Merge branch 'for-linus' of git://oss.sgi.com:8090/xfs/xfs-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / setup_64.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 */
4
5 /*
6 * This file handles the architecture-dependent parts of initialization
7 */
8
9 #include <linux/errno.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/stddef.h>
14 #include <linux/unistd.h>
15 #include <linux/ptrace.h>
16 #include <linux/slab.h>
17 #include <linux/user.h>
18 #include <linux/a.out.h>
19 #include <linux/screen_info.h>
20 #include <linux/ioport.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/initrd.h>
24 #include <linux/highmem.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <asm/processor.h>
28 #include <linux/console.h>
29 #include <linux/seq_file.h>
30 #include <linux/crash_dump.h>
31 #include <linux/root_dev.h>
32 #include <linux/pci.h>
33 #include <linux/acpi.h>
34 #include <linux/kallsyms.h>
35 #include <linux/edd.h>
36 #include <linux/mmzone.h>
37 #include <linux/kexec.h>
38 #include <linux/cpufreq.h>
39 #include <linux/dmi.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/ctype.h>
42
43 #include <asm/mtrr.h>
44 #include <asm/uaccess.h>
45 #include <asm/system.h>
46 #include <asm/io.h>
47 #include <asm/smp.h>
48 #include <asm/msr.h>
49 #include <asm/desc.h>
50 #include <video/edid.h>
51 #include <asm/e820.h>
52 #include <asm/dma.h>
53 #include <asm/mpspec.h>
54 #include <asm/mmu_context.h>
55 #include <asm/proto.h>
56 #include <asm/setup.h>
57 #include <asm/mach_apic.h>
58 #include <asm/numa.h>
59 #include <asm/sections.h>
60 #include <asm/dmi.h>
61
62 /*
63 * Machine setup..
64 */
65
66 struct cpuinfo_x86 boot_cpu_data __read_mostly;
67 EXPORT_SYMBOL(boot_cpu_data);
68
69 unsigned long mmu_cr4_features;
70
71 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
72 int bootloader_type;
73
74 unsigned long saved_video_mode;
75
76 int force_mwait __cpuinitdata;
77
78 /*
79 * Early DMI memory
80 */
81 int dmi_alloc_index;
82 char dmi_alloc_data[DMI_MAX_DATA];
83
84 /*
85 * Setup options
86 */
87 struct screen_info screen_info;
88 EXPORT_SYMBOL(screen_info);
89 struct sys_desc_table_struct {
90 unsigned short length;
91 unsigned char table[0];
92 };
93
94 struct edid_info edid_info;
95 EXPORT_SYMBOL_GPL(edid_info);
96
97 extern int root_mountflags;
98
99 char __initdata command_line[COMMAND_LINE_SIZE];
100
101 struct resource standard_io_resources[] = {
102 { .name = "dma1", .start = 0x00, .end = 0x1f,
103 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
104 { .name = "pic1", .start = 0x20, .end = 0x21,
105 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
106 { .name = "timer0", .start = 0x40, .end = 0x43,
107 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
108 { .name = "timer1", .start = 0x50, .end = 0x53,
109 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
110 { .name = "keyboard", .start = 0x60, .end = 0x6f,
111 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
112 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
113 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
114 { .name = "pic2", .start = 0xa0, .end = 0xa1,
115 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
116 { .name = "dma2", .start = 0xc0, .end = 0xdf,
117 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
118 { .name = "fpu", .start = 0xf0, .end = 0xff,
119 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
120 };
121
122 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
123
124 struct resource data_resource = {
125 .name = "Kernel data",
126 .start = 0,
127 .end = 0,
128 .flags = IORESOURCE_RAM,
129 };
130 struct resource code_resource = {
131 .name = "Kernel code",
132 .start = 0,
133 .end = 0,
134 .flags = IORESOURCE_RAM,
135 };
136
137 #ifdef CONFIG_PROC_VMCORE
138 /* elfcorehdr= specifies the location of elf core header
139 * stored by the crashed kernel. This option will be passed
140 * by kexec loader to the capture kernel.
