clocksource: Replace vread with generic arch data
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/slab.h>
8 #include <linux/hpet.h>
9 #include <linux/init.h>
10 #include <linux/cpu.h>
11 #include <linux/pm.h>
12 #include <linux/io.h>
13
14 #include <asm/fixmap.h>
15 #include <asm/i8253.h>
16 #include <asm/hpet.h>
17
18 #define HPET_MASK CLOCKSOURCE_MASK(32)
19
20 /* FSEC = 10^-15
21 NSEC = 10^-9 */
22 #define FSEC_PER_NSEC 1000000L
23
24 #define HPET_DEV_USED_BIT 2
25 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID 0x8
27 #define HPET_DEV_FSB_CAP 0x1000
28 #define HPET_DEV_PERI_CAP 0x2000
29
30 #define HPET_MIN_CYCLES 128
31 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
32
33 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
34
35 /*
36 * HPET address is set in acpi/boot.c, when an ACPI entry exists
37 */
38 unsigned long hpet_address;
39 u8 hpet_blockid; /* OS timer block num */
40 u8 hpet_msi_disable;
41
42 #ifdef CONFIG_PCI_MSI
43 static unsigned long hpet_num_timers;
44 #endif
45 static void __iomem *hpet_virt_address;
46
47 struct hpet_dev {
48 struct clock_event_device evt;
49 unsigned int num;
50 int cpu;
51 unsigned int irq;
52 unsigned int flags;
53 char name[10];
54 };
55
56 inline unsigned int hpet_readl(unsigned int a)
57 {
58 return readl(hpet_virt_address + a);
59 }
60
61 static inline void hpet_writel(unsigned int d, unsigned int a)
62 {
63 writel(d, hpet_virt_address + a);
64 }
65
66 #ifdef CONFIG_X86_64
67 #include <asm/pgtable.h>
68 #endif
69
70 static inline void hpet_set_mapping(void)
71 {
72 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
73 #ifdef CONFIG_X86_64
74 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
75 #endif
76 }
77
78 static inline void hpet_clear_mapping(void)
79 {
80 iounmap(hpet_virt_address);
81 hpet_virt_address = NULL;
82 }
83
84 /*
85 * HPET command line enable / disable
86 */
87 static int boot_hpet_disable;
88 int hpet_force_user;
89 static int hpet_verbose;
90
91 static int __init hpet_setup(char *str)
92 {
93 if (str) {
94 if (!strncmp("disable", str, 7))
95 boot_hpet_disable = 1;
96 if (!strncmp("force", str, 5))
97 hpet_force_user = 1;
98 if (!strncmp("verbose", str, 7))
99 hpet_verbose = 1;
100 }
101 return 1;
102 }
103 __setup("hpet=", hpet_setup);
104
105 static int __init disable_hpet(char *str)
106 {
107 boot_hpet_disable = 1;
108 return 1;
109 }
110 __setup("nohpet", disable_hpet);
111
112 static inline int is_hpet_capable(void)
113 {
114 return !boot_hpet_disable && hpet_address;
115 }
116
117 /*
118 * HPET timer interrupt enable / disable
119 */
120 static int hpet_legacy_int_enabled;
121
122 /**
123 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
124 */
125 int is_hpet_enabled(void)
126 {
127 return is_hpet_capable() && hpet_legacy_int_enabled;
128 }
129 EXPORT_SYMBOL_GPL(is_hpet_enabled);
130
131 static void _hpet_print_config(const char *function, int line)
132 {
133 u32 i, timers, l, h;
134 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
135 l = hpet_readl(HPET_ID);
136 h = hpet_readl(HPET_PERIOD);
137 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
138 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
139 l = hpet_readl(HPET_CFG);
140 h = hpet_readl(HPET_STATUS);
141 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
142 l = hpet_readl(HPET_COUNTER);
143 h = hpet_readl(HPET_COUNTER+4);
144 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
145
146 for (i = 0; i < timers; i++) {
147 l = hpet_readl(HPET_Tn_CFG(i));
148 h = hpet_readl(HPET_Tn_CFG(i)+4);
149 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
150 i, l, h);
151 l = hpet_readl(HPET_Tn_CMP(i));
152 h = hpet_readl(HPET_Tn_CMP(i)+4);
153 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
154 i, l, h);
155 l = hpet_readl(HPET_Tn_ROUTE(i));
156 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
157 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
158 i, l, h);
159 }
160 }
161
162 #define hpet_print_config() \
163 do { \
164 if (hpet_verbose) \
165 _hpet_print_config(__FUNCTION__, __LINE__); \
166 } while (0)
167
168 /*
169 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
170 * timer 0 and timer 1 in case of RTC emulation.
