98d271e60e086359d2042af7c4177cc817983e39
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / ds.c
1 /*
2 * Debug Store support
3 *
4 * This provides a low-level interface to the hardware's Debug Store
5 * feature that is used for branch trace store (BTS) and
6 * precise-event based sampling (PEBS).
7 *
8 * It manages:
9 * - DS and BTS hardware configuration
10 * - buffer overflow handling (to be done)
11 * - buffer access
12 *
13 * It does not do:
14 * - security checking (is the caller allowed to trace the task)
15 * - buffer allocation (memory accounting)
16 *
17 *
18 * Copyright (C) 2007-2008 Intel Corporation.
19 * Markus Metzger <markus.t.metzger@intel.com>, 2007-2008
20 */
21
22
23 #include <asm/ds.h>
24
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31
32
33 /*
34 * The configuration for a particular DS hardware implementation.
35 */
36 struct ds_configuration {
37 /* the name of the configuration */
38 const char *name;
39 /* the size of one pointer-typed field in the DS structure and
40 in the BTS and PEBS buffers in bytes;
41 this covers the first 8 DS fields related to buffer management. */
42 unsigned char sizeof_field;
43 /* the size of a BTS/PEBS record in bytes */
44 unsigned char sizeof_rec[2];
45 /* a series of bit-masks to control various features indexed
46 * by enum ds_feature */
47 unsigned long ctl[dsf_ctl_max];
48 };
49 static DEFINE_PER_CPU(struct ds_configuration, ds_cfg_array);
50
51 #define ds_cfg per_cpu(ds_cfg_array, smp_processor_id())
52
53 #define MAX_SIZEOF_DS (12 * 8) /* maximal size of a DS configuration */
54 #define MAX_SIZEOF_BTS (3 * 8) /* maximal size of a BTS record */
55 #define DS_ALIGNMENT (1 << 3) /* BTS and PEBS buffer alignment */
56
57 #define BTS_CONTROL \
58 (ds_cfg.ctl[dsf_bts] | ds_cfg.ctl[dsf_bts_kernel] | ds_cfg.ctl[dsf_bts_user] |\
59 ds_cfg.ctl[dsf_bts_overflow])
60
61
62 /*
63 * A BTS or PEBS tracer.
64 *
65 * This holds the configuration of the tracer and serves as a handle
66 * to identify tracers.
67 */
68 struct ds_tracer {
69 /* the DS context (partially) owned by this tracer */
70 struct ds_context *context;
71 /* the buffer provided on ds_request() and its size in bytes */
72 void *buffer;
73 size_t size;
74 };
75
76 struct bts_tracer {
77 /* the common DS part */
78 struct ds_tracer ds;
79 /* the trace including the DS configuration */
80 struct bts_trace trace;
81 /* buffer overflow notification function */
82 bts_ovfl_callback_t ovfl;
83 };
84
85 struct pebs_tracer {
86 /* the common DS part */
87 struct ds_tracer ds;
88 /* the trace including the DS configuration */
89 struct pebs_trace trace;
90 /* buffer overflow notification function */
91 pebs_ovfl_callback_t ovfl;
92 };
93
94 /*
95 * Debug Store (DS) save area configuration (see Intel64 and IA32
96 * Architectures Software Developer's Manual, section 18.5)
97 *
98 * The DS configuration consists of the following fields; different
99 * architetures vary in the size of those fields.
100 * - double-word aligned base linear address of the BTS buffer
101 * - write pointer into the BTS buffer
102 * - end linear address of the BTS buffer (one byte beyond the end of
103 * the buffer)
104 * - interrupt pointer into BTS buffer
105 * (interrupt occurs when write pointer passes interrupt pointer)
106 * - double-word aligned base linear address of the PEBS buffer
107 * - write pointer into the PEBS buffer
108 * - end linear address of the PEBS buffer (one byte beyond the end of
109 * the buffer)
110 * - interrupt pointer into PEBS buffer
111 * (interrupt occurs when write pointer passes interrupt pointer)
112 * - value to which counter is reset following counter overflow
113 *
114 * Later architectures use 64bit pointers throughout, whereas earlier
115 * architectures use 32bit pointers in 32bit mode.
