Merge tag 'v3.10.64' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14
15 #include <asm/fixmap.h>
16 #include <asm/hpet.h>
17 #include <asm/time.h>
18
19 #define HPET_MASK CLOCKSOURCE_MASK(32)
20
21 /* FSEC = 10^-15
22 NSEC = 10^-9 */
23 #define FSEC_PER_NSEC 1000000L
24
25 #define HPET_DEV_USED_BIT 2
26 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
27 #define HPET_DEV_VALID 0x8
28 #define HPET_DEV_FSB_CAP 0x1000
29 #define HPET_DEV_PERI_CAP 0x2000
30
31 #define HPET_MIN_CYCLES 128
32 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
33
34 /*
35 * HPET address is set in acpi/boot.c, when an ACPI entry exists
36 */
37 unsigned long hpet_address;
38 u8 hpet_blockid; /* OS timer block num */
39 u8 hpet_msi_disable;
40
41 #ifdef CONFIG_PCI_MSI
42 static unsigned long hpet_num_timers;
43 #endif
44 static void __iomem *hpet_virt_address;
45
46 struct hpet_dev {
47 struct clock_event_device evt;
48 unsigned int num;
49 int cpu;
50 unsigned int irq;
51 unsigned int flags;
52 char name[10];
53 };
54
55 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
56 {
57 return container_of(evtdev, struct hpet_dev, evt);
58 }
59
60 inline unsigned int hpet_readl(unsigned int a)
61 {
62 return readl(hpet_virt_address + a);
63 }
64
65 static inline void hpet_writel(unsigned int d, unsigned int a)
66 {
67 writel(d, hpet_virt_address + a);
68 }
69
70 #ifdef CONFIG_X86_64
71 #include <asm/pgtable.h>
72 #endif
73
74 static inline void hpet_set_mapping(void)
75 {
76 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
77 #ifdef CONFIG_X86_64
78 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
79 #endif
80 }
81
82 static inline void hpet_clear_mapping(void)
83 {
84 iounmap(hpet_virt_address);
85 hpet_virt_address = NULL;
86 }
87
88 /*
89 * HPET command line enable / disable
90 */
91 static int boot_hpet_disable;
92 int hpet_force_user;
93 static int hpet_verbose;
94
95 static int __init hpet_setup(char *str)
96 {
97 while (str) {
98 char *next = strchr(str, ',');
99
100 if (next)
101 *next++ = 0;
102 if (!strncmp("disable", str, 7))
103 boot_hpet_disable = 1;
104 if (!strncmp("force", str, 5))
105 hpet_force_user = 1;
106 if (!strncmp("verbose", str, 7))
107 hpet_verbose = 1;
108 str = next;
109 }
110 return 1;
111 }
112 __setup("hpet=", hpet_setup);
113
114 static int __init disable_hpet(char *str)
115 {
116 boot_hpet_disable = 1;
117 return 1;
118 }
119 __setup("nohpet", disable_hpet);
120
121 static inline int is_hpet_capable(void)
122 {
123 return !boot_hpet_disable && hpet_address;
124 }
125
126 /*
127 * HPET timer interrupt enable / disable
128 */
129 static int hpet_legacy_int_enabled;
130
131 /**
132 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
133 */
134 int is_hpet_enabled(void)
135 {
136 return is_hpet_capable() && hpet_legacy_int_enabled;
137 }
138 EXPORT_SYMBOL_GPL(is_hpet_enabled);
139
140 static void _hpet_print_config(const char *function, int line)
141 {
142 u32 i, timers, l, h;
143 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
144 l = hpet_readl(HPET_ID);
145 h = hpet_readl(HPET_PERIOD);
146 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
147 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
148 l = hpet_readl(HPET_CFG);
149 h = hpet_readl(HPET_STATUS);
150 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
151 l = hpet_readl(HPET_COUNTER);
152 h = hpet_readl(HPET_COUNTER+4);
153 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
154
155 for (i = 0; i < timers; i++) {
156 l = hpet_readl(HPET_Tn_CFG(i));
157 h = hpet_readl(HPET_Tn_CFG(i)+4);
158 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
159 i, l, h);
160 l = hpet_readl(HPET_Tn_CMP(i));
161 h = hpet_readl(HPET_Tn_CMP(i)+4);
162 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
163 i, l, h);
164 l = hpet_readl(HPET_Tn_ROUTE(i));
165 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
166 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
167 i, l, h);
168 }
169 }
170
171 #define hpet_print_config() \
172 do { \
173 if (hpet_verbose) \
174 _hpet_print_config(__FUNCTION__, __LINE__); \
175 } while (0)
176
177 /*
178 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
179 * timer 0 and timer 1 in case of RTC emulation.
