Merge branches 'tracing/function-graph-tracer' and 'tracing/ring-buffer' into tracing...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / process_32.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39 #include <linux/prctl.h>
40 #include <linux/dmi.h>
41 #include <linux/ftrace.h>
42
43 #include <asm/uaccess.h>
44 #include <asm/pgtable.h>
45 #include <asm/system.h>
46 #include <asm/io.h>
47 #include <asm/ldt.h>
48 #include <asm/processor.h>
49 #include <asm/i387.h>
50 #include <asm/desc.h>
51 #ifdef CONFIG_MATH_EMULATION
52 #include <asm/math_emu.h>
53 #endif
54
55 #include <linux/err.h>
56
57 #include <asm/tlbflush.h>
58 #include <asm/cpu.h>
59 #include <asm/kdebug.h>
60 #include <asm/idle.h>
61 #include <asm/syscalls.h>
62 #include <asm/smp.h>
63
64 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
65
66 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
67 EXPORT_PER_CPU_SYMBOL(current_task);
68
69 DEFINE_PER_CPU(int, cpu_number);
70 EXPORT_PER_CPU_SYMBOL(cpu_number);
71
72 /*
73 * Return saved PC of a blocked thread.
74 */
75 unsigned long thread_saved_pc(struct task_struct *tsk)
76 {
77 return ((unsigned long *)tsk->thread.sp)[3];
78 }
79
80 #ifndef CONFIG_SMP
81 static inline void play_dead(void)
82 {
83 BUG();
84 }
85 #endif
86
87 /*
88 * The idle thread. There's no useful work to be
89 * done, so just try to conserve power and have a
90 * low exit latency (ie sit in a loop waiting for
91 * somebody to say that they'd like to reschedule)
92 */
93 void cpu_idle(void)
94 {
95 int cpu = smp_processor_id();
96
97 current_thread_info()->status |= TS_POLLING;
98
99 /* endless idle loop with no priority at all */
100 while (1) {
101 tick_nohz_stop_sched_tick(1);
102 while (!need_resched()) {
103
104 check_pgt_cache();
105 rmb();
106
107 if (rcu_pending(cpu))
108 rcu_check_callbacks(cpu, 0);
109
110 if (cpu_is_offline(cpu))
111 play_dead();
112
113 local_irq_disable();
114 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
115 /* Don't trace irqs off for idle */
116 stop_critical_timings();
117 pm_idle();
118 start_critical_timings();
119 }
120 tick_nohz_restart_sched_tick();
121 preempt_enable_no_resched();
122 schedule();
123 preempt_disable();
124 }
125 }
126
127 void __show_regs(struct pt_regs *regs, int all)
128 {
129 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
130 unsigned long d0, d1, d2, d3, d6, d7;
131 unsigned long sp;
132 unsigned short ss, gs;
133 const char *board;
134
135 if (user_mode_vm(regs)) {
136 sp = regs->sp;
137 ss = regs->ss & 0xffff;
138 savesegment(gs, gs);
139 } else {
140 sp = (unsigned long) (&regs->sp);
141 savesegment(ss, ss);
142 savesegment(gs, gs);
143 }
144
145 printk("\n");
146
147 board = dmi_get_system_info(DMI_PRODUCT_NAME);
148 if (!board)
149 board = "";
150 printk("Pid: %d, comm: %s %s (%s %.*s) %s\n",
151 task_pid_nr(current), current->comm,
152 print_tainted(), init_utsname()->release,
153 (int)strcspn(init_utsname()->version, " "),
154 init_utsname()->version, board);
155
156 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
157 (u16)regs->cs, regs->ip, regs->flags,
158 smp_processor_id());
159 print_symbol("EIP is at %s\n", regs->ip);
160
161 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
162 regs->ax, regs->bx, regs->cx, regs->dx);
163 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
164 regs->si, regs->di, regs->bp, sp);
165 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
166 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
167
168 if (!all)
169 return;
170
171 cr0 = read_cr0();
172 cr2 = read_cr2();
173 cr3 = read_cr3();
174 cr4 = read_cr4_safe();
175 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
176 cr0, cr2, cr3, cr4);
177
178 get_debugreg(d0, 0);
179 get_debugreg(d1, 1);
180 get_debugreg(d2, 2);
181 get_debugreg(d3, 3);
182 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
183 d0, d1, d2, d3);
184
185 get_debugreg(d6, 6);
186 get_debugreg(d7, 7);
187 printk("DR6: %08lx DR7: %08lx\n",
188 d6, d7);
189 }
190
191 void show_regs(struct pt_regs *regs)
192 {
193 __show_regs(regs, 1);
194 show_trace(NULL, regs, &regs->sp, regs->bp);
195 }
196
197 /*
198 * This gets run with %bx containing the
199 * function to call, and %dx containing
200 * the "args".