141 */
142 static int __init setup_elfcorehdr(char *arg)
143 {
144 char *end;
145 if (!arg)
146 return -EINVAL;
147 elfcorehdr_addr = memparse(arg, &end);
148 return end > arg ? 0 : -EINVAL;
149 }
150 early_param("elfcorehdr", setup_elfcorehdr);
151 #endif
152
153 #ifndef CONFIG_NUMA
154 static void __init
155 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
156 {
157 unsigned long bootmap_size, bootmap;
158
159 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
160 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
161 if (bootmap == -1L)
162 panic("Cannot find bootmem map of size %ld\n",bootmap_size);
163 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
164 e820_register_active_regions(0, start_pfn, end_pfn);
165 free_bootmem_with_active_regions(0, end_pfn);
166 reserve_bootmem(bootmap, bootmap_size);
167 }
168 #endif
169
170 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
171 struct edd edd;
172 #ifdef CONFIG_EDD_MODULE
173 EXPORT_SYMBOL(edd);
174 #endif
175 /**
176 * copy_edd() - Copy the BIOS EDD information
177 * from boot_params into a safe place.
178 *
179 */
180 static inline void copy_edd(void)
181 {
182 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
183 sizeof(edd.mbr_signature));
184 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
185 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
186 edd.edd_info_nr = boot_params.eddbuf_entries;
187 }
188 #else
189 static inline void copy_edd(void)
190 {
191 }
192 #endif
193
194 #define EBDA_ADDR_POINTER 0x40E
195
196 unsigned __initdata ebda_addr;
197 unsigned __initdata ebda_size;
198
199 static void discover_ebda(void)
200 {
201 /*
202 * there is a real-mode segmented pointer pointing to the
203 * 4K EBDA area at 0x40E
204 */
205 ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER);
206 ebda_addr <<= 4;
207
208 ebda_size = *(unsigned short *)__va(ebda_addr);
209
210 /* Round EBDA up to pages */
211 if (ebda_size == 0)
212 ebda_size = 1;
213 ebda_size <<= 10;
214 ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
215 if (ebda_size > 64*1024)
216 ebda_size = 64*1024;
217 }
218
219 void __init setup_arch(char **cmdline_p)
220 {
221 printk(KERN_INFO "Command line: %s\n", boot_command_line);
222
223 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
224 screen_info = boot_params.screen_info;
225 edid_info = boot_params.edid_info;
226 saved_video_mode = boot_params.hdr.vid_mode;
227 bootloader_type = boot_params.hdr.type_of_loader;
228
229 #ifdef CONFIG_BLK_DEV_RAM
230 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
231 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
232 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
233 #endif
234 setup_memory_region();
235 copy_edd();
236
237 if (!boot_params.hdr.root_flags)
238 root_mountflags &= ~MS_RDONLY;
239 init_mm.start_code = (unsigned long) &_text;
240 init_mm.end_code = (unsigned long) &_etext;
241 init_mm.end_data = (unsigned long) &_edata;
242 init_mm.brk = (unsigned long) &_end;
243
244 code_resource.start = virt_to_phys(&_text);
245 code_resource.end = virt_to_phys(&_etext)-1;
246 data_resource.start = virt_to_phys(&_etext);
247 data_resource.end = virt_to_phys(&_edata)-1;
248
249 early_identify_cpu(&boot_cpu_data);
250
251 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
252 *cmdline_p = command_line;
253
254 parse_early_param();
255
256 finish_e820_parsing();
257
258 e820_register_active_regions(0, 0, -1UL);
259 /*
260 * partially used pages are not usable - thus
261 * we are rounding upwards:
262 */
263 end_pfn = e820_end_of_ram();
264 num_physpages = end_pfn;
265
266 check_efer();
267
268 discover_ebda();
269
270 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
271
272 dmi_scan_machine();
273
274 #ifdef CONFIG_ACPI
275 /*
276 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
277 * Call this early for SRAT node setup.
278 */
279 acpi_boot_table_init();
280 #endif
281
282 /* How many end-of-memory variables you have, grandma! */
283 max_low_pfn = end_pfn;
284 max_pfn = end_pfn;
285 high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
286
287 /* Remove active ranges so rediscovery with NUMA-awareness happens */
288 remove_all_active_ranges();
289
290 #ifdef CONFIG_ACPI_NUMA
291 /*
292 * Parse SRAT to discover nodes.