180 */
181 #ifdef CONFIG_HPET
182
183 static void hpet_reserve_msi_timers(struct hpet_data *hd);
184
185 static void hpet_reserve_platform_timers(unsigned int id)
186 {
187 struct hpet __iomem *hpet = hpet_virt_address;
188 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
189 unsigned int nrtimers, i;
190 struct hpet_data hd;
191
192 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
193
194 memset(&hd, 0, sizeof(hd));
195 hd.hd_phys_address = hpet_address;
196 hd.hd_address = hpet;
197 hd.hd_nirqs = nrtimers;
198 hpet_reserve_timer(&hd, 0);
199
200 #ifdef CONFIG_HPET_EMULATE_RTC
201 hpet_reserve_timer(&hd, 1);
202 #endif
203
204 /*
205 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
206 * is wrong for i8259!) not the output IRQ. Many BIOS writers
207 * don't bother configuring *any* comparator interrupts.
208 */
209 hd.hd_irq[0] = HPET_LEGACY_8254;
210 hd.hd_irq[1] = HPET_LEGACY_RTC;
211
212 for (i = 2; i < nrtimers; timer++, i++) {
213 hd.hd_irq[i] = (readl(&timer->hpet_config) &
214 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
215 }
216
217 hpet_reserve_msi_timers(&hd);
218
219 hpet_alloc(&hd);
220
221 }
222 #else
223 static void hpet_reserve_platform_timers(unsigned int id) { }
224 #endif
225
226 /*
227 * Common hpet info
228 */
229 static unsigned long hpet_freq;
230
231 static void hpet_legacy_set_mode(enum clock_event_mode mode,
232 struct clock_event_device *evt);
233 static int hpet_legacy_next_event(unsigned long delta,
234 struct clock_event_device *evt);
235
236 /*
237 * The hpet clock event device
238 */
239 static struct clock_event_device hpet_clockevent = {
240 .name = "hpet",
241 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
242 .set_mode = hpet_legacy_set_mode,
243 .set_next_event = hpet_legacy_next_event,
244 .irq = 0,
245 .rating = 50,
246 };
247
248 static void hpet_stop_counter(void)
249 {
250 unsigned long cfg = hpet_readl(HPET_CFG);
251 cfg &= ~HPET_CFG_ENABLE;
252 hpet_writel(cfg, HPET_CFG);
253 }
254
255 static void hpet_reset_counter(void)
256 {
257 hpet_writel(0, HPET_COUNTER);
258 hpet_writel(0, HPET_COUNTER + 4);
259 }
260
261 static void hpet_start_counter(void)
262 {
263 unsigned int cfg = hpet_readl(HPET_CFG);
264 cfg |= HPET_CFG_ENABLE;
265 hpet_writel(cfg, HPET_CFG);
266 }
267
268 static void hpet_restart_counter(void)
269 {
270 hpet_stop_counter();
271 hpet_reset_counter();
272 hpet_start_counter();
273 }
274
275 static void hpet_resume_device(void)
276 {
277 force_hpet_resume();
278 }
279
280 static void hpet_resume_counter(struct clocksource *cs)
281 {
282 hpet_resume_device();
283 hpet_restart_counter();
284 }
285
286 static void hpet_enable_legacy_int(void)
287 {
288 unsigned int cfg = hpet_readl(HPET_CFG);
289
290 cfg |= HPET_CFG_LEGACY;
291 hpet_writel(cfg, HPET_CFG);
292 hpet_legacy_int_enabled = 1;
293 }
294
295 static void hpet_legacy_clockevent_register(void)
296 {
297 /* Start HPET legacy interrupts */
298 hpet_enable_legacy_int();
299
300 /*
301 * Start hpet with the boot cpu mask and make it
302 * global after the IO_APIC has been initialized.