201 */
202 extern void kernel_thread_helper(void);
203
204 /*
205 * Create a kernel thread
206 */
207 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
208 {
209 struct pt_regs regs;
210
211 memset(&regs, 0, sizeof(regs));
212
213 regs.bx = (unsigned long) fn;
214 regs.dx = (unsigned long) arg;
215
216 regs.ds = __USER_DS;
217 regs.es = __USER_DS;
218 regs.fs = __KERNEL_PERCPU;
219 regs.orig_ax = -1;
220 regs.ip = (unsigned long) kernel_thread_helper;
221 regs.cs = __KERNEL_CS | get_kernel_rpl();
222 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
223
224 /* Ok, create the new process.. */
225 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
226 }
227 EXPORT_SYMBOL(kernel_thread);
228
229 /*
230 * Free current thread data structures etc..
231 */
232 void exit_thread(void)
233 {
234 /* The process may have allocated an io port bitmap... nuke it. */
235 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
236 struct task_struct *tsk = current;
237 struct thread_struct *t = &tsk->thread;
238 int cpu = get_cpu();
239 struct tss_struct *tss = &per_cpu(init_tss, cpu);
240
241 kfree(t->io_bitmap_ptr);
242 t->io_bitmap_ptr = NULL;
243 clear_thread_flag(TIF_IO_BITMAP);
244 /*
245 * Careful, clear this in the TSS too:
246 */
247 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
248 t->io_bitmap_max = 0;
249 tss->io_bitmap_owner = NULL;
250 tss->io_bitmap_max = 0;
251 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
252 put_cpu();
253 }
254 #ifdef CONFIG_X86_DS
255 /* Free any DS contexts that have not been properly released. */
256 if (unlikely(current->thread.ds_ctx)) {
257 /* we clear debugctl to make sure DS is not used. */
258 update_debugctlmsr(0);
259 ds_free(current->thread.ds_ctx);
260 }
261 #endif /* CONFIG_X86_DS */
262 }
263
264 void flush_thread(void)
265 {
266 struct task_struct *tsk = current;
267
268 tsk->thread.debugreg0 = 0;
269 tsk->thread.debugreg1 = 0;
270 tsk->thread.debugreg2 = 0;
271 tsk->thread.debugreg3 = 0;
272 tsk->thread.debugreg6 = 0;
273 tsk->thread.debugreg7 = 0;
274 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
275 clear_tsk_thread_flag(tsk, TIF_DEBUG);
276 /*
277 * Forget coprocessor state..
278 */
279 tsk->fpu_counter = 0;
280 clear_fpu(tsk);
281 clear_used_math();
282 }
283
284 void release_thread(struct task_struct *dead_task)
285 {
286 BUG_ON(dead_task->mm);
287 release_vm86_irqs(dead_task);
288 }
289
290 /*
291 * This gets called before we allocate a new thread and copy
292 * the current task into it.
293 */
294 void prepare_to_copy(struct task_struct *tsk)
295 {
296 unlazy_fpu(tsk);
297 }
298
299 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
300 unsigned long unused,
301 struct task_struct * p, struct pt_regs * regs)
302 {
303 struct pt_regs * childregs;
304 struct task_struct *tsk;
305 int err;
306
307 childregs = task_pt_regs(p);
308 *childregs = *regs;
309 childregs->ax = 0;
310 childregs->sp = sp;
311
312 p->thread.sp = (unsigned long) childregs;
313 p->thread.sp0 = (unsigned long) (childregs+1);
314
315 p->thread.ip = (unsigned long) ret_from_fork;
316
317 savesegment(gs, p->thread.gs);
318
319 tsk = current;
320 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
321 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
322 IO_BITMAP_BYTES, GFP_KERNEL);
323 if (!p->thread.io_bitmap_ptr) {
324 p->thread.io_bitmap_max = 0;
325 return -ENOMEM;
326 }
327 set_tsk_thread_flag(p, TIF_IO_BITMAP);
328 }
329
330 err = 0;
331
332 /*
333 * Set a new TLS for the child thread?