171 */
172 #ifdef CONFIG_HPET
173
174 static void hpet_reserve_msi_timers(struct hpet_data *hd);
175
176 static void hpet_reserve_platform_timers(unsigned int id)
177 {
178 struct hpet __iomem *hpet = hpet_virt_address;
179 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
180 unsigned int nrtimers, i;
181 struct hpet_data hd;
182
183 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
184
185 memset(&hd, 0, sizeof(hd));
186 hd.hd_phys_address = hpet_address;
187 hd.hd_address = hpet;
188 hd.hd_nirqs = nrtimers;
189 hpet_reserve_timer(&hd, 0);
190
191 #ifdef CONFIG_HPET_EMULATE_RTC
192 hpet_reserve_timer(&hd, 1);
193 #endif
194
195 /*
196 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
197 * is wrong for i8259!) not the output IRQ. Many BIOS writers
198 * don't bother configuring *any* comparator interrupts.
199 */
200 hd.hd_irq[0] = HPET_LEGACY_8254;
201 hd.hd_irq[1] = HPET_LEGACY_RTC;
202
203 for (i = 2; i < nrtimers; timer++, i++) {
204 hd.hd_irq[i] = (readl(&timer->hpet_config) &
205 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
206 }
207
208 hpet_reserve_msi_timers(&hd);
209
210 hpet_alloc(&hd);
211
212 }
213 #else
214 static void hpet_reserve_platform_timers(unsigned int id) { }
215 #endif
216
217 /*
218 * Common hpet info
219 */
220 static unsigned long hpet_freq;
221
222 static void hpet_legacy_set_mode(enum clock_event_mode mode,
223 struct clock_event_device *evt);
224 static int hpet_legacy_next_event(unsigned long delta,
225 struct clock_event_device *evt);
226
227 /*
228 * The hpet clock event device
229 */
230 static struct clock_event_device hpet_clockevent = {
231 .name = "hpet",
232 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
233 .set_mode = hpet_legacy_set_mode,
234 .set_next_event = hpet_legacy_next_event,
235 .irq = 0,
236 .rating = 50,
237 };
238
239 static void hpet_stop_counter(void)
240 {
241 unsigned long cfg = hpet_readl(HPET_CFG);
242 cfg &= ~HPET_CFG_ENABLE;
243 hpet_writel(cfg, HPET_CFG);
244 }
245
246 static void hpet_reset_counter(void)
247 {
248 hpet_writel(0, HPET_COUNTER);
249 hpet_writel(0, HPET_COUNTER + 4);
250 }
251
252 static void hpet_start_counter(void)
253 {
254 unsigned int cfg = hpet_readl(HPET_CFG);
255 cfg |= HPET_CFG_ENABLE;
256 hpet_writel(cfg, HPET_CFG);
257 }
258
259 static void hpet_restart_counter(void)
260 {
261 hpet_stop_counter();
262 hpet_reset_counter();
263 hpet_start_counter();
264 }
265
266 static void hpet_resume_device(void)
267 {
268 force_hpet_resume();
269 }
270
271 static void hpet_resume_counter(struct clocksource *cs)
272 {
273 hpet_resume_device();
274 hpet_restart_counter();
275 }
276
277 static void hpet_enable_legacy_int(void)
278 {
279 unsigned int cfg = hpet_readl(HPET_CFG);
280
281 cfg |= HPET_CFG_LEGACY;
282 hpet_writel(cfg, HPET_CFG);
283 hpet_legacy_int_enabled = 1;
284 }
285
286 static void hpet_legacy_clockevent_register(void)
287 {
288 /* Start HPET legacy interrupts */
289 hpet_enable_legacy_int();
290
291 /*
292 * Start hpet with the boot cpu mask and make it
293 * global after the IO_APIC has been initialized.