303 */
304 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
305 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
306 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
307 global_clock_event = &hpet_clockevent;
308 printk(KERN_DEBUG "hpet clockevent registered\n");
309 }
310
311 static int hpet_setup_msi_irq(unsigned int irq);
312
313 static void hpet_set_mode(enum clock_event_mode mode,
314 struct clock_event_device *evt, int timer)
315 {
316 unsigned int cfg, cmp, now;
317 uint64_t delta;
318
319 switch (mode) {
320 case CLOCK_EVT_MODE_PERIODIC:
321 hpet_stop_counter();
322 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
323 delta >>= evt->shift;
324 now = hpet_readl(HPET_COUNTER);
325 cmp = now + (unsigned int) delta;
326 cfg = hpet_readl(HPET_Tn_CFG(timer));
327 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
328 HPET_TN_SETVAL | HPET_TN_32BIT;
329 hpet_writel(cfg, HPET_Tn_CFG(timer));
330 hpet_writel(cmp, HPET_Tn_CMP(timer));
331 udelay(1);
332 /*
333 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
334 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
335 * bit is automatically cleared after the first write.
336 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
337 * Publication # 24674)
338 */
339 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
340 hpet_start_counter();
341 hpet_print_config();
342 break;
343
344 case CLOCK_EVT_MODE_ONESHOT:
345 cfg = hpet_readl(HPET_Tn_CFG(timer));
346 cfg &= ~HPET_TN_PERIODIC;
347 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
348 hpet_writel(cfg, HPET_Tn_CFG(timer));
349 break;
350
351 case CLOCK_EVT_MODE_UNUSED:
352 case CLOCK_EVT_MODE_SHUTDOWN:
353 cfg = hpet_readl(HPET_Tn_CFG(timer));
354 cfg &= ~HPET_TN_ENABLE;
355 hpet_writel(cfg, HPET_Tn_CFG(timer));
356 break;
357
358 case CLOCK_EVT_MODE_RESUME:
359 if (timer == 0) {
360 hpet_enable_legacy_int();
361 } else {
362 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
363 hpet_setup_msi_irq(hdev->irq);
364 disable_irq(hdev->irq);
365 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
366 enable_irq(hdev->irq);
367 }
368 hpet_print_config();
369 break;
370 }
371 }
372
373 static int hpet_next_event(unsigned long delta,
374 struct clock_event_device *evt, int timer)
375 {
376 u32 cnt;
377 s32 res;
378
379 cnt = hpet_readl(HPET_COUNTER);
380 cnt += (u32) delta;
381 hpet_writel(cnt, HPET_Tn_CMP(timer));
382
383 /*
384 * HPETs are a complete disaster. The compare register is
385 * based on a equal comparison and neither provides a less
386 * than or equal functionality (which would require to take
387 * the wraparound into account) nor a simple count down event
388 * mode. Further the write to the comparator register is
389 * delayed internally up to two HPET clock cycles in certain
390 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
391 * longer delays. We worked around that by reading back the
392 * compare register, but that required another workaround for
393 * ICH9,10 chips where the first readout after write can
394 * return the old stale value. We already had a minimum
395 * programming delta of 5us enforced, but a NMI or SMI hitting
396 * between the counter readout and the comparator write can
397 * move us behind that point easily. Now instead of reading
398 * the compare register back several times, we make the ETIME
399 * decision based on the following: Return ETIME if the
400 * counter value after the write is less than HPET_MIN_CYCLES
401 * away from the event or if the counter is already ahead of
402 * the event. The minimum programming delta for the generic
403 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
404 */
405 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
406
407 return res < HPET_MIN_CYCLES ? -ETIME : 0;
408 }
409
410 static void hpet_legacy_set_mode(enum clock_event_mode mode,
411 struct clock_event_device *evt)
412 {
413 hpet_set_mode(mode, evt, 0);
414 }
415
416 static int hpet_legacy_next_event(unsigned long delta,
417 struct clock_event_device *evt)
418 {
419 return hpet_next_event(delta, evt, 0);
420 }
421
422 /*
423 * HPET MSI Support
