x86, ptrace: support for branch trace store(BTS)
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / setup_64.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 */
4
5 /*
6 * This file handles the architecture-dependent parts of initialization
7 */
8
9 #include <linux/errno.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/stddef.h>
14 #include <linux/unistd.h>
15 #include <linux/ptrace.h>
16 #include <linux/slab.h>
17 #include <linux/user.h>
18 #include <linux/a.out.h>
19 #include <linux/screen_info.h>
20 #include <linux/ioport.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/initrd.h>
24 #include <linux/highmem.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <asm/processor.h>
28 #include <linux/console.h>
29 #include <linux/seq_file.h>
30 #include <linux/crash_dump.h>
31 #include <linux/root_dev.h>
32 #include <linux/pci.h>
33 #include <linux/acpi.h>
34 #include <linux/kallsyms.h>
35 #include <linux/edd.h>
36 #include <linux/mmzone.h>
37 #include <linux/kexec.h>
38 #include <linux/cpufreq.h>
39 #include <linux/dmi.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/ctype.h>
42
43 #include <asm/mtrr.h>
44 #include <asm/uaccess.h>
45 #include <asm/system.h>
46 #include <asm/io.h>
47 #include <asm/smp.h>
48 #include <asm/msr.h>
49 #include <asm/desc.h>
50 #include <video/edid.h>
51 #include <asm/e820.h>
52 #include <asm/dma.h>
53 #include <asm/mpspec.h>
54 #include <asm/mmu_context.h>
55 #include <asm/proto.h>
56 #include <asm/setup.h>
57 #include <asm/mach_apic.h>
58 #include <asm/numa.h>
59 #include <asm/sections.h>
60 #include <asm/dmi.h>
61 #include <asm/cacheflush.h>
62 #include <asm/mce.h>
63 #include <asm/ds.h>
64
65 /*
66 * Machine setup..
67 */
68
69 struct cpuinfo_x86 boot_cpu_data __read_mostly;
70 EXPORT_SYMBOL(boot_cpu_data);
71
72 unsigned long mmu_cr4_features;
73
74 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
75 int bootloader_type;
76
77 unsigned long saved_video_mode;
78
79 int force_mwait __cpuinitdata;
80
81 /*
82 * Early DMI memory
83 */
84 int dmi_alloc_index;
85 char dmi_alloc_data[DMI_MAX_DATA];
86
87 /*
88 * Setup options
89 */
90 struct screen_info screen_info;
91 EXPORT_SYMBOL(screen_info);
92 struct sys_desc_table_struct {
93 unsigned short length;
94 unsigned char table[0];
95 };
96
97 struct edid_info edid_info;
98 EXPORT_SYMBOL_GPL(edid_info);
99
100 extern int root_mountflags;
101
102 char __initdata command_line[COMMAND_LINE_SIZE];
103
104 struct resource standard_io_resources[] = {
105 { .name = "dma1", .start = 0x00, .end = 0x1f,
106 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
107 { .name = "pic1", .start = 0x20, .end = 0x21,
108 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
109 { .name = "timer0", .start = 0x40, .end = 0x43,
110 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
111 { .name = "timer1", .start = 0x50, .end = 0x53,
112 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
113 { .name = "keyboard", .start = 0x60, .end = 0x6f,
114 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
115 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
116 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
117 { .name = "pic2", .start = 0xa0, .end = 0xa1,
118 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
119 { .name = "dma2", .start = 0xc0, .end = 0xdf,
120 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
121 { .name = "fpu", .start = 0xf0, .end = 0xff,
122 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
123 };
124
125 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
126
127 static struct resource data_resource = {
128 .name = "Kernel data",
129 .start = 0,
130 .end = 0,
131 .flags = IORESOURCE_RAM,
132 };
133 static struct resource code_resource = {
134 .name = "Kernel code",
135 .start = 0,
136 .end = 0,
137 .flags = IORESOURCE_RAM,
138 };
139 static struct resource bss_resource = {
140 .name = "Kernel bss",
141 .start = 0,
142 .end = 0,
143 .flags = IORESOURCE_RAM,
144 };
145
146 static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
147
148 #ifdef CONFIG_PROC_VMCORE
149 /* elfcorehdr= specifies the location of elf core header
150 * stored by the crashed kernel. This option will be passed
151 * by kexec loader to the capture kernel.