334 */
335 if (clone_flags & CLONE_SETTLS)
336 err = do_set_thread_area(p, -1,
337 (struct user_desc __user *)childregs->si, 0);
338
339 if (err && p->thread.io_bitmap_ptr) {
340 kfree(p->thread.io_bitmap_ptr);
341 p->thread.io_bitmap_max = 0;
342 }
343 return err;
344 }
345
346 void
347 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
348 {
349 __asm__("movl %0, %%gs" :: "r"(0));
350 regs->fs = 0;
351 set_fs(USER_DS);
352 regs->ds = __USER_DS;
353 regs->es = __USER_DS;
354 regs->ss = __USER_DS;
355 regs->cs = __USER_CS;
356 regs->ip = new_ip;
357 regs->sp = new_sp;
358 /*
359 * Free the old FP and other extended state
360 */
361 free_thread_xstate(current);
362 }
363 EXPORT_SYMBOL_GPL(start_thread);
364
365 static void hard_disable_TSC(void)
366 {
367 write_cr4(read_cr4() | X86_CR4_TSD);
368 }
369
370 void disable_TSC(void)
371 {
372 preempt_disable();
373 if (!test_and_set_thread_flag(TIF_NOTSC))
374 /*
375 * Must flip the CPU state synchronously with
376 * TIF_NOTSC in the current running context.
377 */
378 hard_disable_TSC();
379 preempt_enable();
380 }
381
382 static void hard_enable_TSC(void)
383 {
384 write_cr4(read_cr4() & ~X86_CR4_TSD);
385 }
386
387 static void enable_TSC(void)
388 {
389 preempt_disable();
390 if (test_and_clear_thread_flag(TIF_NOTSC))
391 /*
392 * Must flip the CPU state synchronously with
393 * TIF_NOTSC in the current running context.
394 */
395 hard_enable_TSC();
396 preempt_enable();
397 }
398
399 int get_tsc_mode(unsigned long adr)
400 {
401 unsigned int val;
402
403 if (test_thread_flag(TIF_NOTSC))
404 val = PR_TSC_SIGSEGV;
405 else
406 val = PR_TSC_ENABLE;
407
408 return put_user(val, (unsigned int __user *)adr);
409 }
410
411 int set_tsc_mode(unsigned int val)
412 {
413 if (val == PR_TSC_SIGSEGV)
414 disable_TSC();
415 else if (val == PR_TSC_ENABLE)
416 enable_TSC();
417 else
418 return -EINVAL;
419
420 return 0;
421 }
422
423 #ifdef CONFIG_X86_DS
424 static int update_debugctl(struct thread_struct *prev,
425 struct thread_struct *next, unsigned long debugctl)
426 {
427 unsigned long ds_prev = 0;
428 unsigned long ds_next = 0;
429
430 if (prev->ds_ctx)
431 ds_prev = (unsigned long)prev->ds_ctx->ds;
432 if (next->ds_ctx)
433 ds_next = (unsigned long)next->ds_ctx->ds;
434
435 if (ds_next != ds_prev) {
436 /* we clear debugctl to make sure DS
437 * is not in use when we change it */
438 debugctl = 0;
439 update_debugctlmsr(0);
440 wrmsr(MSR_IA32_DS_AREA, ds_next, 0);
441 }
442 return debugctl;
443 }
444 #else
445 static int update_debugctl(struct thread_struct *prev,
446 struct thread_struct *next, unsigned long debugctl)
447 {
448 return debugctl;
449 }
450 #endif /* CONFIG_X86_DS */
451
452 static noinline void
453 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
454 struct tss_struct *tss)
455 {
456 struct thread_struct *prev, *next;
457 unsigned long debugctl;
458
459 prev = &prev_p->thread;
460 next = &next_p->thread;
461
462 debugctl = update_debugctl(prev, next, prev->debugctlmsr);
463
464 if (next->debugctlmsr != debugctl)
465 update_debugctlmsr(next->debugctlmsr);
466
467 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
468 set_debugreg(next->debugreg0, 0);
469 set_debugreg(next->debugreg1, 1);
470 set_debugreg(next->debugreg2, 2);
471 set_debugreg(next->debugreg3, 3);
472 /* no 4 and 5 */
473 set_debugreg(next->debugreg6, 6);
474 set_debugreg(next->debugreg7, 7);
475 }
476
477 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
478 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
479 /* prev and next are different */
480 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
481 hard_disable_TSC();
482 else
483 hard_enable_TSC();
484 }
485
486 #ifdef CONFIG_X86_PTRACE_BTS
487 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
