x86: fill in missing pv_mmu_ops entries for PAGETABLE_LEVELS >= 3
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / process_32.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/a.out.h>
27 #include <linux/interrupt.h>
28 #include <linux/utsname.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/init.h>
32 #include <linux/mc146818rtc.h>
33 #include <linux/module.h>
34 #include <linux/kallsyms.h>
35 #include <linux/ptrace.h>
36 #include <linux/random.h>
37 #include <linux/personality.h>
38 #include <linux/tick.h>
39 #include <linux/percpu.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #include <asm/vm86.h>
50 #ifdef CONFIG_MATH_EMULATION
51 #include <asm/math_emu.h>
52 #endif
53
54 #include <linux/err.h>
55
56 #include <asm/tlbflush.h>
57 #include <asm/cpu.h>
58 #include <asm/kdebug.h>
59
60 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
61
62 static int hlt_counter;
63
64 unsigned long boot_option_idle_override = 0;
65 EXPORT_SYMBOL(boot_option_idle_override);
66
67 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
68 EXPORT_PER_CPU_SYMBOL(current_task);
69
70 DEFINE_PER_CPU(int, cpu_number);
71 EXPORT_PER_CPU_SYMBOL(cpu_number);
72
73 /*
74 * Return saved PC of a blocked thread.
75 */
76 unsigned long thread_saved_pc(struct task_struct *tsk)
77 {
78 return ((unsigned long *)tsk->thread.sp)[3];
79 }
80
81 /*
82 * Powermanagement idle function, if any..
83 */
84 void (*pm_idle)(void);
85 EXPORT_SYMBOL(pm_idle);
86 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
87
88 void disable_hlt(void)
89 {
90 hlt_counter++;
91 }
92
93 EXPORT_SYMBOL(disable_hlt);
94
95 void enable_hlt(void)
96 {
97 hlt_counter--;
98 }
99
100 EXPORT_SYMBOL(enable_hlt);
101
102 /*
103 * We use this if we don't have any better
104 * idle routine..
105 */
106 void default_idle(void)
107 {
108 if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
109 current_thread_info()->status &= ~TS_POLLING;
110 /*
111 * TS_POLLING-cleared state must be visible before we
112 * test NEED_RESCHED:
113 */
114 smp_mb();
115
116 local_irq_disable();
117 if (!need_resched()) {
118 ktime_t t0, t1;
119 u64 t0n, t1n;
120
121 t0 = ktime_get();
122 t0n = ktime_to_ns(t0);
123 safe_halt(); /* enables interrupts racelessly */
124 local_irq_disable();
125 t1 = ktime_get();
126 t1n = ktime_to_ns(t1);
127 sched_clock_idle_wakeup_event(t1n - t0n);
128 }
129 local_irq_enable();
130 current_thread_info()->status |= TS_POLLING;
131 } else {
132 /* loop is done by the caller */
133 cpu_relax();
134 }
135 }
136 #ifdef CONFIG_APM_MODULE
137 EXPORT_SYMBOL(default_idle);
138 #endif
139
140 /*
141 * On SMP it's slightly faster (but much more power-consuming!)
142 * to poll the ->work.need_resched flag instead of waiting for the
143 * cross-CPU IPI to arrive. Use this option with caution.
