1cfd2a4bf853d4e04ac6a87a1e9aaa2213531f49
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / process_64.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 *
7 * X86-64 port
8 * Andi Kleen.
9 *
10 * CPU hotplug support - ashok.raj@intel.com
11 */
12
13 /*
14 * This file handles the architecture-dependent parts of process handling..
15 */
16
17 #include <stdarg.h>
18
19 #include <linux/cpu.h>
20 #include <linux/errno.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/elfcore.h>
26 #include <linux/smp.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/interrupt.h>
30 #include <linux/utsname.h>
31 #include <linux/delay.h>
32 #include <linux/module.h>
33 #include <linux/ptrace.h>
34 #include <linux/random.h>
35 #include <linux/notifier.h>
36 #include <linux/kprobes.h>
37 #include <linux/kdebug.h>
38 #include <linux/tick.h>
39 #include <linux/prctl.h>
40 #include <linux/uaccess.h>
41 #include <linux/io.h>
42 #include <linux/ftrace.h>
43
44 #include <asm/pgtable.h>
45 #include <asm/system.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/mmu_context.h>
49 #include <asm/pda.h>
50 #include <asm/prctl.h>
51 #include <asm/desc.h>
52 #include <asm/proto.h>
53 #include <asm/ia32.h>
54 #include <asm/idle.h>
55 #include <asm/syscalls.h>
56
57 asmlinkage extern void ret_from_fork(void);
58
59 unsigned long kernel_thread_flags = CLONE_VM | CLONE_UNTRACED;
60
61 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
62
63 void idle_notifier_register(struct notifier_block *n)
64 {
65 atomic_notifier_chain_register(&idle_notifier, n);
66 }
67 EXPORT_SYMBOL_GPL(idle_notifier_register);
68
69 void idle_notifier_unregister(struct notifier_block *n)
70 {
71 atomic_notifier_chain_unregister(&idle_notifier, n);
72 }
73 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
74
75 void enter_idle(void)
76 {
77 write_pda(isidle, 1);
78 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
79 }
80
81 static void __exit_idle(void)
82 {
83 if (test_and_clear_bit_pda(0, isidle) == 0)
84 return;
85 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
86 }
87
88 /* Called from interrupts to signify idle end */
89 void exit_idle(void)
90 {
91 /* idle loop has pid 0 */
92 if (current->pid)
93 return;
94 __exit_idle();
95 }
96
97 #ifndef CONFIG_SMP
98 static inline void play_dead(void)
99 {
100 BUG();
101 }
102 #endif
103
104 /*
105 * The idle thread. There's no useful work to be
106 * done, so just try to conserve power and have a
107 * low exit latency (ie sit in a loop waiting for
108 * somebody to say that they'd like to reschedule)
109 */
110 void cpu_idle(void)
111 {
112 current_thread_info()->status |= TS_POLLING;
113 /* endless idle loop with no priority at all */
114 while (1) {
115 tick_nohz_stop_sched_tick(1);
116 while (!need_resched()) {
117
118 rmb();
119
120 if (cpu_is_offline(smp_processor_id()))
121 play_dead();
122 /*
123 * Idle routines should keep interrupts disabled
124 * from here on, until they go to idle.
125 * Otherwise, idle callbacks can misfire.