152 */
153 static int __init setup_elfcorehdr(char *arg)
154 {
155 char *end;
156 if (!arg)
157 return -EINVAL;
158 elfcorehdr_addr = memparse(arg, &end);
159 return end > arg ? 0 : -EINVAL;
160 }
161 early_param("elfcorehdr", setup_elfcorehdr);
162 #endif
163
164 #ifndef CONFIG_NUMA
165 static void __init
166 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
167 {
168 unsigned long bootmap_size, bootmap;
169
170 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
171 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
172 if (bootmap == -1L)
173 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
174 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
175 e820_register_active_regions(0, start_pfn, end_pfn);
176 free_bootmem_with_active_regions(0, end_pfn);
177 reserve_bootmem(bootmap, bootmap_size);
178 }
179 #endif
180
181 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
182 struct edd edd;
183 #ifdef CONFIG_EDD_MODULE
184 EXPORT_SYMBOL(edd);
185 #endif
186 /**
187 * copy_edd() - Copy the BIOS EDD information
188 * from boot_params into a safe place.
189 *
190 */
191 static inline void copy_edd(void)
192 {
193 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
194 sizeof(edd.mbr_signature));
195 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
196 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
197 edd.edd_info_nr = boot_params.eddbuf_entries;
198 }
199 #else
200 static inline void copy_edd(void)
201 {
202 }
203 #endif
204
205 #ifdef CONFIG_KEXEC
206 static void __init reserve_crashkernel(void)
207 {
208 unsigned long long free_mem;
209 unsigned long long crash_size, crash_base;
210 int ret;
211
212 free_mem =
213 ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
214
215 ret = parse_crashkernel(boot_command_line, free_mem,
216 &crash_size, &crash_base);
217 if (ret == 0 && crash_size) {
218 if (crash_base > 0) {
219 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
220 "for crashkernel (System RAM: %ldMB)\n",
221 (unsigned long)(crash_size >> 20),
222 (unsigned long)(crash_base >> 20),
223 (unsigned long)(free_mem >> 20));
224 crashk_res.start = crash_base;
225 crashk_res.end = crash_base + crash_size - 1;
226 reserve_bootmem(crash_base, crash_size);
227 } else
228 printk(KERN_INFO "crashkernel reservation failed - "
229 "you have to specify a base address\n");
230 }
231 }
232 #else
233 static inline void __init reserve_crashkernel(void)
234 {}
235 #endif
236
237 #define EBDA_ADDR_POINTER 0x40E
238
239 unsigned __initdata ebda_addr;
240 unsigned __initdata ebda_size;
241
242 static void discover_ebda(void)
243 {
244 /*
245 * there is a real-mode segmented pointer pointing to the
246 * 4K EBDA area at 0x40E
247 */
248 ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER);
249 ebda_addr <<= 4;
250
251 ebda_size = *(unsigned short *)__va(ebda_addr);
252
253 /* Round EBDA up to pages */
254 if (ebda_size == 0)
255 ebda_size = 1;
256 ebda_size <<= 10;
257 ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
258 if (ebda_size > 64*1024)
259 ebda_size = 64*1024;
260 }
261
262 void __init setup_arch(char **cmdline_p)
263 {
264 unsigned i;
265
266 printk(KERN_INFO "Command line: %s\n", boot_command_line);
267
268 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
269 screen_info = boot_params.screen_info;
270 edid_info = boot_params.edid_info;
271 saved_video_mode = boot_params.hdr.vid_mode;
272 bootloader_type = boot_params.hdr.type_of_loader;
273
274 #ifdef CONFIG_BLK_DEV_RAM
275 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
276 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
277 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
278 #endif
279 setup_memory_region();
280 copy_edd();
281
282 if (!boot_params.hdr.root_flags)
283 root_mountflags &= ~MS_RDONLY;
284 init_mm.start_code = (unsigned long) &_text;
285 init_mm.end_code = (unsigned long) &_etext;
286 init_mm.end_data = (unsigned long) &_edata;
287 init_mm.brk = (unsigned long) &_end;
288
289 code_resource.start = virt_to_phys(&_text);
290 code_resource.end = virt_to_phys(&_etext)-1;
291 data_resource.start = virt_to_phys(&_etext);
292 data_resource.end = virt_to_phys(&_edata)-1;
293 bss_resource.start = virt_to_phys(&__bss_start);
294 bss_resource.end = virt_to_phys(&__bss_stop)-1;
295
296 early_identify_cpu(&boot_cpu_data);
297
298 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
299 *cmdline_p = command_line;
300
301 parse_early_param();
302
303 finish_e820_parsing();
304
305 e820_register_active_regions(0, 0, -1UL);
306 /*
307 * partially used pages are not usable - thus
308 * we are rounding upwards:
309 */
310 end_pfn = e820_end_of_ram();
311 num_physpages = end_pfn;
312
313 check_efer();
314
315 discover_ebda();
316
317 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
318
319 dmi_scan_machine();
320
321 io_delay_init();
322
323 #ifdef CONFIG_SMP
324 /* setup to use the static apicid table during kernel startup */
325 x86_cpu_to_apicid_ptr = (void *)&x86_cpu_to_apicid_init;
326 #endif
327
328 #ifdef CONFIG_ACPI
329 /*
330 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
331 * Call this early for SRAT node setup.