144 */
145 static void poll_idle(void)
146 {
147 cpu_relax();
148 }
149
150 #ifdef CONFIG_HOTPLUG_CPU
151 #include <asm/nmi.h>
152 /* We don't actually take CPU down, just spin without interrupts. */
153 static inline void play_dead(void)
154 {
155 /* This must be done before dead CPU ack */
156 cpu_exit_clear();
157 wbinvd();
158 mb();
159 /* Ack it */
160 __get_cpu_var(cpu_state) = CPU_DEAD;
161
162 /*
163 * With physical CPU hotplug, we should halt the cpu
164 */
165 local_irq_disable();
166 while (1)
167 halt();
168 }
169 #else
170 static inline void play_dead(void)
171 {
172 BUG();
173 }
174 #endif /* CONFIG_HOTPLUG_CPU */
175
176 /*
177 * The idle thread. There's no useful work to be
178 * done, so just try to conserve power and have a
179 * low exit latency (ie sit in a loop waiting for
180 * somebody to say that they'd like to reschedule)
181 */
182 void cpu_idle(void)
183 {
184 int cpu = smp_processor_id();
185
186 current_thread_info()->status |= TS_POLLING;
187
188 /* endless idle loop with no priority at all */
189 while (1) {
190 tick_nohz_stop_sched_tick();
191 while (!need_resched()) {
192 void (*idle)(void);
193
194 if (__get_cpu_var(cpu_idle_state))
195 __get_cpu_var(cpu_idle_state) = 0;
196
197 check_pgt_cache();
198 rmb();
199 idle = pm_idle;
200
201 if (rcu_pending(cpu))
202 rcu_check_callbacks(cpu, 0);
203
204 if (!idle)
205 idle = default_idle;
206
207 if (cpu_is_offline(cpu))
208 play_dead();
209
210 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
211 idle();
212 }
213 tick_nohz_restart_sched_tick();
214 preempt_enable_no_resched();
215 schedule();
216 preempt_disable();
217 }
218 }
219
220 static void do_nothing(void *unused)
221 {
222 }
223
224 void cpu_idle_wait(void)
225 {
226 unsigned int cpu, this_cpu = get_cpu();
227 cpumask_t map, tmp = current->cpus_allowed;
228
229 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
230 put_cpu();
231
232 cpus_clear(map);
233 for_each_online_cpu(cpu) {
234 per_cpu(cpu_idle_state, cpu) = 1;
235 cpu_set(cpu, map);
236 }
237
238 __get_cpu_var(cpu_idle_state) = 0;
239
240 wmb();
241 do {
242 ssleep(1);
243 for_each_online_cpu(cpu) {
244 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
245 cpu_clear(cpu, map);
246 }
247 cpus_and(map, map, cpu_online_map);
248 /*
249 * We waited 1 sec, if a CPU still did not call idle
250 * it may be because it is in idle and not waking up
251 * because it has nothing to do.
252 * Give all the remaining CPUS a kick.
253 */
254 smp_call_function_mask(map, do_nothing, 0, 0);
255 } while (!cpus_empty(map));
256
257 set_cpus_allowed(current, tmp);
258 }
259 EXPORT_SYMBOL_GPL(cpu_idle_wait);
260
261 /*
262 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
263 * which can obviate IPI to trigger checking of need_resched.
264 * We execute MONITOR against need_resched and enter optimized wait state
265 * through MWAIT. Whenever someone changes need_resched, we would be woken
266 * up from MWAIT (without an IPI).
267 *
268 * New with Core Duo processors, MWAIT can take some hints based on CPU
269 * capability.
270 */
271 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
272 {
273 if (!need_resched()) {
274 __monitor((void *)&current_thread_info()->flags, 0, 0);
275 smp_mb();
276 if (!need_resched())
277 __mwait(ax, cx);
278 }
279 }
280
281 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
282 static void mwait_idle(void)
283 {
284 local_irq_enable();
285 mwait_idle_with_hints(0, 0);
286 }
287
288 static int mwait_usable(const struct cpuinfo_x86 *c)
289 {
290 if (force_mwait)
291 return 1;
292 /* Any C1 states supported? */
293 return c->cpuid_level >= 5 && ((cpuid_edx(5) >> 4) & 0xf) > 0;
294 }
295
296 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
297 {
298 static int selected;
299
300 if (selected)
301 return;
302 #ifdef CONFIG_X86_SMP
303 if (pm_idle == poll_idle && smp_num_siblings > 1) {
304 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
305 " performance may degrade.\n");
306 }
307 #endif
308 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
309 /*
310 * Skip, if setup has overridden idle.