126 */
127 local_irq_disable();
128 enter_idle();
129 /* Don't trace irqs off for idle */
130 stop_critical_timings();
131 pm_idle();
132 start_critical_timings();
133 /* In many cases the interrupt that ended idle
134 has already called exit_idle. But some idle
135 loops can be woken up without interrupt. */
136 __exit_idle();
137 }
138
139 tick_nohz_restart_sched_tick();
140 preempt_enable_no_resched();
141 schedule();
142 preempt_disable();
143 }
144 }
145
146 /* Prints also some state that isn't saved in the pt_regs */
147 void __show_regs(struct pt_regs *regs, int all)
148 {
149 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
150 unsigned long d0, d1, d2, d3, d6, d7;
151 unsigned int fsindex, gsindex;
152 unsigned int ds, cs, es;
153
154 printk("\n");
155 print_modules();
156 printk(KERN_INFO "Pid: %d, comm: %.20s %s %s %.*s\n",
157 current->pid, current->comm, print_tainted(),
158 init_utsname()->release,
159 (int)strcspn(init_utsname()->version, " "),
160 init_utsname()->version);
161 printk(KERN_INFO "RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip);
162 printk_address(regs->ip, 1);
163 printk(KERN_INFO "RSP: %04lx:%016lx EFLAGS: %08lx\n", regs->ss,
164 regs->sp, regs->flags);
165 printk(KERN_INFO "RAX: %016lx RBX: %016lx RCX: %016lx\n",
166 regs->ax, regs->bx, regs->cx);
167 printk(KERN_INFO "RDX: %016lx RSI: %016lx RDI: %016lx\n",
168 regs->dx, regs->si, regs->di);
169 printk(KERN_INFO "RBP: %016lx R08: %016lx R09: %016lx\n",
170 regs->bp, regs->r8, regs->r9);
171 printk(KERN_INFO "R10: %016lx R11: %016lx R12: %016lx\n",
172 regs->r10, regs->r11, regs->r12);
173 printk(KERN_INFO "R13: %016lx R14: %016lx R15: %016lx\n",
174 regs->r13, regs->r14, regs->r15);
175
176 asm("movl %%ds,%0" : "=r" (ds));
177 asm("movl %%cs,%0" : "=r" (cs));
178 asm("movl %%es,%0" : "=r" (es));
179 asm("movl %%fs,%0" : "=r" (fsindex));
180 asm("movl %%gs,%0" : "=r" (gsindex));
181
182 rdmsrl(MSR_FS_BASE, fs);
183 rdmsrl(MSR_GS_BASE, gs);
184 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
185
186 if (!all)
187 return;
188
189 cr0 = read_cr0();
190 cr2 = read_cr2();
191 cr3 = read_cr3();
192 cr4 = read_cr4();
193
194 printk(KERN_INFO "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
195 fs, fsindex, gs, gsindex, shadowgs);
196 printk(KERN_INFO "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
197 es, cr0);
198 printk(KERN_INFO "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
199 cr4);
200
201 get_debugreg(d0, 0);
202 get_debugreg(d1, 1);
203 get_debugreg(d2, 2);
204 printk(KERN_INFO "DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2);
205 get_debugreg(d3, 3);
206 get_debugreg(d6, 6);
207 get_debugreg(d7, 7);
208 printk(KERN_INFO "DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7);
209 }
210
211 void show_regs(struct pt_regs *regs)
212 {
213 printk(KERN_INFO "CPU %d:", smp_processor_id());
214 __show_regs(regs, 1);
215 show_trace(NULL, regs, (void *)(regs + 1), regs->bp);
216 }
217
218 /*
219 * Free current thread data structures etc..
220 */
221 void exit_thread(void)
222 {
223 struct task_struct *me = current;
224 struct thread_struct *t = &me->thread;
225
226 if (me->thread.io_bitmap_ptr) {
227 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
228
229 kfree(t->io_bitmap_ptr);
230 t->io_bitmap_ptr = NULL;
231 clear_thread_flag(TIF_IO_BITMAP);
232 /*
233 * Careful, clear this in the TSS too:
234 */
235 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
236 t->io_bitmap_max = 0;
237 put_cpu();
238 }
239 #ifdef CONFIG_X86_DS
240 /* Free any BTS tracers that have not been properly released. */
241 if (unlikely(current->bts)) {
242 ds_release_bts(current->bts);
243 current->bts = NULL;
244
245 kfree(current->bts_buffer);
246 current->bts_buffer = NULL;
247 current->bts_size = 0;
248 }
249 #endif /* CONFIG_X86_DS */
250 }
251
252 void flush_thread(void)
253 {
254 struct task_struct *tsk = current;
255
256 if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
257 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
258 if (test_tsk_thread_flag(tsk, TIF_IA32)) {
259 clear_tsk_thread_flag(tsk, TIF_IA32);
260 } else {
261 set_tsk_thread_flag(tsk, TIF_IA32);
262 current_thread_info()->status |= TS_COMPAT;
263 }
264 }
265 clear_tsk_thread_flag(tsk, TIF_DEBUG);
266
267 tsk->thread.debugreg0 = 0;
268 tsk->thread.debugreg1 = 0;
269 tsk->thread.debugreg2 = 0;
270 tsk->thread.debugreg3 = 0;
271 tsk->thread.debugreg6 = 0;
272 tsk->thread.debugreg7 = 0;
273 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
274 /*
275 * Forget coprocessor state..
