Use helpers to obtain task pid in printks (arch code)
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / process_32.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/a.out.h>
27 #include <linux/interrupt.h>
28 #include <linux/utsname.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/init.h>
32 #include <linux/mc146818rtc.h>
33 #include <linux/module.h>
34 #include <linux/kallsyms.h>
35 #include <linux/ptrace.h>
36 #include <linux/random.h>
37 #include <linux/personality.h>
38 #include <linux/tick.h>
39 #include <linux/percpu.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #include <asm/vm86.h>
50 #ifdef CONFIG_MATH_EMULATION
51 #include <asm/math_emu.h>
52 #endif
53
54 #include <linux/err.h>
55
56 #include <asm/tlbflush.h>
57 #include <asm/cpu.h>
58
59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
60
61 static int hlt_counter;
62
63 unsigned long boot_option_idle_override = 0;
64 EXPORT_SYMBOL(boot_option_idle_override);
65
66 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
67 EXPORT_PER_CPU_SYMBOL(current_task);
68
69 DEFINE_PER_CPU(int, cpu_number);
70 EXPORT_PER_CPU_SYMBOL(cpu_number);
71
72 /*
73 * Return saved PC of a blocked thread.
74 */
75 unsigned long thread_saved_pc(struct task_struct *tsk)
76 {
77 return ((unsigned long *)tsk->thread.esp)[3];
78 }
79
80 /*
81 * Powermanagement idle function, if any..
82 */
83 void (*pm_idle)(void);
84 EXPORT_SYMBOL(pm_idle);
85 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
86
87 void disable_hlt(void)
88 {
89 hlt_counter++;
90 }
91
92 EXPORT_SYMBOL(disable_hlt);
93
94 void enable_hlt(void)
95 {
96 hlt_counter--;
97 }
98
99 EXPORT_SYMBOL(enable_hlt);
100
101 /*
102 * We use this if we don't have any better
103 * idle routine..
104 */
105 void default_idle(void)
106 {
107 if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
108 current_thread_info()->status &= ~TS_POLLING;
109 /*
110 * TS_POLLING-cleared state must be visible before we
111 * test NEED_RESCHED:
112 */
113 smp_mb();
114
115 local_irq_disable();
116 if (!need_resched())
117 safe_halt(); /* enables interrupts racelessly */
118 else
119 local_irq_enable();
120 current_thread_info()->status |= TS_POLLING;
121 } else {
122 /* loop is done by the caller */
123 cpu_relax();
124 }
125 }
126 #ifdef CONFIG_APM_MODULE
127 EXPORT_SYMBOL(default_idle);
128 #endif
129
130 /*
131 * On SMP it's slightly faster (but much more power-consuming!)
132 * to poll the ->work.need_resched flag instead of waiting for the
133 * cross-CPU IPI to arrive. Use this option with caution.