294 */
295 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
296 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
297 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
298 global_clock_event = &hpet_clockevent;
299 printk(KERN_DEBUG "hpet clockevent registered\n");
300 }
301
302 static int hpet_setup_msi_irq(unsigned int irq);
303
304 static void hpet_set_mode(enum clock_event_mode mode,
305 struct clock_event_device *evt, int timer)
306 {
307 unsigned int cfg, cmp, now;
308 uint64_t delta;
309
310 switch (mode) {
311 case CLOCK_EVT_MODE_PERIODIC:
312 hpet_stop_counter();
313 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
314 delta >>= evt->shift;
315 now = hpet_readl(HPET_COUNTER);
316 cmp = now + (unsigned int) delta;
317 cfg = hpet_readl(HPET_Tn_CFG(timer));
318 /* Make sure we use edge triggered interrupts */
319 cfg &= ~HPET_TN_LEVEL;
320 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
321 HPET_TN_SETVAL | HPET_TN_32BIT;
322 hpet_writel(cfg, HPET_Tn_CFG(timer));
323 hpet_writel(cmp, HPET_Tn_CMP(timer));
324 udelay(1);
325 /*
326 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
327 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
328 * bit is automatically cleared after the first write.
329 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
330 * Publication # 24674)
331 */
332 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
333 hpet_start_counter();
334 hpet_print_config();
335 break;
336
337 case CLOCK_EVT_MODE_ONESHOT:
338 cfg = hpet_readl(HPET_Tn_CFG(timer));
339 cfg &= ~HPET_TN_PERIODIC;
340 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
341 hpet_writel(cfg, HPET_Tn_CFG(timer));
342 break;
343
344 case CLOCK_EVT_MODE_UNUSED:
345 case CLOCK_EVT_MODE_SHUTDOWN:
346 cfg = hpet_readl(HPET_Tn_CFG(timer));
347 cfg &= ~HPET_TN_ENABLE;
348 hpet_writel(cfg, HPET_Tn_CFG(timer));
349 break;
350
351 case CLOCK_EVT_MODE_RESUME:
352 if (timer == 0) {
353 hpet_enable_legacy_int();
354 } else {
355 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
356 hpet_setup_msi_irq(hdev->irq);
357 disable_irq(hdev->irq);
358 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
359 enable_irq(hdev->irq);
360 }
361 hpet_print_config();
362 break;
363 }
364 }
365
366 static int hpet_next_event(unsigned long delta,
367 struct clock_event_device *evt, int timer)
368 {
369 u32 cnt;
370 s32 res;
371
372 cnt = hpet_readl(HPET_COUNTER);
373 cnt += (u32) delta;
374 hpet_writel(cnt, HPET_Tn_CMP(timer));
375
376 /*
377 * HPETs are a complete disaster. The compare register is
378 * based on a equal comparison and neither provides a less
379 * than or equal functionality (which would require to take
380 * the wraparound into account) nor a simple count down event
381 * mode. Further the write to the comparator register is
382 * delayed internally up to two HPET clock cycles in certain
383 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
384 * longer delays. We worked around that by reading back the
385 * compare register, but that required another workaround for
386 * ICH9,10 chips where the first readout after write can
387 * return the old stale value. We already had a minimum
388 * programming delta of 5us enforced, but a NMI or SMI hitting
389 * between the counter readout and the comparator write can
390 * move us behind that point easily. Now instead of reading
391 * the compare register back several times, we make the ETIME
392 * decision based on the following: Return ETIME if the
393 * counter value after the write is less than HPET_MIN_CYCLES
394 * away from the event or if the counter is already ahead of
395 * the event. The minimum programming delta for the generic
396 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
397 */
398 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
399
400 return res < HPET_MIN_CYCLES ? -ETIME : 0;
401 }
402
403 static void hpet_legacy_set_mode(enum clock_event_mode mode,