276 */
277 tsk->fpu_counter = 0;
278 clear_fpu(tsk);
279 clear_used_math();
280 }
281
282 void release_thread(struct task_struct *dead_task)
283 {
284 if (dead_task->mm) {
285 if (dead_task->mm->context.size) {
286 printk("WARNING: dead process %8s still has LDT? <%p/%d>\n",
287 dead_task->comm,
288 dead_task->mm->context.ldt,
289 dead_task->mm->context.size);
290 BUG();
291 }
292 }
293 }
294
295 static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr)
296 {
297 struct user_desc ud = {
298 .base_addr = addr,
299 .limit = 0xfffff,
300 .seg_32bit = 1,
301 .limit_in_pages = 1,
302 .useable = 1,
303 };
304 struct desc_struct *desc = t->thread.tls_array;
305 desc += tls;
306 fill_ldt(desc, &ud);
307 }
308
309 static inline u32 read_32bit_tls(struct task_struct *t, int tls)
310 {
311 return get_desc_base(&t->thread.tls_array[tls]);
312 }
313
314 /*
315 * This gets called before we allocate a new thread and copy
316 * the current task into it.
317 */
318 void prepare_to_copy(struct task_struct *tsk)
319 {
320 unlazy_fpu(tsk);
321 }
322
323 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
324 unsigned long unused,
325 struct task_struct *p, struct pt_regs *regs)
326 {
327 int err;
328 struct pt_regs *childregs;
329 struct task_struct *me = current;
330
331 childregs = ((struct pt_regs *)
332 (THREAD_SIZE + task_stack_page(p))) - 1;
333 *childregs = *regs;
334
335 childregs->ax = 0;
336 childregs->sp = sp;
337 if (sp == ~0UL)
338 childregs->sp = (unsigned long)childregs;
339
340 p->thread.sp = (unsigned long) childregs;
341 p->thread.sp0 = (unsigned long) (childregs+1);
342 p->thread.usersp = me->thread.usersp;
343
344 set_tsk_thread_flag(p, TIF_FORK);
345
346 p->thread.fs = me->thread.fs;
347 p->thread.gs = me->thread.gs;
348
349 savesegment(gs, p->thread.gsindex);
350 savesegment(fs, p->thread.fsindex);
351 savesegment(es, p->thread.es);
352 savesegment(ds, p->thread.ds);
353
354 if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
355 p->thread.io_bitmap_ptr = kmalloc(IO_BITMAP_BYTES, GFP_KERNEL);
356 if (!p->thread.io_bitmap_ptr) {
357 p->thread.io_bitmap_max = 0;
358 return -ENOMEM;
359 }
360 memcpy(p->thread.io_bitmap_ptr, me->thread.io_bitmap_ptr,
361 IO_BITMAP_BYTES);
362 set_tsk_thread_flag(p, TIF_IO_BITMAP);
363 }
364
365 /*
366 * Set a new TLS for the child thread?
367 */
368 if (clone_flags & CLONE_SETTLS) {
369 #ifdef CONFIG_IA32_EMULATION
370 if (test_thread_flag(TIF_IA32))
371 err = do_set_thread_area(p, -1,
372 (struct user_desc __user *)childregs->si, 0);
373 else
374 #endif
375 err = do_arch_prctl(p, ARCH_SET_FS, childregs->r8);
376 if (err)
377 goto out;
378 }
379 err = 0;
380 out:
381 if (err && p->thread.io_bitmap_ptr) {
382 kfree(p->thread.io_bitmap_ptr);
383 p->thread.io_bitmap_max = 0;
384 }
385 return err;
386 }
387
388 void
389 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
390 {
391 loadsegment(fs, 0);
392 loadsegment(es, 0);
393 loadsegment(ds, 0);
394 load_gs_index(0);
395 regs->ip = new_ip;
396 regs->sp = new_sp;
397 write_pda(oldrsp, new_sp);
398 regs->cs = __USER_CS;
399 regs->ss = __USER_DS;
400 regs->flags = 0x200;
401 set_fs(USER_DS);
402 /*
403 * Free the old FP and other extended state
404 */
405 free_thread_xstate(current);
406 }
407 EXPORT_SYMBOL_GPL(start_thread);
408
409 static void hard_disable_TSC(void)
410 {
411 write_cr4(read_cr4() | X86_CR4_TSD);
412 }
413
414 void disable_TSC(void)
415 {
416 preempt_disable();
417 if (!test_and_set_thread_flag(TIF_NOTSC))
418 /*
419 * Must flip the CPU state synchronously with
420 * TIF_NOTSC in the current running context.
