x86: fill in missing pv_mmu_ops entries for PAGETABLE_LEVELS >= 3
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / smp_32.c
1 /*
2 * Intel SMP support routines.
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * This code is released under the GNU General Public License version 2 or
8 * later.
9 */
10
11 #include <linux/init.h>
12
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/spinlock.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/mc146818rtc.h>
18 #include <linux/cache.h>
19 #include <linux/interrupt.h>
20 #include <linux/cpu.h>
21 #include <linux/module.h>
22
23 #include <asm/mtrr.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <mach_apic.h>
27
28 /*
29 * Some notes on x86 processor bugs affecting SMP operation:
30 *
31 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
32 * The Linux implications for SMP are handled as follows:
33 *
34 * Pentium III / [Xeon]
35 * None of the E1AP-E3AP errata are visible to the user.
36 *
37 * E1AP. see PII A1AP
38 * E2AP. see PII A2AP
39 * E3AP. see PII A3AP
40 *
41 * Pentium II / [Xeon]
42 * None of the A1AP-A3AP errata are visible to the user.
43 *
44 * A1AP. see PPro 1AP
45 * A2AP. see PPro 2AP
46 * A3AP. see PPro 7AP
47 *
48 * Pentium Pro
49 * None of 1AP-9AP errata are visible to the normal user,
50 * except occasional delivery of 'spurious interrupt' as trap #15.
51 * This is very rare and a non-problem.
52 *
53 * 1AP. Linux maps APIC as non-cacheable
54 * 2AP. worked around in hardware
55 * 3AP. fixed in C0 and above steppings microcode update.
56 * Linux does not use excessive STARTUP_IPIs.
57 * 4AP. worked around in hardware
58 * 5AP. symmetric IO mode (normal Linux operation) not affected.
59 * 'noapic' mode has vector 0xf filled out properly.
60 * 6AP. 'noapic' mode might be affected - fixed in later steppings
61 * 7AP. We do not assume writes to the LVT deassering IRQs
62 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
63 * 9AP. We do not use mixed mode
64 *
65 * Pentium
66 * There is a marginal case where REP MOVS on 100MHz SMP
67 * machines with B stepping processors can fail. XXX should provide
68 * an L1cache=Writethrough or L1cache=off option.
69 *
70 * B stepping CPUs may hang. There are hardware work arounds
71 * for this. We warn about it in case your board doesn't have the work
72 * arounds. Basically that's so I can tell anyone with a B stepping
73 * CPU and SMP problems "tough".
74 *
75 * Specific items [From Pentium Processor Specification Update]
76 *
77 * 1AP. Linux doesn't use remote read
78 * 2AP. Linux doesn't trust APIC errors
79 * 3AP. We work around this
80 * 4AP. Linux never generated 3 interrupts of the same priority
81 * to cause a lost local interrupt.
82 * 5AP. Remote read is never used
83 * 6AP. not affected - worked around in hardware
84 * 7AP. not affected - worked around in hardware
85 * 8AP. worked around in hardware - we get explicit CS errors if not
86 * 9AP. only 'noapic' mode affected. Might generate spurious
87 * interrupts, we log only the first one and count the
88 * rest silently.
89 * 10AP. not affected - worked around in hardware
90 * 11AP. Linux reads the APIC between writes to avoid this, as per
91 * the documentation. Make sure you preserve this as it affects
92 * the C stepping chips too.
93 * 12AP. not affected - worked around in hardware
94 * 13AP. not affected - worked around in hardware
95 * 14AP. we always deassert INIT during bootup
96 * 15AP. not affected - worked around in hardware
97 * 16AP. not affected - worked around in hardware
98 * 17AP. not affected - worked around in hardware
99 * 18AP. not affected - worked around in hardware
100 * 19AP. not affected - worked around in BIOS
101 *
102 * If this sounds worrying believe me these bugs are either ___RARE___,
103 * or are signal timing bugs worked around in hardware and there's
104 * about nothing of note with C stepping upwards.
105 */
106
107 DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
108
109 /*
110 * the following functions deal with sending IPIs between CPUs.