332 */
333 acpi_boot_table_init();
334 #endif
335
336 /* How many end-of-memory variables you have, grandma! */
337 max_low_pfn = end_pfn;
338 max_pfn = end_pfn;
339 high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
340
341 /* Remove active ranges so rediscovery with NUMA-awareness happens */
342 remove_all_active_ranges();
343
344 #ifdef CONFIG_ACPI_NUMA
345 /*
346 * Parse SRAT to discover nodes.
347 */
348 acpi_numa_init();
349 #endif
350
351 #ifdef CONFIG_NUMA
352 numa_initmem_init(0, end_pfn);
353 #else
354 contig_initmem_init(0, end_pfn);
355 #endif
356
357 /* Reserve direct mapping */
358 reserve_bootmem_generic(table_start << PAGE_SHIFT,
359 (table_end - table_start) << PAGE_SHIFT);
360
361 /* reserve kernel */
362 reserve_bootmem_generic(__pa_symbol(&_text),
363 __pa_symbol(&_end) - __pa_symbol(&_text));
364
365 /*
366 * reserve physical page 0 - it's a special BIOS page on many boxes,
367 * enabling clean reboots, SMP operation, laptop functions.
368 */
369 reserve_bootmem_generic(0, PAGE_SIZE);
370
371 /* reserve ebda region */
372 if (ebda_addr)
373 reserve_bootmem_generic(ebda_addr, ebda_size);
374 #ifdef CONFIG_NUMA
375 /* reserve nodemap region */
376 if (nodemap_addr)
377 reserve_bootmem_generic(nodemap_addr, nodemap_size);
378 #endif
379
380 #ifdef CONFIG_SMP
381 /* Reserve SMP trampoline */
382 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE);
383 #endif
384
385 #ifdef CONFIG_ACPI_SLEEP
386 /*
387 * Reserve low memory region for sleep support.
388 */
389 acpi_reserve_bootmem();
390 #endif
391 /*
392 * Find and reserve possible boot-time SMP configuration:
393 */
394 find_smp_config();
395 #ifdef CONFIG_BLK_DEV_INITRD
396 if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
397 unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
398 unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
399 unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
400 unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
401
402 if (ramdisk_end <= end_of_mem) {
403 reserve_bootmem_generic(ramdisk_image, ramdisk_size);
404 initrd_start = ramdisk_image + PAGE_OFFSET;
405 initrd_end = initrd_start+ramdisk_size;
406 } else {
407 printk(KERN_ERR "initrd extends beyond end of memory "
408 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
409 ramdisk_end, end_of_mem);
410 initrd_start = 0;
411 }
412 }
413 #endif
414 reserve_crashkernel();
415 paging_init();
416
417 early_quirks();
418
419 /*
420 * set this early, so we dont allocate cpu0
421 * if MADT list doesnt list BSP first
422 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
423 */
424 cpu_set(0, cpu_present_map);
425 #ifdef CONFIG_ACPI
426 /*
427 * Read APIC and some other early information from ACPI tables.
428 */
429 acpi_boot_init();
430 #endif
431
432 init_cpu_to_node();
433
434 /*
435 * get boot-time SMP configuration:
436 */
437 if (smp_found_config)
438 get_smp_config();
439 init_apic_mappings();
440 ioapic_init_mappings();
441
442 /*
443 * We trust e820 completely. No explicit ROM probing in memory.