116 *
117 *
118 * We compute the base address for the first 8 fields based on:
119 * - the field size stored in the DS configuration
120 * - the relative field position
121 * - an offset giving the start of the respective region
122 *
123 * This offset is further used to index various arrays holding
124 * information for BTS and PEBS at the respective index.
125 *
126 * On later 32bit processors, we only access the lower 32bit of the
127 * 64bit pointer fields. The upper halves will be zeroed out.
128 */
129
130 enum ds_field {
131 ds_buffer_base = 0,
132 ds_index,
133 ds_absolute_maximum,
134 ds_interrupt_threshold,
135 };
136
137 enum ds_qualifier {
138 ds_bts = 0,
139 ds_pebs
140 };
141
142 static inline unsigned long ds_get(const unsigned char *base,
143 enum ds_qualifier qual, enum ds_field field)
144 {
145 base += (ds_cfg.sizeof_field * (field + (4 * qual)));
146 return *(unsigned long *)base;
147 }
148
149 static inline void ds_set(unsigned char *base, enum ds_qualifier qual,
150 enum ds_field field, unsigned long value)
151 {
152 base += (ds_cfg.sizeof_field * (field + (4 * qual)));
153 (*(unsigned long *)base) = value;
154 }
155
156
157 /*
158 * Locking is done only for allocating BTS or PEBS resources.
159 */
160 static DEFINE_SPINLOCK(ds_lock);
161
162
163 /*
164 * We either support (system-wide) per-cpu or per-thread allocation.
165 * We distinguish the two based on the task_struct pointer, where a
166 * NULL pointer indicates per-cpu allocation for the current cpu.
167 *
168 * Allocations are use-counted. As soon as resources are allocated,
169 * further allocations must be of the same type (per-cpu or
170 * per-thread). We model this by counting allocations (i.e. the number
171 * of tracers of a certain type) for one type negatively:
172 * =0 no tracers
173 * >0 number of per-thread tracers
174 * <0 number of per-cpu tracers
175 *
176 * Tracers essentially gives the number of ds contexts for a certain
177 * type of allocation.
178 */
179 static atomic_t tracers = ATOMIC_INIT(0);
180
181 static inline void get_tracer(struct task_struct *task)
182 {
183 if (task)
184 atomic_inc(&tracers);
185 else
186 atomic_dec(&tracers);
187 }
188
189 static inline void put_tracer(struct task_struct *task)
190 {
191 if (task)
192 atomic_dec(&tracers);
193 else
194 atomic_inc(&tracers);
195 }
196
197 static inline int check_tracer(struct task_struct *task)
198 {
199 return task ?
200 (atomic_read(&tracers) >= 0) :
201 (atomic_read(&tracers) <= 0);
202 }
203
204
205 /*
206 * The DS context is either attached to a thread or to a cpu:
207 * - in the former case, the thread_struct contains a pointer to the
208 * attached context.
209 * - in the latter case, we use a static array of per-cpu context
210 * pointers.
211 *
212 * Contexts are use-counted. They are allocated on first access and
213 * deallocated when the last user puts the context.