404 struct clock_event_device *evt)
405 {
406 hpet_set_mode(mode, evt, 0);
407 }
408
409 static int hpet_legacy_next_event(unsigned long delta,
410 struct clock_event_device *evt)
411 {
412 return hpet_next_event(delta, evt, 0);
413 }
414
415 /*
416 * HPET MSI Support
417 */
418 #ifdef CONFIG_PCI_MSI
419
420 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
421 static struct hpet_dev *hpet_devs;
422
423 void hpet_msi_unmask(struct irq_data *data)
424 {
425 struct hpet_dev *hdev = data->handler_data;
426 unsigned int cfg;
427
428 /* unmask it */
429 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
430 cfg |= HPET_TN_FSB;
431 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
432 }
433
434 void hpet_msi_mask(struct irq_data *data)
435 {
436 struct hpet_dev *hdev = data->handler_data;
437 unsigned int cfg;
438
439 /* mask it */
440 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
441 cfg &= ~HPET_TN_FSB;
442 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
443 }
444
445 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
446 {
447 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
448 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
449 }
450
451 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
452 {
453 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
454 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
455 msg->address_hi = 0;
456 }
457
458 static void hpet_msi_set_mode(enum clock_event_mode mode,
459 struct clock_event_device *evt)
460 {
461 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
462 hpet_set_mode(mode, evt, hdev->num);
463 }
464
465 static int hpet_msi_next_event(unsigned long delta,
466 struct clock_event_device *evt)
467 {
468 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
469 return hpet_next_event(delta, evt, hdev->num);
470 }
471
472 static int hpet_setup_msi_irq(unsigned int irq)
473 {
474 if (arch_setup_hpet_msi(irq, hpet_blockid)) {
475 destroy_irq(irq);
476 return -EINVAL;
477 }
478 return 0;
479 }
480
481 static int hpet_assign_irq(struct hpet_dev *dev)
482 {
483 unsigned int irq;
484
485 irq = create_irq_nr(0, -1);
486 if (!irq)
487 return -EINVAL;
488
489 irq_set_handler_data(irq, dev);
490
491 if (hpet_setup_msi_irq(irq))
492 return -EINVAL;
493
494 dev->irq = irq;
495 return 0;
496 }
497
498 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
499 {
500 struct hpet_dev *dev = (struct hpet_dev *)data;
501 struct clock_event_device *hevt = &dev->evt;
502
503 if (!hevt->event_handler) {
504 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
505 dev->num);
506 return IRQ_HANDLED;
507 }
508
509 hevt->event_handler(hevt);
510 return IRQ_HANDLED;
511 }
512
513 static int hpet_setup_irq(struct hpet_dev *dev)
514 {
515
516 if (request_irq(dev->irq, hpet_interrupt_handler,
517 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
518 dev->name, dev))
519 return -1;
520
521 disable_irq(dev->irq);
522 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
523 enable_irq(dev->irq);
524
525 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
526 dev->name, dev->irq);
527
528 return 0;
529 }
530
531 /* This should be called in specific @cpu */
532 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
533 {
534 struct clock_event_device *evt = &hdev->evt;
535
536 WARN_ON(cpu != smp_processor_id());
537 if (!(hdev->flags & HPET_DEV_VALID))
538 return;
539
540 if (hpet_setup_msi_irq(hdev->irq))
541 return;
542
543 hdev->cpu = cpu;
544 per_cpu(cpu_hpet_dev, cpu) = hdev;
545 evt->name = hdev->name;
546 hpet_setup_irq(hdev);
547 evt->irq = hdev->irq;
548
549 evt->rating = 110;
550 evt->features = CLOCK_EVT_FEAT_ONESHOT;
551 if (hdev->flags & HPET_DEV_PERI_CAP)
552 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
553
554 evt->set_mode = hpet_msi_set_mode;
555 evt->set_next_event = hpet_msi_next_event;
556 evt->cpumask = cpumask_of(hdev->cpu);
557
