x86, bts: add fork and exit handling
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / process_32.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39 #include <linux/prctl.h>
40 #include <linux/dmi.h>
41 #include <linux/ftrace.h>
42
43 #include <asm/uaccess.h>
44 #include <asm/pgtable.h>
45 #include <asm/system.h>
46 #include <asm/io.h>
47 #include <asm/ldt.h>
48 #include <asm/processor.h>
49 #include <asm/i387.h>
50 #include <asm/desc.h>
51 #ifdef CONFIG_MATH_EMULATION
52 #include <asm/math_emu.h>
53 #endif
54
55 #include <linux/err.h>
56
57 #include <asm/tlbflush.h>
58 #include <asm/cpu.h>
59 #include <asm/kdebug.h>
60 #include <asm/idle.h>
61 #include <asm/syscalls.h>
62 #include <asm/smp.h>
63 #include <asm/ds.h>
64
65 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
66
67 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
68 EXPORT_PER_CPU_SYMBOL(current_task);
69
70 DEFINE_PER_CPU(int, cpu_number);
71 EXPORT_PER_CPU_SYMBOL(cpu_number);
72
73 /*
74 * Return saved PC of a blocked thread.
75 */
76 unsigned long thread_saved_pc(struct task_struct *tsk)
77 {
78 return ((unsigned long *)tsk->thread.sp)[3];
79 }
80
81 #ifndef CONFIG_SMP
82 static inline void play_dead(void)
83 {
84 BUG();
85 }
86 #endif
87
88 /*
89 * The idle thread. There's no useful work to be
90 * done, so just try to conserve power and have a
91 * low exit latency (ie sit in a loop waiting for
92 * somebody to say that they'd like to reschedule)
93 */
94 void cpu_idle(void)
95 {
96 int cpu = smp_processor_id();
97
98 current_thread_info()->status |= TS_POLLING;
99
100 /* endless idle loop with no priority at all */
101 while (1) {
102 tick_nohz_stop_sched_tick(1);
103 while (!need_resched()) {
104
105 check_pgt_cache();
106 rmb();
107
108 if (rcu_pending(cpu))
109 rcu_check_callbacks(cpu, 0);
110
111 if (cpu_is_offline(cpu))
112 play_dead();
113
114 local_irq_disable();
115 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
116 /* Don't trace irqs off for idle */
117 stop_critical_timings();
118 pm_idle();
119 start_critical_timings();
120 }
121 tick_nohz_restart_sched_tick();
122 preempt_enable_no_resched();
123 schedule();
124 preempt_disable();
125 }
126 }
127
128 void __show_regs(struct pt_regs *regs, int all)
129 {
130 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
131 unsigned long d0, d1, d2, d3, d6, d7;
132 unsigned long sp;
133 unsigned short ss, gs;
134 const char *board;
135
136 if (user_mode_vm(regs)) {
137 sp = regs->sp;
138 ss = regs->ss & 0xffff;
139 savesegment(gs, gs);
140 } else {
141 sp = (unsigned long) (&regs->sp);
142 savesegment(ss, ss);
143 savesegment(gs, gs);
144 }
145
146 printk("\n");
147
148 board = dmi_get_system_info(DMI_PRODUCT_NAME);
149 if (!board)
150 board = "";
151 printk("Pid: %d, comm: %s %s (%s %.*s) %s\n",
152 task_pid_nr(current), current->comm,
153 print_tainted(), init_utsname()->release,
154 (int)strcspn(init_utsname()->version, " "),
155 init_utsname()->version, board);
156
157 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
158 (u16)regs->cs, regs->ip, regs->flags,
159 smp_processor_id());
160 print_symbol("EIP is at %s\n", regs->ip);
161
162 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
163 regs->ax, regs->bx, regs->cx, regs->dx);
164 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
165 regs->si, regs->di, regs->bp, sp);
166 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
167 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
168
169 if (!all)
170 return;
171
172 cr0 = read_cr0();
173 cr2 = read_cr2();
174 cr3 = read_cr3();
175 cr4 = read_cr4_safe();
176 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
177 cr0, cr2, cr3, cr4);
178
179 get_debugreg(d0, 0);
180 get_debugreg(d1, 1);
181 get_debugreg(d2, 2);
182 get_debugreg(d3, 3);
183 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
184 d0, d1, d2, d3);
185
186 get_debugreg(d6, 6);
187 get_debugreg(d7, 7);
188 printk("DR6: %08lx DR7: %08lx\n",
189 d6, d7);
190 }
191
192 void show_regs(struct pt_regs *regs)
193 {
194 __show_regs(regs, 1);
195 show_trace(NULL, regs, &regs->sp, regs->bp);
196 }
197
198 /*
199 * This gets run with %bx containing the
200 * function to call, and %dx containing
201 * the "args".
