block: fix linkage problem with blk_iopoll and !CONFIG_BLOCK
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/interrupt.h>
14 #include <linux/ratelimit.h>
15 #include <linux/kallsyms.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/sysdev.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/init.h>
30 #include <linux/kmod.h>
31 #include <linux/poll.h>
32 #include <linux/nmi.h>
33 #include <linux/cpu.h>
34 #include <linux/smp.h>
35 #include <linux/fs.h>
36 #include <linux/mm.h>
37
38 #include <asm/processor.h>
39 #include <asm/hw_irq.h>
40 #include <asm/apic.h>
41 #include <asm/idle.h>
42 #include <asm/ipi.h>
43 #include <asm/mce.h>
44 #include <asm/msr.h>
45
46 #include "mce-internal.h"
47
48 /* Handle unconfigured int18 (should never happen) */
49 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
50 {
51 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
52 smp_processor_id());
53 }
54
55 /* Call the installed machine check handler for this CPU setup. */
56 void (*machine_check_vector)(struct pt_regs *, long error_code) =
57 unexpected_machine_check;
58
59 int mce_disabled __read_mostly;
60
61 #ifdef CONFIG_X86_NEW_MCE
62
63 #define MISC_MCELOG_MINOR 227
64
65 #define SPINUNIT 100 /* 100ns */
66
67 atomic_t mce_entry;
68
69 DEFINE_PER_CPU(unsigned, mce_exception_count);
70
71 /*
72 * Tolerant levels:
73 * 0: always panic on uncorrected errors, log corrected errors
74 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
75 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
76 * 3: never panic or SIGBUS, log all errors (for testing only)
77 */
78 static int tolerant __read_mostly = 1;
79 static int banks __read_mostly;
80 static u64 *bank __read_mostly;
81 static int rip_msr __read_mostly;
82 static int mce_bootlog __read_mostly = -1;
83 static int monarch_timeout __read_mostly = -1;
84 static int mce_panic_timeout __read_mostly;
85 static int mce_dont_log_ce __read_mostly;
86 int mce_cmci_disabled __read_mostly;
87 int mce_ignore_ce __read_mostly;
88 int mce_ser __read_mostly;
89
90 /* User mode helper program triggered by machine check event */
91 static unsigned long mce_need_notify;
92 static char mce_helper[128];
93 static char *mce_helper_argv[2] = { mce_helper, NULL };
94
95 static unsigned long dont_init_banks;
96
97 static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
98 static DEFINE_PER_CPU(struct mce, mces_seen);
99 static int cpu_missing;
100
101
102 /* MCA banks polled by the period polling timer for corrected events */
103 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
104 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
105 };
106
107 static inline int skip_bank_init(int i)
108 {
109 return i < BITS_PER_LONG && test_bit(i, &dont_init_banks);
110 }
111
112 static DEFINE_PER_CPU(struct work_struct, mce_work);
113
114 /* Do initial initialization of a struct mce */
115 void mce_setup(struct mce *m)
116 {
117 memset(m, 0, sizeof(struct mce));
118 m->cpu = m->extcpu = smp_processor_id();
119 rdtscll(m->tsc);
120 /* We hope get_seconds stays lockless */
121 m->time = get_seconds();
122 m->cpuvendor = boot_cpu_data.x86_vendor;
123 m->cpuid = cpuid_eax(1);
124 #ifdef CONFIG_SMP
125 m->socketid = cpu_data(m->extcpu).phys_proc_id;
126 #endif
127 m->apicid = cpu_data(m->extcpu).initial_apicid;
128 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
129 }
130
131 DEFINE_PER_CPU(struct mce, injectm);
132 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
133
134 /*
135 * Lockless MCE logging infrastructure.
136 * This avoids deadlocks on printk locks without having to break locks. Also
137 * separate MCEs from kernel messages to avoid bogus bug reports.