293 */
294 acpi_numa_init();
295 #endif
296
297 #ifdef CONFIG_NUMA
298 numa_initmem_init(0, end_pfn);
299 #else
300 contig_initmem_init(0, end_pfn);
301 #endif
302
303 /* Reserve direct mapping */
304 reserve_bootmem_generic(table_start << PAGE_SHIFT,
305 (table_end - table_start) << PAGE_SHIFT);
306
307 /* reserve kernel */
308 reserve_bootmem_generic(__pa_symbol(&_text),
309 __pa_symbol(&_end) - __pa_symbol(&_text));
310
311 /*
312 * reserve physical page 0 - it's a special BIOS page on many boxes,
313 * enabling clean reboots, SMP operation, laptop functions.
314 */
315 reserve_bootmem_generic(0, PAGE_SIZE);
316
317 /* reserve ebda region */
318 if (ebda_addr)
319 reserve_bootmem_generic(ebda_addr, ebda_size);
320 #ifdef CONFIG_NUMA
321 /* reserve nodemap region */
322 if (nodemap_addr)
323 reserve_bootmem_generic(nodemap_addr, nodemap_size);
324 #endif
325
326 #ifdef CONFIG_SMP
327 /* Reserve SMP trampoline */
328 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE);
329 #endif
330
331 #ifdef CONFIG_ACPI_SLEEP
332 /*
333 * Reserve low memory region for sleep support.
334 */
335 acpi_reserve_bootmem();
336 #endif
337 /*
338 * Find and reserve possible boot-time SMP configuration:
339 */
340 find_smp_config();
341 #ifdef CONFIG_BLK_DEV_INITRD
342 if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
343 unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
344 unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
345 unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
346 unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
347
348 if (ramdisk_end <= end_of_mem) {
349 reserve_bootmem_generic(ramdisk_image, ramdisk_size);
350 initrd_start = ramdisk_image + PAGE_OFFSET;
351 initrd_end = initrd_start+ramdisk_size;
352 } else {
353 printk(KERN_ERR "initrd extends beyond end of memory "
354 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
355 ramdisk_end, end_of_mem);
356 initrd_start = 0;
357 }
358 }
359 #endif
360 #ifdef CONFIG_KEXEC
361 if (crashk_res.start != crashk_res.end) {
362 reserve_bootmem_generic(crashk_res.start,
363 crashk_res.end - crashk_res.start + 1);
364 }
365 #endif
366
367 paging_init();
368
369 #ifdef CONFIG_PCI
370 early_quirks();
371 #endif
372
373 /*
374 * set this early, so we dont allocate cpu0
375 * if MADT list doesnt list BSP first
376 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
377 */
378 cpu_set(0, cpu_present_map);
379 #ifdef CONFIG_ACPI
380 /*
381 * Read APIC and some other early information from ACPI tables.
382 */
383 acpi_boot_init();
384 #endif
385
386 init_cpu_to_node();
387
388 /*
389 * get boot-time SMP configuration:
390 */
391 if (smp_found_config)
392 get_smp_config();
393 init_apic_mappings();
394
395 /*
396 * We trust e820 completely. No explicit ROM probing in memory.
397 */
398 e820_reserve_resources();
399 e820_mark_nosave_regions();
400
401 {
402 unsigned i;
403 /* request I/O space for devices used on all i[345]86 PCs */
404 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
405 request_resource(&ioport_resource, &standard_io_resources[i]);
406 }
407
408 e820_setup_gap();
409
410 #ifdef CONFIG_VT
411 #if defined(CONFIG_VGA_CONSOLE)
412 conswitchp = &vga_con;
413 #elif defined(CONFIG_DUMMY_CONSOLE)
414 conswitchp = &dummy_con;
415 #endif
416 #endif
417 }
418
419 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
420 {
421 unsigned int *v;
422
423 if (c->extended_cpuid_level < 0x80000004)
424 return 0;
425
426 v = (unsigned int *) c->x86_model_id;
427 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
428 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
429 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
430 c->x86_model_id[48] = 0;
431 return 1;
432 }
433
434
435 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
436 {
437 unsigned int n, dummy, eax, ebx, ecx, edx;
438
439 n = c->extended_cpuid_level;
440
441 if (n >= 0x80000005) {
442 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
443 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
444 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
445 c->x86_cache_size=(ecx>>24)+(edx>>24);
446 /* On K8 L1 TLB is inclusive, so don't count it */
447 c->x86_tlbsize = 0;
448 }
449
450 if (n >= 0x80000006) {
451 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
452 ecx = cpuid_ecx(0x80000006);
453 c->x86_cache_size = ecx >> 16;
454 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
455
456 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
457 c->x86_cache_size, ecx & 0xFF);
458 }
459
460 if (n >= 0x80000007)
461 cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
462 if (n >= 0x80000008) {
463 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
464 c->x86_virt_bits = (eax >> 8) & 0xff;
465 c->x86_phys_bits = eax & 0xff;
466 }
467 }
468
469 #ifdef CONFIG_NUMA
470 static int nearby_node(int apicid)
471 {
472 int i;
473 for (i = apicid - 1; i >= 0; i--) {
474 int node = apicid_to_node[i];
475 if (node != NUMA_NO_NODE && node_online(node))
476 return node;
477 }
478 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
479 int node = apicid_to_node[i];
480 if (node != NUMA_NO_NODE && node_online(node))
481 return node;
482 }
483 return first_node(node_online_map); /* Shouldn't happen */
484 }
485 #endif
486
487 /*
488 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
489 * Assumes number of cores is a power of two.