488 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
489
490 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
491 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
492 #endif /* CONFIG_X86_PTRACE_BTS */
493
494
495 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
496 /*
497 * Disable the bitmap via an invalid offset. We still cache
498 * the previous bitmap owner and the IO bitmap contents:
499 */
500 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
501 return;
502 }
503
504 if (likely(next == tss->io_bitmap_owner)) {
505 /*
506 * Previous owner of the bitmap (hence the bitmap content)
507 * matches the next task, we dont have to do anything but
508 * to set a valid offset in the TSS:
509 */
510 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
511 return;
512 }
513 /*
514 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
515 * and we let the task to get a GPF in case an I/O instruction
516 * is performed. The handler of the GPF will verify that the
517 * faulting task has a valid I/O bitmap and, it true, does the
518 * real copy and restart the instruction. This will save us
519 * redundant copies when the currently switched task does not
520 * perform any I/O during its timeslice.
521 */
522 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
523 }
524
525 /*
526 * switch_to(x,yn) should switch tasks from x to y.
527 *
528 * We fsave/fwait so that an exception goes off at the right time
529 * (as a call from the fsave or fwait in effect) rather than to
530 * the wrong process. Lazy FP saving no longer makes any sense
531 * with modern CPU's, and this simplifies a lot of things (SMP
532 * and UP become the same).
533 *
534 * NOTE! We used to use the x86 hardware context switching. The
535 * reason for not using it any more becomes apparent when you
536 * try to recover gracefully from saved state that is no longer
537 * valid (stale segment register values in particular). With the
538 * hardware task-switch, there is no way to fix up bad state in
539 * a reasonable manner.
540 *
541 * The fact that Intel documents the hardware task-switching to
542 * be slow is a fairly red herring - this code is not noticeably
543 * faster. However, there _is_ some room for improvement here,
544 * so the performance issues may eventually be a valid point.
545 * More important, however, is the fact that this allows us much
546 * more flexibility.
547 *
548 * The return value (in %ax) will be the "prev" task after
549 * the task-switch, and shows up in ret_from_fork in entry.S,
550 * for example.
551 */
552 __notrace_funcgraph struct task_struct *
553 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
554 {
555 struct thread_struct *prev = &prev_p->thread,
556 *next = &next_p->thread;
557 int cpu = smp_processor_id();
558 struct tss_struct *tss = &per_cpu(init_tss, cpu);
559
560 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
561
562 __unlazy_fpu(prev_p);
563
564
565 /* we're going to use this soon, after a few expensive things */
566 if (next_p->fpu_counter > 5)
567 prefetch(next->xstate);
568
569 /*
570 * Reload esp0.
571 */
572 load_sp0(tss, next);
573
574 /*
575 * Save away %gs. No need to save %fs, as it was saved on the
576 * stack on entry. No need to save %es and %ds, as those are
577 * always kernel segments while inside the kernel. Doing this
578 * before setting the new TLS descriptors avoids the situation
579 * where we temporarily have non-reloadable segments in %fs
580 * and %gs. This could be an issue if the NMI handler ever
581 * used %fs or %gs (it does not today), or if the kernel is
582 * running inside of a hypervisor layer.
583 */
584 savesegment(gs, prev->gs);
585
586 /*
587 * Load the per-thread Thread-Local Storage descriptor.