138 */
139
140 static struct mce_log mcelog = {
141 .signature = MCE_LOG_SIGNATURE,
142 .len = MCE_LOG_LEN,
143 .recordlen = sizeof(struct mce),
144 };
145
146 void mce_log(struct mce *mce)
147 {
148 unsigned next, entry;
149
150 mce->finished = 0;
151 wmb();
152 for (;;) {
153 entry = rcu_dereference(mcelog.next);
154 for (;;) {
155 /*
156 * When the buffer fills up discard new entries.
157 * Assume that the earlier errors are the more
158 * interesting ones:
159 */
160 if (entry >= MCE_LOG_LEN) {
161 set_bit(MCE_OVERFLOW,
162 (unsigned long *)&mcelog.flags);
163 return;
164 }
165 /* Old left over entry. Skip: */
166 if (mcelog.entry[entry].finished) {
167 entry++;
168 continue;
169 }
170 break;
171 }
172 smp_rmb();
173 next = entry + 1;
174 if (cmpxchg(&mcelog.next, entry, next) == entry)
175 break;
176 }
177 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
178 wmb();
179 mcelog.entry[entry].finished = 1;
180 wmb();
181
182 mce->finished = 1;
183 set_bit(0, &mce_need_notify);
184 }
185
186 void __weak decode_mce(struct mce *m)
187 {
188 return;
189 }
190
191 static void print_mce(struct mce *m)
192 {
193 printk(KERN_EMERG
194 "CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n",
195 m->extcpu, m->mcgstatus, m->bank, m->status);
196 if (m->ip) {
197 printk(KERN_EMERG "RIP%s %02x:<%016Lx> ",
198 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
199 m->cs, m->ip);
200 if (m->cs == __KERNEL_CS)
201 print_symbol("{%s}", m->ip);
202 printk(KERN_CONT "\n");
203 }
204 printk(KERN_EMERG "TSC %llx ", m->tsc);
205 if (m->addr)
206 printk(KERN_CONT "ADDR %llx ", m->addr);
207 if (m->misc)
208 printk(KERN_CONT "MISC %llx ", m->misc);
209 printk(KERN_CONT "\n");
210 printk(KERN_EMERG "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
211 m->cpuvendor, m->cpuid, m->time, m->socketid,
212 m->apicid);
213
214 decode_mce(m);
215 }
216
217 static void print_mce_head(void)
218 {
219 printk(KERN_EMERG "\nHARDWARE ERROR\n");
220 }
221
222 static void print_mce_tail(void)
223 {
224 printk(KERN_EMERG "This is not a software problem!\n"
225 #if (!defined(CONFIG_EDAC) || !defined(CONFIG_CPU_SUP_AMD))
226 "Run through mcelog --ascii to decode and contact your hardware vendor\n"
227 #endif
228 );
229 }
230
231 #define PANIC_TIMEOUT 5 /* 5 seconds */
232
233 static atomic_t mce_paniced;
234
235 /* Panic in progress. Enable interrupts and wait for final IPI */
236 static void wait_for_panic(void)
237 {
238 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
239 preempt_disable();
240 local_irq_enable();
241 while (timeout-- > 0)
242 udelay(1);
243 if (panic_timeout == 0)
244 panic_timeout = mce_panic_timeout;
245 panic("Panicing machine check CPU died");
246 }
247
248 static void mce_panic(char *msg, struct mce *final, char *exp)
249 {
250 int i;
251
252 /*
253 * Make sure only one CPU runs in machine check panic
254 */
255 if (atomic_add_return(1, &mce_paniced) > 1)
256 wait_for_panic();
257 barrier();
258
259 bust_spinlocks(1);
260 console_verbose();
261 print_mce_head();
262 /* First print corrected ones that are still unlogged */
263 for (i = 0; i < MCE_LOG_LEN; i++) {
264 struct mce *m = &mcelog.entry[i];
265 if (!(m->status & MCI_STATUS_VAL))
266 continue;
267 if (!(m->status & MCI_STATUS_UC))
268 print_mce(m);
269 }
270 /* Now print uncorrected but with the final one last */
271 for (i = 0; i < MCE_LOG_LEN; i++) {
272 struct mce *m = &mcelog.entry[i];