311 * One CPU supports mwait => All CPUs supports mwait
312 */
313 if (!pm_idle) {
314 printk(KERN_INFO "using mwait in idle threads.\n");
315 pm_idle = mwait_idle;
316 }
317 }
318 selected = 1;
319 }
320
321 static int __init idle_setup(char *str)
322 {
323 if (!strcmp(str, "poll")) {
324 printk("using polling idle threads.\n");
325 pm_idle = poll_idle;
326 } else if (!strcmp(str, "mwait"))
327 force_mwait = 1;
328 else
329 return -1;
330
331 boot_option_idle_override = 1;
332 return 0;
333 }
334 early_param("idle", idle_setup);
335
336 void __show_registers(struct pt_regs *regs, int all)
337 {
338 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
339 unsigned long d0, d1, d2, d3, d6, d7;
340 unsigned long sp;
341 unsigned short ss, gs;
342
343 if (user_mode_vm(regs)) {
344 sp = regs->sp;
345 ss = regs->ss & 0xffff;
346 savesegment(gs, gs);
347 } else {
348 sp = (unsigned long) (&regs->sp);
349 savesegment(ss, ss);
350 savesegment(gs, gs);
351 }
352
353 printk("\n");
354 printk("Pid: %d, comm: %s %s (%s %.*s)\n",
355 task_pid_nr(current), current->comm,
356 print_tainted(), init_utsname()->release,
357 (int)strcspn(init_utsname()->version, " "),
358 init_utsname()->version);
359
360 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
361 0xffff & regs->cs, regs->ip, regs->flags,
362 smp_processor_id());
363 print_symbol("EIP is at %s\n", regs->ip);
364
365 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
366 regs->ax, regs->bx, regs->cx, regs->dx);
367 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
368 regs->si, regs->di, regs->bp, sp);
369 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
370 regs->ds & 0xffff, regs->es & 0xffff,
371 regs->fs & 0xffff, gs, ss);
372
373 if (!all)
374 return;
375
376 cr0 = read_cr0();
377 cr2 = read_cr2();
378 cr3 = read_cr3();
379 cr4 = read_cr4_safe();
380 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
381 cr0, cr2, cr3, cr4);
382
383 get_debugreg(d0, 0);
384 get_debugreg(d1, 1);
385 get_debugreg(d2, 2);
386 get_debugreg(d3, 3);
387 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
388 d0, d1, d2, d3);
389
390 get_debugreg(d6, 6);
391 get_debugreg(d7, 7);
392 printk("DR6: %08lx DR7: %08lx\n",
393 d6, d7);
394 }
395
396 void show_regs(struct pt_regs *regs)
397 {
398 __show_registers(regs, 1);
399 show_trace(NULL, regs, &regs->sp, regs->bp);
400 }
401
402 /*
403 * This gets run with %bx containing the
404 * function to call, and %dx containing
405 * the "args".
406 */
407 extern void kernel_thread_helper(void);
408
409 /*
410 * Create a kernel thread
411 */
412 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
413 {
414 struct pt_regs regs;
415
416 memset(&regs, 0, sizeof(regs));
417
418 regs.bx = (unsigned long) fn;
419 regs.dx = (unsigned long) arg;
420
421 regs.ds = __USER_DS;
422 regs.es = __USER_DS;
423 regs.fs = __KERNEL_PERCPU;
424 regs.orig_ax = -1;
425 regs.ip = (unsigned long) kernel_thread_helper;
426 regs.cs = __KERNEL_CS | get_kernel_rpl();
427 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
428
429 /* Ok, create the new process.. */
430 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
431 }
432 EXPORT_SYMBOL(kernel_thread);
433
434 /*
435 * Free current thread data structures etc..
436 */
437 void exit_thread(void)
438 {
439 /* The process may have allocated an io port bitmap... nuke it. */
440 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
441 struct task_struct *tsk = current;
442 struct thread_struct *t = &tsk->thread;
443 int cpu = get_cpu();
444 struct tss_struct *tss = &per_cpu(init_tss, cpu);
445
446 kfree(t->io_bitmap_ptr);
447 t->io_bitmap_ptr = NULL;
448 clear_thread_flag(TIF_IO_BITMAP);
449 /*
450 * Careful, clear this in the TSS too:
451 */
452 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
453 t->io_bitmap_max = 0;
454 tss->io_bitmap_owner = NULL;
455 tss->io_bitmap_max = 0;
456 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
457 put_cpu();
458 }
459 }
460
461 void flush_thread(void)
462 {
463 struct task_struct *tsk = current;
464
465 tsk->thread.debugreg0 = 0;
466 tsk->thread.debugreg1 = 0;
467 tsk->thread.debugreg2 = 0;
468 tsk->thread.debugreg3 = 0;
469 tsk->thread.debugreg6 = 0;
470 tsk->thread.debugreg7 = 0;
471 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
472 clear_tsk_thread_flag(tsk, TIF_DEBUG);
473 /*
474 * Forget coprocessor state..
475 */
476 clear_fpu(tsk);
477 clear_used_math();
478 }
479
480 void release_thread(struct task_struct *dead_task)
481 {
482 BUG_ON(dead_task->mm);
483 release_vm86_irqs(dead_task);
484 }
485
486 /*
487 * This gets called before we allocate a new thread and copy
488 * the current task into it.