490 */
491 static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
492 {
493 #ifdef CONFIG_SMP
494 unsigned bits;
495 #ifdef CONFIG_NUMA
496 int cpu = smp_processor_id();
497 int node = 0;
498 unsigned apicid = hard_smp_processor_id();
499 #endif
500 unsigned ecx = cpuid_ecx(0x80000008);
501
502 c->x86_max_cores = (ecx & 0xff) + 1;
503
504 /* CPU telling us the core id bits shift? */
505 bits = (ecx >> 12) & 0xF;
506
507 /* Otherwise recompute */
508 if (bits == 0) {
509 while ((1 << bits) < c->x86_max_cores)
510 bits++;
511 }
512
513 /* Low order bits define the core id (index of core in socket) */
514 c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
515 /* Convert the APIC ID into the socket ID */
516 c->phys_proc_id = phys_pkg_id(bits);
517
518 #ifdef CONFIG_NUMA
519 node = c->phys_proc_id;
520 if (apicid_to_node[apicid] != NUMA_NO_NODE)
521 node = apicid_to_node[apicid];
522 if (!node_online(node)) {
523 /* Two possibilities here:
524 - The CPU is missing memory and no node was created.
525 In that case try picking one from a nearby CPU
526 - The APIC IDs differ from the HyperTransport node IDs
527 which the K8 northbridge parsing fills in.
528 Assume they are all increased by a constant offset,
529 but in the same order as the HT nodeids.
530 If that doesn't result in a usable node fall back to the
531 path for the previous case. */
532 int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
533 if (ht_nodeid >= 0 &&
534 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
535 node = apicid_to_node[ht_nodeid];
536 /* Pick a nearby node */
537 if (!node_online(node))
538 node = nearby_node(apicid);
539 }
540 numa_set_node(cpu, node);
541
542 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
543 #endif
544 #endif
545 }
546
547 #define ENABLE_C1E_MASK 0x18000000
548 #define CPUID_PROCESSOR_SIGNATURE 1
549 #define CPUID_XFAM 0x0ff00000
550 #define CPUID_XFAM_K8 0x00000000
551 #define CPUID_XFAM_10H 0x00100000
552 #define CPUID_XFAM_11H 0x00200000
553 #define CPUID_XMOD 0x000f0000
554 #define CPUID_XMOD_REV_F 0x00040000
555
556 /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
557 static __cpuinit int amd_apic_timer_broken(void)
558 {
559 u32 lo, hi;
560 u32 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
561 switch (eax & CPUID_XFAM) {
562 case CPUID_XFAM_K8:
563 if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
564 break;
565 case CPUID_XFAM_10H:
566 case CPUID_XFAM_11H:
567 rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
568 if (lo & ENABLE_C1E_MASK)
569 return 1;
570 break;
571 default:
572 /* err on the side of caution */
573 return 1;
574 }
575 return 0;
576 }
577
578 static void __cpuinit init_amd(struct cpuinfo_x86 *c)
579 {
580 unsigned level;
581
582 #ifdef CONFIG_SMP
583 unsigned long value;
584
585 /*
586 * Disable TLB flush filter by setting HWCR.FFDIS on K8
587 * bit 6 of msr C001_0015
588 *
589 * Errata 63 for SH-B3 steppings
590 * Errata 122 for all steppings (F+ have it disabled by default)
591 */
592 if (c->x86 == 15) {
593 rdmsrl(MSR_K8_HWCR, value);
594 value |= 1 << 6;
595 wrmsrl(MSR_K8_HWCR, value);
596 }
597 #endif
598
599 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
600 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
601 clear_bit(0*32+31, &c->x86_capability);
602
603 /* On C+ stepping K8 rep microcode works well for copy/memset */
604 level = cpuid_eax(1);
605 if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
606 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
607 if (c->x86 == 0x10)
608 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
