Mark arguments to certain syscalls as being const
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/system.h>
18 #include <asm/apic.h>
19 #include <asm/syscalls.h>
20 #include <asm/idle.h>
21 #include <asm/uaccess.h>
22 #include <asm/i387.h>
23 #include <asm/debugreg.h>
24
25 unsigned long idle_halt;
26 EXPORT_SYMBOL(idle_halt);
27 unsigned long idle_nomwait;
28 EXPORT_SYMBOL(idle_nomwait);
29
30 struct kmem_cache *task_xstate_cachep;
31 EXPORT_SYMBOL_GPL(task_xstate_cachep);
32
33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
34 {
35 int ret;
36
37 *dst = *src;
38 if (fpu_allocated(&src->thread.fpu)) {
39 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
40 ret = fpu_alloc(&dst->thread.fpu);
41 if (ret)
42 return ret;
43 fpu_copy(&dst->thread.fpu, &src->thread.fpu);
44 }
45 return 0;
46 }
47
48 void free_thread_xstate(struct task_struct *tsk)
49 {
50 fpu_free(&tsk->thread.fpu);
51 }
52
53 void free_thread_info(struct thread_info *ti)
54 {
55 free_thread_xstate(ti->task);
56 free_pages((unsigned long)ti, get_order(THREAD_SIZE));
57 }
58
59 void arch_task_cache_init(void)
60 {
61 task_xstate_cachep =
62 kmem_cache_create("task_xstate", xstate_size,
63 __alignof__(union thread_xstate),
64 SLAB_PANIC | SLAB_NOTRACK, NULL);
65 }
66
67 /*
68 * Free current thread data structures etc..
69 */
70 void exit_thread(void)
71 {
72 struct task_struct *me = current;
73 struct thread_struct *t = &me->thread;
74 unsigned long *bp = t->io_bitmap_ptr;
75
76 if (bp) {
77 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
78
79 t->io_bitmap_ptr = NULL;
80 clear_thread_flag(TIF_IO_BITMAP);
81 /*
82 * Careful, clear this in the TSS too:
83 */
84 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
85 t->io_bitmap_max = 0;
86 put_cpu();
87 kfree(bp);
88 }
89 }
90
91 void show_regs(struct pt_regs *regs)
92 {
93 show_registers(regs);
94 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs),
95 regs->bp);
96 }
97
98 void show_regs_common(void)
99 {
100 const char *board, *product;
101
102 board = dmi_get_system_info(DMI_BOARD_NAME);
103 if (!board)
104 board = "";
105 product = dmi_get_system_info(DMI_PRODUCT_NAME);
106 if (!product)
107 product = "";
108
109 printk(KERN_CONT "\n");
110 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
111 current->pid, current->comm, print_tainted(),
112 init_utsname()->release,
113 (int)strcspn(init_utsname()->version, " "),
114 init_utsname()->version, board, product);
115 }
116
117 void flush_thread(void)
118 {
119 struct task_struct *tsk = current;
120
121 flush_ptrace_hw_breakpoint(tsk);
122 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
123 /*
124 * Forget coprocessor state..
125 */
126 tsk->fpu_counter = 0;
127 clear_fpu(tsk);
128 clear_used_math();
129 }
130
131 static void hard_disable_TSC(void)
132 {
133 write_cr4(read_cr4() | X86_CR4_TSD);
134 }
135
136 void disable_TSC(void)
137 {
138 preempt_disable();
139 if (!test_and_set_thread_flag(TIF_NOTSC))
140 /*
141 * Must flip the CPU state synchronously with
142 * TIF_NOTSC in the current running context.
143 */
144 hard_disable_TSC();
145 preempt_enable();
146 }
147
148 static void hard_enable_TSC(void)
149 {
150 write_cr4(read_cr4() & ~X86_CR4_TSD);
151 }
152
153 static void enable_TSC(void)
154 {
155 preempt_disable();
156 if (test_and_clear_thread_flag(TIF_NOTSC))
157 /*
158 * Must flip the CPU state synchronously with
159 * TIF_NOTSC in the current running context.