489 */
490 void prepare_to_copy(struct task_struct *tsk)
491 {
492 unlazy_fpu(tsk);
493 }
494
495 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
496 unsigned long unused,
497 struct task_struct * p, struct pt_regs * regs)
498 {
499 struct pt_regs * childregs;
500 struct task_struct *tsk;
501 int err;
502
503 childregs = task_pt_regs(p);
504 *childregs = *regs;
505 childregs->ax = 0;
506 childregs->sp = sp;
507
508 p->thread.sp = (unsigned long) childregs;
509 p->thread.sp0 = (unsigned long) (childregs+1);
510
511 p->thread.ip = (unsigned long) ret_from_fork;
512
513 savesegment(gs, p->thread.gs);
514
515 tsk = current;
516 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
517 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
518 IO_BITMAP_BYTES, GFP_KERNEL);
519 if (!p->thread.io_bitmap_ptr) {
520 p->thread.io_bitmap_max = 0;
521 return -ENOMEM;
522 }
523 set_tsk_thread_flag(p, TIF_IO_BITMAP);
524 }
525
526 err = 0;
527
528 /*
529 * Set a new TLS for the child thread?
530 */
531 if (clone_flags & CLONE_SETTLS)
532 err = do_set_thread_area(p, -1,
533 (struct user_desc __user *)childregs->si, 0);
534
535 if (err && p->thread.io_bitmap_ptr) {
536 kfree(p->thread.io_bitmap_ptr);
537 p->thread.io_bitmap_max = 0;
538 }
539 return err;
540 }
541
542 /*
543 * fill in the user structure for a core dump..
544 */
545 void dump_thread(struct pt_regs * regs, struct user * dump)
546 {
547 u16 gs;
548
549 /* changed the size calculations - should hopefully work better. lbt */
550 dump->magic = CMAGIC;
551 dump->start_code = 0;
552 dump->start_stack = regs->sp & ~(PAGE_SIZE - 1);
553 dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
554 dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
555 dump->u_dsize -= dump->u_tsize;
556 dump->u_ssize = 0;
557 dump->u_debugreg[0] = current->thread.debugreg0;
558 dump->u_debugreg[1] = current->thread.debugreg1;
559 dump->u_debugreg[2] = current->thread.debugreg2;
560 dump->u_debugreg[3] = current->thread.debugreg3;
561 dump->u_debugreg[4] = 0;
562 dump->u_debugreg[5] = 0;
563 dump->u_debugreg[6] = current->thread.debugreg6;
564 dump->u_debugreg[7] = current->thread.debugreg7;
565
566 if (dump->start_stack < TASK_SIZE)
567 dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
568
569 dump->regs.bx = regs->bx;
570 dump->regs.cx = regs->cx;
571 dump->regs.dx = regs->dx;
572 dump->regs.si = regs->si;
573 dump->regs.di = regs->di;
574 dump->regs.bp = regs->bp;
575 dump->regs.ax = regs->ax;
576 dump->regs.ds = (u16)regs->ds;
577 dump->regs.es = (u16)regs->es;
578 dump->regs.fs = (u16)regs->fs;
579 savesegment(gs,gs);
580 dump->regs.orig_ax = regs->orig_ax;
581 dump->regs.ip = regs->ip;
582 dump->regs.cs = (u16)regs->cs;
583 dump->regs.flags = regs->flags;
584 dump->regs.sp = regs->sp;
585 dump->regs.ss = (u16)regs->ss;
586
587 dump->u_fpvalid = dump_fpu (regs, &dump->i387);
588 }
589 EXPORT_SYMBOL(dump_thread);
590
591 #ifdef CONFIG_SECCOMP
592 static void hard_disable_TSC(void)
593 {
594 write_cr4(read_cr4() | X86_CR4_TSD);
595 }
596 void disable_TSC(void)
597 {
598 preempt_disable();
599 if (!test_and_set_thread_flag(TIF_NOTSC))
600 /*
601 * Must flip the CPU state synchronously with
602 * TIF_NOTSC in the current running context.