134 */
135 static void poll_idle (void)
136 {
137 cpu_relax();
138 }
139
140 #ifdef CONFIG_HOTPLUG_CPU
141 #include <asm/nmi.h>
142 /* We don't actually take CPU down, just spin without interrupts. */
143 static inline void play_dead(void)
144 {
145 /* This must be done before dead CPU ack */
146 cpu_exit_clear();
147 wbinvd();
148 mb();
149 /* Ack it */
150 __get_cpu_var(cpu_state) = CPU_DEAD;
151
152 /*
153 * With physical CPU hotplug, we should halt the cpu
154 */
155 local_irq_disable();
156 while (1)
157 halt();
158 }
159 #else
160 static inline void play_dead(void)
161 {
162 BUG();
163 }
164 #endif /* CONFIG_HOTPLUG_CPU */
165
166 /*
167 * The idle thread. There's no useful work to be
168 * done, so just try to conserve power and have a
169 * low exit latency (ie sit in a loop waiting for
170 * somebody to say that they'd like to reschedule)
171 */
172 void cpu_idle(void)
173 {
174 int cpu = smp_processor_id();
175
176 current_thread_info()->status |= TS_POLLING;
177
178 /* endless idle loop with no priority at all */
179 while (1) {
180 tick_nohz_stop_sched_tick();
181 while (!need_resched()) {
182 void (*idle)(void);
183
184 if (__get_cpu_var(cpu_idle_state))
185 __get_cpu_var(cpu_idle_state) = 0;
186
187 check_pgt_cache();
188 rmb();
189 idle = pm_idle;
190
191 if (!idle)
192 idle = default_idle;
193
194 if (cpu_is_offline(cpu))
195 play_dead();
196
197 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
198 idle();
199 }
200 tick_nohz_restart_sched_tick();
201 preempt_enable_no_resched();
202 schedule();
203 preempt_disable();
204 }
205 }
206
207 void cpu_idle_wait(void)
208 {
209 unsigned int cpu, this_cpu = get_cpu();
210 cpumask_t map, tmp = current->cpus_allowed;
211
212 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
213 put_cpu();
214
215 cpus_clear(map);
216 for_each_online_cpu(cpu) {
217 per_cpu(cpu_idle_state, cpu) = 1;
218 cpu_set(cpu, map);
219 }
220
221 __get_cpu_var(cpu_idle_state) = 0;
222
223 wmb();
224 do {
225 ssleep(1);
226 for_each_online_cpu(cpu) {
227 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
228 cpu_clear(cpu, map);
229 }
230 cpus_and(map, map, cpu_online_map);
231 } while (!cpus_empty(map));
232
233 set_cpus_allowed(current, tmp);
234 }
235 EXPORT_SYMBOL_GPL(cpu_idle_wait);
236
237 /*
238 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
239 * which can obviate IPI to trigger checking of need_resched.
240 * We execute MONITOR against need_resched and enter optimized wait state
241 * through MWAIT. Whenever someone changes need_resched, we would be woken
242 * up from MWAIT (without an IPI).
243 *
244 * New with Core Duo processors, MWAIT can take some hints based on CPU
245 * capability.
246 */
247 void mwait_idle_with_hints(unsigned long eax, unsigned long ecx)
248 {
249 if (!need_resched()) {
250 __monitor((void *)&current_thread_info()->flags, 0, 0);
251 smp_mb();
252 if (!need_resched())
253 __mwait(eax, ecx);
254 }
255 }
256
257 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
258 static void mwait_idle(void)
259 {
260 local_irq_enable();
261 mwait_idle_with_hints(0, 0);
262 }
263
264 void __devinit select_idle_routine(const struct cpuinfo_x86 *c)
265 {
266 if (cpu_has(c, X86_FEATURE_MWAIT)) {
267 printk("monitor/mwait feature present.\n");
268 /*
269 * Skip, if setup has overridden idle.