558 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
559 0x7FFFFFFF);
560 }
561
562 #ifdef CONFIG_HPET
563 /* Reserve at least one timer for userspace (/dev/hpet) */
564 #define RESERVE_TIMERS 1
565 #else
566 #define RESERVE_TIMERS 0
567 #endif
568
569 static void hpet_msi_capability_lookup(unsigned int start_timer)
570 {
571 unsigned int id;
572 unsigned int num_timers;
573 unsigned int num_timers_used = 0;
574 int i;
575
576 if (hpet_msi_disable)
577 return;
578
579 if (boot_cpu_has(X86_FEATURE_ARAT))
580 return;
581 id = hpet_readl(HPET_ID);
582
583 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
584 num_timers++; /* Value read out starts from 0 */
585 hpet_print_config();
586
587 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
588 if (!hpet_devs)
589 return;
590
591 hpet_num_timers = num_timers;
592
593 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
594 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
595 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
596
597 /* Only consider HPET timer with MSI support */
598 if (!(cfg & HPET_TN_FSB_CAP))
599 continue;
600
601 hdev->flags = 0;
602 if (cfg & HPET_TN_PERIODIC_CAP)
603 hdev->flags |= HPET_DEV_PERI_CAP;
604 hdev->num = i;
605
606 sprintf(hdev->name, "hpet%d", i);
607 if (hpet_assign_irq(hdev))
608 continue;
609
610 hdev->flags |= HPET_DEV_FSB_CAP;
611 hdev->flags |= HPET_DEV_VALID;
612 num_timers_used++;
613 if (num_timers_used == num_possible_cpus())
614 break;
615 }
616
617 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
618 num_timers, num_timers_used);
619 }
620
621 #ifdef CONFIG_HPET
622 static void hpet_reserve_msi_timers(struct hpet_data *hd)
623 {
624 int i;
625
626 if (!hpet_devs)
627 return;
628
629 for (i = 0; i < hpet_num_timers; i++) {
630 struct hpet_dev *hdev = &hpet_devs[i];
631
632 if (!(hdev->flags & HPET_DEV_VALID))
633 continue;
634
635 hd->hd_irq[hdev->num] = hdev->irq;
636 hpet_reserve_timer(hd, hdev->num);
637 }
638 }
639 #endif
640
641 static struct hpet_dev *hpet_get_unused_timer(void)
642 {
643 int i;
644
645 if (!hpet_devs)
646 return NULL;
647
648 for (i = 0; i < hpet_num_timers; i++) {
649 struct hpet_dev *hdev = &hpet_devs[i];
650
651 if (!(hdev->flags & HPET_DEV_VALID))
652 continue;
653 if (test_and_set_bit(HPET_DEV_USED_BIT,
654 (unsigned long *)&hdev->flags))
655 continue;
656 return hdev;
657 }
658 return NULL;
659 }
660
661 struct hpet_work_struct {
662 struct delayed_work work;
663 struct completion complete;
664 };
665
666 static void hpet_work(struct work_struct *w)
667 {
668 struct hpet_dev *hdev;
669 int cpu = smp_processor_id();
670 struct hpet_work_struct *hpet_work;
671
672 hpet_work = container_of(w, struct hpet_work_struct, work.work);
673
674 hdev = hpet_get_unused_timer();
675 if (hdev)
676 init_one_hpet_msi_clockevent(hdev, cpu);
677
678 complete(&hpet_work->complete);
679 }
680
681 static int hpet_cpuhp_notify(struct notifier_block *n,
682 unsigned long action, void *hcpu)
683 {
684 unsigned long cpu = (unsigned long)hcpu;
685 struct hpet_work_struct work;
686 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
687
688 switch (action & 0xf) {
689 case CPU_ONLINE:
690 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
691 init_completion(&work.complete);
692 /* FIXME: add schedule_work_on() */
693 schedule_delayed_work_on(cpu, &work.work, 0);
694 wait_for_completion(&work.complete);
695 destroy_timer_on_stack(&work.work.timer);
696 break;
697 case CPU_DEAD:
698 if (hdev) {
699 free_irq(hdev->irq, hdev);
700 hdev->flags &= ~HPET_DEV_USED;
701 per_cpu(cpu_hpet_dev, cpu) = NULL;
702 }
703 break;
704 }
705 return NOTIFY_OK;
706 }
707 #else
708
709 static int hpet_setup_msi_irq(unsigned int irq)
710 {
711 return 0;
712 }
713 static void hpet_msi_capability_lookup(unsigned int start_timer)
714 {
715 return;
716 }
717
718 #ifdef CONFIG_HPET
719 static void hpet_reserve_msi_timers(struct hpet_data *hd)