214 */
215 struct ds_context {
216 /* pointer to the DS configuration; goes into MSR_IA32_DS_AREA */
217 unsigned char ds[MAX_SIZEOF_DS];
218 /* the owner of the BTS and PEBS configuration, respectively */
219 struct bts_tracer *bts_master;
220 struct pebs_tracer *pebs_master;
221 /* use count */
222 unsigned long count;
223 /* a pointer to the context location inside the thread_struct
224 * or the per_cpu context array */
225 struct ds_context **this;
226 /* a pointer to the task owning this context, or NULL, if the
227 * context is owned by a cpu */
228 struct task_struct *task;
229 };
230
231 static DEFINE_PER_CPU(struct ds_context *, system_context_array);
232
233 #define system_context per_cpu(system_context_array, smp_processor_id())
234
235
236 static inline struct ds_context *ds_get_context(struct task_struct *task)
237 {
238 struct ds_context **p_context =
239 (task ? &task->thread.ds_ctx : &system_context);
240 struct ds_context *context = NULL;
241 struct ds_context *new_context = NULL;
242 unsigned long irq;
243
244 /* Chances are small that we already have a context. */
245 new_context = kzalloc(sizeof(*new_context), GFP_KERNEL);
246 if (!new_context)
247 return NULL;
248
249 spin_lock_irqsave(&ds_lock, irq);
250
251 context = *p_context;
252 if (!context) {
253 context = new_context;
254
255 context->this = p_context;
256 context->task = task;
257 context->count = 0;
258
259 if (task)
260 set_tsk_thread_flag(task, TIF_DS_AREA_MSR);
261
262 if (!task || (task == current))
263 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)context->ds);
264
265 *p_context = context;
266 }
267
268 context->count++;
269
270 spin_unlock_irqrestore(&ds_lock, irq);
271
272 if (context != new_context)
273 kfree(new_context);
274
275 return context;
276 }
277
278 static inline void ds_put_context(struct ds_context *context)
279 {
280 unsigned long irq;
281
282 if (!context)
283 return;
284
285 spin_lock_irqsave(&ds_lock, irq);
286
287 if (--context->count) {
288 spin_unlock_irqrestore(&ds_lock, irq);
289 return;
290 }
291
292 *(context->this) = NULL;
293
294 if (context->task)
295 clear_tsk_thread_flag(context->task, TIF_DS_AREA_MSR);
296
297 if (!context->task || (context->task == current))
298 wrmsrl(MSR_IA32_DS_AREA, 0);
299
300 spin_unlock_irqrestore(&ds_lock, irq);
301
302 kfree(context);
303 }
304
305
306 /*
307 * Call the tracer's callback on a buffer overflow.
308 *
309 * context: the ds context
310 * qual: the buffer type
311 */
312 static void ds_overflow(struct ds_context *context, enum ds_qualifier qual)
313 {
314 switch (qual) {
315 case ds_bts:
316 if (context->bts_master &&
317 context->bts_master->ovfl)
318 context->bts_master->ovfl(context->bts_master);
319 break;
320 case ds_pebs:
321 if (context->pebs_master &&
322 context->pebs_master->ovfl)
323 context->pebs_master->ovfl(context->pebs_master);
324 break;
325 }
326 }
327
328
329 /*
330 * Write raw data into the BTS or PEBS buffer.
331 *
332 * The remainder of any partially written record is zeroed out.
333 *
334 * context: the DS context
335 * qual: the buffer type
336 * record: the data to write
337 * size: the size of the data
338 */
339 static int ds_write(struct ds_context *context, enum ds_qualifier qual,
340 const void *record, size_t size)
341 {
342 int bytes_written = 0;
343
344 if (!record)
345 return -EINVAL;
346
347 while (size) {
348 unsigned long base, index, end, write_end, int_th;
349 unsigned long write_size, adj_write_size;
350
351 /*
352 * write as much as possible without producing an
353 * overflow interrupt.
354 *
355 * interrupt_threshold must either be
356 * - bigger than absolute_maximum or
357 * - point to a record between buffer_base and absolute_maximum
358 *
359 * index points to a valid record.
360 */
361 base = ds_get(context->ds, qual, ds_buffer_base);
362 index = ds_get(context->ds, qual, ds_index);
363 end = ds_get(context->ds, qual, ds_absolute_maximum);
364 int_th = ds_get(context->ds, qual, ds_interrupt_threshold);
365
366 write_end = min(end, int_th);
367
368 /* if we are already beyond the interrupt threshold,
369 * we fill the entire buffer */
370 if (write_end <= index)
371 write_end = end;
372
373 if (write_end <= index)
374 break;
375
376 write_size = min((unsigned long) size, write_end - index);
377 memcpy((void *)index, record, write_size);
378
379 record = (const char *)record + write_size;
380 size -= write_size;
381 bytes_written += write_size;
382
383 adj_write_size = write_size / ds_cfg.sizeof_rec[qual];
384 adj_write_size *= ds_cfg.sizeof_rec[qual];
385
386 /* zero out trailing bytes */
387 memset((char *)index + write_size, 0,
388 adj_write_size - write_size);
389 index += adj_write_size;
390
391 if (index >= end)
392 index = base;
393 ds_set(context->ds, qual, ds_index, index);
394
395 if (index >= int_th)
396 ds_overflow(context, qual);
397 }
398
399 return bytes_written;
400 }
401
402
403 /*
404 * Branch Trace Store (BTS) uses the following format. Different
405 * architectures vary in the size of those fields.