424 */
425 #ifdef CONFIG_PCI_MSI
426
427 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
428 static struct hpet_dev *hpet_devs;
429
430 void hpet_msi_unmask(struct irq_data *data)
431 {
432 struct hpet_dev *hdev = data->handler_data;
433 unsigned int cfg;
434
435 /* unmask it */
436 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
437 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
438 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
439 }
440
441 void hpet_msi_mask(struct irq_data *data)
442 {
443 struct hpet_dev *hdev = data->handler_data;
444 unsigned int cfg;
445
446 /* mask it */
447 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
448 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
449 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
450 }
451
452 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
453 {
454 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
455 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
456 }
457
458 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
459 {
460 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
461 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
462 msg->address_hi = 0;
463 }
464
465 static void hpet_msi_set_mode(enum clock_event_mode mode,
466 struct clock_event_device *evt)
467 {
468 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
469 hpet_set_mode(mode, evt, hdev->num);
470 }
471
472 static int hpet_msi_next_event(unsigned long delta,
473 struct clock_event_device *evt)
474 {
475 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
476 return hpet_next_event(delta, evt, hdev->num);
477 }
478
479 static int hpet_setup_msi_irq(unsigned int irq)
480 {
481 if (x86_msi.setup_hpet_msi(irq, hpet_blockid)) {
482 destroy_irq(irq);
483 return -EINVAL;
484 }
485 return 0;
486 }
487
488 static int hpet_assign_irq(struct hpet_dev *dev)
489 {
490 unsigned int irq;
491
492 irq = create_irq_nr(0, -1);
493 if (!irq)
494 return -EINVAL;
495
496 irq_set_handler_data(irq, dev);
497
498 if (hpet_setup_msi_irq(irq))
499 return -EINVAL;
500
501 dev->irq = irq;
502 return 0;
503 }
504
505 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
506 {
507 struct hpet_dev *dev = (struct hpet_dev *)data;
508 struct clock_event_device *hevt = &dev->evt;
509
510 if (!hevt->event_handler) {
511 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
512 dev->num);
513 return IRQ_HANDLED;
514 }
515
516 hevt->event_handler(hevt);
517 return IRQ_HANDLED;
518 }
519
520 static int hpet_setup_irq(struct hpet_dev *dev)
521 {
522
523 if (request_irq(dev->irq, hpet_interrupt_handler,
524 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
525 dev->name, dev))
526 return -1;
527
528 disable_irq(dev->irq);
529 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
530 enable_irq(dev->irq);
531
532 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
533 dev->name, dev->irq);
534
535 return 0;
536 }
537
538 /* This should be called in specific @cpu */
539 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
540 {
541 struct clock_event_device *evt = &hdev->evt;
542
543 WARN_ON(cpu != smp_processor_id());
544 if (!(hdev->flags & HPET_DEV_VALID))
545 return;
546
547 if (hpet_setup_msi_irq(hdev->irq))
548 return;
549
550 hdev->cpu = cpu;
551 per_cpu(cpu_hpet_dev, cpu) = hdev;
552 evt->name = hdev->name;
553 hpet_setup_irq(hdev);
554 evt->irq = hdev->irq;
555
556 evt->rating = 110;
557 evt->features = CLOCK_EVT_FEAT_ONESHOT;
558 if (hdev->flags & HPET_DEV_PERI_CAP)
559 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
560
561 evt->set_mode = hpet_msi_set_mode;
562 evt->set_next_event = hpet_msi_next_event;
563 evt->cpumask = cpumask_of(hdev->cpu);
564
565 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
566 0x7FFFFFFF);
567 }
568
569 #ifdef CONFIG_HPET
570 /* Reserve at least one timer for userspace (/dev/hpet) */
571 #define RESERVE_TIMERS 1
572 #else
573 #define RESERVE_TIMERS 0
574 #endif
575
576 static void hpet_msi_capability_lookup(unsigned int start_timer)
577 {
578 unsigned int id;
579 unsigned int num_timers;
580 unsigned int num_timers_used = 0;