444 */
445 e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
446 e820_mark_nosave_regions();
447
448 /* request I/O space for devices used on all i[345]86 PCs */
449 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
450 request_resource(&ioport_resource, &standard_io_resources[i]);
451
452 e820_setup_gap();
453
454 #ifdef CONFIG_VT
455 #if defined(CONFIG_VGA_CONSOLE)
456 conswitchp = &vga_con;
457 #elif defined(CONFIG_DUMMY_CONSOLE)
458 conswitchp = &dummy_con;
459 #endif
460 #endif
461 }
462
463 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
464 {
465 unsigned int *v;
466
467 if (c->extended_cpuid_level < 0x80000004)
468 return 0;
469
470 v = (unsigned int *) c->x86_model_id;
471 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
472 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
473 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
474 c->x86_model_id[48] = 0;
475 return 1;
476 }
477
478
479 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
480 {
481 unsigned int n, dummy, eax, ebx, ecx, edx;
482
483 n = c->extended_cpuid_level;
484
485 if (n >= 0x80000005) {
486 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
487 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
488 "D cache %dK (%d bytes/line)\n",
489 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
490 c->x86_cache_size = (ecx>>24) + (edx>>24);
491 /* On K8 L1 TLB is inclusive, so don't count it */
492 c->x86_tlbsize = 0;
493 }
494
495 if (n >= 0x80000006) {
496 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
497 ecx = cpuid_ecx(0x80000006);
498 c->x86_cache_size = ecx >> 16;
499 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
500
501 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
502 c->x86_cache_size, ecx & 0xFF);
503 }
504
505 if (n >= 0x80000007)
506 cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
507 if (n >= 0x80000008) {
508 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
509 c->x86_virt_bits = (eax >> 8) & 0xff;
510 c->x86_phys_bits = eax & 0xff;
511 }
512 }
513
514 #ifdef CONFIG_NUMA
515 static int nearby_node(int apicid)
516 {
517 int i, node;
518
519 for (i = apicid - 1; i >= 0; i--) {
520 node = apicid_to_node[i];
521 if (node != NUMA_NO_NODE && node_online(node))
522 return node;
523 }
524 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
525 node = apicid_to_node[i];
526 if (node != NUMA_NO_NODE && node_online(node))
527 return node;
528 }
529 return first_node(node_online_map); /* Shouldn't happen */
530 }
531 #endif
532
533 /*
534 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
535 * Assumes number of cores is a power of two.
536 */
537 static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
538 {
539 #ifdef CONFIG_SMP
540 unsigned bits;
541 #ifdef CONFIG_NUMA
542 int cpu = smp_processor_id();
543 int node = 0;
544 unsigned apicid = hard_smp_processor_id();
545 #endif
546 bits = c->x86_coreid_bits;
547
548 /* Low order bits define the core id (index of core in socket) */
549 c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
550 /* Convert the APIC ID into the socket ID */
551 c->phys_proc_id = phys_pkg_id(bits);
552
553 #ifdef CONFIG_NUMA
554 node = c->phys_proc_id;
555 if (apicid_to_node[apicid] != NUMA_NO_NODE)
556 node = apicid_to_node[apicid];
557 if (!node_online(node)) {
558 /* Two possibilities here:
559 - The CPU is missing memory and no node was created.
560 In that case try picking one from a nearby CPU
561 - The APIC IDs differ from the HyperTransport node IDs
562 which the K8 northbridge parsing fills in.
563 Assume they are all increased by a constant offset,
564 but in the same order as the HT nodeids.
565 If that doesn't result in a usable node fall back to the
566 path for the previous case. */
567
568 int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
569
570 if (ht_nodeid >= 0 &&
571 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
572 node = apicid_to_node[ht_nodeid];
573 /* Pick a nearby node */
574 if (!node_online(node))
575 node = nearby_node(apicid);
576 }
577 numa_set_node(cpu, node);
578
579 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
580 #endif
581 #endif
582 }
583
584 static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
585 {
586 #ifdef CONFIG_SMP
587 unsigned bits, ecx;
588
589 /* Multi core CPU? */
590 if (c->extended_cpuid_level < 0x80000008)
591 return;
592
593 ecx = cpuid_ecx(0x80000008);
594
595 c->x86_max_cores = (ecx & 0xff) + 1;
596
597 /* CPU telling us the core id bits shift? */
598 bits = (ecx >> 12) & 0xF;
599
600 /* Otherwise recompute */
601 if (bits == 0) {
602 while ((1 << bits) < c->x86_max_cores)
603 bits++;
604 }
605
606 c->x86_coreid_bits = bits;
607
608 #endif
609 }
610
611 #define ENABLE_C1E_MASK 0x18000000
612 #define CPUID_PROCESSOR_SIGNATURE 1
613 #define CPUID_XFAM 0x0ff00000
614 #define CPUID_XFAM_K8 0x00000000