609
610 /* Enable workaround for FXSAVE leak */
611 if (c->x86 >= 6)
612 set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
613
614 level = get_model_name(c);
615 if (!level) {
616 switch (c->x86) {
617 case 15:
618 /* Should distinguish Models here, but this is only
619 a fallback anyways. */
620 strcpy(c->x86_model_id, "Hammer");
621 break;
622 }
623 }
624 display_cacheinfo(c);
625
626 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
627 if (c->x86_power & (1<<8))
628 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
629
630 /* Multi core CPU? */
631 if (c->extended_cpuid_level >= 0x80000008)
632 amd_detect_cmp(c);
633
634 if (c->extended_cpuid_level >= 0x80000006 &&
635 (cpuid_edx(0x80000006) & 0xf000))
636 num_cache_leaves = 4;
637 else
638 num_cache_leaves = 3;
639
640 if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
641 set_bit(X86_FEATURE_K8, &c->x86_capability);
642
643 /* RDTSC can be speculated around */
644 clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
645
646 /* Family 10 doesn't support C states in MWAIT so don't use it */
647 if (c->x86 == 0x10 && !force_mwait)
648 clear_bit(X86_FEATURE_MWAIT, &c->x86_capability);
649
650 if (amd_apic_timer_broken())
651 disable_apic_timer = 1;
652 }
653
654 static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
655 {
656 #ifdef CONFIG_SMP
657 u32 eax, ebx, ecx, edx;
658 int index_msb, core_bits;
659
660 cpuid(1, &eax, &ebx, &ecx, &edx);
661
662
663 if (!cpu_has(c, X86_FEATURE_HT))
664 return;
665 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
666 goto out;
667
668 smp_num_siblings = (ebx & 0xff0000) >> 16;
669
670 if (smp_num_siblings == 1) {
671 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
672 } else if (smp_num_siblings > 1 ) {
673
674 if (smp_num_siblings > NR_CPUS) {
675 printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
676 smp_num_siblings = 1;
677 return;
678 }
679
680 index_msb = get_count_order(smp_num_siblings);
681 c->phys_proc_id = phys_pkg_id(index_msb);
682
683 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
684
685 index_msb = get_count_order(smp_num_siblings) ;
686
687 core_bits = get_count_order(c->x86_max_cores);
688
689 c->cpu_core_id = phys_pkg_id(index_msb) &
690 ((1 << core_bits) - 1);
691 }
692 out:
693 if ((c->x86_max_cores * smp_num_siblings) > 1) {
694 printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
695 printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
696 }
697
698 #endif
699 }
700
701 /*
702 * find out the number of processor cores on the die
703 */
704 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
705 {
706 unsigned int eax, t;
707
708 if (c->cpuid_level < 4)
709 return 1;
710
711 cpuid_count(4, 0, &eax, &t, &t, &t);
712
713 if (eax & 0x1f)
714 return ((eax >> 26) + 1);
715 else
716 return 1;
717 }
718
719 static void srat_detect_node(void)
720 {
721 #ifdef CONFIG_NUMA
722 unsigned node;
723 int cpu = smp_processor_id();
724 int apicid = hard_smp_processor_id();
725
726 /* Don't do the funky fallback heuristics the AMD version employs
727 for now. */
728 node = apicid_to_node[apicid];
729 if (node == NUMA_NO_NODE)
730 node = first_node(node_online_map);
731 numa_set_node(cpu, node);
732
733 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
734 #endif
735 }
736
737 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
738 {
739 /* Cache sizes */
740 unsigned n;
741
742 init_intel_cacheinfo(c);
743 if (c->cpuid_level > 9 ) {
744 unsigned eax = cpuid_eax(10);
745 /* Check for version and the number of counters */