111 *
112 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
113 */
114
115 static inline int __prepare_ICR (unsigned int shortcut, int vector)
116 {
117 unsigned int icr = shortcut | APIC_DEST_LOGICAL;
118
119 switch (vector) {
120 default:
121 icr |= APIC_DM_FIXED | vector;
122 break;
123 case NMI_VECTOR:
124 icr |= APIC_DM_NMI;
125 break;
126 }
127 return icr;
128 }
129
130 static inline int __prepare_ICR2 (unsigned int mask)
131 {
132 return SET_APIC_DEST_FIELD(mask);
133 }
134
135 void __send_IPI_shortcut(unsigned int shortcut, int vector)
136 {
137 /*
138 * Subtle. In the case of the 'never do double writes' workaround
139 * we have to lock out interrupts to be safe. As we don't care
140 * of the value read we use an atomic rmw access to avoid costly
141 * cli/sti. Otherwise we use an even cheaper single atomic write
142 * to the APIC.
143 */
144 unsigned int cfg;
145
146 /*
147 * Wait for idle.
148 */
149 apic_wait_icr_idle();
150
151 /*
152 * No need to touch the target chip field
153 */
154 cfg = __prepare_ICR(shortcut, vector);
155
156 /*
157 * Send the IPI. The write to APIC_ICR fires this off.
158 */
159 apic_write_around(APIC_ICR, cfg);
160 }
161
162 void send_IPI_self(int vector)
163 {
164 __send_IPI_shortcut(APIC_DEST_SELF, vector);
165 }
166
167 /*
168 * This is used to send an IPI with no shorthand notation (the destination is
169 * specified in bits 56 to 63 of the ICR).
170 */
171 static inline void __send_IPI_dest_field(unsigned long mask, int vector)
172 {
173 unsigned long cfg;
174
175 /*
176 * Wait for idle.
177 */
178 if (unlikely(vector == NMI_VECTOR))
179 safe_apic_wait_icr_idle();
180 else
181 apic_wait_icr_idle();
182
183 /*
184 * prepare target chip field
185 */
186 cfg = __prepare_ICR2(mask);
187 apic_write_around(APIC_ICR2, cfg);
188
189 /*
190 * program the ICR
191 */
192 cfg = __prepare_ICR(0, vector);
193
194 /*
195 * Send the IPI. The write to APIC_ICR fires this off.
196 */
197 apic_write_around(APIC_ICR, cfg);
198 }
199
200 /*
201 * This is only used on smaller machines.
202 */
203 void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
204 {
205 unsigned long mask = cpus_addr(cpumask)[0];
206 unsigned long flags;
207
208 local_irq_save(flags);
209 WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]);
210 __send_IPI_dest_field(mask, vector);
211 local_irq_restore(flags);
212 }
213
214 void send_IPI_mask_sequence(cpumask_t mask, int vector)
215 {
216 unsigned long flags;
217 unsigned int query_cpu;
218
219 /*
220 * Hack. The clustered APIC addressing mode doesn't allow us to send
221 * to an arbitrary mask, so I do a unicasts to each CPU instead. This
222 * should be modified to do 1 message per cluster ID - mbligh
223 */
224
225 local_irq_save(flags);
226 for_each_possible_cpu(query_cpu) {
227 if (cpu_isset(query_cpu, mask)) {
228 __send_IPI_dest_field(cpu_to_logical_apicid(query_cpu),
229 vector);
230 }
231 }
232 local_irq_restore(flags);
233 }
234
235 #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
236
237 /*
238 * Smarter SMP flushing macros.
239 * c/o Linus Torvalds.
240 *
241 * These mean you can really definitely utterly forget about
242 * writing to user space from interrupts. (Its not allowed anyway).
243 *
244 * Optimizations Manfred Spraul <manfred@colorfullife.com>
245 */
246
247 static cpumask_t flush_cpumask;
248 static struct mm_struct * flush_mm;
249 static unsigned long flush_va;
250 static DEFINE_SPINLOCK(tlbstate_lock);
251
252 /*
253 * We cannot call mmdrop() because we are in interrupt context,
254 * instead update mm->cpu_vm_mask.
255 *
256 * We need to reload %cr3 since the page tables may be going
257 * away from under us..