160 */
161 hard_enable_TSC();
162 preempt_enable();
163 }
164
165 int get_tsc_mode(unsigned long adr)
166 {
167 unsigned int val;
168
169 if (test_thread_flag(TIF_NOTSC))
170 val = PR_TSC_SIGSEGV;
171 else
172 val = PR_TSC_ENABLE;
173
174 return put_user(val, (unsigned int __user *)adr);
175 }
176
177 int set_tsc_mode(unsigned int val)
178 {
179 if (val == PR_TSC_SIGSEGV)
180 disable_TSC();
181 else if (val == PR_TSC_ENABLE)
182 enable_TSC();
183 else
184 return -EINVAL;
185
186 return 0;
187 }
188
189 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
190 struct tss_struct *tss)
191 {
192 struct thread_struct *prev, *next;
193
194 prev = &prev_p->thread;
195 next = &next_p->thread;
196
197 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
198 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
199 unsigned long debugctl = get_debugctlmsr();
200
201 debugctl &= ~DEBUGCTLMSR_BTF;
202 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
203 debugctl |= DEBUGCTLMSR_BTF;
204
205 update_debugctlmsr(debugctl);
206 }
207
208 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
209 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
210 /* prev and next are different */
211 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
212 hard_disable_TSC();
213 else
214 hard_enable_TSC();
215 }
216
217 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
218 /*
219 * Copy the relevant range of the IO bitmap.
220 * Normally this is 128 bytes or less:
221 */
222 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
223 max(prev->io_bitmap_max, next->io_bitmap_max));
224 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
225 /*
226 * Clear any possible leftover bits:
227 */
228 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
229 }
230 propagate_user_return_notify(prev_p, next_p);
231 }
232
233 int sys_fork(struct pt_regs *regs)
234 {
235 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
236 }
237
238 /*
239 * This is trivial, and on the face of it looks like it
240 * could equally well be done in user mode.
241 *
242 * Not so, for quite unobvious reasons - register pressure.
243 * In user mode vfork() cannot have a stack frame, and if
244 * done by calling the "clone()" system call directly, you
245 * do not have enough call-clobbered registers to hold all
246 * the information you need.
247 */
248 int sys_vfork(struct pt_regs *regs)
249 {
250 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
251 NULL, NULL);
252 }
253
254 long
255 sys_clone(unsigned long clone_flags, unsigned long newsp,
256 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
257 {
258 if (!newsp)
259 newsp = regs->sp;
260 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
261 }
262
263 /*
264 * This gets run with %si containing the
265 * function to call, and %di containing
266 * the "args".
267 */
268 extern void kernel_thread_helper(void);
269
270 /*
271 * Create a kernel thread
272 */
273 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
274 {
275 struct pt_regs regs;
276
277 memset(&regs, 0, sizeof(regs));
278
279 regs.si = (unsigned long) fn;
280 regs.di = (unsigned long) arg;
281
282 #ifdef CONFIG_X86_32
283 regs.ds = __USER_DS;
284 regs.es = __USER_DS;
285 regs.fs = __KERNEL_PERCPU;
286 regs.gs = __KERNEL_STACK_CANARY;
287 #else
288 regs.ss = __KERNEL_DS;
289 #endif
290
291 regs.orig_ax = -1;
292 regs.ip = (unsigned long) kernel_thread_helper;
293 regs.cs = __KERNEL_CS | get_kernel_rpl();
294 regs.flags = X86_EFLAGS_IF | 0x2;
295
296 /* Ok, create the new process.. */
297 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
298 }
299 EXPORT_SYMBOL(kernel_thread);
300
301 /*
302 * sys_execve() executes a new program.
303 */
304 long sys_execve(const char __user *name, char __user * __user *argv,
305 char __user * __user *envp, struct pt_regs *regs)
306 {
307 long error;
308 char *filename;
309
310 filename = getname(name);
311 error = PTR_ERR(filename);
312 if (IS_ERR(filename))
313 return error;
314 error = do_execve(filename, argv, envp, regs);
315
316 #ifdef CONFIG_X86_32
317 if (error == 0) {
318 /* Make sure we don't return using sysenter.. */
319 set_thread_flag(TIF_IRET);
320 }
321 #endif
322
323 putname(filename);
324 return error;
325 }
326
327 /*
328 * Idle related variables and functions
329 */
330 unsigned long boot_option_idle_override = 0;
331 EXPORT_SYMBOL(boot_option_idle_override);
332
333 /*
334 * Powermanagement idle function, if any..
335 */
336 void (*pm_idle)(void);
337 EXPORT_SYMBOL(pm_idle);
338
339 #ifdef CONFIG_X86_32
340 /*
341 * This halt magic was a workaround for ancient floppy DMA
342 * wreckage. It should be safe to remove.