202 */
203 extern void kernel_thread_helper(void);
204
205 /*
206 * Create a kernel thread
207 */
208 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
209 {
210 struct pt_regs regs;
211
212 memset(&regs, 0, sizeof(regs));
213
214 regs.bx = (unsigned long) fn;
215 regs.dx = (unsigned long) arg;
216
217 regs.ds = __USER_DS;
218 regs.es = __USER_DS;
219 regs.fs = __KERNEL_PERCPU;
220 regs.orig_ax = -1;
221 regs.ip = (unsigned long) kernel_thread_helper;
222 regs.cs = __KERNEL_CS | get_kernel_rpl();
223 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
224
225 /* Ok, create the new process.. */
226 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
227 }
228 EXPORT_SYMBOL(kernel_thread);
229
230 /*
231 * Free current thread data structures etc..
232 */
233 void exit_thread(void)
234 {
235 /* The process may have allocated an io port bitmap... nuke it. */
236 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
237 struct task_struct *tsk = current;
238 struct thread_struct *t = &tsk->thread;
239 int cpu = get_cpu();
240 struct tss_struct *tss = &per_cpu(init_tss, cpu);
241
242 kfree(t->io_bitmap_ptr);
243 t->io_bitmap_ptr = NULL;
244 clear_thread_flag(TIF_IO_BITMAP);
245 /*
246 * Careful, clear this in the TSS too:
247 */
248 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
249 t->io_bitmap_max = 0;
250 tss->io_bitmap_owner = NULL;
251 tss->io_bitmap_max = 0;
252 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
253 put_cpu();
254 }
255
256 ds_exit_thread(current);
257 }
258
259 void flush_thread(void)
260 {
261 struct task_struct *tsk = current;
262
263 tsk->thread.debugreg0 = 0;
264 tsk->thread.debugreg1 = 0;
265 tsk->thread.debugreg2 = 0;
266 tsk->thread.debugreg3 = 0;
267 tsk->thread.debugreg6 = 0;
268 tsk->thread.debugreg7 = 0;
269 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
270 clear_tsk_thread_flag(tsk, TIF_DEBUG);
271 /*
272 * Forget coprocessor state..
273 */
274 tsk->fpu_counter = 0;
275 clear_fpu(tsk);
276 clear_used_math();
277 }
278
279 void release_thread(struct task_struct *dead_task)
280 {
281 BUG_ON(dead_task->mm);
282 release_vm86_irqs(dead_task);
283 }
284
285 /*
286 * This gets called before we allocate a new thread and copy
287 * the current task into it.