581 int i;
582
583 if (hpet_msi_disable)
584 return;
585
586 if (boot_cpu_has(X86_FEATURE_ARAT))
587 return;
588 id = hpet_readl(HPET_ID);
589
590 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
591 num_timers++; /* Value read out starts from 0 */
592 hpet_print_config();
593
594 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
595 if (!hpet_devs)
596 return;
597
598 hpet_num_timers = num_timers;
599
600 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
601 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
602 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
603
604 /* Only consider HPET timer with MSI support */
605 if (!(cfg & HPET_TN_FSB_CAP))
606 continue;
607
608 hdev->flags = 0;
609 if (cfg & HPET_TN_PERIODIC_CAP)
610 hdev->flags |= HPET_DEV_PERI_CAP;
611 hdev->num = i;
612
613 sprintf(hdev->name, "hpet%d", i);
614 if (hpet_assign_irq(hdev))
615 continue;
616
617 hdev->flags |= HPET_DEV_FSB_CAP;
618 hdev->flags |= HPET_DEV_VALID;
619 num_timers_used++;
620 if (num_timers_used == num_possible_cpus())
621 break;
622 }
623
624 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
625 num_timers, num_timers_used);
626 }
627
628 #ifdef CONFIG_HPET
629 static void hpet_reserve_msi_timers(struct hpet_data *hd)
630 {
631 int i;
632
633 if (!hpet_devs)
634 return;
635
636 for (i = 0; i < hpet_num_timers; i++) {
637 struct hpet_dev *hdev = &hpet_devs[i];
638
639 if (!(hdev->flags & HPET_DEV_VALID))
640 continue;
641
642 hd->hd_irq[hdev->num] = hdev->irq;
643 hpet_reserve_timer(hd, hdev->num);
644 }
645 }
646 #endif
647
648 static struct hpet_dev *hpet_get_unused_timer(void)
649 {
650 int i;
651
652 if (!hpet_devs)
653 return NULL;
654
655 for (i = 0; i < hpet_num_timers; i++) {
656 struct hpet_dev *hdev = &hpet_devs[i];
657
658 if (!(hdev->flags & HPET_DEV_VALID))
659 continue;
660 if (test_and_set_bit(HPET_DEV_USED_BIT,
661 (unsigned long *)&hdev->flags))
662 continue;
663 return hdev;
664 }
665 return NULL;
666 }
667
668 struct hpet_work_struct {
669 struct delayed_work work;
670 struct completion complete;
671 };
672
673 static void hpet_work(struct work_struct *w)
674 {
675 struct hpet_dev *hdev;
676 int cpu = smp_processor_id();
677 struct hpet_work_struct *hpet_work;
678
679 hpet_work = container_of(w, struct hpet_work_struct, work.work);
680
681 hdev = hpet_get_unused_timer();
682 if (hdev)
683 init_one_hpet_msi_clockevent(hdev, cpu);
684
685 complete(&hpet_work->complete);
686 }
687
688 static int hpet_cpuhp_notify(struct notifier_block *n,
689 unsigned long action, void *hcpu)
690 {
691 unsigned long cpu = (unsigned long)hcpu;
692 struct hpet_work_struct work;
693 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
694
695 switch (action & 0xf) {
696 case CPU_ONLINE:
697 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
698 init_completion(&work.complete);
699 /* FIXME: add schedule_work_on() */
700 schedule_delayed_work_on(cpu, &work.work, 0);
701 wait_for_completion(&work.complete);
702 destroy_timer_on_stack(&work.work.timer);
703 break;
704 case CPU_DEAD:
705 if (hdev) {
706 free_irq(hdev->irq, hdev);
707 hdev->flags &= ~HPET_DEV_USED;
708 per_cpu(cpu_hpet_dev, cpu) = NULL;
709 }
710 break;
711 }
712 return NOTIFY_OK;
713 }
714 #else
715
716 static int hpet_setup_msi_irq(unsigned int irq)
717 {
718 return 0;
719 }
720 static void hpet_msi_capability_lookup(unsigned int start_timer)
721 {
722 return;
723 }
724
725 #ifdef CONFIG_HPET
726 static void hpet_reserve_msi_timers(struct hpet_data *hd)
727 {
728 return;
729 }
730 #endif
731
732 static int hpet_cpuhp_notify(struct notifier_block *n,
733 unsigned long action, void *hcpu)
734 {
735 return NOTIFY_OK;
736 }
737
738 #endif
739
740 /*
741 * Clock source related code
742 */
743 static cycle_t read_hpet(struct clocksource *cs)
744 {
745 return (cycle_t)hpet_readl(HPET_COUNTER);
746 }
747
748 static struct clocksource clocksource_hpet = {
749 .name = "hpet",
750 .rating = 250,
751 .read = read_hpet,
752 .mask = HPET_MASK,
753 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
754 .resume = hpet_resume_counter,
755 #ifdef CONFIG_X86_64
