fork: move the real prepare_to_copy() users to arch_dup_task_struct()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <linux/stackprotector.h>
16 #include <linux/tick.h>
17 #include <linux/cpuidle.h>
18 #include <trace/events/power.h>
19 #include <linux/hw_breakpoint.h>
20 #include <asm/cpu.h>
21 #include <asm/apic.h>
22 #include <asm/syscalls.h>
23 #include <asm/idle.h>
24 #include <asm/uaccess.h>
25 #include <asm/i387.h>
26 #include <asm/fpu-internal.h>
27 #include <asm/debugreg.h>
28 #include <asm/nmi.h>
29
30 #ifdef CONFIG_X86_64
31 static DEFINE_PER_CPU(unsigned char, is_idle);
32 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
33
34 void idle_notifier_register(struct notifier_block *n)
35 {
36 atomic_notifier_chain_register(&idle_notifier, n);
37 }
38 EXPORT_SYMBOL_GPL(idle_notifier_register);
39
40 void idle_notifier_unregister(struct notifier_block *n)
41 {
42 atomic_notifier_chain_unregister(&idle_notifier, n);
43 }
44 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
45 #endif
46
47 struct kmem_cache *task_xstate_cachep;
48 EXPORT_SYMBOL_GPL(task_xstate_cachep);
49
50 /*
51 * this gets called so that we can store lazy state into memory and copy the
52 * current task into the new thread.
53 */
54 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
55 {
56 int ret;
57
58 unlazy_fpu(src);
59
60 *dst = *src;
61 if (fpu_allocated(&src->thread.fpu)) {
62 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
63 ret = fpu_alloc(&dst->thread.fpu);
64 if (ret)
65 return ret;
66 fpu_copy(&dst->thread.fpu, &src->thread.fpu);
67 }
68 return 0;
69 }
70
71 void free_thread_xstate(struct task_struct *tsk)
72 {
73 fpu_free(&tsk->thread.fpu);
74 }
75
76 void free_thread_info(struct thread_info *ti)
77 {
78 free_thread_xstate(ti->task);
79 free_pages((unsigned long)ti, THREAD_ORDER);
80 }
81
82 void arch_task_cache_init(void)
83 {
84 task_xstate_cachep =
85 kmem_cache_create("task_xstate", xstate_size,
86 __alignof__(union thread_xstate),
87 SLAB_PANIC | SLAB_NOTRACK, NULL);
88 }
89
90 /*
91 * Free current thread data structures etc..
92 */
93 void exit_thread(void)
94 {
95 struct task_struct *me = current;
96 struct thread_struct *t = &me->thread;
97 unsigned long *bp = t->io_bitmap_ptr;
98
99 if (bp) {
100 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
101
102 t->io_bitmap_ptr = NULL;
103 clear_thread_flag(TIF_IO_BITMAP);
104 /*
105 * Careful, clear this in the TSS too:
106 */
107 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
108 t->io_bitmap_max = 0;
109 put_cpu();
110 kfree(bp);
111 }
112 }
113
114 void show_regs(struct pt_regs *regs)
115 {
116 show_registers(regs);
117 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
118 }
119
120 void show_regs_common(void)
121 {
122 const char *vendor, *product, *board;
123
124 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
125 if (!vendor)
126 vendor = "";
127 product = dmi_get_system_info(DMI_PRODUCT_NAME);
128 if (!product)
129 product = "";
130
131 /* Board Name is optional */
132 board = dmi_get_system_info(DMI_BOARD_NAME);
133
134 printk(KERN_CONT "\n");
135 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
136 current->pid, current->comm, print_tainted(),
137 init_utsname()->release,
138 (int)strcspn(init_utsname()->version, " "),
139 init_utsname()->version);
140 printk(KERN_CONT " %s %s", vendor, product);
141 if (board)
142 printk(KERN_CONT "/%s", board);
143 printk(KERN_CONT "\n");
144 }
145
146 void flush_thread(void)
147 {
148 struct task_struct *tsk = current;
149
150 flush_ptrace_hw_breakpoint(tsk);
151 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
152 /*
153 * Forget coprocessor state..