288 */
289 void prepare_to_copy(struct task_struct *tsk)
290 {
291 unlazy_fpu(tsk);
292 }
293
294 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
295 unsigned long unused,
296 struct task_struct * p, struct pt_regs * regs)
297 {
298 struct pt_regs * childregs;
299 struct task_struct *tsk;
300 int err;
301
302 childregs = task_pt_regs(p);
303 *childregs = *regs;
304 childregs->ax = 0;
305 childregs->sp = sp;
306
307 p->thread.sp = (unsigned long) childregs;
308 p->thread.sp0 = (unsigned long) (childregs+1);
309
310 p->thread.ip = (unsigned long) ret_from_fork;
311
312 savesegment(gs, p->thread.gs);
313
314 tsk = current;
315 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
316 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
317 IO_BITMAP_BYTES, GFP_KERNEL);
318 if (!p->thread.io_bitmap_ptr) {
319 p->thread.io_bitmap_max = 0;
320 return -ENOMEM;
321 }
322 set_tsk_thread_flag(p, TIF_IO_BITMAP);
323 }
324
325 err = 0;
326
327 /*
328 * Set a new TLS for the child thread?
329 */
330 if (clone_flags & CLONE_SETTLS)
331 err = do_set_thread_area(p, -1,
332 (struct user_desc __user *)childregs->si, 0);
333
334 if (err && p->thread.io_bitmap_ptr) {
335 kfree(p->thread.io_bitmap_ptr);
336 p->thread.io_bitmap_max = 0;
337 }
338
339 ds_copy_thread(p, current);
340
341 clear_tsk_thread_flag(p, TIF_DEBUGCTLMSR);
342 p->thread.debugctlmsr = 0;
343
344 return err;
345 }
346
347 void
348 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
349 {
350 __asm__("movl %0, %%gs" :: "r"(0));
351 regs->fs = 0;
352 set_fs(USER_DS);
353 regs->ds = __USER_DS;
354 regs->es = __USER_DS;
355 regs->ss = __USER_DS;
356 regs->cs = __USER_CS;
357 regs->ip = new_ip;
358 regs->sp = new_sp;
359 /*
360 * Free the old FP and other extended state
361 */
362 free_thread_xstate(current);
363 }
364 EXPORT_SYMBOL_GPL(start_thread);
365
366 static void hard_disable_TSC(void)
367 {
368 write_cr4(read_cr4() | X86_CR4_TSD);
369 }
370
371 void disable_TSC(void)
372 {
373 preempt_disable();
374 if (!test_and_set_thread_flag(TIF_NOTSC))
375 /*
376 * Must flip the CPU state synchronously with
377 * TIF_NOTSC in the current running context.
378 */
379 hard_disable_TSC();
380 preempt_enable();
381 }
382
383 static void hard_enable_TSC(void)
384 {
385 write_cr4(read_cr4() & ~X86_CR4_TSD);
386 }
387
388 static void enable_TSC(void)
389 {
390 preempt_disable();
391 if (test_and_clear_thread_flag(TIF_NOTSC))
392 /*
393 * Must flip the CPU state synchronously with
394 * TIF_NOTSC in the current running context.
395 */
396 hard_enable_TSC();
397 preempt_enable();
398 }
399
400 int get_tsc_mode(unsigned long adr)
401 {
402 unsigned int val;
403
404 if (test_thread_flag(TIF_NOTSC))
405 val = PR_TSC_SIGSEGV;
406 else
407 val = PR_TSC_ENABLE;
408
409 return put_user(val, (unsigned int __user *)adr);
410 }
411
412 int set_tsc_mode(unsigned int val)
413 {
414 if (val == PR_TSC_SIGSEGV)
415 disable_TSC();
416 else if (val == PR_TSC_ENABLE)
417 enable_TSC();
418 else
419 return -EINVAL;
420
421 return 0;
422 }
423
424 static noinline void
425 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
426 struct tss_struct *tss)
427 {
428 struct thread_struct *prev, *next;
429
430 prev = &prev_p->thread;
431 next = &next_p->thread;
432
433 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
434 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
435 ds_switch_to(prev_p, next_p);
436 else if (next->debugctlmsr != prev->debugctlmsr)
437 update_debugctlmsr(next->debugctlmsr);
438
439 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
440 set_debugreg(next->debugreg0, 0);
441 set_debugreg(next->debugreg1, 1);
442 set_debugreg(next->debugreg2, 2);
443 set_debugreg(next->debugreg3, 3);
444 /* no 4 and 5 */
445 set_debugreg(next->debugreg6, 6);
446 set_debugreg(next->debugreg7, 7);
447 }
448
449 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
450 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
451 /* prev and next are different */
452 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
453 hard_disable_TSC();
454 else
455 hard_enable_TSC();
456 }
457
458 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
459 /*
460 * Disable the bitmap via an invalid offset. We still cache
461 * the previous bitmap owner and the IO bitmap contents:
462 */
463 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
464 return;
465 }
466
467 if (likely(next == tss->io_bitmap_owner)) {
468 /*
469 * Previous owner of the bitmap (hence the bitmap content)
470 * matches the next task, we dont have to do anything but
471 * to set a valid offset in the TSS:
472 */
473 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
474 return;
475 }
476 /*
477 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
478 * and we let the task to get a GPF in case an I/O instruction
479 * is performed. The handler of the GPF will verify that the
480 * faulting task has a valid I/O bitmap and, it true, does the
481 * real copy and restart the instruction. This will save us
482 * redundant copies when the currently switched task does not
483 * perform any I/O during its timeslice.