603 */
604 hard_disable_TSC();
605 preempt_enable();
606 }
607 static void hard_enable_TSC(void)
608 {
609 write_cr4(read_cr4() & ~X86_CR4_TSD);
610 }
611 #endif /* CONFIG_SECCOMP */
612
613 static noinline void
614 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
615 struct tss_struct *tss)
616 {
617 struct thread_struct *prev, *next;
618 unsigned long debugctl;
619
620 prev = &prev_p->thread;
621 next = &next_p->thread;
622
623 debugctl = prev->debugctlmsr;
624 if (next->ds_area_msr != prev->ds_area_msr) {
625 /* we clear debugctl to make sure DS
626 * is not in use when we change it */
627 debugctl = 0;
628 wrmsrl(MSR_IA32_DEBUGCTLMSR, 0);
629 wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
630 }
631
632 if (next->debugctlmsr != debugctl)
633 wrmsr(MSR_IA32_DEBUGCTLMSR, next->debugctlmsr, 0);
634
635 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
636 set_debugreg(next->debugreg0, 0);
637 set_debugreg(next->debugreg1, 1);
638 set_debugreg(next->debugreg2, 2);
639 set_debugreg(next->debugreg3, 3);
640 /* no 4 and 5 */
641 set_debugreg(next->debugreg6, 6);
642 set_debugreg(next->debugreg7, 7);
643 }
644
645 #ifdef CONFIG_SECCOMP
646 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
647 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
648 /* prev and next are different */
649 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
650 hard_disable_TSC();
651 else
652 hard_enable_TSC();
653 }
654 #endif
655
656 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
657 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
658
659 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
660 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
661
662
663 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
664 /*
665 * Disable the bitmap via an invalid offset. We still cache
666 * the previous bitmap owner and the IO bitmap contents:
667 */
668 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
669 return;
670 }
671
672 if (likely(next == tss->io_bitmap_owner)) {
673 /*
674 * Previous owner of the bitmap (hence the bitmap content)
675 * matches the next task, we dont have to do anything but
676 * to set a valid offset in the TSS:
677 */
678 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
679 return;
680 }
681 /*
682 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
683 * and we let the task to get a GPF in case an I/O instruction
684 * is performed. The handler of the GPF will verify that the
685 * faulting task has a valid I/O bitmap and, it true, does the
686 * real copy and restart the instruction. This will save us
687 * redundant copies when the currently switched task does not
688 * perform any I/O during its timeslice.
689 */
690 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
691 }
692
693 /*
694 * switch_to(x,yn) should switch tasks from x to y.
695 *
696 * We fsave/fwait so that an exception goes off at the right time
697 * (as a call from the fsave or fwait in effect) rather than to
698 * the wrong process. Lazy FP saving no longer makes any sense
699 * with modern CPU's, and this simplifies a lot of things (SMP
700 * and UP become the same).
701 *
702 * NOTE! We used to use the x86 hardware context switching. The
703 * reason for not using it any more becomes apparent when you
704 * try to recover gracefully from saved state that is no longer
705 * valid (stale segment register values in particular). With the
706 * hardware task-switch, there is no way to fix up bad state in
707 * a reasonable manner.
708 *
709 * The fact that Intel documents the hardware task-switching to
710 * be slow is a fairly red herring - this code is not noticeably
711 * faster. However, there _is_ some room for improvement here,
712 * so the performance issues may eventually be a valid point.
713 * More important, however, is the fact that this allows us much
714 * more flexibility.
715 *
716 * The return value (in %ax) will be the "prev" task after
717 * the task-switch, and shows up in ret_from_fork in entry.S,
718 * for example.
719 */
720 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
721 {
722 struct thread_struct *prev = &prev_p->thread,
723 *next = &next_p->thread;
724 int cpu = smp_processor_id();
725 struct tss_struct *tss = &per_cpu(init_tss, cpu);
726
727 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
728
729 __unlazy_fpu(prev_p);
730
731
732 /* we're going to use this soon, after a few expensive things */
733 if (next_p->fpu_counter > 5)
734 prefetch(&next->i387.fxsave);
735
736 /*
737 * Reload esp0.
738 */
739 load_sp0(tss, next);
740
741 /*
742 * Save away %gs. No need to save %fs, as it was saved on the
743 * stack on entry. No need to save %es and %ds, as those are
744 * always kernel segments while inside the kernel. Doing this
745 * before setting the new TLS descriptors avoids the situation
746 * where we temporarily have non-reloadable segments in %fs
747 * and %gs. This could be an issue if the NMI handler ever
748 * used %fs or %gs (it does not today), or if the kernel is
749 * running inside of a hypervisor layer.