421 */
422 hard_disable_TSC();
423 preempt_enable();
424 }
425
426 static void hard_enable_TSC(void)
427 {
428 write_cr4(read_cr4() & ~X86_CR4_TSD);
429 }
430
431 static void enable_TSC(void)
432 {
433 preempt_disable();
434 if (test_and_clear_thread_flag(TIF_NOTSC))
435 /*
436 * Must flip the CPU state synchronously with
437 * TIF_NOTSC in the current running context.
438 */
439 hard_enable_TSC();
440 preempt_enable();
441 }
442
443 int get_tsc_mode(unsigned long adr)
444 {
445 unsigned int val;
446
447 if (test_thread_flag(TIF_NOTSC))
448 val = PR_TSC_SIGSEGV;
449 else
450 val = PR_TSC_ENABLE;
451
452 return put_user(val, (unsigned int __user *)adr);
453 }
454
455 int set_tsc_mode(unsigned int val)
456 {
457 if (val == PR_TSC_SIGSEGV)
458 disable_TSC();
459 else if (val == PR_TSC_ENABLE)
460 enable_TSC();
461 else
462 return -EINVAL;
463
464 return 0;
465 }
466
467 /*
468 * This special macro can be used to load a debugging register
469 */
470 #define loaddebug(thread, r) set_debugreg(thread->debugreg ## r, r)
471
472 static inline void __switch_to_xtra(struct task_struct *prev_p,
473 struct task_struct *next_p,
474 struct tss_struct *tss)
475 {
476 struct thread_struct *prev, *next;
477
478 prev = &prev_p->thread,
479 next = &next_p->thread;
480
481 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
482 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
483 ds_switch_to(prev_p, next_p);
484 else if (next->debugctlmsr != prev->debugctlmsr)
485 update_debugctlmsr(next->debugctlmsr);
486
487 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
488 loaddebug(next, 0);
489 loaddebug(next, 1);
490 loaddebug(next, 2);
491 loaddebug(next, 3);
492 /* no 4 and 5 */
493 loaddebug(next, 6);
494 loaddebug(next, 7);
495 }
496
497 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
498 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
499 /* prev and next are different */
500 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
501 hard_disable_TSC();
502 else
503 hard_enable_TSC();
504 }
505
506 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
507 /*
508 * Copy the relevant range of the IO bitmap.
509 * Normally this is 128 bytes or less:
510 */
511 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
512 max(prev->io_bitmap_max, next->io_bitmap_max));
513 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
514 /*
515 * Clear any possible leftover bits:
516 */
517 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
518 }
519 }
520
521 /*
522 * switch_to(x,y) should switch tasks from x to y.
523 *
524 * This could still be optimized:
525 * - fold all the options into a flag word and test it with a single test.
526 * - could test fs/gs bitsliced
527 *
528 * Kprobes not supported here. Set the probe on schedule instead.
529 * Function graph tracer not supported too.
530 */
531 __notrace_funcgraph struct task_struct *
532 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
533 {
534 struct thread_struct *prev = &prev_p->thread;
535 struct thread_struct *next = &next_p->thread;
536 int cpu = smp_processor_id();
537 struct tss_struct *tss = &per_cpu(init_tss, cpu);
538 unsigned fsindex, gsindex;
539
540 /* we're going to use this soon, after a few expensive things */
541 if (next_p->fpu_counter > 5)
542 prefetch(next->xstate);
543
544 /*
545 * Reload esp0, LDT and the page table pointer:
546 */
547 load_sp0(tss, next);
548
549 /*
550 * Switch DS and ES.
551 * This won't pick up thread selector changes, but I guess that is ok.
552 */
553 savesegment(es, prev->es);
554 if (unlikely(next->es | prev->es))
555 loadsegment(es, next->es);
556
557 savesegment(ds, prev->ds);
558 if (unlikely(next->ds | prev->ds))
559 loadsegment(ds, next->ds);
560
561
562 /* We must save %fs and %gs before load_TLS() because
563 * %fs and %gs may be cleared by load_TLS().
564 *
565 * (e.g. xen_load_tls())
566 */
567 savesegment(fs, fsindex);
568 savesegment(gs, gsindex);
569
570 load_TLS(next, cpu);
571
572 /*
573 * Leave lazy mode, flushing any hypercalls made here.