615 #define CPUID_XFAM_10H 0x00100000
616 #define CPUID_XFAM_11H 0x00200000
617 #define CPUID_XMOD 0x000f0000
618 #define CPUID_XMOD_REV_F 0x00040000
619
620 /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
621 static __cpuinit int amd_apic_timer_broken(void)
622 {
623 u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
624
625 switch (eax & CPUID_XFAM) {
626 case CPUID_XFAM_K8:
627 if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
628 break;
629 case CPUID_XFAM_10H:
630 case CPUID_XFAM_11H:
631 rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
632 if (lo & ENABLE_C1E_MASK)
633 return 1;
634 break;
635 default:
636 /* err on the side of caution */
637 return 1;
638 }
639 return 0;
640 }
641
642 static void __cpuinit init_amd(struct cpuinfo_x86 *c)
643 {
644 unsigned level;
645
646 #ifdef CONFIG_SMP
647 unsigned long value;
648
649 /*
650 * Disable TLB flush filter by setting HWCR.FFDIS on K8
651 * bit 6 of msr C001_0015
652 *
653 * Errata 63 for SH-B3 steppings
654 * Errata 122 for all steppings (F+ have it disabled by default)
655 */
656 if (c->x86 == 15) {
657 rdmsrl(MSR_K8_HWCR, value);
658 value |= 1 << 6;
659 wrmsrl(MSR_K8_HWCR, value);
660 }
661 #endif
662
663 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
664 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
665 clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
666
667 /* On C+ stepping K8 rep microcode works well for copy/memset */
668 level = cpuid_eax(1);
669 if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
670 level >= 0x0f58))
671 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
672 if (c->x86 == 0x10 || c->x86 == 0x11)
673 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
674
675 /* Enable workaround for FXSAVE leak */
676 if (c->x86 >= 6)
677 set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
678
679 level = get_model_name(c);
680 if (!level) {
681 switch (c->x86) {
682 case 15:
683 /* Should distinguish Models here, but this is only
684 a fallback anyways. */
685 strcpy(c->x86_model_id, "Hammer");
686 break;
687 }
688 }
689 display_cacheinfo(c);
690
691 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
692 if (c->x86_power & (1<<8))
693 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
694
695 /* Multi core CPU? */
696 if (c->extended_cpuid_level >= 0x80000008)
697 amd_detect_cmp(c);
698
699 if (c->extended_cpuid_level >= 0x80000006 &&
700 (cpuid_edx(0x80000006) & 0xf000))
701 num_cache_leaves = 4;
702 else
703 num_cache_leaves = 3;
704
705 if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
706 set_cpu_cap(c, X86_FEATURE_K8);
707
708 /* RDTSC can be speculated around */
709 clear_cpu_cap(c, X86_FEATURE_SYNC_RDTSC);
710
711 /* Family 10 doesn't support C states in MWAIT so don't use it */
712 if (c->x86 == 0x10 && !force_mwait)
713 clear_cpu_cap(c, X86_FEATURE_MWAIT);
714
715 if (amd_apic_timer_broken())
716 disable_apic_timer = 1;
717 }
718
719 static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
720 {
721 #ifdef CONFIG_SMP
722 u32 eax, ebx, ecx, edx;
723 int index_msb, core_bits;
724
725 cpuid(1, &eax, &ebx, &ecx, &edx);
726
727
728 if (!cpu_has(c, X86_FEATURE_HT))
729 return;
730 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
731 goto out;
732
733 smp_num_siblings = (ebx & 0xff0000) >> 16;
734
735 if (smp_num_siblings == 1) {
736 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
737 } else if (smp_num_siblings > 1) {
738
739 if (smp_num_siblings > NR_CPUS) {
740 printk(KERN_WARNING "CPU: Unsupported number of "
741 "siblings %d", smp_num_siblings);
742 smp_num_siblings = 1;
743 return;
744 }
745
746 index_msb = get_count_order(smp_num_siblings);
747 c->phys_proc_id = phys_pkg_id(index_msb);
748
749 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
750
751 index_msb = get_count_order(smp_num_siblings);
752
753 core_bits = get_count_order(c->x86_max_cores);
754
755 c->cpu_core_id = phys_pkg_id(index_msb) &
756 ((1 << core_bits) - 1);
757 }
758 out:
759 if ((c->x86_max_cores * smp_num_siblings) > 1) {
760 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
761 c->phys_proc_id);
762 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
763 c->cpu_core_id);
764 }
765
766 #endif
767 }
768
769 /*
770 * find out the number of processor cores on the die
771 */
772 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
773 {
774 unsigned int eax, t;
775
776 if (c->cpuid_level < 4)
777 return 1;
778
779 cpuid_count(4, 0, &eax, &t, &t, &t);
780
781 if (eax & 0x1f)
782 return ((eax >> 26) + 1);
783 else
784 return 1;
785 }
786
787 static void srat_detect_node(void)
788 {
789 #ifdef CONFIG_NUMA
790 unsigned node;
791 int cpu = smp_processor_id();
792 int apicid = hard_smp_processor_id();
793
794 /* Don't do the funky fallback heuristics the AMD version employs
795 for now. */