756 .archdata = { .vclock_mode = VCLOCK_HPET },
757 #endif
758 };
759
760 static int hpet_clocksource_register(void)
761 {
762 u64 start, now;
763 cycle_t t1;
764
765 /* Start the counter */
766 hpet_restart_counter();
767
768 /* Verify whether hpet counter works */
769 t1 = hpet_readl(HPET_COUNTER);
770 rdtscll(start);
771
772 /*
773 * We don't know the TSC frequency yet, but waiting for
774 * 200000 TSC cycles is safe:
775 * 4 GHz == 50us
776 * 1 GHz == 200us
777 */
778 do {
779 rep_nop();
780 rdtscll(now);
781 } while ((now - start) < 200000UL);
782
783 if (t1 == hpet_readl(HPET_COUNTER)) {
784 printk(KERN_WARNING
785 "HPET counter not counting. HPET disabled\n");
786 return -ENODEV;
787 }
788
789 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
790 return 0;
791 }
792
793 static u32 *hpet_boot_cfg;
794
795 /**
796 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
797 */
798 int __init hpet_enable(void)
799 {
800 u32 hpet_period, cfg, id;
801 u64 freq;
802 unsigned int i, last;
803
804 if (!is_hpet_capable())
805 return 0;
806
807 hpet_set_mapping();
808
809 /*
810 * Read the period and check for a sane value:
811 */
812 hpet_period = hpet_readl(HPET_PERIOD);
813
814 /*
815 * AMD SB700 based systems with spread spectrum enabled use a
816 * SMM based HPET emulation to provide proper frequency
817 * setting. The SMM code is initialized with the first HPET
818 * register access and takes some time to complete. During
819 * this time the config register reads 0xffffffff. We check
820 * for max. 1000 loops whether the config register reads a non
821 * 0xffffffff value to make sure that HPET is up and running
822 * before we go further. A counting loop is safe, as the HPET
823 * access takes thousands of CPU cycles. On non SB700 based
824 * machines this check is only done once and has no side
825 * effects.
826 */
827 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
828 if (i == 1000) {
829 printk(KERN_WARNING
830 "HPET config register value = 0xFFFFFFFF. "
831 "Disabling HPET\n");
832 goto out_nohpet;
833 }
834 }
835
836 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
837 goto out_nohpet;
838
839 /*
840 * The period is a femto seconds value. Convert it to a
841 * frequency.
842 */
843 freq = FSEC_PER_SEC;
844 do_div(freq, hpet_period);
845 hpet_freq = freq;
846
847 /*
848 * Read the HPET ID register to retrieve the IRQ routing
849 * information and the number of channels
850 */
851 id = hpet_readl(HPET_ID);
852 hpet_print_config();
853
854 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
855
856 #ifdef CONFIG_HPET_EMULATE_RTC
857 /*
858 * The legacy routing mode needs at least two channels, tick timer
859 * and the rtc emulation channel.
860 */
861 if (!last)
862 goto out_nohpet;
863 #endif
864
865 cfg = hpet_readl(HPET_CFG);
866 hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
867 GFP_KERNEL);
868 if (hpet_boot_cfg)
869 *hpet_boot_cfg = cfg;
870 else
871 pr_warn("HPET initial state will not be saved\n");
872 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
873 hpet_writel(cfg, HPET_CFG);
874 if (cfg)
875 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
876 cfg);
877
878 for (i = 0; i <= last; ++i) {
879 cfg = hpet_readl(HPET_Tn_CFG(i));
880 if (hpet_boot_cfg)
881 hpet_boot_cfg[i + 1] = cfg;
882 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
883 hpet_writel(cfg, HPET_Tn_CFG(i));
884 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
885 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
886 | HPET_TN_FSB | HPET_TN_FSB_CAP);
887 if (cfg)
888 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
889 cfg, i);
890 }
891 hpet_print_config();
892
893 if (hpet_clocksource_register())
894 goto out_nohpet;
895
896 if (id & HPET_ID_LEGSUP) {
897 hpet_legacy_clockevent_register();
898 return 1;
899 }
900 return 0;
901
902 out_nohpet:
903 hpet_clear_mapping();
904 hpet_address = 0;
905 return 0;
906 }
907
908 /*
909 * Needs to be late, as the reserve_timer code calls kalloc !
910 *
911 * Not a problem on i386 as hpet_enable is called from late_time_init,
912 * but on x86_64 it is necessary !