343 */
344 static int hlt_counter;
345 void disable_hlt(void)
346 {
347 hlt_counter++;
348 }
349 EXPORT_SYMBOL(disable_hlt);
350
351 void enable_hlt(void)
352 {
353 hlt_counter--;
354 }
355 EXPORT_SYMBOL(enable_hlt);
356
357 static inline int hlt_use_halt(void)
358 {
359 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
360 }
361 #else
362 static inline int hlt_use_halt(void)
363 {
364 return 1;
365 }
366 #endif
367
368 /*
369 * We use this if we don't have any better
370 * idle routine..
371 */
372 void default_idle(void)
373 {
374 if (hlt_use_halt()) {
375 trace_power_start(POWER_CSTATE, 1, smp_processor_id());
376 current_thread_info()->status &= ~TS_POLLING;
377 /*
378 * TS_POLLING-cleared state must be visible before we
379 * test NEED_RESCHED:
380 */
381 smp_mb();
382
383 if (!need_resched())
384 safe_halt(); /* enables interrupts racelessly */
385 else
386 local_irq_enable();
387 current_thread_info()->status |= TS_POLLING;
388 } else {
389 local_irq_enable();
390 /* loop is done by the caller */
391 cpu_relax();
392 }
393 }
394 #ifdef CONFIG_APM_MODULE
395 EXPORT_SYMBOL(default_idle);
396 #endif
397
398 void stop_this_cpu(void *dummy)
399 {
400 local_irq_disable();
401 /*
402 * Remove this CPU:
403 */
404 set_cpu_online(smp_processor_id(), false);
405 disable_local_APIC();
406
407 for (;;) {
408 if (hlt_works(smp_processor_id()))
409 halt();
410 }
411 }
412
413 static void do_nothing(void *unused)
414 {
415 }
416
417 /*
418 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
419 * pm_idle and update to new pm_idle value. Required while changing pm_idle
420 * handler on SMP systems.
421 *
422 * Caller must have changed pm_idle to the new value before the call. Old
423 * pm_idle value will not be used by any CPU after the return of this function.
424 */
425 void cpu_idle_wait(void)
426 {
427 smp_mb();
428 /* kick all the CPUs so that they exit out of pm_idle */
429 smp_call_function(do_nothing, NULL, 1);
430 }
431 EXPORT_SYMBOL_GPL(cpu_idle_wait);
432
433 /*
434 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
435 * which can obviate IPI to trigger checking of need_resched.
436 * We execute MONITOR against need_resched and enter optimized wait state
437 * through MWAIT. Whenever someone changes need_resched, we would be woken
438 * up from MWAIT (without an IPI).
439 *
440 * New with Core Duo processors, MWAIT can take some hints based on CPU
441 * capability.
442 */
443 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
444 {
445 trace_power_start(POWER_CSTATE, (ax>>4)+1, smp_processor_id());
446 if (!need_resched()) {
447 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
448 clflush((void *)&current_thread_info()->flags);
449
450 __monitor((void *)&current_thread_info()->flags, 0, 0);
451 smp_mb();
452 if (!need_resched())
453 __mwait(ax, cx);
454 }
455 }
456
457 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
458 static void mwait_idle(void)
459 {
460 if (!need_resched()) {
461 trace_power_start(POWER_CSTATE, 1, smp_processor_id());
462 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
463 clflush((void *)&current_thread_info()->flags);
464
465 __monitor((void *)&current_thread_info()->flags, 0, 0);
466 smp_mb();
467 if (!need_resched())
468 __sti_mwait(0, 0);
469 else
470 local_irq_enable();
471 } else
472 local_irq_enable();
473 }
474
475 /*
476 * On SMP it's slightly faster (but much more power-consuming!)
477 * to poll the ->work.need_resched flag instead of waiting for the
478 * cross-CPU IPI to arrive. Use this option with caution.
479 */
480 static void poll_idle(void)
481 {
482 trace_power_start(POWER_CSTATE, 0, smp_processor_id());
483 local_irq_enable();
484 while (!need_resched())
485 cpu_relax();
486 trace_power_end(0);
487 }
488
489 /*
490 * mwait selection logic:
491 *
492 * It depends on the CPU. For AMD CPUs that support MWAIT this is
493 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
494 * then depend on a clock divisor and current Pstate of the core. If
495 * all cores of a processor are in halt state (C1) the processor can
496 * enter the C1E (C1 enhanced) state. If mwait is used this will never
497 * happen.
498 *
499 * idle=mwait overrides this decision and forces the usage of mwait.