406 * - source linear address
407 * - destination linear address
408 * - flags
409 *
410 * Later architectures use 64bit pointers throughout, whereas earlier
411 * architectures use 32bit pointers in 32bit mode.
412 *
413 * We compute the base address for the first 8 fields based on:
414 * - the field size stored in the DS configuration
415 * - the relative field position
416 *
417 * In order to store additional information in the BTS buffer, we use
418 * a special source address to indicate that the record requires
419 * special interpretation.
420 *
421 * Netburst indicated via a bit in the flags field whether the branch
422 * was predicted; this is ignored.
423 *
424 * We use two levels of abstraction:
425 * - the raw data level defined here
426 * - an arch-independent level defined in ds.h
427 */
428
429 enum bts_field {
430 bts_from,
431 bts_to,
432 bts_flags,
433
434 bts_qual = bts_from,
435 bts_jiffies = bts_to,
436 bts_pid = bts_flags,
437
438 bts_qual_mask = (bts_qual_max - 1),
439 bts_escape = ((unsigned long)-1 & ~bts_qual_mask)
440 };
441
442 static inline unsigned long bts_get(const char *base, enum bts_field field)
443 {
444 base += (ds_cfg.sizeof_field * field);
445 return *(unsigned long *)base;
446 }
447
448 static inline void bts_set(char *base, enum bts_field field, unsigned long val)
449 {
450 base += (ds_cfg.sizeof_field * field);;
451 (*(unsigned long *)base) = val;
452 }
453
454
455 /*
456 * The raw BTS data is architecture dependent.
457 *
458 * For higher-level users, we give an arch-independent view.
459 * - ds.h defines struct bts_struct
460 * - bts_read translates one raw bts record into a bts_struct
461 * - bts_write translates one bts_struct into the raw format and
462 * writes it into the top of the parameter tracer's buffer.
463 *
464 * return: bytes read/written on success; -Eerrno, otherwise
465 */
466 static int bts_read(struct bts_tracer *tracer, const void *at,
467 struct bts_struct *out)
468 {
469 if (!tracer)
470 return -EINVAL;
471
472 if (at < tracer->trace.ds.begin)
473 return -EINVAL;
474
475 if (tracer->trace.ds.end < (at + tracer->trace.ds.size))
476 return -EINVAL;
477
478 memset(out, 0, sizeof(*out));
479 if ((bts_get(at, bts_qual) & ~bts_qual_mask) == bts_escape) {
480 out->qualifier = (bts_get(at, bts_qual) & bts_qual_mask);
481 out->variant.timestamp.jiffies = bts_get(at, bts_jiffies);
482 out->variant.timestamp.pid = bts_get(at, bts_pid);
483 } else {
484 out->qualifier = bts_branch;
485 out->variant.lbr.from = bts_get(at, bts_from);
486 out->variant.lbr.to = bts_get(at, bts_to);
487
488 if (!out->variant.lbr.from && !out->variant.lbr.to)
489 out->qualifier = bts_invalid;
490 }
491
492 return ds_cfg.sizeof_rec[ds_bts];
493 }
494
495 static int bts_write(struct bts_tracer *tracer, const struct bts_struct *in)
496 {
497 unsigned char raw[MAX_SIZEOF_BTS];
498
499 if (!tracer)
500 return -EINVAL;
501
502 if (MAX_SIZEOF_BTS < ds_cfg.sizeof_rec[ds_bts])
503 return -EOVERFLOW;
504
505 switch (in->qualifier) {
506 case bts_invalid:
507 bts_set(raw, bts_from, 0);
508 bts_set(raw, bts_to, 0);
509 bts_set(raw, bts_flags, 0);
510 break;
511 case bts_branch:
512 bts_set(raw, bts_from, in->variant.lbr.from);
513 bts_set(raw, bts_to, in->variant.lbr.to);
514 bts_set(raw, bts_flags, 0);
515 break;
516 case bts_task_arrives:
517 case bts_task_departs:
518 bts_set(raw, bts_qual, (bts_escape | in->qualifier));
519 bts_set(raw, bts_jiffies, in->variant.timestamp.jiffies);
520 bts_set(raw, bts_pid, in->variant.timestamp.pid);
521 break;
522 default:
523 return -EINVAL;
524 }
525
526 return ds_write(tracer->ds.context, ds_bts, raw,
527 ds_cfg.sizeof_rec[ds_bts]);
528 }
529
530
531 static void ds_write_config(struct ds_context *context,
532 struct ds_trace *cfg, enum ds_qualifier qual)
533 {
534 unsigned char *ds = context->ds;
535
536 ds_set(ds, qual, ds_buffer_base, (unsigned long)cfg->begin);
537 ds_set(ds, qual, ds_index, (unsigned long)cfg->top);
538 ds_set(ds, qual, ds_absolute_maximum, (unsigned long)cfg->end);
539 ds_set(ds, qual, ds_interrupt_threshold, (unsigned long)cfg->ith);
540 }
541
542 static void ds_read_config(struct ds_context *context,
543 struct ds_trace *cfg, enum ds_qualifier qual)
544 {
545 unsigned char *ds = context->ds;
546
547 cfg->begin = (void *)ds_get(ds, qual, ds_buffer_base);
548 cfg->top = (void *)ds_get(ds, qual, ds_index);
549 cfg->end = (void *)ds_get(ds, qual, ds_absolute_maximum);
550 cfg->ith = (void *)ds_get(ds, qual, ds_interrupt_threshold);
551 }
552
553 static void ds_init_ds_trace(struct ds_trace *trace, enum ds_qualifier qual,
554 void *base, size_t size, size_t ith,
555 unsigned int flags) {
556 unsigned long buffer, adj;
557
558 /* adjust the buffer address and size to meet alignment
559 * constraints:
560 * - buffer is double-word aligned
561 * - size is multiple of record size
562 *
563 * We checked the size at the very beginning; we have enough
564 * space to do the adjustment.
565 */
566 buffer = (unsigned long)base;
567
568 adj = ALIGN(buffer, DS_ALIGNMENT) - buffer;
569 buffer += adj;
570 size -= adj;
571
572 trace->n = size / ds_cfg.sizeof_rec[qual];
573 trace->size = ds_cfg.sizeof_rec[qual];
574
575 size = (trace->n * trace->size);
576
577 trace->begin = (void *)buffer;
578 trace->top = trace->begin;
579 trace->end = (void *)(buffer + size);
580 /* The value for 'no threshold' is -1, which will set the
581 * threshold outside of the buffer, just like we want it.
582 */
583 trace->ith = (void *)(buffer + size - ith);
584
585 trace->flags = flags;
586 }
587
588
589 static int ds_request(struct ds_tracer *tracer, struct ds_trace *trace,
590 enum ds_qualifier qual, struct task_struct *task,
591 void *base, size_t size, size_t th, unsigned int flags)
592 {
593 struct ds_context *context;
594 int error;
595
596 error = -EINVAL;
597 if (!base)
598 goto out;
599
600 /* we require some space to do alignment adjustments below */
601 error = -EINVAL;
602 if (size < (DS_ALIGNMENT + ds_cfg.sizeof_rec[qual]))
603 goto out;
604
605 if (th != (size_t)-1) {
606 th *= ds_cfg.sizeof_rec[qual];
607
608 error = -EINVAL;
609 if (size <= th)
610 goto out;
611 }
612
613 tracer->buffer = base;
614 tracer->size = size;
615
616 error = -ENOMEM;
617 context = ds_get_context(task);
618 if (!context)
619 goto out;