273 if (!(m->status & MCI_STATUS_VAL))
274 continue;
275 if (!(m->status & MCI_STATUS_UC))
276 continue;
277 if (!final || memcmp(m, final, sizeof(struct mce)))
278 print_mce(m);
279 }
280 if (final)
281 print_mce(final);
282 if (cpu_missing)
283 printk(KERN_EMERG "Some CPUs didn't answer in synchronization\n");
284 print_mce_tail();
285 if (exp)
286 printk(KERN_EMERG "Machine check: %s\n", exp);
287 if (panic_timeout == 0)
288 panic_timeout = mce_panic_timeout;
289 panic(msg);
290 }
291
292 /* Support code for software error injection */
293
294 static int msr_to_offset(u32 msr)
295 {
296 unsigned bank = __get_cpu_var(injectm.bank);
297 if (msr == rip_msr)
298 return offsetof(struct mce, ip);
299 if (msr == MSR_IA32_MC0_STATUS + bank*4)
300 return offsetof(struct mce, status);
301 if (msr == MSR_IA32_MC0_ADDR + bank*4)
302 return offsetof(struct mce, addr);
303 if (msr == MSR_IA32_MC0_MISC + bank*4)
304 return offsetof(struct mce, misc);
305 if (msr == MSR_IA32_MCG_STATUS)
306 return offsetof(struct mce, mcgstatus);
307 return -1;
308 }
309
310 /* MSR access wrappers used for error injection */
311 static u64 mce_rdmsrl(u32 msr)
312 {
313 u64 v;
314 if (__get_cpu_var(injectm).finished) {
315 int offset = msr_to_offset(msr);
316 if (offset < 0)
317 return 0;
318 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
319 }
320 rdmsrl(msr, v);
321 return v;
322 }
323
324 static void mce_wrmsrl(u32 msr, u64 v)
325 {
326 if (__get_cpu_var(injectm).finished) {
327 int offset = msr_to_offset(msr);
328 if (offset >= 0)
329 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
330 return;
331 }
332 wrmsrl(msr, v);
333 }
334
335 /*
336 * Simple lockless ring to communicate PFNs from the exception handler with the
337 * process context work function. This is vastly simplified because there's
338 * only a single reader and a single writer.
339 */
340 #define MCE_RING_SIZE 16 /* we use one entry less */
341
342 struct mce_ring {
343 unsigned short start;
344 unsigned short end;
345 unsigned long ring[MCE_RING_SIZE];
346 };
347 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
348
349 /* Runs with CPU affinity in workqueue */
350 static int mce_ring_empty(void)
351 {
352 struct mce_ring *r = &__get_cpu_var(mce_ring);
353
354 return r->start == r->end;
355 }
356
357 static int mce_ring_get(unsigned long *pfn)
358 {
359 struct mce_ring *r;
360 int ret = 0;
361
362 *pfn = 0;
363 get_cpu();
364 r = &__get_cpu_var(mce_ring);
365 if (r->start == r->end)
366 goto out;
367 *pfn = r->ring[r->start];
368 r->start = (r->start + 1) % MCE_RING_SIZE;
369 ret = 1;
370 out:
371 put_cpu();
372 return ret;
373 }
374
375 /* Always runs in MCE context with preempt off */
376 static int mce_ring_add(unsigned long pfn)
377 {
378 struct mce_ring *r = &__get_cpu_var(mce_ring);
379 unsigned next;
380
381 next = (r->end + 1) % MCE_RING_SIZE;
382 if (next == r->start)
383 return -1;
384 r->ring[r->end] = pfn;
385 wmb();
386 r->end = next;
387 return 0;
388 }
389
390 int mce_available(struct cpuinfo_x86 *c)
391 {
392 if (mce_disabled)
393 return 0;
394 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
395 }
396
397 static void mce_schedule_work(void)
398 {
399 if (!mce_ring_empty()) {
400 struct work_struct *work = &__get_cpu_var(mce_work);
401 if (!work_pending(work))
402 schedule_work(work);
403 }
404 }
405
406 /*
407 * Get the address of the instruction at the time of the machine check
408 * error.