258 */
259 void leave_mm(int cpu)
260 {
261 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
262 BUG();
263 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
264 load_cr3(swapper_pg_dir);
265 }
266 EXPORT_SYMBOL_GPL(leave_mm);
267
268 /*
269 *
270 * The flush IPI assumes that a thread switch happens in this order:
271 * [cpu0: the cpu that switches]
272 * 1) switch_mm() either 1a) or 1b)
273 * 1a) thread switch to a different mm
274 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
275 * Stop ipi delivery for the old mm. This is not synchronized with
276 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
277 * for the wrong mm, and in the worst case we perform a superfluous
278 * tlb flush.
279 * 1a2) set cpu_tlbstate to TLBSTATE_OK
280 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
281 * was in lazy tlb mode.
282 * 1a3) update cpu_tlbstate[].active_mm
283 * Now cpu0 accepts tlb flushes for the new mm.
284 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
285 * Now the other cpus will send tlb flush ipis.
286 * 1a4) change cr3.
287 * 1b) thread switch without mm change
288 * cpu_tlbstate[].active_mm is correct, cpu0 already handles
289 * flush ipis.
290 * 1b1) set cpu_tlbstate to TLBSTATE_OK
291 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
292 * Atomically set the bit [other cpus will start sending flush ipis],
293 * and test the bit.
294 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
295 * 2) switch %%esp, ie current
296 *
297 * The interrupt must handle 2 special cases:
298 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
299 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
300 * runs in kernel space, the cpu could load tlb entries for user space
301 * pages.
302 *
303 * The good news is that cpu_tlbstate is local to each cpu, no
304 * write/read ordering problems.
305 */
306
307 /*
308 * TLB flush IPI:
309 *
310 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
311 * 2) Leave the mm if we are in the lazy tlb mode.
312 */
313
314 void smp_invalidate_interrupt(struct pt_regs *regs)
315 {
316 unsigned long cpu;
317
318 cpu = get_cpu();
319
320 if (!cpu_isset(cpu, flush_cpumask))
321 goto out;
322 /*
323 * This was a BUG() but until someone can quote me the
324 * line from the intel manual that guarantees an IPI to
325 * multiple CPUs is retried _only_ on the erroring CPUs
326 * its staying as a return
327 *
328 * BUG();
329 */
330
331 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
332 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
333 if (flush_va == TLB_FLUSH_ALL)
334 local_flush_tlb();
335 else
336 __flush_tlb_one(flush_va);
337 } else
338 leave_mm(cpu);
339 }
340 ack_APIC_irq();
341 smp_mb__before_clear_bit();
342 cpu_clear(cpu, flush_cpumask);
343 smp_mb__after_clear_bit();
344 out:
345 put_cpu_no_resched();
346 __get_cpu_var(irq_stat).irq_tlb_count++;
347 }
348
349 void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
350 unsigned long va)
351 {
352 cpumask_t cpumask = *cpumaskp;
353
354 /*
355 * A couple of (to be removed) sanity checks:
356 *
357 * - current CPU must not be in mask
358 * - mask must exist :)
359 */
360 BUG_ON(cpus_empty(cpumask));
361 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
362 BUG_ON(!mm);
363
364 #ifdef CONFIG_HOTPLUG_CPU
365 /* If a CPU which we ran on has gone down, OK. */
366 cpus_and(cpumask, cpumask, cpu_online_map);
367 if (unlikely(cpus_empty(cpumask)))
368 return;
369 #endif
370
371 /*
372 * i'm not happy about this global shared spinlock in the
373 * MM hot path, but we'll see how contended it is.
374 * AK: x86-64 has a faster method that could be ported.
375 */
376 spin_lock(&tlbstate_lock);
377
378 flush_mm = mm;
379 flush_va = va;
380 cpus_or(flush_cpumask, cpumask, flush_cpumask);
381 /*
382 * We have to send the IPI only to
383 * CPUs affected.