620 tracer->context = context;
621
622 ds_init_ds_trace(trace, qual, base, size, th, flags);
623
624 error = 0;
625 out:
626 return error;
627 }
628
629 struct bts_tracer *ds_request_bts(struct task_struct *task,
630 void *base, size_t size,
631 bts_ovfl_callback_t ovfl, size_t th,
632 unsigned int flags)
633 {
634 struct bts_tracer *tracer;
635 unsigned long irq;
636 int error;
637
638 error = -EOPNOTSUPP;
639 if (!ds_cfg.ctl[dsf_bts])
640 goto out;
641
642 /* buffer overflow notification is not yet implemented */
643 error = -EOPNOTSUPP;
644 if (ovfl)
645 goto out;
646
647 error = -ENOMEM;
648 tracer = kzalloc(sizeof(*tracer), GFP_KERNEL);
649 if (!tracer)
650 goto out;
651 tracer->ovfl = ovfl;
652
653 error = ds_request(&tracer->ds, &tracer->trace.ds,
654 ds_bts, task, base, size, th, flags);
655 if (error < 0)
656 goto out_tracer;
657
658
659 spin_lock_irqsave(&ds_lock, irq);
660
661 error = -EPERM;
662 if (!check_tracer(task))
663 goto out_unlock;
664 get_tracer(task);
665
666 error = -EPERM;
667 if (tracer->ds.context->bts_master)
668 goto out_put_tracer;
669 tracer->ds.context->bts_master = tracer;
670
671 spin_unlock_irqrestore(&ds_lock, irq);
672
673
674 tracer->trace.read = bts_read;
675 tracer->trace.write = bts_write;
676
677 ds_write_config(tracer->ds.context, &tracer->trace.ds, ds_bts);
678 ds_resume_bts(tracer);
679
680 return tracer;
681
682 out_put_tracer:
683 put_tracer(task);
684 out_unlock:
685 spin_unlock_irqrestore(&ds_lock, irq);
686 ds_put_context(tracer->ds.context);
687 out_tracer:
688 kfree(tracer);
689 out:
690 return ERR_PTR(error);
691 }
692
693 struct pebs_tracer *ds_request_pebs(struct task_struct *task,
694 void *base, size_t size,
695 pebs_ovfl_callback_t ovfl, size_t th,
696 unsigned int flags)
697 {
698 struct pebs_tracer *tracer;
699 unsigned long irq;
700 int error;
701
702 /* buffer overflow notification is not yet implemented */
703 error = -EOPNOTSUPP;
704 if (ovfl)
705 goto out;
706
707 error = -ENOMEM;
708 tracer = kzalloc(sizeof(*tracer), GFP_KERNEL);
709 if (!tracer)
710 goto out;
711 tracer->ovfl = ovfl;
712
713 error = ds_request(&tracer->ds, &tracer->trace.ds,
714 ds_pebs, task, base, size, th, flags);
715 if (error < 0)
716 goto out_tracer;
717
718 spin_lock_irqsave(&ds_lock, irq);
719
720 error = -EPERM;
721 if (!check_tracer(task))
722 goto out_unlock;
723 get_tracer(task);
724
725 error = -EPERM;
726 if (tracer->ds.context->pebs_master)
727 goto out_put_tracer;
728 tracer->ds.context->pebs_master = tracer;
729
730 spin_unlock_irqrestore(&ds_lock, irq);
731
732 ds_write_config(tracer->ds.context, &tracer->trace.ds, ds_bts);
733 ds_resume_pebs(tracer);
734
735 return tracer;
736
737 out_put_tracer:
738 put_tracer(task);
739 out_unlock:
740 spin_unlock_irqrestore(&ds_lock, irq);
741 ds_put_context(tracer->ds.context);
742 out_tracer:
743 kfree(tracer);
744 out:
745 return ERR_PTR(error);
746 }
747
748 void ds_release_bts(struct bts_tracer *tracer)
749 {
750 if (!tracer)
751 return;
752
753 ds_suspend_bts(tracer);
754
755 WARN_ON_ONCE(tracer->ds.context->bts_master != tracer);
756 tracer->ds.context->bts_master = NULL;
757