750 */
751 savesegment(gs, prev->gs);
752
753 /*
754 * Load the per-thread Thread-Local Storage descriptor.
755 */
756 load_TLS(next, cpu);
757
758 /*
759 * Restore IOPL if needed. In normal use, the flags restore
760 * in the switch assembly will handle this. But if the kernel
761 * is running virtualized at a non-zero CPL, the popf will
762 * not restore flags, so it must be done in a separate step.
763 */
764 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
765 set_iopl_mask(next->iopl);
766
767 /*
768 * Now maybe handle debug registers and/or IO bitmaps
769 */
770 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
771 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
772 __switch_to_xtra(prev_p, next_p, tss);
773
774 /*
775 * Leave lazy mode, flushing any hypercalls made here.
776 * This must be done before restoring TLS segments so
777 * the GDT and LDT are properly updated, and must be
778 * done before math_state_restore, so the TS bit is up
779 * to date.
780 */
781 arch_leave_lazy_cpu_mode();
782
783 /* If the task has used fpu the last 5 timeslices, just do a full
784 * restore of the math state immediately to avoid the trap; the
785 * chances of needing FPU soon are obviously high now
786 */
787 if (next_p->fpu_counter > 5)
788 math_state_restore();
789
790 /*
791 * Restore %gs if needed (which is common)
792 */
793 if (prev->gs | next->gs)
794 loadsegment(gs, next->gs);
795
796 x86_write_percpu(current_task, next_p);
797
798 return prev_p;
799 }
800
801 asmlinkage int sys_fork(struct pt_regs regs)
802 {
803 return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
804 }
805
806 asmlinkage int sys_clone(struct pt_regs regs)
807 {
808 unsigned long clone_flags;
809 unsigned long newsp;
810 int __user *parent_tidptr, *child_tidptr;
811
812 clone_flags = regs.bx;
813 newsp = regs.cx;
814 parent_tidptr = (int __user *)regs.dx;
815 child_tidptr = (int __user *)regs.di;
816 if (!newsp)
817 newsp = regs.sp;
818 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
819 }
820
821 /*
822 * This is trivial, and on the face of it looks like it
823 * could equally well be done in user mode.
824 *
825 * Not so, for quite unobvious reasons - register pressure.
826 * In user mode vfork() cannot have a stack frame, and if
827 * done by calling the "clone()" system call directly, you
828 * do not have enough call-clobbered registers to hold all
829 * the information you need.
830 */
831 asmlinkage int sys_vfork(struct pt_regs regs)
832 {
833 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
834 }
835
836 /*
837 * sys_execve() executes a new program.
838 */
839 asmlinkage int sys_execve(struct pt_regs regs)
840 {
841 int error;
842 char * filename;
843
844 filename = getname((char __user *) regs.bx);
845 error = PTR_ERR(filename);
846 if (IS_ERR(filename))
847 goto out;
848 error = do_execve(filename,
849 (char __user * __user *) regs.cx,
850 (char __user * __user *) regs.dx,
851 &regs);
852 if (error == 0) {
853 /* Make sure we don't return using sysenter.. */
854 set_thread_flag(TIF_IRET);
855 }
856 putname(filename);
857 out:
858 return error;
859 }
860
861 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
862 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
863
864 unsigned long get_wchan(struct task_struct *p)
865 {
866 unsigned long bp, sp, ip;
867 unsigned long stack_page;
868 int count = 0;
869 if (!p || p == current || p->state == TASK_RUNNING)
870 return 0;
871 stack_page = (unsigned long)task_stack_page(p);
872 sp = p->thread.sp;
873 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
874 return 0;
875 /* include/asm-i386/system.h:switch_to() pushes bp last. */
876 bp = *(unsigned long *) sp;
877 do {
878 if (bp < stack_page || bp > top_ebp+stack_page)
879 return 0;
880 ip = *(unsigned long *) (bp+4);
881 if (!in_sched_functions(ip))
882 return ip;
883 bp = *(unsigned long *) bp;
884 } while (count++ < 16);
885 return 0;
886 }
887
888 unsigned long arch_align_stack(unsigned long sp)
889 {
890 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
891 sp -= get_random_int() % 8192;
892 return sp & ~0xf;
893 }
894
895 unsigned long arch_randomize_brk(struct mm_struct *mm)
896 {
897 unsigned long range_end = mm->brk + 0x02000000;
898 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
899 }