270 * One CPU supports mwait => All CPUs supports mwait
271 */
272 if (!pm_idle) {
273 printk("using mwait in idle threads.\n");
274 pm_idle = mwait_idle;
275 }
276 }
277 }
278
279 static int __init idle_setup(char *str)
280 {
281 if (!strcmp(str, "poll")) {
282 printk("using polling idle threads.\n");
283 pm_idle = poll_idle;
284 #ifdef CONFIG_X86_SMP
285 if (smp_num_siblings > 1)
286 printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
287 #endif
288 } else if (!strcmp(str, "mwait"))
289 force_mwait = 1;
290 else
291 return -1;
292
293 boot_option_idle_override = 1;
294 return 0;
295 }
296 early_param("idle", idle_setup);
297
298 void show_regs(struct pt_regs * regs)
299 {
300 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
301 unsigned long d0, d1, d2, d3, d6, d7;
302
303 printk("\n");
304 printk("Pid: %d, comm: %20s\n", task_pid_nr(current), current->comm);
305 printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id());
306 print_symbol("EIP is at %s\n", regs->eip);
307
308 if (user_mode_vm(regs))
309 printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
310 printk(" EFLAGS: %08lx %s (%s %.*s)\n",
311 regs->eflags, print_tainted(), init_utsname()->release,
312 (int)strcspn(init_utsname()->version, " "),
313 init_utsname()->version);
314 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
315 regs->eax,regs->ebx,regs->ecx,regs->edx);
316 printk("ESI: %08lx EDI: %08lx EBP: %08lx",
317 regs->esi, regs->edi, regs->ebp);
318 printk(" DS: %04x ES: %04x FS: %04x\n",
319 0xffff & regs->xds,0xffff & regs->xes, 0xffff & regs->xfs);
320
321 cr0 = read_cr0();
322 cr2 = read_cr2();
323 cr3 = read_cr3();
324 cr4 = read_cr4_safe();
325 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4);
326
327 get_debugreg(d0, 0);
328 get_debugreg(d1, 1);
329 get_debugreg(d2, 2);
330 get_debugreg(d3, 3);
331 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
332 d0, d1, d2, d3);
333 get_debugreg(d6, 6);
334 get_debugreg(d7, 7);
335 printk("DR6: %08lx DR7: %08lx\n", d6, d7);
336
337 show_trace(NULL, regs, &regs->esp);
338 }
339
340 /*
341 * This gets run with %ebx containing the
342 * function to call, and %edx containing
343 * the "args".
344 */
345 extern void kernel_thread_helper(void);
346
347 /*
348 * Create a kernel thread
349 */
350 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
351 {
352 struct pt_regs regs;
353
354 memset(&regs, 0, sizeof(regs));
355
356 regs.ebx = (unsigned long) fn;
357 regs.edx = (unsigned long) arg;
358
359 regs.xds = __USER_DS;
360 regs.xes = __USER_DS;
361 regs.xfs = __KERNEL_PERCPU;
362 regs.orig_eax = -1;
363 regs.eip = (unsigned long) kernel_thread_helper;
364 regs.xcs = __KERNEL_CS | get_kernel_rpl();
365 regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
366
367 /* Ok, create the new process.. */
368 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
369 }
370 EXPORT_SYMBOL(kernel_thread);
371
372 /*
373 * Free current thread data structures etc..
374 */
375 void exit_thread(void)
376 {
377 /* The process may have allocated an io port bitmap... nuke it. */
378 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
379 struct task_struct *tsk = current;
380 struct thread_struct *t = &tsk->thread;
381 int cpu = get_cpu();
382 struct tss_struct *tss = &per_cpu(init_tss, cpu);
383
384 kfree(t->io_bitmap_ptr);
385 t->io_bitmap_ptr = NULL;
386 clear_thread_flag(TIF_IO_BITMAP);
387 /*
388 * Careful, clear this in the TSS too:
389 */
390 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
391 t->io_bitmap_max = 0;
392 tss->io_bitmap_owner = NULL;
393 tss->io_bitmap_max = 0;
394 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
395 put_cpu();
396 }
397 }
398
399 void flush_thread(void)
400 {
401 struct task_struct *tsk = current;
402
403 memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
404 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
405 clear_tsk_thread_flag(tsk, TIF_DEBUG);
406 /*
407 * Forget coprocessor state..
408 */
409 clear_fpu(tsk);
410 clear_used_math();
411 }
412
413 void release_thread(struct task_struct *dead_task)
414 {
415 BUG_ON(dead_task->mm);
416 release_vm86_irqs(dead_task);
417 }
418
419 /*
420 * This gets called before we allocate a new thread and copy
421 * the current task into it.