758 put_tracer(tracer->ds.context->task);
759 ds_put_context(tracer->ds.context);
760
761 kfree(tracer);
762 }
763
764 void ds_suspend_bts(struct bts_tracer *tracer)
765 {
766 struct task_struct *task;
767
768 if (!tracer)
769 return;
770
771 task = tracer->ds.context->task;
772
773 if (!task || (task == current))
774 update_debugctlmsr(get_debugctlmsr() & ~BTS_CONTROL);
775
776 if (task) {
777 task->thread.debugctlmsr &= ~BTS_CONTROL;
778
779 if (!task->thread.debugctlmsr)
780 clear_tsk_thread_flag(task, TIF_DEBUGCTLMSR);
781 }
782 }
783
784 void ds_resume_bts(struct bts_tracer *tracer)
785 {
786 struct task_struct *task;
787 unsigned long control;
788
789 if (!tracer)
790 return;
791
792 task = tracer->ds.context->task;
793
794 control = ds_cfg.ctl[dsf_bts];
795 if (!(tracer->trace.ds.flags & BTS_KERNEL))
796 control |= ds_cfg.ctl[dsf_bts_kernel];
797 if (!(tracer->trace.ds.flags & BTS_USER))
798 control |= ds_cfg.ctl[dsf_bts_user];
799
800 if (task) {
801 task->thread.debugctlmsr |= control;
802 set_tsk_thread_flag(task, TIF_DEBUGCTLMSR);
803 }
804
805 if (!task || (task == current))
806 update_debugctlmsr(get_debugctlmsr() | control);
807 }
808
809 void ds_release_pebs(struct pebs_tracer *tracer)
810 {
811 if (!tracer)
812 return;
813
814 ds_suspend_pebs(tracer);
815
816 WARN_ON_ONCE(tracer->ds.context->pebs_master != tracer);
817 tracer->ds.context->pebs_master = NULL;
818
819 put_tracer(tracer->ds.context->task);
820 ds_put_context(tracer->ds.context);
821
822 kfree(tracer);
823 }
824
825 void ds_suspend_pebs(struct pebs_tracer *tracer)
826 {
827
828 }
829
830 void ds_resume_pebs(struct pebs_tracer *tracer)
831 {
832
833 }
834
835 const struct bts_trace *ds_read_bts(struct bts_tracer *tracer)
836 {
837 if (!tracer)
838 return NULL;
839
840 ds_read_config(tracer->ds.context, &tracer->trace.ds, ds_bts);
841 return &tracer->trace;
842 }
843
844 const struct pebs_trace *ds_read_pebs(struct pebs_tracer *tracer)
845 {
846 if (!tracer)
847 return NULL;
848
849 ds_read_config(tracer->ds.context, &tracer->trace.ds, ds_pebs);
850 tracer->trace.reset_value =
851 *(u64 *)(tracer->ds.context->ds + (ds_cfg.sizeof_field * 8));
852
853 return &tracer->trace;
854 }
855
856 int ds_reset_bts(struct bts_tracer *tracer)
857 {
858 if (!tracer)
859 return -EINVAL;
860
861 tracer->trace.ds.top = tracer->trace.ds.begin;
862
863 ds_set(tracer->ds.context->ds, ds_bts, ds_index,
864 (unsigned long)tracer->trace.ds.top);
865
866 return 0;
867 }
868
869 int ds_reset_pebs(struct pebs_tracer *tracer)
870 {
871 if (!tracer)
872 return -EINVAL;
873
874 tracer->trace.ds.top = tracer->trace.ds.begin;
875
876 ds_set(tracer->ds.context->ds, ds_bts, ds_index,
877 (unsigned long)tracer->trace.ds.top);
878
879 return 0;
880 }
881
882 int ds_set_pebs_reset(struct pebs_tracer *tracer, u64 value)
883 {
884 if (!tracer)
885 return -EINVAL;
886
887 *(u64 *)(tracer->ds.context->ds + (ds_cfg.sizeof_field * 8)) = value;
888
889 return 0;
890 }
891
892 static const struct ds_configuration ds_cfg_netburst = {
893 .name = "netburst",
894 .ctl[dsf_bts] = (1 << 2) | (1 << 3),
895 .ctl[dsf_bts_kernel] = (1 << 5),
896 .ctl[dsf_bts_user] = (1 << 6),
897