409 */
410 static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
411 {
412
413 if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
414 m->ip = regs->ip;
415 m->cs = regs->cs;
416 } else {
417 m->ip = 0;
418 m->cs = 0;
419 }
420 if (rip_msr)
421 m->ip = mce_rdmsrl(rip_msr);
422 }
423
424 #ifdef CONFIG_X86_LOCAL_APIC
425 /*
426 * Called after interrupts have been reenabled again
427 * when a MCE happened during an interrupts off region
428 * in the kernel.
429 */
430 asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
431 {
432 ack_APIC_irq();
433 exit_idle();
434 irq_enter();
435 mce_notify_irq();
436 mce_schedule_work();
437 irq_exit();
438 }
439 #endif
440
441 static void mce_report_event(struct pt_regs *regs)
442 {
443 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
444 mce_notify_irq();
445 /*
446 * Triggering the work queue here is just an insurance
447 * policy in case the syscall exit notify handler
448 * doesn't run soon enough or ends up running on the
449 * wrong CPU (can happen when audit sleeps)
450 */
451 mce_schedule_work();
452 return;
453 }
454
455 #ifdef CONFIG_X86_LOCAL_APIC
456 /*
457 * Without APIC do not notify. The event will be picked
458 * up eventually.
459 */
460 if (!cpu_has_apic)
461 return;
462
463 /*
464 * When interrupts are disabled we cannot use
465 * kernel services safely. Trigger an self interrupt
466 * through the APIC to instead do the notification
467 * after interrupts are reenabled again.
468 */
469 apic->send_IPI_self(MCE_SELF_VECTOR);
470
471 /*
472 * Wait for idle afterwards again so that we don't leave the
473 * APIC in a non idle state because the normal APIC writes
474 * cannot exclude us.
475 */
476 apic_wait_icr_idle();
477 #endif
478 }
479
480 DEFINE_PER_CPU(unsigned, mce_poll_count);
481
482 /*
483 * Poll for corrected events or events that happened before reset.
484 * Those are just logged through /dev/mcelog.
485 *
486 * This is executed in standard interrupt context.
487 *
488 * Note: spec recommends to panic for fatal unsignalled
489 * errors here. However this would be quite problematic --
490 * we would need to reimplement the Monarch handling and
491 * it would mess up the exclusion between exception handler
492 * and poll hander -- * so we skip this for now.
493 * These cases should not happen anyways, or only when the CPU
494 * is already totally * confused. In this case it's likely it will
495 * not fully execute the machine check handler either.
496 */
497 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
498 {
499 struct mce m;
500 int i;
501
502 __get_cpu_var(mce_poll_count)++;
503
504 mce_setup(&m);
505
506 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
507 for (i = 0; i < banks; i++) {
508 if (!bank[i] || !test_bit(i, *b))
509 continue;
510
511 m.misc = 0;
512 m.addr = 0;
513 m.bank = i;
514 m.tsc = 0;
515
516 barrier();
517 m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
518 if (!(m.status & MCI_STATUS_VAL))
519 continue;
520
521 /*
522 * Uncorrected or signalled events are handled by the exception
523 * handler when it is enabled, so don't process those here.
524 *
525 * TBD do the same check for MCI_STATUS_EN here?
526 */
527 if (!(flags & MCP_UC) &&
528 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
529 continue;
530
531 if (m.status & MCI_STATUS_MISCV)
532 m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4);
533 if (m.status & MCI_STATUS_ADDRV)
534 m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4);
535
536 if (!(flags & MCP_TIMESTAMP))
537 m.tsc = 0;
538 /*
539 * Don't get the IP here because it's unlikely to
540 * have anything to do with the actual error location.