484 */
485 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
486 }
487
488 /*
489 * switch_to(x,yn) should switch tasks from x to y.
490 *
491 * We fsave/fwait so that an exception goes off at the right time
492 * (as a call from the fsave or fwait in effect) rather than to
493 * the wrong process. Lazy FP saving no longer makes any sense
494 * with modern CPU's, and this simplifies a lot of things (SMP
495 * and UP become the same).
496 *
497 * NOTE! We used to use the x86 hardware context switching. The
498 * reason for not using it any more becomes apparent when you
499 * try to recover gracefully from saved state that is no longer
500 * valid (stale segment register values in particular). With the
501 * hardware task-switch, there is no way to fix up bad state in
502 * a reasonable manner.
503 *
504 * The fact that Intel documents the hardware task-switching to
505 * be slow is a fairly red herring - this code is not noticeably
506 * faster. However, there _is_ some room for improvement here,
507 * so the performance issues may eventually be a valid point.
508 * More important, however, is the fact that this allows us much
509 * more flexibility.
510 *
511 * The return value (in %ax) will be the "prev" task after
512 * the task-switch, and shows up in ret_from_fork in entry.S,
513 * for example.
514 */
515 __notrace_funcgraph struct task_struct *
516 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
517 {
518 struct thread_struct *prev = &prev_p->thread,
519 *next = &next_p->thread;
520 int cpu = smp_processor_id();
521 struct tss_struct *tss = &per_cpu(init_tss, cpu);
522
523 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
524
525 __unlazy_fpu(prev_p);
526
527
528 /* we're going to use this soon, after a few expensive things */
529 if (next_p->fpu_counter > 5)
530 prefetch(next->xstate);
531
532 /*
533 * Reload esp0.
534 */
535 load_sp0(tss, next);
536
537 /*
538 * Save away %gs. No need to save %fs, as it was saved on the
539 * stack on entry. No need to save %es and %ds, as those are
540 * always kernel segments while inside the kernel. Doing this
541 * before setting the new TLS descriptors avoids the situation
542 * where we temporarily have non-reloadable segments in %fs
543 * and %gs. This could be an issue if the NMI handler ever
544 * used %fs or %gs (it does not today), or if the kernel is
545 * running inside of a hypervisor layer.
546 */
547 savesegment(gs, prev->gs);
548
549 /*
550 * Load the per-thread Thread-Local Storage descriptor.
551 */
552 load_TLS(next, cpu);
553
554 /*
555 * Restore IOPL if needed. In normal use, the flags restore
556 * in the switch assembly will handle this. But if the kernel
557 * is running virtualized at a non-zero CPL, the popf will
558 * not restore flags, so it must be done in a separate step.