898 .sizeof_field = sizeof(long),
899 .sizeof_rec[ds_bts] = sizeof(long) * 3,
900 #ifdef __i386__
901 .sizeof_rec[ds_pebs] = sizeof(long) * 10,
902 #else
903 .sizeof_rec[ds_pebs] = sizeof(long) * 18,
904 #endif
905 };
906 static const struct ds_configuration ds_cfg_pentium_m = {
907 .name = "pentium m",
908 .ctl[dsf_bts] = (1 << 6) | (1 << 7),
909
910 .sizeof_field = sizeof(long),
911 .sizeof_rec[ds_bts] = sizeof(long) * 3,
912 #ifdef __i386__
913 .sizeof_rec[ds_pebs] = sizeof(long) * 10,
914 #else
915 .sizeof_rec[ds_pebs] = sizeof(long) * 18,
916 #endif
917 };
918 static const struct ds_configuration ds_cfg_core2 = {
919 .name = "core 2",
920 .ctl[dsf_bts] = (1 << 6) | (1 << 7),
921 .ctl[dsf_bts_kernel] = (1 << 9),
922 .ctl[dsf_bts_user] = (1 << 10),
923
924 .sizeof_field = 8,
925 .sizeof_rec[ds_bts] = 8 * 3,
926 .sizeof_rec[ds_pebs] = 8 * 18,
927 };
928
929 static void
930 ds_configure(const struct ds_configuration *cfg)
931 {
932 memset(&ds_cfg, 0, sizeof(ds_cfg));
933 ds_cfg = *cfg;
934
935 printk(KERN_INFO "[ds] using %s configuration\n", ds_cfg.name);
936
937 if (!cpu_has_bts) {
938 ds_cfg.ctl[dsf_bts] = 0;
939 printk(KERN_INFO "[ds] bts not available\n");
940 }
941 if (!cpu_has_pebs)
942 printk(KERN_INFO "[ds] pebs not available\n");
943
944 WARN_ON_ONCE(MAX_SIZEOF_DS < (12 * ds_cfg.sizeof_field));
945 }
946
947 void __cpuinit ds_init_intel(struct cpuinfo_x86 *c)
948 {
949 switch (c->x86) {
950 case 0x6:
951 switch (c->x86_model) {
952 case 0 ... 0xC:
953 /* sorry, don't know about them */
954 break;
955 case 0xD:
956 case 0xE: /* Pentium M */
957 ds_configure(&ds_cfg_pentium_m);
958 break;
959 default: /* Core2, Atom, ... */
960 ds_configure(&ds_cfg_core2);
961 break;
962 }
963 break;
964 case 0xF:
965 switch (c->x86_model) {
966 case 0x0:
967 case 0x1:
968 case 0x2: /* Netburst */
969 ds_configure(&ds_cfg_netburst);
970 break;
971 default:
972 /* sorry, don't know about them */
973 break;
974 }
975 break;
976 default:
977 /* sorry, don't know about them */
978 break;
979 }
980 }
981
982 /*
983 * Change the DS configuration from tracing prev to tracing next.
984 */
985 void ds_switch_to(struct task_struct *prev, struct task_struct *next)
986 {
987 struct ds_context *prev_ctx = prev->thread.ds_ctx;
988 struct ds_context *next_ctx = next->thread.ds_ctx;
989
990 if (prev_ctx) {
991 update_debugctlmsr(0);
992
993 if (prev_ctx->bts_master &&
994 (prev_ctx->bts_master->trace.ds.flags & BTS_TIMESTAMPS)) {
995 struct bts_struct ts = {
996 .qualifier = bts_task_departs,
997 .variant.timestamp.jiffies = jiffies_64,
998 .variant.timestamp.pid = prev->pid
999 };
1000 bts_write(prev_ctx->bts_master, &ts);
1001 }
1002 }
1003
1004 if (next_ctx) {
1005 if (next_ctx->bts_master &&
1006 (next_ctx->bts_master->trace.ds.flags & BTS_TIMESTAMPS)) {
1007 struct bts_struct ts = {
1008 .qualifier = bts_task_arrives,
1009 .variant.timestamp.jiffies = jiffies_64,
1010 .variant.timestamp.pid = next->pid
1011 };
1012 bts_write(next_ctx->bts_master, &ts);
1013 }
1014
1015 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)next_ctx->ds);
1016 }
1017
1018 update_debugctlmsr(next->thread.debugctlmsr);
1019 }