500 */
501 static int __cpuinitdata force_mwait;
502
503 #define MWAIT_INFO 0x05
504 #define MWAIT_ECX_EXTENDED_INFO 0x01
505 #define MWAIT_EDX_C1 0xf0
506
507 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
508 {
509 u32 eax, ebx, ecx, edx;
510
511 if (force_mwait)
512 return 1;
513
514 if (c->cpuid_level < MWAIT_INFO)
515 return 0;
516
517 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
518 /* Check, whether EDX has extended info about MWAIT */
519 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
520 return 1;
521
522 /*
523 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
524 * C1 supports MWAIT
525 */
526 return (edx & MWAIT_EDX_C1);
527 }
528
529 bool c1e_detected;
530 EXPORT_SYMBOL(c1e_detected);
531
532 static cpumask_var_t c1e_mask;
533
534 void c1e_remove_cpu(int cpu)
535 {
536 if (c1e_mask != NULL)
537 cpumask_clear_cpu(cpu, c1e_mask);
538 }
539
540 /*
541 * C1E aware idle routine. We check for C1E active in the interrupt
542 * pending message MSR. If we detect C1E, then we handle it the same
543 * way as C3 power states (local apic timer and TSC stop)
544 */
545 static void c1e_idle(void)
546 {
547 if (need_resched())
548 return;
549
550 if (!c1e_detected) {
551 u32 lo, hi;
552
553 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
554
555 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
556 c1e_detected = true;
557 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
558 mark_tsc_unstable("TSC halt in AMD C1E");
559 printk(KERN_INFO "System has AMD C1E enabled\n");
560 }
561 }
562
563 if (c1e_detected) {
564 int cpu = smp_processor_id();
565
566 if (!cpumask_test_cpu(cpu, c1e_mask)) {
567 cpumask_set_cpu(cpu, c1e_mask);
568 /*
569 * Force broadcast so ACPI can not interfere.
570 */
571 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
572 &cpu);
573 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
574 cpu);
575 }
576 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
577
578 default_idle();
579
580 /*
581 * The switch back from broadcast mode needs to be
582 * called with interrupts disabled.
583 */
584 local_irq_disable();
585 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
586 local_irq_enable();
587 } else
588 default_idle();
589 }
590
591 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
592 {
593 #ifdef CONFIG_SMP
594 if (pm_idle == poll_idle && smp_num_siblings > 1) {
595 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
596 " performance may degrade.\n");
597 }
598 #endif
599 if (pm_idle)
600 return;
601
602 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
603 /*
604 * One CPU supports mwait => All CPUs supports mwait
605 */
606 printk(KERN_INFO "using mwait in idle threads.\n");
607 pm_idle = mwait_idle;
608 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
609 /* E400: APIC timer interrupt does not wake up CPU from C1e */
610 printk(KERN_INFO "using C1E aware idle routine\n");
611 pm_idle = c1e_idle;
612 } else
613 pm_idle = default_idle;
614 }
615
616 void __init init_c1e_mask(void)
617 {
618 /* If we're using c1e_idle, we need to allocate c1e_mask. */
619 if (pm_idle == c1e_idle)
620 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
621 }
622
623 static int __init idle_setup(char *str)
624 {
625 if (!str)
626 return -EINVAL;
627
628 if (!strcmp(str, "poll")) {
629 printk("using polling idle threads.\n");
630 pm_idle = poll_idle;
631 } else if (!strcmp(str, "mwait"))
632 force_mwait = 1;
633 else if (!strcmp(str, "halt")) {
634 /*
635 * When the boot option of idle=halt is added, halt is
636 * forced to be used for CPU idle. In such case CPU C2/C3
637 * won't be used again.
638 * To continue to load the CPU idle driver, don't touch
639 * the boot_option_idle_override.
640 */
641 pm_idle = default_idle;
642 idle_halt = 1;
643 return 0;
644 } else if (!strcmp(str, "nomwait")) {
645 /*
646 * If the boot option of "idle=nomwait" is added,
647 * it means that mwait will be disabled for CPU C2/C3
648 * states. In such case it won't touch the variable
649 * of boot_option_idle_override.
650 */
651 idle_nomwait = 1;
652 return 0;
653 } else
654 return -1;
655
656 boot_option_idle_override = 1;
657 return 0;
658 }
659 early_param("idle", idle_setup);
660
661 unsigned long arch_align_stack(unsigned long sp)
662 {
663 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
664 sp -= get_random_int() % 8192;
665 return sp & ~0xf;
666 }
667
668 unsigned long arch_randomize_brk(struct mm_struct *mm)
669 {
670 unsigned long range_end = mm->brk + 0x02000000;
671 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
672 }
673