720 {
721 return;
722 }
723 #endif
724
725 static int hpet_cpuhp_notify(struct notifier_block *n,
726 unsigned long action, void *hcpu)
727 {
728 return NOTIFY_OK;
729 }
730
731 #endif
732
733 /*
734 * Clock source related code
735 */
736 static cycle_t read_hpet(struct clocksource *cs)
737 {
738 return (cycle_t)hpet_readl(HPET_COUNTER);
739 }
740
741 #ifdef CONFIG_X86_64
742 static cycle_t __vsyscall_fn vread_hpet(void)
743 {
744 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
745 }
746 #endif
747
748 static struct clocksource clocksource_hpet = {
749 .name = "hpet",
750 .rating = 250,
751 .read = read_hpet,
752 .mask = HPET_MASK,
753 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
754 .resume = hpet_resume_counter,
755 #ifdef CONFIG_X86_64
756 .archdata = { .vread = vread_hpet },
757 #endif
758 };
759
760 static int hpet_clocksource_register(void)
761 {
762 u64 start, now;
763 cycle_t t1;
764
765 /* Start the counter */
766 hpet_restart_counter();
767
768 /* Verify whether hpet counter works */
769 t1 = hpet_readl(HPET_COUNTER);
770 rdtscll(start);
771
772 /*
773 * We don't know the TSC frequency yet, but waiting for
774 * 200000 TSC cycles is safe:
775 * 4 GHz == 50us
776 * 1 GHz == 200us
777 */
778 do {
779 rep_nop();
780 rdtscll(now);
781 } while ((now - start) < 200000UL);
782
783 if (t1 == hpet_readl(HPET_COUNTER)) {
784 printk(KERN_WARNING
785 "HPET counter not counting. HPET disabled\n");
786 return -ENODEV;
787 }
788
789 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
790 return 0;
791 }
792
793 /**
794 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
795 */
796 int __init hpet_enable(void)
797 {
798 unsigned long hpet_period;
799 unsigned int id;
800 u64 freq;
801 int i;
802
803 if (!is_hpet_capable())
804 return 0;
805
806 hpet_set_mapping();
807
808 /*
809 * Read the period and check for a sane value:
810 */
811 hpet_period = hpet_readl(HPET_PERIOD);
812
813 /*
814 * AMD SB700 based systems with spread spectrum enabled use a
815 * SMM based HPET emulation to provide proper frequency
816 * setting. The SMM code is initialized with the first HPET
817 * register access and takes some time to complete. During
818 * this time the config register reads 0xffffffff. We check
819 * for max. 1000 loops whether the config register reads a non
820 * 0xffffffff value to make sure that HPET is up and running
821 * before we go further. A counting loop is safe, as the HPET
822 * access takes thousands of CPU cycles. On non SB700 based
823 * machines this check is only done once and has no side
824 * effects.
825 */
826 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
827 if (i == 1000) {
828 printk(KERN_WARNING
829 "HPET config register value = 0xFFFFFFFF. "
830 "Disabling HPET\n");
831 goto out_nohpet;
832 }
833 }
834
835 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
836 goto out_nohpet;
837
838 /*
839 * The period is a femto seconds value. Convert it to a
840 * frequency.
841 */
842 freq = FSEC_PER_SEC;
843 do_div(freq, hpet_period);
844 hpet_freq = freq;
845
846 /*
847 * Read the HPET ID register to retrieve the IRQ routing
848 * information and the number of channels
849 */
850 id = hpet_readl(HPET_ID);
851 hpet_print_config();
852
853 #ifdef CONFIG_HPET_EMULATE_RTC
854 /*
855 * The legacy routing mode needs at least two channels, tick timer
856 * and the rtc emulation channel.
857 */
858 if (!(id & HPET_ID_NUMBER))
859 goto out_nohpet;
860 #endif
861
862 if (hpet_clocksource_register())
863 goto out_nohpet;
864
865 if (id & HPET_ID_LEGSUP) {
866 hpet_legacy_clockevent_register();
867 return 1;
868 }
869 return 0;
870
871 out_nohpet:
872 hpet_clear_mapping();
873 hpet_address = 0;
874 return 0;
875 }
876
877 /*
878 * Needs to be late, as the reserve_timer code calls kalloc !
879 *
880 * Not a problem on i386 as hpet_enable is called from late_time_init,
881 * but on x86_64 it is necessary !