422 */
423 void prepare_to_copy(struct task_struct *tsk)
424 {
425 unlazy_fpu(tsk);
426 }
427
428 int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
429 unsigned long unused,
430 struct task_struct * p, struct pt_regs * regs)
431 {
432 struct pt_regs * childregs;
433 struct task_struct *tsk;
434 int err;
435
436 childregs = task_pt_regs(p);
437 *childregs = *regs;
438 childregs->eax = 0;
439 childregs->esp = esp;
440
441 p->thread.esp = (unsigned long) childregs;
442 p->thread.esp0 = (unsigned long) (childregs+1);
443
444 p->thread.eip = (unsigned long) ret_from_fork;
445
446 savesegment(gs,p->thread.gs);
447
448 tsk = current;
449 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
450 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
451 IO_BITMAP_BYTES, GFP_KERNEL);
452 if (!p->thread.io_bitmap_ptr) {
453 p->thread.io_bitmap_max = 0;
454 return -ENOMEM;
455 }
456 set_tsk_thread_flag(p, TIF_IO_BITMAP);
457 }
458
459 /*
460 * Set a new TLS for the child thread?
461 */
462 if (clone_flags & CLONE_SETTLS) {
463 struct desc_struct *desc;
464 struct user_desc info;
465 int idx;
466
467 err = -EFAULT;
468 if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
469 goto out;
470 err = -EINVAL;
471 if (LDT_empty(&info))
472 goto out;
473
474 idx = info.entry_number;
475 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
476 goto out;
477
478 desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
479 desc->a = LDT_entry_a(&info);
480 desc->b = LDT_entry_b(&info);
481 }
482
483 err = 0;
484 out:
485 if (err && p->thread.io_bitmap_ptr) {
486 kfree(p->thread.io_bitmap_ptr);
487 p->thread.io_bitmap_max = 0;
488 }
489 return err;
490 }
491
492 /*
493 * fill in the user structure for a core dump..
494 */
495 void dump_thread(struct pt_regs * regs, struct user * dump)
496 {
497 int i;
498
499 /* changed the size calculations - should hopefully work better. lbt */
500 dump->magic = CMAGIC;
501 dump->start_code = 0;
502 dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
503 dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
504 dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
505 dump->u_dsize -= dump->u_tsize;
506 dump->u_ssize = 0;
507 for (i = 0; i < 8; i++)
508 dump->u_debugreg[i] = current->thread.debugreg[i];
509
510 if (dump->start_stack < TASK_SIZE)
511 dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
512
513 dump->regs.ebx = regs->ebx;
514 dump->regs.ecx = regs->ecx;
515 dump->regs.edx = regs->edx;
516 dump->regs.esi = regs->esi;
517 dump->regs.edi = regs->edi;
518 dump->regs.ebp = regs->ebp;
519 dump->regs.eax = regs->eax;
520 dump->regs.ds = regs->xds;
521 dump->regs.es = regs->xes;
522 dump->regs.fs = regs->xfs;
523 savesegment(gs,dump->regs.gs);
524 dump->regs.orig_eax = regs->orig_eax;
525 dump->regs.eip = regs->eip;
526 dump->regs.cs = regs->xcs;
527 dump->regs.eflags = regs->eflags;
528 dump->regs.esp = regs->esp;
529 dump->regs.ss = regs->xss;
530
531 dump->u_fpvalid = dump_fpu (regs, &dump->i387);
532 }
533 EXPORT_SYMBOL(dump_thread);
534
535 /*
536 * Capture the user space registers if the task is not running (in user space)
537 */
538 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
539 {
540 struct pt_regs ptregs = *task_pt_regs(tsk);
541 ptregs.xcs &= 0xffff;
542 ptregs.xds &= 0xffff;
543 ptregs.xes &= 0xffff;
544 ptregs.xss &= 0xffff;
545
546 elf_core_copy_regs(regs, &ptregs);
547
548 return 1;
549 }
550
551 #ifdef CONFIG_SECCOMP
552 void hard_disable_TSC(void)
553 {
554 write_cr4(read_cr4() | X86_CR4_TSD);
555 }
556 void disable_TSC(void)
557 {
558 preempt_disable();
559 if (!test_and_set_thread_flag(TIF_NOTSC))
560 /*
561 * Must flip the CPU state synchronously with
562 * TIF_NOTSC in the current running context.