574 * This must be done before restoring TLS segments so
575 * the GDT and LDT are properly updated, and must be
576 * done before math_state_restore, so the TS bit is up
577 * to date.
578 */
579 arch_leave_lazy_cpu_mode();
580
581 /*
582 * Switch FS and GS.
583 *
584 * Segment register != 0 always requires a reload. Also
585 * reload when it has changed. When prev process used 64bit
586 * base always reload to avoid an information leak.
587 */
588 if (unlikely(fsindex | next->fsindex | prev->fs)) {
589 loadsegment(fs, next->fsindex);
590 /*
591 * Check if the user used a selector != 0; if yes
592 * clear 64bit base, since overloaded base is always
593 * mapped to the Null selector
594 */
595 if (fsindex)
596 prev->fs = 0;
597 }
598 /* when next process has a 64bit base use it */
599 if (next->fs)
600 wrmsrl(MSR_FS_BASE, next->fs);
601 prev->fsindex = fsindex;
602
603 if (unlikely(gsindex | next->gsindex | prev->gs)) {
604 load_gs_index(next->gsindex);
605 if (gsindex)
606 prev->gs = 0;
607 }
608 if (next->gs)
609 wrmsrl(MSR_KERNEL_GS_BASE, next->gs);
610 prev->gsindex = gsindex;
611
612 /* Must be after DS reload */
613 unlazy_fpu(prev_p);
614
615 /*
616 * Switch the PDA and FPU contexts.
617 */
618 prev->usersp = read_pda(oldrsp);
619 write_pda(oldrsp, next->usersp);
620 write_pda(pcurrent, next_p);
621
622 write_pda(kernelstack,
623 (unsigned long)task_stack_page(next_p) +
624 THREAD_SIZE - PDA_STACKOFFSET);
625 #ifdef CONFIG_CC_STACKPROTECTOR
626 write_pda(stack_canary, next_p->stack_canary);
627 /*
628 * Build time only check to make sure the stack_canary is at
629 * offset 40 in the pda; this is a gcc ABI requirement
630 */
631 BUILD_BUG_ON(offsetof(struct x8664_pda, stack_canary) != 40);
632 #endif
633
634 /*
635 * Now maybe reload the debug registers and handle I/O bitmaps
636 */
637 if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
638 task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
639 __switch_to_xtra(prev_p, next_p, tss);
640
641 /* If the task has used fpu the last 5 timeslices, just do a full
642 * restore of the math state immediately to avoid the trap; the
643 * chances of needing FPU soon are obviously high now
644 *
645 * tsk_used_math() checks prevent calling math_state_restore(),
646 * which can sleep in the case of !tsk_used_math()
647 */
648 if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
649 math_state_restore();
650 return prev_p;
651 }
652
653 /*
654 * sys_execve() executes a new program.
655 */
656 asmlinkage
657 long sys_execve(char __user *name, char __user * __user *argv,
658 char __user * __user *envp, struct pt_regs *regs)
659 {
660 long error;
661 char *filename;
662
663 filename = getname(name);
664 error = PTR_ERR(filename);
665 if (IS_ERR(filename))
666 return error;
667 error = do_execve(filename, argv, envp, regs);
668 putname(filename);
669 return error;
670 }
671
672 void set_personality_64bit(void)
673 {
674 /* inherit personality from parent */
675
676 /* Make sure to be in 64bit mode */
677 clear_thread_flag(TIF_IA32);
678
679 /* TBD: overwrites user setup. Should have two bits.
680 But 64bit processes have always behaved this way,
681 so it's not too bad. The main problem is just that
682 32bit childs are affected again. */
683 current->personality &= ~READ_IMPLIES_EXEC;
684 }
685
686 asmlinkage long sys_fork(struct pt_regs *regs)
687 {
688 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
689 }
690
691 asmlinkage long
692 sys_clone(unsigned long clone_flags, unsigned long newsp,
693 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
694 {
695 if (!newsp)
696 newsp = regs->sp;
697 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
698 }
699
700 /*
701 * This is trivial, and on the face of it looks like it
702 * could equally well be done in user mode.
703 *
704 * Not so, for quite unobvious reasons - register pressure.
705 * In user mode vfork() cannot have a stack frame, and if
706 * done by calling the "clone()" system call directly, you
707 * do not have enough call-clobbered registers to hold all
708 * the information you need.