154 */
155 tsk->fpu_counter = 0;
156 clear_fpu(tsk);
157 clear_used_math();
158 }
159
160 static void hard_disable_TSC(void)
161 {
162 write_cr4(read_cr4() | X86_CR4_TSD);
163 }
164
165 void disable_TSC(void)
166 {
167 preempt_disable();
168 if (!test_and_set_thread_flag(TIF_NOTSC))
169 /*
170 * Must flip the CPU state synchronously with
171 * TIF_NOTSC in the current running context.
172 */
173 hard_disable_TSC();
174 preempt_enable();
175 }
176
177 static void hard_enable_TSC(void)
178 {
179 write_cr4(read_cr4() & ~X86_CR4_TSD);
180 }
181
182 static void enable_TSC(void)
183 {
184 preempt_disable();
185 if (test_and_clear_thread_flag(TIF_NOTSC))
186 /*
187 * Must flip the CPU state synchronously with
188 * TIF_NOTSC in the current running context.
189 */
190 hard_enable_TSC();
191 preempt_enable();
192 }
193
194 int get_tsc_mode(unsigned long adr)
195 {
196 unsigned int val;
197
198 if (test_thread_flag(TIF_NOTSC))
199 val = PR_TSC_SIGSEGV;
200 else
201 val = PR_TSC_ENABLE;
202
203 return put_user(val, (unsigned int __user *)adr);
204 }
205
206 int set_tsc_mode(unsigned int val)
207 {
208 if (val == PR_TSC_SIGSEGV)
209 disable_TSC();
210 else if (val == PR_TSC_ENABLE)
211 enable_TSC();
212 else
213 return -EINVAL;
214
215 return 0;
216 }
217
218 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
219 struct tss_struct *tss)
220 {
221 struct thread_struct *prev, *next;
222
223 prev = &prev_p->thread;
224 next = &next_p->thread;
225
226 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
227 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
228 unsigned long debugctl = get_debugctlmsr();
229
230 debugctl &= ~DEBUGCTLMSR_BTF;
231 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
232 debugctl |= DEBUGCTLMSR_BTF;
233
234 update_debugctlmsr(debugctl);
235 }
236
237 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
238 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
239 /* prev and next are different */
240 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
241 hard_disable_TSC();
242 else
243 hard_enable_TSC();
244 }
245
246 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
247 /*
248 * Copy the relevant range of the IO bitmap.
249 * Normally this is 128 bytes or less:
250 */
251 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
252 max(prev->io_bitmap_max, next->io_bitmap_max));
253 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
254 /*
255 * Clear any possible leftover bits:
256 */
257 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
258 }
259 propagate_user_return_notify(prev_p, next_p);
260 }
261
262 int sys_fork(struct pt_regs *regs)
263 {
264 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
265 }
266
267 /*
268 * This is trivial, and on the face of it looks like it
269 * could equally well be done in user mode.
270 *
271 * Not so, for quite unobvious reasons - register pressure.
272 * In user mode vfork() cannot have a stack frame, and if
273 * done by calling the "clone()" system call directly, you
274 * do not have enough call-clobbered registers to hold all
275 * the information you need.
276 */
277 int sys_vfork(struct pt_regs *regs)
278 {
279 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
280 NULL, NULL);
281 }
282
283 long
284 sys_clone(unsigned long clone_flags, unsigned long newsp,
285 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
286 {
287 if (!newsp)
288 newsp = regs->sp;
289 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
290 }
291
292 /*
293 * This gets run with %si containing the
294 * function to call, and %di containing
295 * the "args".