563 */
564 hard_disable_TSC();
565 preempt_enable();
566 }
567 void hard_enable_TSC(void)
568 {
569 write_cr4(read_cr4() & ~X86_CR4_TSD);
570 }
571 #endif /* CONFIG_SECCOMP */
572
573 static noinline void
574 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
575 struct tss_struct *tss)
576 {
577 struct thread_struct *next;
578
579 next = &next_p->thread;
580
581 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
582 set_debugreg(next->debugreg[0], 0);
583 set_debugreg(next->debugreg[1], 1);
584 set_debugreg(next->debugreg[2], 2);
585 set_debugreg(next->debugreg[3], 3);
586 /* no 4 and 5 */
587 set_debugreg(next->debugreg[6], 6);
588 set_debugreg(next->debugreg[7], 7);
589 }
590
591 #ifdef CONFIG_SECCOMP
592 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
593 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
594 /* prev and next are different */
595 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
596 hard_disable_TSC();
597 else
598 hard_enable_TSC();
599 }
600 #endif
601
602 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
603 /*
604 * Disable the bitmap via an invalid offset. We still cache
605 * the previous bitmap owner and the IO bitmap contents:
606 */
607 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
608 return;
609 }
610
611 if (likely(next == tss->io_bitmap_owner)) {
612 /*
613 * Previous owner of the bitmap (hence the bitmap content)
614 * matches the next task, we dont have to do anything but
615 * to set a valid offset in the TSS:
616 */
617 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
618 return;
619 }
620 /*
621 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
622 * and we let the task to get a GPF in case an I/O instruction
623 * is performed. The handler of the GPF will verify that the
624 * faulting task has a valid I/O bitmap and, it true, does the
625 * real copy and restart the instruction. This will save us
626 * redundant copies when the currently switched task does not
627 * perform any I/O during its timeslice.
628 */
629 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
630 }
631
632 /*
633 * switch_to(x,yn) should switch tasks from x to y.
634 *
635 * We fsave/fwait so that an exception goes off at the right time
636 * (as a call from the fsave or fwait in effect) rather than to
637 * the wrong process. Lazy FP saving no longer makes any sense
638 * with modern CPU's, and this simplifies a lot of things (SMP
639 * and UP become the same).
640 *
641 * NOTE! We used to use the x86 hardware context switching. The
642 * reason for not using it any more becomes apparent when you
643 * try to recover gracefully from saved state that is no longer
644 * valid (stale segment register values in particular). With the
645 * hardware task-switch, there is no way to fix up bad state in
646 * a reasonable manner.
647 *
648 * The fact that Intel documents the hardware task-switching to
649 * be slow is a fairly red herring - this code is not noticeably
650 * faster. However, there _is_ some room for improvement here,
651 * so the performance issues may eventually be a valid point.
652 * More important, however, is the fact that this allows us much
653 * more flexibility.
654 *
655 * The return value (in %eax) will be the "prev" task after
656 * the task-switch, and shows up in ret_from_fork in entry.S,
657 * for example.
658 */
659 struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
660 {
661 struct thread_struct *prev = &prev_p->thread,
662 *next = &next_p->thread;
663 int cpu = smp_processor_id();
664 struct tss_struct *tss = &per_cpu(init_tss, cpu);
665
666 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
667
668 __unlazy_fpu(prev_p);
669
670
671 /* we're going to use this soon, after a few expensive things */
672 if (next_p->fpu_counter > 5)
673 prefetch(&next->i387.fxsave);
674
675 /*
676 * Reload esp0.