882 */
883 static __init int hpet_late_init(void)
884 {
885 int cpu;
886
887 if (boot_hpet_disable)
888 return -ENODEV;
889
890 if (!hpet_address) {
891 if (!force_hpet_address)
892 return -ENODEV;
893
894 hpet_address = force_hpet_address;
895 hpet_enable();
896 }
897
898 if (!hpet_virt_address)
899 return -ENODEV;
900
901 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
902 hpet_msi_capability_lookup(2);
903 else
904 hpet_msi_capability_lookup(0);
905
906 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
907 hpet_print_config();
908
909 if (hpet_msi_disable)
910 return 0;
911
912 if (boot_cpu_has(X86_FEATURE_ARAT))
913 return 0;
914
915 for_each_online_cpu(cpu) {
916 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
917 }
918
919 /* This notifier should be called after workqueue is ready */
920 hotcpu_notifier(hpet_cpuhp_notify, -20);
921
922 return 0;
923 }
924 fs_initcall(hpet_late_init);
925
926 void hpet_disable(void)
927 {
928 if (is_hpet_capable() && hpet_virt_address) {
929 unsigned int cfg = hpet_readl(HPET_CFG);
930
931 if (hpet_legacy_int_enabled) {
932 cfg &= ~HPET_CFG_LEGACY;
933 hpet_legacy_int_enabled = 0;
934 }
935 cfg &= ~HPET_CFG_ENABLE;
936 hpet_writel(cfg, HPET_CFG);
937 }
938 }
939
940 #ifdef CONFIG_HPET_EMULATE_RTC
941
942 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
943 * is enabled, we support RTC interrupt functionality in software.
944 * RTC has 3 kinds of interrupts:
945 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
946 * is updated
947 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
948 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
949 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
950 * (1) and (2) above are implemented using polling at a frequency of
951 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
952 * overhead. (DEFAULT_RTC_INT_FREQ)
953 * For (3), we use interrupts at 64Hz or user specified periodic
954 * frequency, whichever is higher.
955 */
956 #include <linux/mc146818rtc.h>
957 #include <linux/rtc.h>
958 #include <asm/rtc.h>
959
960 #define DEFAULT_RTC_INT_FREQ 64
961 #define DEFAULT_RTC_SHIFT 6
962 #define RTC_NUM_INTS 1
963
964 static unsigned long hpet_rtc_flags;
965 static int hpet_prev_update_sec;
966 static struct rtc_time hpet_alarm_time;
967 static unsigned long hpet_pie_count;
968 static u32 hpet_t1_cmp;
969 static u32 hpet_default_delta;
970 static u32 hpet_pie_delta;
971 static unsigned long hpet_pie_limit;
972
973 static rtc_irq_handler irq_handler;
974
975 /*
976 * Check that the hpet counter c1 is ahead of the c2
977 */
978 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
979 {
980 return (s32)(c2 - c1) < 0;
981 }
982
983 /*
984 * Registers a IRQ handler.
985 */
986 int hpet_register_irq_handler(rtc_irq_handler handler)
987 {
988 if (!is_hpet_enabled())
989 return -ENODEV;
990 if (irq_handler)
991 return -EBUSY;
992
993 irq_handler = handler;
994
995 return 0;
996 }
997 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
998
999 /*
1000 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1001 * and does cleanup.
1002 */
1003 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1004 {
1005 if (!is_hpet_enabled())
1006 return;
1007
1008 irq_handler = NULL;
1009 hpet_rtc_flags = 0;
1010 }
1011 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1012
1013 /*
1014 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1015 * is not supported by all HPET implementations for timer 1.
1016 *
1017 * hpet_rtc_timer_init() is called when the rtc is initialized.
1018 */
1019 int hpet_rtc_timer_init(void)
1020 {
1021 unsigned int cfg, cnt, delta;
1022 unsigned long flags;
1023
1024 if (!is_hpet_enabled())
1025 return 0;
1026
1027 if (!hpet_default_delta) {
1028 uint64_t clc;
1029
1030 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1031 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1032 hpet_default_delta = clc;
1033 }
1034
1035 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1036 delta = hpet_default_delta;
1037 else
1038 delta = hpet_pie_delta;
1039
1040 local_irq_save(flags);
1041
1042 cnt = delta + hpet_readl(HPET_COUNTER);
1043 hpet_writel(cnt, HPET_T1_CMP);
1044 hpet_t1_cmp = cnt;
1045
1046 cfg = hpet_readl(HPET_T1_CFG);
1047 cfg &= ~HPET_TN_PERIODIC;
1048 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1049 hpet_writel(cfg, HPET_T1_CFG);
1050
1051 local_irq_restore(flags);
1052
1053 return 1;
1054 }
1055 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1056
1057 /*
1058 * The functions below are called from rtc driver.