384 */
385 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
386
387 while (!cpus_empty(flush_cpumask))
388 /* nothing. lockup detection does not belong here */
389 cpu_relax();
390
391 flush_mm = NULL;
392 flush_va = 0;
393 spin_unlock(&tlbstate_lock);
394 }
395
396 void flush_tlb_current_task(void)
397 {
398 struct mm_struct *mm = current->mm;
399 cpumask_t cpu_mask;
400
401 preempt_disable();
402 cpu_mask = mm->cpu_vm_mask;
403 cpu_clear(smp_processor_id(), cpu_mask);
404
405 local_flush_tlb();
406 if (!cpus_empty(cpu_mask))
407 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
408 preempt_enable();
409 }
410
411 void flush_tlb_mm (struct mm_struct * mm)
412 {
413 cpumask_t cpu_mask;
414
415 preempt_disable();
416 cpu_mask = mm->cpu_vm_mask;
417 cpu_clear(smp_processor_id(), cpu_mask);
418
419 if (current->active_mm == mm) {
420 if (current->mm)
421 local_flush_tlb();
422 else
423 leave_mm(smp_processor_id());
424 }
425 if (!cpus_empty(cpu_mask))
426 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
427
428 preempt_enable();
429 }
430
431 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
432 {
433 struct mm_struct *mm = vma->vm_mm;
434 cpumask_t cpu_mask;
435
436 preempt_disable();
437 cpu_mask = mm->cpu_vm_mask;
438 cpu_clear(smp_processor_id(), cpu_mask);
439
440 if (current->active_mm == mm) {
441 if(current->mm)
442 __flush_tlb_one(va);
443 else
444 leave_mm(smp_processor_id());
445 }
446
447 if (!cpus_empty(cpu_mask))
448 flush_tlb_others(cpu_mask, mm, va);
449
450 preempt_enable();
451 }
452 EXPORT_SYMBOL(flush_tlb_page);
453
454 static void do_flush_tlb_all(void* info)
455 {
456 unsigned long cpu = smp_processor_id();
457
458 __flush_tlb_all();
459 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
460 leave_mm(cpu);
461 }
462
463 void flush_tlb_all(void)
464 {
465 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
466 }
467
468 /*
469 * this function sends a 'reschedule' IPI to another CPU.
470 * it goes straight through and wastes no time serializing
471 * anything. Worst case is that we lose a reschedule ...
472 */
473 static void native_smp_send_reschedule(int cpu)
474 {
475 WARN_ON(cpu_is_offline(cpu));
476 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
477 }
478
479 /*
480 * Structure and data for smp_call_function(). This is designed to minimise
481 * static memory requirements. It also looks cleaner.
482 */
483 static DEFINE_SPINLOCK(call_lock);
484
485 struct call_data_struct {
486 void (*func) (void *info);
487 void *info;
488 atomic_t started;
489 atomic_t finished;
490 int wait;
491 };
492
493 void lock_ipi_call_lock(void)
494 {
495 spin_lock_irq(&call_lock);
496 }
497
498 void unlock_ipi_call_lock(void)
499 {
500 spin_unlock_irq(&call_lock);
501 }
502
503 static struct call_data_struct *call_data;
504
505 static void __smp_call_function(void (*func) (void *info), void *info,
506 int nonatomic, int wait)
507 {
508 struct call_data_struct data;
509 int cpus = num_online_cpus() - 1;
510
511 if (!cpus)
512 return;
513
514 data.func = func;
515 data.info = info;
516 atomic_set(&data.started, 0);
517 data.wait = wait;
518 if (wait)
519 atomic_set(&data.finished, 0);
520
521 call_data = &data;
522 mb();
523
524 /* Send a message to all other CPUs and wait for them to respond */
525 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
526
527 /* Wait for response */
528 while (atomic_read(&data.started) != cpus)
529 cpu_relax();
530
531 if (wait)
532 while (atomic_read(&data.finished) != cpus)
533 cpu_relax();
534 }
535
536
537 /**
538 * smp_call_function_mask(): Run a function on a set of other CPUs.
539 * @mask: The set of cpus to run on. Must not include the current cpu.
540 * @func: The function to run. This must be fast and non-blocking.
541 * @info: An arbitrary pointer to pass to the function.
542 * @wait: If true, wait (atomically) until function has completed on other CPUs.
543 *
544 * Returns 0 on success, else a negative status code.
545 *
546 * If @wait is true, then returns once @func has returned; otherwise
547 * it returns just before the target cpu calls @func.
548 *
549 * You must not call this function with disabled interrupts or from a
550 * hardware interrupt handler or from a bottom half handler.