588 */
589 load_TLS(next, cpu);
590
591 /*
592 * Restore IOPL if needed. In normal use, the flags restore
593 * in the switch assembly will handle this. But if the kernel
594 * is running virtualized at a non-zero CPL, the popf will
595 * not restore flags, so it must be done in a separate step.
596 */
597 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
598 set_iopl_mask(next->iopl);
599
600 /*
601 * Now maybe handle debug registers and/or IO bitmaps
602 */
603 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
604 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
605 __switch_to_xtra(prev_p, next_p, tss);
606
607 /*
608 * Leave lazy mode, flushing any hypercalls made here.
609 * This must be done before restoring TLS segments so
610 * the GDT and LDT are properly updated, and must be
611 * done before math_state_restore, so the TS bit is up
612 * to date.
613 */
614 arch_leave_lazy_cpu_mode();
615
616 /* If the task has used fpu the last 5 timeslices, just do a full
617 * restore of the math state immediately to avoid the trap; the
618 * chances of needing FPU soon are obviously high now
619 *
620 * tsk_used_math() checks prevent calling math_state_restore(),
621 * which can sleep in the case of !tsk_used_math()
622 */
623 if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
624 math_state_restore();
625
626 /*
627 * Restore %gs if needed (which is common)
628 */
629 if (prev->gs | next->gs)
630 loadsegment(gs, next->gs);
631
632 x86_write_percpu(current_task, next_p);
633
634 return prev_p;
635 }
636
637 asmlinkage int sys_fork(struct pt_regs regs)
638 {
639 return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
640 }
641
642 asmlinkage int sys_clone(struct pt_regs regs)
643 {
644 unsigned long clone_flags;
645 unsigned long newsp;
646 int __user *parent_tidptr, *child_tidptr;
647
648 clone_flags = regs.bx;
649 newsp = regs.cx;
650 parent_tidptr = (int __user *)regs.dx;
651 child_tidptr = (int __user *)regs.di;
652 if (!newsp)
653 newsp = regs.sp;
654 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
655 }
656
657 /*
658 * This is trivial, and on the face of it looks like it
659 * could equally well be done in user mode.
660 *
661 * Not so, for quite unobvious reasons - register pressure.
662 * In user mode vfork() cannot have a stack frame, and if
663 * done by calling the "clone()" system call directly, you
664 * do not have enough call-clobbered registers to hold all
665 * the information you need.
666 */
667 asmlinkage int sys_vfork(struct pt_regs regs)
668 {
669 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
670 }
671
672 /*
673 * sys_execve() executes a new program.
674 */
675 asmlinkage int sys_execve(struct pt_regs regs)
676 {
677 int error;
678 char * filename;
679
680 filename = getname((char __user *) regs.bx);
681 error = PTR_ERR(filename);
682 if (IS_ERR(filename))
683 goto out;
684 error = do_execve(filename,
685 (char __user * __user *) regs.cx,
686 (char __user * __user *) regs.dx,
687 &regs);
688 if (error == 0) {
689 /* Make sure we don't return using sysenter.. */
690 set_thread_flag(TIF_IRET);
691 }
692 putname(filename);
693 out:
694 return error;
695 }
696
697 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
698 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
699
700 unsigned long get_wchan(struct task_struct *p)
701 {
702 unsigned long bp, sp, ip;
703 unsigned long stack_page;
704 int count = 0;
705 if (!p || p == current || p->state == TASK_RUNNING)
706 return 0;
707 stack_page = (unsigned long)task_stack_page(p);
708 sp = p->thread.sp;
709 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
710 return 0;
711 /* include/asm-i386/system.h:switch_to() pushes bp last. */
712 bp = *(unsigned long *) sp;
713 do {
714 if (bp < stack_page || bp > top_ebp+stack_page)
715 return 0;
716 ip = *(unsigned long *) (bp+4);
717 if (!in_sched_functions(ip))
718 return ip;
719 bp = *(unsigned long *) bp;
720 } while (count++ < 16);
721 return 0;
722 }
723
724 unsigned long arch_align_stack(unsigned long sp)
725 {
726 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
727 sp -= get_random_int() % 8192;
728 return sp & ~0xf;
729 }
730
731 unsigned long arch_randomize_brk(struct mm_struct *mm)
732 {
733 unsigned long range_end = mm->brk + 0x02000000;
734 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
735 }