796 node = apicid_to_node[apicid];
797 if (node == NUMA_NO_NODE)
798 node = first_node(node_online_map);
799 numa_set_node(cpu, node);
800
801 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
802 #endif
803 }
804
805 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
806 {
807 /* Cache sizes */
808 unsigned n;
809
810 init_intel_cacheinfo(c);
811 if (c->cpuid_level > 9) {
812 unsigned eax = cpuid_eax(10);
813 /* Check for version and the number of counters */
814 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
815 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
816 }
817
818 if (cpu_has_ds) {
819 unsigned int l1, l2;
820 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
821 if (!(l1 & (1<<11)))
822 set_cpu_cap(c, X86_FEATURE_BTS);
823 if (!(l1 & (1<<12)))
824 set_cpu_cap(c, X86_FEATURE_PEBS);
825 }
826
827
828 if (cpu_has_bts)
829 ds_init_intel(c);
830
831 n = c->extended_cpuid_level;
832 if (n >= 0x80000008) {
833 unsigned eax = cpuid_eax(0x80000008);
834 c->x86_virt_bits = (eax >> 8) & 0xff;
835 c->x86_phys_bits = eax & 0xff;
836 /* CPUID workaround for Intel 0F34 CPU */
837 if (c->x86_vendor == X86_VENDOR_INTEL &&
838 c->x86 == 0xF && c->x86_model == 0x3 &&
839 c->x86_mask == 0x4)
840 c->x86_phys_bits = 36;
841 }
842
843 if (c->x86 == 15)
844 c->x86_cache_alignment = c->x86_clflush_size * 2;
845 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
846 (c->x86 == 0x6 && c->x86_model >= 0x0e))
847 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
848 if (c->x86 == 6)
849 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
850 if (c->x86 == 15)
851 set_cpu_cap(c, X86_FEATURE_SYNC_RDTSC);
852 else
853 clear_cpu_cap(c, X86_FEATURE_SYNC_RDTSC);
854 c->x86_max_cores = intel_num_cpu_cores(c);
855
856 srat_detect_node();
857 }
858
859 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
860 {
861 char *v = c->x86_vendor_id;
862
863 if (!strcmp(v, "AuthenticAMD"))
864 c->x86_vendor = X86_VENDOR_AMD;
865 else if (!strcmp(v, "GenuineIntel"))
866 c->x86_vendor = X86_VENDOR_INTEL;
867 else
868 c->x86_vendor = X86_VENDOR_UNKNOWN;
869 }
870
871 struct cpu_model_info {
872 int vendor;
873 int family;
874 char *model_names[16];
875 };
876
877 /* Do some early cpuid on the boot CPU to get some parameter that are
878 needed before check_bugs. Everything advanced is in identify_cpu
879 below. */
880 static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
881 {
882 u32 tfms, xlvl;
883
884 c->loops_per_jiffy = loops_per_jiffy;
885 c->x86_cache_size = -1;
886 c->x86_vendor = X86_VENDOR_UNKNOWN;
887 c->x86_model = c->x86_mask = 0; /* So far unknown... */
888 c->x86_vendor_id[0] = '\0'; /* Unset */
889 c->x86_model_id[0] = '\0'; /* Unset */
890 c->x86_clflush_size = 64;
891 c->x86_cache_alignment = c->x86_clflush_size;
892 c->x86_max_cores = 1;
893 c->x86_coreid_bits = 0;
894 c->extended_cpuid_level = 0;
895 memset(&c->x86_capability, 0, sizeof c->x86_capability);
896
897 /* Get vendor name */
898 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
899 (unsigned int *)&c->x86_vendor_id[0],
900 (unsigned int *)&c->x86_vendor_id[8],
901 (unsigned int *)&c->x86_vendor_id[4]);
902
903 get_cpu_vendor(c);
904
905 /* Initialize the standard set of capabilities */
906 /* Note that the vendor-specific code below might override */
907
908 /* Intel-defined flags: level 0x00000001 */
909 if (c->cpuid_level >= 0x00000001) {
910 __u32 misc;
911 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
912 &c->x86_capability[0]);
913 c->x86 = (tfms >> 8) & 0xf;
914 c->x86_model = (tfms >> 4) & 0xf;
915 c->x86_mask = tfms & 0xf;
916 if (c->x86 == 0xf)
917 c->x86 += (tfms >> 20) & 0xff;
918 if (c->x86 >= 0x6)
919 c->x86_model += ((tfms >> 16) & 0xF) << 4;
920 if (c->x86_capability[0] & (1<<19))
921 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
922 } else {
923 /* Have CPUID level 0 only - unheard of */
924 c->x86 = 4;
925 }
926
927 #ifdef CONFIG_SMP
928 c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
929 #endif
930 /* AMD-defined flags: level 0x80000001 */
931 xlvl = cpuid_eax(0x80000000);
932 c->extended_cpuid_level = xlvl;
933 if ((xlvl & 0xffff0000) == 0x80000000) {
934 if (xlvl >= 0x80000001) {
935 c->x86_capability[1] = cpuid_edx(0x80000001);
936 c->x86_capability[6] = cpuid_ecx(0x80000001);
937 }
938 if (xlvl >= 0x80000004)
939 get_model_name(c); /* Default name */
940 }
941
942 /* Transmeta-defined flags: level 0x80860001 */
943 xlvl = cpuid_eax(0x80860000);
944 if ((xlvl & 0xffff0000) == 0x80860000) {
945 /* Don't set x86_cpuid_level here for now to not confuse. */
946 if (xlvl >= 0x80860001)
947 c->x86_capability[2] = cpuid_edx(0x80860001);
948 }
949
950 switch (c->x86_vendor) {
951 case X86_VENDOR_AMD:
952 early_init_amd(c);
953 break;
954 }
955
956 }
957
958 /*
959 * This does the hard work of actually picking apart the CPU stuff...