746 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
747 set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
748 }
749
750 if (cpu_has_ds) {
751 unsigned int l1, l2;
752 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
753 if (!(l1 & (1<<11)))
754 set_bit(X86_FEATURE_BTS, c->x86_capability);
755 if (!(l1 & (1<<12)))
756 set_bit(X86_FEATURE_PEBS, c->x86_capability);
757 }
758
759 n = c->extended_cpuid_level;
760 if (n >= 0x80000008) {
761 unsigned eax = cpuid_eax(0x80000008);
762 c->x86_virt_bits = (eax >> 8) & 0xff;
763 c->x86_phys_bits = eax & 0xff;
764 /* CPUID workaround for Intel 0F34 CPU */
765 if (c->x86_vendor == X86_VENDOR_INTEL &&
766 c->x86 == 0xF && c->x86_model == 0x3 &&
767 c->x86_mask == 0x4)
768 c->x86_phys_bits = 36;
769 }
770
771 if (c->x86 == 15)
772 c->x86_cache_alignment = c->x86_clflush_size * 2;
773 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
774 (c->x86 == 0x6 && c->x86_model >= 0x0e))
775 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
776 if (c->x86 == 6)
777 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
778 if (c->x86 == 15)
779 set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
780 else
781 clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
782 c->x86_max_cores = intel_num_cpu_cores(c);
783
784 srat_detect_node();
785 }
786
787 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
788 {
789 char *v = c->x86_vendor_id;
790
791 if (!strcmp(v, "AuthenticAMD"))
792 c->x86_vendor = X86_VENDOR_AMD;
793 else if (!strcmp(v, "GenuineIntel"))
794 c->x86_vendor = X86_VENDOR_INTEL;
795 else
796 c->x86_vendor = X86_VENDOR_UNKNOWN;
797 }
798
799 struct cpu_model_info {
800 int vendor;
801 int family;
802 char *model_names[16];
803 };
804
805 /* Do some early cpuid on the boot CPU to get some parameter that are
806 needed before check_bugs. Everything advanced is in identify_cpu
807 below. */
808 void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
809 {
810 u32 tfms;
811
812 c->loops_per_jiffy = loops_per_jiffy;
813 c->x86_cache_size = -1;
814 c->x86_vendor = X86_VENDOR_UNKNOWN;
815 c->x86_model = c->x86_mask = 0; /* So far unknown... */
816 c->x86_vendor_id[0] = '\0'; /* Unset */
817 c->x86_model_id[0] = '\0'; /* Unset */
818 c->x86_clflush_size = 64;
819 c->x86_cache_alignment = c->x86_clflush_size;
820 c->x86_max_cores = 1;
821 c->extended_cpuid_level = 0;
822 memset(&c->x86_capability, 0, sizeof c->x86_capability);
823
824 /* Get vendor name */
825 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
826 (unsigned int *)&c->x86_vendor_id[0],
827 (unsigned int *)&c->x86_vendor_id[8],
828 (unsigned int *)&c->x86_vendor_id[4]);
829
830 get_cpu_vendor(c);
831
832 /* Initialize the standard set of capabilities */
833 /* Note that the vendor-specific code below might override */
834
835 /* Intel-defined flags: level 0x00000001 */
836 if (c->cpuid_level >= 0x00000001) {
837 __u32 misc;
838 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
839 &c->x86_capability[0]);
840 c->x86 = (tfms >> 8) & 0xf;
841 c->x86_model = (tfms >> 4) & 0xf;
842 c->x86_mask = tfms & 0xf;
843 if (c->x86 == 0xf)
844 c->x86 += (tfms >> 20) & 0xff;
845 if (c->x86 >= 0x6)
846 c->x86_model += ((tfms >> 16) & 0xF) << 4;
847 if (c->x86_capability[0] & (1<<19))
848 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
849 } else {
850 /* Have CPUID level 0 only - unheard of */
851 c->x86 = 4;
852 }
853
854 #ifdef CONFIG_SMP
855 c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
856 #endif
857 }
858
859 /*
860 * This does the hard work of actually picking apart the CPU stuff...