296 */
297 extern void kernel_thread_helper(void);
298
299 /*
300 * Create a kernel thread
301 */
302 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
303 {
304 struct pt_regs regs;
305
306 memset(&regs, 0, sizeof(regs));
307
308 regs.si = (unsigned long) fn;
309 regs.di = (unsigned long) arg;
310
311 #ifdef CONFIG_X86_32
312 regs.ds = __USER_DS;
313 regs.es = __USER_DS;
314 regs.fs = __KERNEL_PERCPU;
315 regs.gs = __KERNEL_STACK_CANARY;
316 #else
317 regs.ss = __KERNEL_DS;
318 #endif
319
320 regs.orig_ax = -1;
321 regs.ip = (unsigned long) kernel_thread_helper;
322 regs.cs = __KERNEL_CS | get_kernel_rpl();
323 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
324
325 /* Ok, create the new process.. */
326 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
327 }
328 EXPORT_SYMBOL(kernel_thread);
329
330 /*
331 * sys_execve() executes a new program.
332 */
333 long sys_execve(const char __user *name,
334 const char __user *const __user *argv,
335 const char __user *const __user *envp, struct pt_regs *regs)
336 {
337 long error;
338 char *filename;
339
340 filename = getname(name);
341 error = PTR_ERR(filename);
342 if (IS_ERR(filename))
343 return error;
344 error = do_execve(filename, argv, envp, regs);
345
346 #ifdef CONFIG_X86_32
347 if (error == 0) {
348 /* Make sure we don't return using sysenter.. */
349 set_thread_flag(TIF_IRET);
350 }
351 #endif
352
353 putname(filename);
354 return error;
355 }
356
357 /*
358 * Idle related variables and functions
359 */
360 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
361 EXPORT_SYMBOL(boot_option_idle_override);
362
363 /*
364 * Powermanagement idle function, if any..
365 */
366 void (*pm_idle)(void);
367 #ifdef CONFIG_APM_MODULE
368 EXPORT_SYMBOL(pm_idle);
369 #endif
370
371 static inline int hlt_use_halt(void)
372 {
373 return 1;
374 }
375
376 #ifndef CONFIG_SMP
377 static inline void play_dead(void)
378 {
379 BUG();
380 }
381 #endif
382
383 #ifdef CONFIG_X86_64
384 void enter_idle(void)
385 {
386 percpu_write(is_idle, 1);
387 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
388 }
389
390 static void __exit_idle(void)
391 {
392 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
393 return;
394 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
395 }
396
397 /* Called from interrupts to signify idle end */
398 void exit_idle(void)
399 {
400 /* idle loop has pid 0 */
401 if (current->pid)
402 return;
403 __exit_idle();
404 }
405 #endif
406
407 /*
408 * The idle thread. There's no useful work to be
409 * done, so just try to conserve power and have a
410 * low exit latency (ie sit in a loop waiting for
411 * somebody to say that they'd like to reschedule)
412 */
413 void cpu_idle(void)
414 {
415 /*
416 * If we're the non-boot CPU, nothing set the stack canary up
417 * for us. CPU0 already has it initialized but no harm in
418 * doing it again. This is a good place for updating it, as
419 * we wont ever return from this function (so the invalid
420 * canaries already on the stack wont ever trigger).
421 */
422 boot_init_stack_canary();
423 current_thread_info()->status |= TS_POLLING;
424
425 while (1) {
426 tick_nohz_idle_enter();
427
428 while (!need_resched()) {
429 rmb();
430
431 if (cpu_is_offline(smp_processor_id()))
432 play_dead();
433
434 /*
435 * Idle routines should keep interrupts disabled
436 * from here on, until they go to idle.
437 * Otherwise, idle callbacks can misfire.
438 */
439 local_touch_nmi();
440 local_irq_disable();
441
442 enter_idle();
443
444 /* Don't trace irqs off for idle */
445 stop_critical_timings();
446
447 /* enter_idle() needs rcu for notifiers */
448 rcu_idle_enter();
449
450 if (cpuidle_idle_call())
451 pm_idle();
452
453 rcu_idle_exit();
454 start_critical_timings();
455
456 /* In many cases the interrupt that ended idle
457 has already called exit_idle. But some idle
458 loops can be woken up without interrupt. */
459 __exit_idle();
460 }
461
462 tick_nohz_idle_exit();
463 preempt_enable_no_resched();
464 schedule();
465 preempt_disable();
466 }
467 }
468
469 /*
470 * We use this if we don't have any better
471 * idle routine..