551 */
552 static int
553 native_smp_call_function_mask(cpumask_t mask,
554 void (*func)(void *), void *info,
555 int wait)
556 {
557 struct call_data_struct data;
558 cpumask_t allbutself;
559 int cpus;
560
561 /* Can deadlock when called with interrupts disabled */
562 WARN_ON(irqs_disabled());
563
564 /* Holding any lock stops cpus from going down. */
565 spin_lock(&call_lock);
566
567 allbutself = cpu_online_map;
568 cpu_clear(smp_processor_id(), allbutself);
569
570 cpus_and(mask, mask, allbutself);
571 cpus = cpus_weight(mask);
572
573 if (!cpus) {
574 spin_unlock(&call_lock);
575 return 0;
576 }
577
578 data.func = func;
579 data.info = info;
580 atomic_set(&data.started, 0);
581 data.wait = wait;
582 if (wait)
583 atomic_set(&data.finished, 0);
584
585 call_data = &data;
586 mb();
587
588 /* Send a message to other CPUs */
589 if (cpus_equal(mask, allbutself))
590 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
591 else
592 send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
593
594 /* Wait for response */
595 while (atomic_read(&data.started) != cpus)
596 cpu_relax();
597
598 if (wait)
599 while (atomic_read(&data.finished) != cpus)
600 cpu_relax();
601 spin_unlock(&call_lock);
602
603 return 0;
604 }
605
606 static void stop_this_cpu (void * dummy)
607 {
608 local_irq_disable();
609 /*
610 * Remove this CPU:
611 */
612 cpu_clear(smp_processor_id(), cpu_online_map);
613 disable_local_APIC();
614 if (cpu_data(smp_processor_id()).hlt_works_ok)
615 for(;;) halt();
616 for (;;);
617 }
618
619 /*
620 * this function calls the 'stop' function on all other CPUs in the system.
621 */
622
623 static void native_smp_send_stop(void)
624 {
625 /* Don't deadlock on the call lock in panic */
626 int nolock = !spin_trylock(&call_lock);
627 unsigned long flags;
628
629 local_irq_save(flags);
630 __smp_call_function(stop_this_cpu, NULL, 0, 0);
631 if (!nolock)
632 spin_unlock(&call_lock);
633 disable_local_APIC();
634 local_irq_restore(flags);
635 }
636
637 /*
638 * Reschedule call back. Nothing to do,
639 * all the work is done automatically when
640 * we return from the interrupt.
641 */
642 void smp_reschedule_interrupt(struct pt_regs *regs)
643 {
644 ack_APIC_irq();
645 __get_cpu_var(irq_stat).irq_resched_count++;
646 }
647
648 void smp_call_function_interrupt(struct pt_regs *regs)
649 {
650 void (*func) (void *info) = call_data->func;
651 void *info = call_data->info;
652 int wait = call_data->wait;
653
654 ack_APIC_irq();
655 /*
656 * Notify initiating CPU that I've grabbed the data and am
657 * about to execute the function
658 */
659 mb();
660 atomic_inc(&call_data->started);
661 /*
662 * At this point the info structure may be out of scope unless wait==1
663 */
664 irq_enter();
665 (*func)(info);
666 __get_cpu_var(irq_stat).irq_call_count++;
667 irq_exit();
668
669 if (wait) {
670 mb();
671 atomic_inc(&call_data->finished);
672 }
673 }
674
675 static int convert_apicid_to_cpu(int apic_id)
676 {
677 int i;
678
679 for_each_possible_cpu(i) {
680 if (per_cpu(x86_cpu_to_apicid, i) == apic_id)
681 return i;
682 }
683 return -1;
684 }
685
686 int safe_smp_processor_id(void)
687 {
688 int apicid, cpuid;
689
690 if (!boot_cpu_has(X86_FEATURE_APIC))
691 return 0;
692
693 apicid = hard_smp_processor_id();
694 if (apicid == BAD_APICID)
695 return 0;
696
697 cpuid = convert_apicid_to_cpu(apicid);
698
699 return cpuid >= 0 ? cpuid : 0;
700 }
701
702 struct smp_ops smp_ops = {
703 .smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
704 .smp_prepare_cpus = native_smp_prepare_cpus,
705 .cpu_up = native_cpu_up,
706 .smp_cpus_done = native_smp_cpus_done,
707
708 .smp_send_stop = native_smp_send_stop,
709 .smp_send_reschedule = native_smp_send_reschedule,
710 .smp_call_function_mask = native_smp_call_function_mask,
711 };
712 EXPORT_SYMBOL_GPL(smp_ops);