861 */
862 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
863 {
864 int i;
865 u32 xlvl;
866
867 early_identify_cpu(c);
868
869 /* AMD-defined flags: level 0x80000001 */
870 xlvl = cpuid_eax(0x80000000);
871 c->extended_cpuid_level = xlvl;
872 if ((xlvl & 0xffff0000) == 0x80000000) {
873 if (xlvl >= 0x80000001) {
874 c->x86_capability[1] = cpuid_edx(0x80000001);
875 c->x86_capability[6] = cpuid_ecx(0x80000001);
876 }
877 if (xlvl >= 0x80000004)
878 get_model_name(c); /* Default name */
879 }
880
881 /* Transmeta-defined flags: level 0x80860001 */
882 xlvl = cpuid_eax(0x80860000);
883 if ((xlvl & 0xffff0000) == 0x80860000) {
884 /* Don't set x86_cpuid_level here for now to not confuse. */
885 if (xlvl >= 0x80860001)
886 c->x86_capability[2] = cpuid_edx(0x80860001);
887 }
888
889 init_scattered_cpuid_features(c);
890
891 c->apicid = phys_pkg_id(0);
892
893 /*
894 * Vendor-specific initialization. In this section we
895 * canonicalize the feature flags, meaning if there are
896 * features a certain CPU supports which CPUID doesn't
897 * tell us, CPUID claiming incorrect flags, or other bugs,
898 * we handle them here.
899 *
900 * At the end of this section, c->x86_capability better
901 * indicate the features this CPU genuinely supports!
902 */
903 switch (c->x86_vendor) {
904 case X86_VENDOR_AMD:
905 init_amd(c);
906 break;
907
908 case X86_VENDOR_INTEL:
909 init_intel(c);
910 break;
911
912 case X86_VENDOR_UNKNOWN:
913 default:
914 display_cacheinfo(c);
915 break;
916 }
917
918 select_idle_routine(c);
919 detect_ht(c);
920
921 /*
922 * On SMP, boot_cpu_data holds the common feature set between
923 * all CPUs; so make sure that we indicate which features are
924 * common between the CPUs. The first time this routine gets
925 * executed, c == &boot_cpu_data.
926 */
927 if (c != &boot_cpu_data) {
928 /* AND the already accumulated flags with these */
929 for (i = 0 ; i < NCAPINTS ; i++)
930 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
931 }
932
933 #ifdef CONFIG_X86_MCE
934 mcheck_init(c);
935 #endif
936 if (c != &boot_cpu_data)
937 mtrr_ap_init();
938 #ifdef CONFIG_NUMA
939 numa_add_cpu(smp_processor_id());
940 #endif
941 }
942
943
944 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
945 {
946 if (c->x86_model_id[0])
947 printk("%s", c->x86_model_id);
948
949 if (c->x86_mask || c->cpuid_level >= 0)
950 printk(" stepping %02x\n", c->x86_mask);
951 else
952 printk("\n");
953 }
954
955 /*
956 * Get CPU information for use by the procfs.
957 */
958
959 static int show_cpuinfo(struct seq_file *m, void *v)
960 {
961 struct cpuinfo_x86 *c = v;
962
963 /*
964 * These flag bits must match the definitions in <asm/cpufeature.h>.
965 * NULL means this bit is undefined or reserved; either way it doesn't
966 * have meaning as far as Linux is concerned. Note that it's important
967 * to realize there is a difference between this table and CPUID -- if
968 * applications want to get the raw CPUID data, they should access
969 * /dev/cpu/<cpu_nr>/cpuid instead.
