blade control structures
621 */
622 static void __init
623 uv_table_bases_finish(int blade, int node, int cur_cpu,
624 struct bau_control *bau_tablesp,
625 struct bau_desc *adp)
626 {
627 struct bau_control *bcp;
628 int i;
629
630 for (i = cur_cpu; i < cur_cpu + uv_blade_nr_possible_cpus(blade); i++) {
631 bcp = (struct bau_control *)&per_cpu(bau_control, i);
632
633 bcp->bau_msg_head = bau_tablesp->va_queue_first;
634 bcp->va_queue_first = bau_tablesp->va_queue_first;
635 bcp->va_queue_last = bau_tablesp->va_queue_last;
636 bcp->msg_statuses = bau_tablesp->msg_statuses;
637 bcp->descriptor_base = adp;
638 }
639 }
640
641 /*
642 * initialize the sending side's sending buffers
643 */
644 static struct bau_desc * __init
645 uv_activation_descriptor_init(int node, int pnode)
646 {
647 int i;
648 unsigned long pa;
649 unsigned long m;
650 unsigned long n;
651 unsigned long mmr_image;
652 struct bau_desc *adp;
653 struct bau_desc *ad2;
654
655 adp = (struct bau_desc *)
656 kmalloc_node(16384, GFP_KERNEL, node);
657 BUG_ON(!adp);
658
659 pa = __pa((unsigned long)adp);
660 n = pa >> uv_nshift;
661 m = pa & uv_mmask;
662
663 mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
664 if (mmr_image) {
665 uv_write_global_mmr64(pnode, (unsigned long)
666 UVH_LB_BAU_SB_DESCRIPTOR_BASE,
667 (n << UV_DESC_BASE_PNODE_SHIFT | m));
668 }
669
670 for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
671 memset(ad2, 0, sizeof(struct bau_desc));
672 ad2->header.sw_ack_flag = 1;
673 ad2->header.base_dest_nodeid =
674 uv_blade_to_pnode(uv_cpu_to_blade_id(0));
675 ad2->header.command = UV_NET_ENDPOINT_INTD;
676 ad2->header.int_both = 1;
677 /*
678 * all others need to be set to zero:
679 * fairness chaining multilevel count replied_to
680 */
681 }
682 return adp;
683 }
684
685 /*
686 * initialize the destination side's receiving buffers
687 */
688 static struct bau_payload_queue_entry * __init
689 uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
690 {
691 struct bau_payload_queue_entry *pqp;
692 char *cp;
693
694 pqp = (struct bau_payload_queue_entry *) kmalloc_node(
695 (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
696 GFP_KERNEL, node);
697 BUG_ON(!pqp);
698
699 cp = (char *)pqp + 31;
700 pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
701 bau_tablesp->va_queue_first = pqp;
702 uv_write_global_mmr64(pnode,
703 UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
704 ((unsigned long)pnode <<
705 UV_PAYLOADQ_PNODE_SHIFT) |
706 uv_physnodeaddr(pqp));
707 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
708 uv_physnodeaddr(pqp));
709 bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
710 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
711 (unsigned long)
712 uv_physnodeaddr(bau_tablesp->va_queue_last));
713 memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
714
715 return pqp;
716 }
717
718 /*
719 * Initialization of each UV blade's structures
720 */
721 static int __init uv_init_blade(int blade, int node, int cur_cpu)
722 {
723 int pnode;
724 unsigned long pa;
725 unsigned long apicid;
726 struct bau_desc *adp;
727 struct bau_payload_queue_entry *pqp;
728 struct bau_control *bau_tablesp;
729
730 bau_tablesp = uv_table_bases_init(blade, node);
731 pnode = uv_blade_to_pnode(blade);
732 adp = uv_activation_descriptor_init(node, pnode);
733 pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
734 uv_table_bases_finish(blade, node, cur_cpu, bau_tablesp, adp);
735 /*
736 * the below initialization can't be in firmware because the
737 * messaging IRQ will be determined by the OS
738 */
739 apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
740 pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
741 if ((pa & 0xff) != UV_BAU_MESSAGE) {
742 uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
743 ((apicid << 32) | UV_BAU_MESSAGE));
744 }
745 return 0;
746 }
747
748 /*
749 * Initialization of BAU-related structures
750 */
751 static int __init uv_bau_init(void)
752 {
753 int blade;
754 int node;
755 int nblades;
756 int last_blade;
757 int cur_cpu = 0;
758
759 if (!is_uv_system())
760 return 0;
761
762 uv_bau_retry_limit = 1;
763 uv_nshift = uv_hub_info->n_val;
764 uv_mmask = (1UL << uv_hub_info->n_val) - 1;
765 nblades = 0;
766 last_blade = -1;
767 for_each_online_node(node) {
768 blade = uv_node_to_blade_id(node);
769 if (blade == last_blade)
770 continue;
771 last_blade = blade;
772 nblades++;
773 }
774 uv_bau_table_bases = (struct bau_control **)
775 kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
776 BUG_ON(!uv_bau_table_bases);
777
778 last_blade = -1;
779 for_each_online_node(node) {
780 blade = uv_node_to_blade_id(node);
781 if (blade == last_blade)
782 continue;
783 last_blade = blade;
784 uv_init_blade(blade, node, cur_cpu);
785 cur_cpu += uv_blade_nr_possible_cpus(blade);
786 }
787 alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
788 uv_enable_timeouts();
789
790 return 0;
791 }
792 __initcall(uv_bau_init);
793 __initcall(uv_ptc_init);