913 */
914 static __init int hpet_late_init(void)
915 {
916 int cpu;
917
918 if (boot_hpet_disable)
919 return -ENODEV;
920
921 if (!hpet_address) {
922 if (!force_hpet_address)
923 return -ENODEV;
924
925 hpet_address = force_hpet_address;
926 hpet_enable();
927 }
928
929 if (!hpet_virt_address)
930 return -ENODEV;
931
932 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
933 hpet_msi_capability_lookup(2);
934 else
935 hpet_msi_capability_lookup(0);
936
937 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
938 hpet_print_config();
939
940 if (hpet_msi_disable)
941 return 0;
942
943 if (boot_cpu_has(X86_FEATURE_ARAT))
944 return 0;
945
946 for_each_online_cpu(cpu) {
947 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
948 }
949
950 /* This notifier should be called after workqueue is ready */
951 hotcpu_notifier(hpet_cpuhp_notify, -20);
952
953 return 0;
954 }
955 fs_initcall(hpet_late_init);
956
957 void hpet_disable(void)
958 {
959 if (is_hpet_capable() && hpet_virt_address) {
960 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
961
962 if (hpet_boot_cfg)
963 cfg = *hpet_boot_cfg;
964 else if (hpet_legacy_int_enabled) {
965 cfg &= ~HPET_CFG_LEGACY;
966 hpet_legacy_int_enabled = 0;
967 }
968 cfg &= ~HPET_CFG_ENABLE;
969 hpet_writel(cfg, HPET_CFG);
970
971 if (!hpet_boot_cfg)
972 return;
973
974 id = hpet_readl(HPET_ID);
975 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
976
977 for (id = 0; id <= last; ++id)
978 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
979
980 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
981 hpet_writel(*hpet_boot_cfg, HPET_CFG);
982 }
983 }
984
985 #ifdef CONFIG_HPET_EMULATE_RTC
986
987 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
988 * is enabled, we support RTC interrupt functionality in software.
989 * RTC has 3 kinds of interrupts:
990 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
991 * is updated
992 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
993 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
994 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
995 * (1) and (2) above are implemented using polling at a frequency of
996 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
997 * overhead. (DEFAULT_RTC_INT_FREQ)
998 * For (3), we use interrupts at 64Hz or user specified periodic
999 * frequency, whichever is higher.
1000 */
1001 #include <linux/mc146818rtc.h>
1002 #include <linux/rtc.h>
1003 #include <asm/rtc.h>
1004
1005 #define DEFAULT_RTC_INT_FREQ 64
1006 #define DEFAULT_RTC_SHIFT 6
1007 #define RTC_NUM_INTS 1
1008
1009 static unsigned long hpet_rtc_flags;
1010 static int hpet_prev_update_sec;
1011 static struct rtc_time hpet_alarm_time;
1012 static unsigned long hpet_pie_count;
1013 static u32 hpet_t1_cmp;
1014 static u32 hpet_default_delta;
1015 static u32 hpet_pie_delta;
1016 static unsigned long hpet_pie_limit;
1017
1018 static rtc_irq_handler irq_handler;
1019
1020 /*
1021 * Check that the hpet counter c1 is ahead of the c2
1022 */
1023 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1024 {
1025 return (s32)(c2 - c1) < 0;
1026 }
1027
1028 /*
1029 * Registers a IRQ handler.
1030 */
1031 int hpet_register_irq_handler(rtc_irq_handler handler)
1032 {
1033 if (!is_hpet_enabled())
1034 return -ENODEV;
1035 if (irq_handler)
1036 return -EBUSY;
1037
1038 irq_handler = handler;
1039
1040 return 0;
1041 }
1042 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1043
1044 /*
1045 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1046 * and does cleanup.
1047 */
1048 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1049 {
1050 if (!is_hpet_enabled())
1051 return;
1052
1053 irq_handler = NULL;
1054 hpet_rtc_flags = 0;
1055 }
1056 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1057
1058 /*
1059 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1060 * is not supported by all HPET implementations for timer 1.
1061 *
1062 * hpet_rtc_timer_init() is called when the rtc is initialized.
1063 */
1064 int hpet_rtc_timer_init(void)
1065 {
1066 unsigned int cfg, cnt, delta;
1067 unsigned long flags;
1068
1069 if (!is_hpet_enabled())
1070 return 0;
1071
1072 if (!hpet_default_delta) {
1073 uint64_t clc;
1074
1075 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1076 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1077 hpet_default_delta = clc;
1078 }
1079
1080 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1081 delta = hpet_default_delta;
1082 else
1083 delta = hpet_pie_delta;
1084
1085 local_irq_save(flags);
1086
1087 cnt = delta + hpet_readl(HPET_COUNTER);
1088 hpet_writel(cnt, HPET_T1_CMP);
1089 hpet_t1_cmp = cnt;
1090
1091 cfg = hpet_readl(HPET_T1_CFG);
1092 cfg &= ~HPET_TN_PERIODIC;
1093 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1094 hpet_writel(cfg, HPET_T1_CFG);
1095
1096 local_irq_restore(flags);
1097
1098 return 1;
1099 }
1100 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1101
1102 static void hpet_disable_rtc_channel(void)
1103 {
1104 unsigned long cfg;
1105 cfg = hpet_readl(HPET_T1_CFG);
1106 cfg &= ~HPET_TN_ENABLE;
1107 hpet_writel(cfg, HPET_T1_CFG);
1108 }
1109
1110 /*
1111 * The functions below are called from rtc driver.