709 */
710 asmlinkage long sys_vfork(struct pt_regs *regs)
711 {
712 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
713 NULL, NULL);
714 }
715
716 unsigned long get_wchan(struct task_struct *p)
717 {
718 unsigned long stack;
719 u64 fp, ip;
720 int count = 0;
721
722 if (!p || p == current || p->state == TASK_RUNNING)
723 return 0;
724 stack = (unsigned long)task_stack_page(p);
725 if (p->thread.sp < stack || p->thread.sp >= stack+THREAD_SIZE)
726 return 0;
727 fp = *(u64 *)(p->thread.sp);
728 do {
729 if (fp < (unsigned long)stack ||
730 fp >= (unsigned long)stack+THREAD_SIZE)
731 return 0;
732 ip = *(u64 *)(fp+8);
733 if (!in_sched_functions(ip))
734 return ip;
735 fp = *(u64 *)fp;
736 } while (count++ < 16);
737 return 0;
738 }
739
740 long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
741 {
742 int ret = 0;
743 int doit = task == current;
744 int cpu;
745
746 switch (code) {
747 case ARCH_SET_GS:
748 if (addr >= TASK_SIZE_OF(task))
749 return -EPERM;
750 cpu = get_cpu();
751 /* handle small bases via the GDT because that's faster to
752 switch. */
753 if (addr <= 0xffffffff) {
754 set_32bit_tls(task, GS_TLS, addr);
755 if (doit) {
756 load_TLS(&task->thread, cpu);
757 load_gs_index(GS_TLS_SEL);
758 }
759 task->thread.gsindex = GS_TLS_SEL;
760 task->thread.gs = 0;
761 } else {
762 task->thread.gsindex = 0;
763 task->thread.gs = addr;
764 if (doit) {
765 load_gs_index(0);
766 ret = checking_wrmsrl(MSR_KERNEL_GS_BASE, addr);
767 }
768 }
769 put_cpu();
770 break;
771 case ARCH_SET_FS:
772 /* Not strictly needed for fs, but do it for symmetry
773 with gs */
774 if (addr >= TASK_SIZE_OF(task))
775 return -EPERM;
776 cpu = get_cpu();
777 /* handle small bases via the GDT because that's faster to
778 switch. */
779 if (addr <= 0xffffffff) {
780 set_32bit_tls(task, FS_TLS, addr);
781 if (doit) {
782 load_TLS(&task->thread, cpu);
783 loadsegment(fs, FS_TLS_SEL);
784 }
785 task->thread.fsindex = FS_TLS_SEL;
786 task->thread.fs = 0;
787 } else {
788 task->thread.fsindex = 0;
789 task->thread.fs = addr;
790 if (doit) {
791 /* set the selector to 0 to not confuse
792 __switch_to */
793 loadsegment(fs, 0);
794 ret = checking_wrmsrl(MSR_FS_BASE, addr);
795 }
796 }
797 put_cpu();
798 break;
799 case ARCH_GET_FS: {
800 unsigned long base;
801 if (task->thread.fsindex == FS_TLS_SEL)
802 base = read_32bit_tls(task, FS_TLS);
803 else if (doit)
804 rdmsrl(MSR_FS_BASE, base);
805 else
806 base = task->thread.fs;
807 ret = put_user(base, (unsigned long __user *)addr);
808 break;
809 }
810 case ARCH_GET_GS: {
811 unsigned long base;
812 unsigned gsindex;
813 if (task->thread.gsindex == GS_TLS_SEL)
814 base = read_32bit_tls(task, GS_TLS);
815 else if (doit) {
816 savesegment(gs, gsindex);
817 if (gsindex)
818 rdmsrl(MSR_KERNEL_GS_BASE, base);
819 else
820 base = task->thread.gs;
821 } else
822 base = task->thread.gs;
823 ret = put_user(base, (unsigned long __user *)addr);
824 break;
825 }
826
827 default:
828 ret = -EINVAL;
829 break;
830 }
831
832 return ret;
833 }
834
835 long sys_arch_prctl(int code, unsigned long addr)
836 {
837 return do_arch_prctl(current, code, addr);
838 }
839
840 unsigned long arch_align_stack(unsigned long sp)
841 {
842 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
843 sp -= get_random_int() % 8192;
844 return sp & ~0xf;
845 }
846
847 unsigned long arch_randomize_brk(struct mm_struct *mm)
848 {
849 unsigned long range_end = mm->brk + 0x02000000;
850 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
851 }