472 */
473 void default_idle(void)
474 {
475 if (hlt_use_halt()) {
476 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
477 trace_cpu_idle_rcuidle(1, smp_processor_id());
478 current_thread_info()->status &= ~TS_POLLING;
479 /*
480 * TS_POLLING-cleared state must be visible before we
481 * test NEED_RESCHED:
482 */
483 smp_mb();
484
485 if (!need_resched())
486 safe_halt(); /* enables interrupts racelessly */
487 else
488 local_irq_enable();
489 current_thread_info()->status |= TS_POLLING;
490 trace_power_end_rcuidle(smp_processor_id());
491 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
492 } else {
493 local_irq_enable();
494 /* loop is done by the caller */
495 cpu_relax();
496 }
497 }
498 #ifdef CONFIG_APM_MODULE
499 EXPORT_SYMBOL(default_idle);
500 #endif
501
502 bool set_pm_idle_to_default(void)
503 {
504 bool ret = !!pm_idle;
505
506 pm_idle = default_idle;
507
508 return ret;
509 }
510 void stop_this_cpu(void *dummy)
511 {
512 local_irq_disable();
513 /*
514 * Remove this CPU:
515 */
516 set_cpu_online(smp_processor_id(), false);
517 disable_local_APIC();
518
519 for (;;) {
520 if (hlt_works(smp_processor_id()))
521 halt();
522 }
523 }
524
525 static void do_nothing(void *unused)
526 {
527 }
528
529 /*
530 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
531 * pm_idle and update to new pm_idle value. Required while changing pm_idle
532 * handler on SMP systems.
533 *
534 * Caller must have changed pm_idle to the new value before the call. Old
535 * pm_idle value will not be used by any CPU after the return of this function.
536 */
537 void cpu_idle_wait(void)
538 {
539 smp_mb();
540 /* kick all the CPUs so that they exit out of pm_idle */
541 smp_call_function(do_nothing, NULL, 1);
542 }
543 EXPORT_SYMBOL_GPL(cpu_idle_wait);
544
545 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
546 static void mwait_idle(void)
547 {
548 if (!need_resched()) {
549 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
550 trace_cpu_idle_rcuidle(1, smp_processor_id());
551 if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
552 clflush((void *)&current_thread_info()->flags);
553
554 __monitor((void *)&current_thread_info()->flags, 0, 0);
555 smp_mb();
556 if (!need_resched())
557 __sti_mwait(0, 0);
558 else
559 local_irq_enable();
560 trace_power_end_rcuidle(smp_processor_id());
561 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
562 } else
563 local_irq_enable();
564 }
565
566 /*
567 * On SMP it's slightly faster (but much more power-consuming!)
568 * to poll the ->work.need_resched flag instead of waiting for the
569 * cross-CPU IPI to arrive. Use this option with caution.
570 */
571 static void poll_idle(void)
572 {
573 trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
574 trace_cpu_idle_rcuidle(0, smp_processor_id());
575 local_irq_enable();
576 while (!need_resched())
577 cpu_relax();
578 trace_power_end_rcuidle(smp_processor_id());
579 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
580 }
581
582 /*
583 * mwait selection logic:
584 *
585 * It depends on the CPU. For AMD CPUs that support MWAIT this is
586 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
587 * then depend on a clock divisor and current Pstate of the core. If
588 * all cores of a processor are in halt state (C1) the processor can
589 * enter the C1E (C1 enhanced) state. If mwait is used this will never
590 * happen.
591 *
592 * idle=mwait overrides this decision and forces the usage of mwait.