1112 * Return 0 if HPET is not being used.
1113 * Otherwise do the necessary changes and return 1.
1114 */
1115 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1116 {
1117 if (!is_hpet_enabled())
1118 return 0;
1119
1120 hpet_rtc_flags &= ~bit_mask;
1121 if (unlikely(!hpet_rtc_flags))
1122 hpet_disable_rtc_channel();
1123
1124 return 1;
1125 }
1126 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1127
1128 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1129 {
1130 unsigned long oldbits = hpet_rtc_flags;
1131
1132 if (!is_hpet_enabled())
1133 return 0;
1134
1135 hpet_rtc_flags |= bit_mask;
1136
1137 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1138 hpet_prev_update_sec = -1;
1139
1140 if (!oldbits)
1141 hpet_rtc_timer_init();
1142
1143 return 1;
1144 }
1145 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1146
1147 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1148 unsigned char sec)
1149 {
1150 if (!is_hpet_enabled())
1151 return 0;
1152
1153 hpet_alarm_time.tm_hour = hrs;
1154 hpet_alarm_time.tm_min = min;
1155 hpet_alarm_time.tm_sec = sec;
1156
1157 return 1;
1158 }
1159 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1160
1161 int hpet_set_periodic_freq(unsigned long freq)
1162 {
1163 uint64_t clc;
1164
1165 if (!is_hpet_enabled())
1166 return 0;
1167
1168 if (freq <= DEFAULT_RTC_INT_FREQ)
1169 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1170 else {
1171 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1172 do_div(clc, freq);
1173 clc >>= hpet_clockevent.shift;
1174 hpet_pie_delta = clc;
1175 hpet_pie_limit = 0;
1176 }
1177 return 1;
1178 }
1179 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1180
1181 int hpet_rtc_dropped_irq(void)
1182 {
1183 return is_hpet_enabled();
1184 }
1185 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1186
1187 static void hpet_rtc_timer_reinit(void)
1188 {
1189 unsigned int delta;
1190 int lost_ints = -1;
1191
1192 if (unlikely(!hpet_rtc_flags))
1193 hpet_disable_rtc_channel();
1194
1195 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1196 delta = hpet_default_delta;
1197 else
1198 delta = hpet_pie_delta;
1199
1200 /*
1201 * Increment the comparator value until we are ahead of the
1202 * current count.
1203 */
1204 do {
1205 hpet_t1_cmp += delta;
1206 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1207 lost_ints++;
1208 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1209
1210 if (lost_ints) {
1211 if (hpet_rtc_flags & RTC_PIE)
1212 hpet_pie_count += lost_ints;
1213 if (printk_ratelimit())
1214 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1215 lost_ints);
1216 }
1217 }
1218
1219 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1220 {
1221 struct rtc_time curr_time;
1222 unsigned long rtc_int_flag = 0;
1223
1224 hpet_rtc_timer_reinit();
1225 memset(&curr_time, 0, sizeof(struct rtc_time));
1226
1227 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1228 get_rtc_time(&curr_time);
1229
1230 if (hpet_rtc_flags & RTC_UIE &&
1231 curr_time.tm_sec != hpet_prev_update_sec) {
1232 if (hpet_prev_update_sec >= 0)
1233 rtc_int_flag = RTC_UF;
1234 hpet_prev_update_sec = curr_time.tm_sec;
1235 }
1236
1237 if (hpet_rtc_flags & RTC_PIE &&
1238 ++hpet_pie_count >= hpet_pie_limit) {
1239 rtc_int_flag |= RTC_PF;
1240 hpet_pie_count = 0;
1241 }
1242
1243 if (hpet_rtc_flags & RTC_AIE &&
1244 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1245 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1246 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1247 rtc_int_flag |= RTC_AF;
1248
1249 if (rtc_int_flag) {
1250 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1251 if (irq_handler)
1252 irq_handler(rtc_int_flag, dev_id);
1253 }
1254 return IRQ_HANDLED;
1255 }
1256 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1257 #endif