970 */
971 static char *x86_cap_flags[] = {
972 /* Intel-defined */
973 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
974 "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
975 "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
976 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
977
978 /* AMD-defined */
979 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
980 NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
981 NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
982 NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
983 "3dnowext", "3dnow",
984
985 /* Transmeta-defined */
986 "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
987 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
988 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
989 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
990
991 /* Other (Linux-defined) */
992 "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
993 NULL, NULL, NULL, NULL,
994 "constant_tsc", "up", NULL, "arch_perfmon",
995 "pebs", "bts", NULL, "sync_rdtsc",
996 "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
997 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
998
999 /* Intel-defined (#2) */
1000 "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
1001 "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
1002 NULL, NULL, "dca", NULL, NULL, NULL, NULL, "popcnt",
1003 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1004
1005 /* VIA/Cyrix/Centaur-defined */
1006 NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
1007 "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
1008 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1009 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1010
1011 /* AMD-defined (#2) */
1012 "lahf_lm", "cmp_legacy", "svm", "extapic", "cr8_legacy",
1013 "altmovcr8", "abm", "sse4a",
1014 "misalignsse", "3dnowprefetch",
1015 "osvw", "ibs", NULL, NULL, NULL, NULL,
1016 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1017 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1018
1019 /* Auxiliary (Linux-defined) */
1020 "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1021 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1022 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1023 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1024 };
1025 static char *x86_power_flags[] = {
1026 "ts", /* temperature sensor */
1027 "fid", /* frequency id control */
1028 "vid", /* voltage id control */
1029 "ttp", /* thermal trip */
1030 "tm",
1031 "stc",
1032 "100mhzsteps",
1033 "hwpstate",
1034 "", /* tsc invariant mapped to constant_tsc */
1035 /* nothing */
1036 };
1037
1038
1039 #ifdef CONFIG_SMP
1040 if (!cpu_online(c-cpu_data))
1041 return 0;
1042 #endif
1043
1044 seq_printf(m,"processor\t: %u\n"
1045 "vendor_id\t: %s\n"
1046 "cpu family\t: %d\n"
1047 "model\t\t: %d\n"
1048 "model name\t: %s\n",
1049 (unsigned)(c-cpu_data),
1050 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1051 c->x86,
1052 (int)c->x86_model,
1053 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1054
1055 if (c->x86_mask || c->cpuid_level >= 0)
1056 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1057 else
1058 seq_printf(m, "stepping\t: unknown\n");
1059
1060 if (cpu_has(c,X86_FEATURE_TSC)) {
1061 unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
1062 if (!freq)
1063 freq = cpu_khz;
1064 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1065 freq / 1000, (freq % 1000));
1066 }
1067
1068 /* Cache size */
1069 if (c->x86_cache_size >= 0)
1070 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1071
1072 #ifdef CONFIG_SMP
1073 if (smp_num_siblings * c->x86_max_cores > 1) {
1074 int cpu = c - cpu_data;
1075 seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
1076 seq_printf(m, "siblings\t: %d\n",
1077 cpus_weight(per_cpu(cpu_core_map, cpu)));
1078 seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
1079 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1080 }
1081 #endif
1082
1083 seq_printf(m,
1084 "fpu\t\t: yes\n"
1085 "fpu_exception\t: yes\n"
1086 "cpuid level\t: %d\n"
1087 "wp\t\t: yes\n"
1088 "flags\t\t:",
1089 c->cpuid_level);
1090
1091 {
1092 int i;
1093 for ( i = 0 ; i < 32*NCAPINTS ; i++ )
1094 if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
1095 seq_printf(m, " %s", x86_cap_flags[i]);
1096 }
1097
1098 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1099 c->loops_per_jiffy/(500000/HZ),
1100 (c->loops_per_jiffy/(5000/HZ)) % 100);
1101
1102 if (c->x86_tlbsize > 0)
1103 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1104 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1105 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1106
1107 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1108 c->x86_phys_bits, c->x86_virt_bits);
1109
1110 seq_printf(m, "power management:");
1111 {
1112 unsigned i;
1113 for (i = 0; i < 32; i++)
1114 if (c->x86_power & (1 << i)) {
1115 if (i < ARRAY_SIZE(x86_power_flags) &&
1116 x86_power_flags[i])
1117 seq_printf(m, "%s%s",
1118 x86_power_flags[i][0]?" ":"",
1119 x86_power_flags[i]);
1120 else
1121 seq_printf(m, " [%d]", i);
1122 }
1123 }
1124
1125 seq_printf(m, "\n\n");
1126
1127 return 0;
1128 }
1129
1130 static void *c_start(struct seq_file *m, loff_t *pos)
1131 {
1132 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
1133 }
1134
1135 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1136 {
1137 ++*pos;
1138 return c_start(m, pos);
1139 }
1140
1141 static void c_stop(struct seq_file *m, void *v)
1142 {
1143 }
1144
1145 struct seq_operations cpuinfo_op = {
1146 .start =c_start,
1147 .next = c_next,
1148 .stop = c_stop,
1149 .show = show_cpuinfo,
1150 };