677 */
678 load_esp0(tss, next);
679
680 /*
681 * Save away %gs. No need to save %fs, as it was saved on the
682 * stack on entry. No need to save %es and %ds, as those are
683 * always kernel segments while inside the kernel. Doing this
684 * before setting the new TLS descriptors avoids the situation
685 * where we temporarily have non-reloadable segments in %fs
686 * and %gs. This could be an issue if the NMI handler ever
687 * used %fs or %gs (it does not today), or if the kernel is
688 * running inside of a hypervisor layer.
689 */
690 savesegment(gs, prev->gs);
691
692 /*
693 * Load the per-thread Thread-Local Storage descriptor.
694 */
695 load_TLS(next, cpu);
696
697 /*
698 * Restore IOPL if needed. In normal use, the flags restore
699 * in the switch assembly will handle this. But if the kernel
700 * is running virtualized at a non-zero CPL, the popf will
701 * not restore flags, so it must be done in a separate step.
702 */
703 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
704 set_iopl_mask(next->iopl);
705
706 /*
707 * Now maybe handle debug registers and/or IO bitmaps
708 */
709 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
710 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
711 __switch_to_xtra(prev_p, next_p, tss);
712
713 /*
714 * Leave lazy mode, flushing any hypercalls made here.
715 * This must be done before restoring TLS segments so
716 * the GDT and LDT are properly updated, and must be
717 * done before math_state_restore, so the TS bit is up
718 * to date.
719 */
720 arch_leave_lazy_cpu_mode();
721
722 /* If the task has used fpu the last 5 timeslices, just do a full
723 * restore of the math state immediately to avoid the trap; the
724 * chances of needing FPU soon are obviously high now
725 */
726 if (next_p->fpu_counter > 5)
727 math_state_restore();
728
729 /*
730 * Restore %gs if needed (which is common)
731 */
732 if (prev->gs | next->gs)
733 loadsegment(gs, next->gs);
734
735 x86_write_percpu(current_task, next_p);
736
737 return prev_p;
738 }
739
740 asmlinkage int sys_fork(struct pt_regs regs)
741 {
742 return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
743 }
744
745 asmlinkage int sys_clone(struct pt_regs regs)
746 {
747 unsigned long clone_flags;
748 unsigned long newsp;
749 int __user *parent_tidptr, *child_tidptr;
750
751 clone_flags = regs.ebx;
752 newsp = regs.ecx;
753 parent_tidptr = (int __user *)regs.edx;
754 child_tidptr = (int __user *)regs.edi;
755 if (!newsp)
756 newsp = regs.esp;
757 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
758 }
759
760 /*
761 * This is trivial, and on the face of it looks like it
762 * could equally well be done in user mode.
763 *
764 * Not so, for quite unobvious reasons - register pressure.
765 * In user mode vfork() cannot have a stack frame, and if
766 * done by calling the "clone()" system call directly, you
767 * do not have enough call-clobbered registers to hold all
768 * the information you need.
769 */
770 asmlinkage int sys_vfork(struct pt_regs regs)
771 {
772 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
773 }
774
775 /*
776 * sys_execve() executes a new program.
777 */
778 asmlinkage int sys_execve(struct pt_regs regs)
779 {
780 int error;
781 char * filename;
782
783 filename = getname((char __user *) regs.ebx);
784 error = PTR_ERR(filename);
785 if (IS_ERR(filename))
786 goto out;
787 error = do_execve(filename,
788 (char __user * __user *) regs.ecx,
789 (char __user * __user *) regs.edx,
790 &regs);
791 if (error == 0) {
792 task_lock(current);
793 current->ptrace &= ~PT_DTRACE;
794 task_unlock(current);
795 /* Make sure we don't return using sysenter.. */
796 set_thread_flag(TIF_IRET);
797 }
798 putname(filename);
799 out:
800 return error;
801 }
802
803 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
804 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
805
806 unsigned long get_wchan(struct task_struct *p)
807 {
808 unsigned long ebp, esp, eip;
809 unsigned long stack_page;
810 int count = 0;
811 if (!p || p == current || p->state == TASK_RUNNING)
812 return 0;
813 stack_page = (unsigned long)task_stack_page(p);
814 esp = p->thread.esp;
815 if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
816 return 0;
817 /* include/asm-i386/system.h:switch_to() pushes ebp last. */
818 ebp = *(unsigned long *) esp;
819 do {
820 if (ebp < stack_page || ebp > top_ebp+stack_page)
821 return 0;
822 eip = *(unsigned long *) (ebp+4);
823 if (!in_sched_functions(eip))
824 return eip;
825 ebp = *(unsigned long *) ebp;
826 } while (count++ < 16);
827 return 0;
828 }
829
830 /*
831 * sys_alloc_thread_area: get a yet unused TLS descriptor index.