593 */
594
595 #define MWAIT_INFO 0x05
596 #define MWAIT_ECX_EXTENDED_INFO 0x01
597 #define MWAIT_EDX_C1 0xf0
598
599 int mwait_usable(const struct cpuinfo_x86 *c)
600 {
601 u32 eax, ebx, ecx, edx;
602
603 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
604 return 1;
605
606 if (c->cpuid_level < MWAIT_INFO)
607 return 0;
608
609 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
610 /* Check, whether EDX has extended info about MWAIT */
611 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
612 return 1;
613
614 /*
615 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
616 * C1 supports MWAIT
617 */
618 return (edx & MWAIT_EDX_C1);
619 }
620
621 bool amd_e400_c1e_detected;
622 EXPORT_SYMBOL(amd_e400_c1e_detected);
623
624 static cpumask_var_t amd_e400_c1e_mask;
625
626 void amd_e400_remove_cpu(int cpu)
627 {
628 if (amd_e400_c1e_mask != NULL)
629 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
630 }
631
632 /*
633 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
634 * pending message MSR. If we detect C1E, then we handle it the same
635 * way as C3 power states (local apic timer and TSC stop)
636 */
637 static void amd_e400_idle(void)
638 {
639 if (need_resched())
640 return;
641
642 if (!amd_e400_c1e_detected) {
643 u32 lo, hi;
644
645 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
646
647 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
648 amd_e400_c1e_detected = true;
649 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
650 mark_tsc_unstable("TSC halt in AMD C1E");
651 printk(KERN_INFO "System has AMD C1E enabled\n");
652 }
653 }
654
655 if (amd_e400_c1e_detected) {
656 int cpu = smp_processor_id();
657
658 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
659 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
660 /*
661 * Force broadcast so ACPI can not interfere.
662 */
663 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
664 &cpu);
665 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
666 cpu);
667 }
668 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
669
670 default_idle();
671
672 /*
673 * The switch back from broadcast mode needs to be
674 * called with interrupts disabled.
675 */
676 local_irq_disable();
677 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
678 local_irq_enable();
679 } else
680 default_idle();
681 }
682
683 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
684 {
685 #ifdef CONFIG_SMP
686 if (pm_idle == poll_idle && smp_num_siblings > 1) {
687 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
688 " performance may degrade.\n");
689 }
690 #endif
691 if (pm_idle)
692 return;
693
694 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
695 /*
696 * One CPU supports mwait => All CPUs supports mwait
697 */
698 printk(KERN_INFO "using mwait in idle threads.\n");
699 pm_idle = mwait_idle;
700 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
701 /* E400: APIC timer interrupt does not wake up CPU from C1e */
702 printk(KERN_INFO "using AMD E400 aware idle routine\n");
703 pm_idle = amd_e400_idle;
704 } else
705 pm_idle = default_idle;
706 }
707
708 void __init init_amd_e400_c1e_mask(void)
709 {
710 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
711 if (pm_idle == amd_e400_idle)
712 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
713 }
714
715 static int __init idle_setup(char *str)
716 {
717 if (!str)
718 return -EINVAL;
719
720 if (!strcmp(str, "poll")) {
721 printk("using polling idle threads.\n");
722 pm_idle = poll_idle;
723 boot_option_idle_override = IDLE_POLL;
724 } else if (!strcmp(str, "mwait")) {
725 boot_option_idle_override = IDLE_FORCE_MWAIT;
726 WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
727 } else if (!strcmp(str, "halt")) {
728 /*
729 * When the boot option of idle=halt is added, halt is
730 * forced to be used for CPU idle. In such case CPU C2/C3
731 * won't be used again.
732 * To continue to load the CPU idle driver, don't touch
733 * the boot_option_idle_override.
734 */
735 pm_idle = default_idle;
736 boot_option_idle_override = IDLE_HALT;
737 } else if (!strcmp(str, "nomwait")) {
738 /*
739 * If the boot option of "idle=nomwait" is added,
740 * it means that mwait will be disabled for CPU C2/C3
741 * states. In such case it won't touch the variable
742 * of boot_option_idle_override.
743 */
744 boot_option_idle_override = IDLE_NOMWAIT;
745 } else
746 return -1;
747
748 return 0;
749 }
750 early_param("idle", idle_setup);
751
752 unsigned long arch_align_stack(unsigned long sp)
753 {
754 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
755 sp -= get_random_int() % 8192;
756 return sp & ~0xf;
757 }
758
759 unsigned long arch_randomize_brk(struct mm_struct *mm)
760 {
761 unsigned long range_end = mm->brk + 0x02000000;
762 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
763 }
764