960 */
961 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
962 {
963 int i;
964
965 early_identify_cpu(c);
966
967 init_scattered_cpuid_features(c);
968
969 c->apicid = phys_pkg_id(0);
970
971 /*
972 * Vendor-specific initialization. In this section we
973 * canonicalize the feature flags, meaning if there are
974 * features a certain CPU supports which CPUID doesn't
975 * tell us, CPUID claiming incorrect flags, or other bugs,
976 * we handle them here.
977 *
978 * At the end of this section, c->x86_capability better
979 * indicate the features this CPU genuinely supports!
980 */
981 switch (c->x86_vendor) {
982 case X86_VENDOR_AMD:
983 init_amd(c);
984 break;
985
986 case X86_VENDOR_INTEL:
987 init_intel(c);
988 break;
989
990 case X86_VENDOR_UNKNOWN:
991 default:
992 display_cacheinfo(c);
993 break;
994 }
995
996 select_idle_routine(c);
997 detect_ht(c);
998
999 /*
1000 * On SMP, boot_cpu_data holds the common feature set between
1001 * all CPUs; so make sure that we indicate which features are
1002 * common between the CPUs. The first time this routine gets
1003 * executed, c == &boot_cpu_data.
1004 */
1005 if (c != &boot_cpu_data) {
1006 /* AND the already accumulated flags with these */
1007 for (i = 0; i < NCAPINTS; i++)
1008 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1009 }
1010
1011 #ifdef CONFIG_X86_MCE
1012 mcheck_init(c);
1013 #endif
1014 if (c != &boot_cpu_data)
1015 mtrr_ap_init();
1016 #ifdef CONFIG_NUMA
1017 numa_add_cpu(smp_processor_id());
1018 #endif
1019 }
1020
1021 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1022 {
1023 if (c->x86_model_id[0])
1024 printk(KERN_INFO "%s", c->x86_model_id);
1025
1026 if (c->x86_mask || c->cpuid_level >= 0)
1027 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
1028 else
1029 printk(KERN_CONT "\n");
1030 }
1031
1032 /*
1033 * Get CPU information for use by the procfs.
1034 */
1035
1036 static int show_cpuinfo(struct seq_file *m, void *v)
1037 {
1038 struct cpuinfo_x86 *c = v;
1039 int cpu = 0, i;
1040
1041 /*
1042 * These flag bits must match the definitions in <asm/cpufeature.h>.
1043 * NULL means this bit is undefined or reserved; either way it doesn't
1044 * have meaning as far as Linux is concerned. Note that it's important
1045 * to realize there is a difference between this table and CPUID -- if
1046 * applications want to get the raw CPUID data, they should access
1047 * /dev/cpu/<cpu_nr>/cpuid instead.