832 */
833 static int get_free_idx(void)
834 {
835 struct thread_struct *t = &current->thread;
836 int idx;
837
838 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
839 if (desc_empty(t->tls_array + idx))
840 return idx + GDT_ENTRY_TLS_MIN;
841 return -ESRCH;
842 }
843
844 /*
845 * Set a given TLS descriptor:
846 */
847 asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
848 {
849 struct thread_struct *t = &current->thread;
850 struct user_desc info;
851 struct desc_struct *desc;
852 int cpu, idx;
853
854 if (copy_from_user(&info, u_info, sizeof(info)))
855 return -EFAULT;
856 idx = info.entry_number;
857
858 /*
859 * index -1 means the kernel should try to find and
860 * allocate an empty descriptor:
861 */
862 if (idx == -1) {
863 idx = get_free_idx();
864 if (idx < 0)
865 return idx;
866 if (put_user(idx, &u_info->entry_number))
867 return -EFAULT;
868 }
869
870 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
871 return -EINVAL;
872
873 desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
874
875 /*
876 * We must not get preempted while modifying the TLS.
877 */
878 cpu = get_cpu();
879
880 if (LDT_empty(&info)) {
881 desc->a = 0;
882 desc->b = 0;
883 } else {
884 desc->a = LDT_entry_a(&info);
885 desc->b = LDT_entry_b(&info);
886 }
887 load_TLS(t, cpu);
888
889 put_cpu();
890
891 return 0;
892 }
893
894 /*
895 * Get the current Thread-Local Storage area:
896 */
897
898 #define GET_BASE(desc) ( \
899 (((desc)->a >> 16) & 0x0000ffff) | \
900 (((desc)->b << 16) & 0x00ff0000) | \
901 ( (desc)->b & 0xff000000) )
902
903 #define GET_LIMIT(desc) ( \
904 ((desc)->a & 0x0ffff) | \
905 ((desc)->b & 0xf0000) )
906
907 #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
908 #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
909 #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
910 #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
911 #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
912 #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
913
914 asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
915 {
916 struct user_desc info;
917 struct desc_struct *desc;
918 int idx;
919
920 if (get_user(idx, &u_info->entry_number))
921 return -EFAULT;
922 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
923 return -EINVAL;
924
925 memset(&info, 0, sizeof(info));
926
927 desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
928
929 info.entry_number = idx;
930 info.base_addr = GET_BASE(desc);
931 info.limit = GET_LIMIT(desc);
932 info.seg_32bit = GET_32BIT(desc);
933 info.contents = GET_CONTENTS(desc);
934 info.read_exec_only = !GET_WRITABLE(desc);
935 info.limit_in_pages = GET_LIMIT_PAGES(desc);
936 info.seg_not_present = !GET_PRESENT(desc);
937 info.useable = GET_USEABLE(desc);
938
939 if (copy_to_user(u_info, &info, sizeof(info)))
940 return -EFAULT;
941 return 0;
942 }
943
944 unsigned long arch_align_stack(unsigned long sp)
945 {
946 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
947 sp -= get_random_int() % 8192;
948 return sp & ~0xf;
949 }