559 */
560 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
561 set_iopl_mask(next->iopl);
562
563 /*
564 * Now maybe handle debug registers and/or IO bitmaps
565 */
566 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
567 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
568 __switch_to_xtra(prev_p, next_p, tss);
569
570 /*
571 * Leave lazy mode, flushing any hypercalls made here.
572 * This must be done before restoring TLS segments so
573 * the GDT and LDT are properly updated, and must be
574 * done before math_state_restore, so the TS bit is up
575 * to date.
576 */
577 arch_leave_lazy_cpu_mode();
578
579 /* If the task has used fpu the last 5 timeslices, just do a full
580 * restore of the math state immediately to avoid the trap; the
581 * chances of needing FPU soon are obviously high now
582 *
583 * tsk_used_math() checks prevent calling math_state_restore(),
584 * which can sleep in the case of !tsk_used_math()
585 */
586 if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
587 math_state_restore();
588
589 /*
590 * Restore %gs if needed (which is common)
591 */
592 if (prev->gs | next->gs)
593 loadsegment(gs, next->gs);
594
595 x86_write_percpu(current_task, next_p);
596
597 return prev_p;
598 }
599
600 asmlinkage int sys_fork(struct pt_regs regs)
601 {
602 return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
603 }
604
605 asmlinkage int sys_clone(struct pt_regs regs)
606 {
607 unsigned long clone_flags;
608 unsigned long newsp;
609 int __user *parent_tidptr, *child_tidptr;
610
611 clone_flags = regs.bx;
612 newsp = regs.cx;
613 parent_tidptr = (int __user *)regs.dx;
614 child_tidptr = (int __user *)regs.di;
615 if (!newsp)
616 newsp = regs.sp;
617 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
618 }
619
620 /*
621 * This is trivial, and on the face of it looks like it
622 * could equally well be done in user mode.
623 *
624 * Not so, for quite unobvious reasons - register pressure.
625 * In user mode vfork() cannot have a stack frame, and if
626 * done by calling the "clone()" system call directly, you
627 * do not have enough call-clobbered registers to hold all
628 * the information you need.
629 */
630 asmlinkage int sys_vfork(struct pt_regs regs)
631 {
632 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
633 }
634
635 /*
636 * sys_execve() executes a new program.
637 */
638 asmlinkage int sys_execve(struct pt_regs regs)
639 {
640 int error;
641 char * filename;
642
643 filename = getname((char __user *) regs.bx);
644 error = PTR_ERR(filename);
645 if (IS_ERR(filename))
646 goto out;
647 error = do_execve(filename,
648 (char __user * __user *) regs.cx,
649 (char __user * __user *) regs.dx,
650 &regs);
651 if (error == 0) {
652 /* Make sure we don't return using sysenter.. */
653 set_thread_flag(TIF_IRET);
654 }
655 putname(filename);
656 out:
657 return error;
658 }
659
660 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
661 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
662
663 unsigned long get_wchan(struct task_struct *p)
664 {
665 unsigned long bp, sp, ip;
666 unsigned long stack_page;
667 int count = 0;
668 if (!p || p == current || p->state == TASK_RUNNING)
669 return 0;
670 stack_page = (unsigned long)task_stack_page(p);
671 sp = p->thread.sp;
672 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
673 return 0;
674 /* include/asm-i386/system.h:switch_to() pushes bp last. */
675 bp = *(unsigned long *) sp;
676 do {
677 if (bp < stack_page || bp > top_ebp+stack_page)
678 return 0;
679 ip = *(unsigned long *) (bp+4);
680 if (!in_sched_functions(ip))
681 return ip;
682 bp = *(unsigned long *) bp;
683 } while (count++ < 16);
684 return 0;
685 }
686
687 unsigned long arch_align_stack(unsigned long sp)
688 {
689 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
690 sp -= get_random_int() % 8192;
691 return sp & ~0xf;
692 }
693
694 unsigned long arch_randomize_brk(struct mm_struct *mm)
695 {
696 unsigned long range_end = mm->brk + 0x02000000;
697 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
698 }