1048 */
1049 static const char *const x86_cap_flags[] = {
1050 /* Intel-defined */
1051 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
1052 "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
1053 "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
1054 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
1055
1056 /* AMD-defined */
1057 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1058 NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
1059 NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
1060 NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
1061 "3dnowext", "3dnow",
1062
1063 /* Transmeta-defined */
1064 "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
1065 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1066 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1067 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1068
1069 /* Other (Linux-defined) */
1070 "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
1071 NULL, NULL, NULL, NULL,
1072 "constant_tsc", "up", NULL, "arch_perfmon",
1073 "pebs", "bts", NULL, "sync_rdtsc",
1074 "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1075 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1076
1077 /* Intel-defined (#2) */
1078 "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
1079 "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
1080 NULL, NULL, "dca", "sse4_1", "sse4_2", NULL, NULL, "popcnt",
1081 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1082
1083 /* VIA/Cyrix/Centaur-defined */
1084 NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
1085 "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
1086 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1087 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1088
1089 /* AMD-defined (#2) */
1090 "lahf_lm", "cmp_legacy", "svm", "extapic",
1091 "cr8_legacy", "abm", "sse4a", "misalignsse",
1092 "3dnowprefetch", "osvw", "ibs", "sse5",
1093 "skinit", "wdt", NULL, NULL,
1094 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1095 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1096
1097 /* Auxiliary (Linux-defined) */
1098 "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1099 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1100 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1101 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1102 };
1103 static const char *const x86_power_flags[] = {
1104 "ts", /* temperature sensor */
1105 "fid", /* frequency id control */
1106 "vid", /* voltage id control */
1107 "ttp", /* thermal trip */
1108 "tm",
1109 "stc",
1110 "100mhzsteps",
1111 "hwpstate",
1112 "", /* tsc invariant mapped to constant_tsc */
1113 /* nothing */
1114 };
1115
1116
1117 #ifdef CONFIG_SMP
1118 cpu = c->cpu_index;
1119 #endif
1120
1121 seq_printf(m, "processor\t: %u\n"
1122 "vendor_id\t: %s\n"
1123 "cpu family\t: %d\n"
1124 "model\t\t: %d\n"
1125 "model name\t: %s\n",
1126 (unsigned)cpu,
1127 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1128 c->x86,
1129 (int)c->x86_model,
1130 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1131
1132 if (c->x86_mask || c->cpuid_level >= 0)
1133 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1134 else
1135 seq_printf(m, "stepping\t: unknown\n");
1136
1137 if (cpu_has(c, X86_FEATURE_TSC)) {
1138 unsigned int freq = cpufreq_quick_get((unsigned)cpu);
1139
1140 if (!freq)
1141 freq = cpu_khz;
1142 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1143 freq / 1000, (freq % 1000));
1144 }
1145
1146 /* Cache size */
1147 if (c->x86_cache_size >= 0)
1148 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1149
1150 #ifdef CONFIG_SMP
1151 if (smp_num_siblings * c->x86_max_cores > 1) {
1152 seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
1153 seq_printf(m, "siblings\t: %d\n",
1154 cpus_weight(per_cpu(cpu_core_map, cpu)));
1155 seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
1156 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1157 }
1158 #endif
1159
1160 seq_printf(m,
1161 "fpu\t\t: yes\n"
1162 "fpu_exception\t: yes\n"
1163 "cpuid level\t: %d\n"
1164 "wp\t\t: yes\n"
1165 "flags\t\t:",
1166 c->cpuid_level);
1167
1168 for (i = 0; i < 32*NCAPINTS; i++)
1169 if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
1170 seq_printf(m, " %s", x86_cap_flags[i]);
1171
1172 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1173 c->loops_per_jiffy/(500000/HZ),
1174 (c->loops_per_jiffy/(5000/HZ)) % 100);
1175
1176 if (c->x86_tlbsize > 0)
1177 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1178 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1179 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1180
1181 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1182 c->x86_phys_bits, c->x86_virt_bits);
1183
1184 seq_printf(m, "power management:");
1185 for (i = 0; i < 32; i++) {
1186 if (c->x86_power & (1 << i)) {
1187 if (i < ARRAY_SIZE(x86_power_flags) &&
1188 x86_power_flags[i])
1189 seq_printf(m, "%s%s",
1190 x86_power_flags[i][0]?" ":"",
1191 x86_power_flags[i]);
1192 else
1193 seq_printf(m, " [%d]", i);
1194 }
1195 }
1196
1197 seq_printf(m, "\n\n");
1198
1199 return 0;
1200 }
1201
1202 static void *c_start(struct seq_file *m, loff_t *pos)
1203 {
1204 if (*pos == 0) /* just in case, cpu 0 is not the first */
1205 *pos = first_cpu(cpu_online_map);
1206 if ((*pos) < NR_CPUS && cpu_online(*pos))
1207 return &cpu_data(*pos);
1208 return NULL;
1209 }
1210
1211 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1212 {
1213 *pos = next_cpu(*pos, cpu_online_map);
1214 return c_start(m, pos);
1215 }
1216
1217 static void c_stop(struct seq_file *m, void *v)
1218 {
1219 }
1220
1221 struct seq_operations cpuinfo_op = {
1222 .start = c_start,
1223 .next = c_next,
1224 .stop = c_stop,
1225 .show = show_cpuinfo,
1226 };