1059 * Return 0 if HPET is not being used.
1060 * Otherwise do the necessary changes and return 1.
1061 */
1062 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1063 {
1064 if (!is_hpet_enabled())
1065 return 0;
1066
1067 hpet_rtc_flags &= ~bit_mask;
1068 return 1;
1069 }
1070 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1071
1072 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1073 {
1074 unsigned long oldbits = hpet_rtc_flags;
1075
1076 if (!is_hpet_enabled())
1077 return 0;
1078
1079 hpet_rtc_flags |= bit_mask;
1080
1081 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1082 hpet_prev_update_sec = -1;
1083
1084 if (!oldbits)
1085 hpet_rtc_timer_init();
1086
1087 return 1;
1088 }
1089 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1090
1091 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1092 unsigned char sec)
1093 {
1094 if (!is_hpet_enabled())
1095 return 0;
1096
1097 hpet_alarm_time.tm_hour = hrs;
1098 hpet_alarm_time.tm_min = min;
1099 hpet_alarm_time.tm_sec = sec;
1100
1101 return 1;
1102 }
1103 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1104
1105 int hpet_set_periodic_freq(unsigned long freq)
1106 {
1107 uint64_t clc;
1108
1109 if (!is_hpet_enabled())
1110 return 0;
1111
1112 if (freq <= DEFAULT_RTC_INT_FREQ)
1113 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1114 else {
1115 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1116 do_div(clc, freq);
1117 clc >>= hpet_clockevent.shift;
1118 hpet_pie_delta = clc;
1119 hpet_pie_limit = 0;
1120 }
1121 return 1;
1122 }
1123 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1124
1125 int hpet_rtc_dropped_irq(void)
1126 {
1127 return is_hpet_enabled();
1128 }
1129 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1130
1131 static void hpet_rtc_timer_reinit(void)
1132 {
1133 unsigned int cfg, delta;
1134 int lost_ints = -1;
1135
1136 if (unlikely(!hpet_rtc_flags)) {
1137 cfg = hpet_readl(HPET_T1_CFG);
1138 cfg &= ~HPET_TN_ENABLE;
1139 hpet_writel(cfg, HPET_T1_CFG);
1140 return;
1141 }
1142
1143 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1144 delta = hpet_default_delta;
1145 else
1146 delta = hpet_pie_delta;
1147
1148 /*
1149 * Increment the comparator value until we are ahead of the
1150 * current count.
1151 */
1152 do {
1153 hpet_t1_cmp += delta;
1154 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1155 lost_ints++;
1156 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1157
1158 if (lost_ints) {
1159 if (hpet_rtc_flags & RTC_PIE)
1160 hpet_pie_count += lost_ints;
1161 if (printk_ratelimit())
1162 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1163 lost_ints);
1164 }
1165 }
1166
1167 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1168 {
1169 struct rtc_time curr_time;
1170 unsigned long rtc_int_flag = 0;
1171
1172 hpet_rtc_timer_reinit();
1173 memset(&curr_time, 0, sizeof(struct rtc_time));
1174
1175 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1176 get_rtc_time(&curr_time);
1177
1178 if (hpet_rtc_flags & RTC_UIE &&
1179 curr_time.tm_sec != hpet_prev_update_sec) {
1180 if (hpet_prev_update_sec >= 0)
1181 rtc_int_flag = RTC_UF;
1182 hpet_prev_update_sec = curr_time.tm_sec;
1183 }
1184
1185 if (hpet_rtc_flags & RTC_PIE &&
1186 ++hpet_pie_count >= hpet_pie_limit) {
1187 rtc_int_flag |= RTC_PF;
1188 hpet_pie_count = 0;
1189 }
1190
1191 if (hpet_rtc_flags & RTC_AIE &&
1192 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1193 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1194 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1195 rtc_int_flag |= RTC_AF;
1196
1197 if (rtc_int_flag) {
1198 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1199 if (irq_handler)
1200 irq_handler(rtc_int_flag, dev_id);
1201 }
1202 return IRQ_HANDLED;
1203 }
1204 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1205 #endif