541 */
542 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
543 mce_log(&m);
544 add_taint(TAINT_MACHINE_CHECK);
545 }
546
547 /*
548 * Clear state for this bank.
549 */
550 mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
551 }
552
553 /*
554 * Don't clear MCG_STATUS here because it's only defined for
555 * exceptions.
556 */
557
558 sync_core();
559 }
560 EXPORT_SYMBOL_GPL(machine_check_poll);
561
562 /*
563 * Do a quick check if any of the events requires a panic.
564 * This decides if we keep the events around or clear them.
565 */
566 static int mce_no_way_out(struct mce *m, char **msg)
567 {
568 int i;
569
570 for (i = 0; i < banks; i++) {
571 m->status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
572 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
573 return 1;
574 }
575 return 0;
576 }
577
578 /*
579 * Variable to establish order between CPUs while scanning.
580 * Each CPU spins initially until executing is equal its number.
581 */
582 static atomic_t mce_executing;
583
584 /*
585 * Defines order of CPUs on entry. First CPU becomes Monarch.
586 */
587 static atomic_t mce_callin;
588
589 /*
590 * Check if a timeout waiting for other CPUs happened.
591 */
592 static int mce_timed_out(u64 *t)
593 {
594 /*
595 * The others already did panic for some reason.
596 * Bail out like in a timeout.
597 * rmb() to tell the compiler that system_state
598 * might have been modified by someone else.
599 */
600 rmb();
601 if (atomic_read(&mce_paniced))
602 wait_for_panic();
603 if (!monarch_timeout)
604 goto out;
605 if ((s64)*t < SPINUNIT) {
606 /* CHECKME: Make panic default for 1 too? */
607 if (tolerant < 1)
608 mce_panic("Timeout synchronizing machine check over CPUs",
609 NULL, NULL);
610 cpu_missing = 1;
611 return 1;
612 }
613 *t -= SPINUNIT;
614 out:
615 touch_nmi_watchdog();
616 return 0;
617 }
618
619 /*
620 * The Monarch's reign. The Monarch is the CPU who entered
621 * the machine check handler first. It waits for the others to
622 * raise the exception too and then grades them. When any
623 * error is fatal panic. Only then let the others continue.
624 *
625 * The other CPUs entering the MCE handler will be controlled by the
626 * Monarch. They are called Subjects.
627 *
628 * This way we prevent any potential data corruption in a unrecoverable case
629 * and also makes sure always all CPU's errors are examined.
630 *
631 * Also this detects the case of an machine check event coming from outer
632 * space (not detected by any CPUs) In this case some external agent wants
633 * us to shut down, so panic too.
634 *
635 * The other CPUs might still decide to panic if the handler happens
636 * in a unrecoverable place, but in this case the system is in a semi-stable
637 * state and won't corrupt anything by itself. It's ok to let the others
638 * continue for a bit first.
639 *
640 * All the spin loops have timeouts; when a timeout happens a CPU
641 * typically elects itself to be Monarch.
642 */
643 static void mce_reign(void)
644 {
645 int cpu;
646 struct mce *m = NULL;
647 int global_worst = 0;
648 char *msg = NULL;
649 char *nmsg = NULL;
650
651 /*
652 * This CPU is the Monarch and the other CPUs have run
653 * through their handlers.
654 * Grade the severity of the errors of all the CPUs.
655 */
656 for_each_possible_cpu(cpu) {
657 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
658 &nmsg);
659 if (severity > global_worst) {
660 msg = nmsg;
661 global_worst = severity;
662 m = &per_cpu(mces_seen, cpu);
663 }
664 }
665
666 /*
667 * Cannot recover? Panic here then.
668 * This dumps all the mces in the log buffer and stops the
669 * other CPUs.
670 */
671 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
672 mce_panic("Fatal Machine check", m, msg);
673
674 /*
675 * For UC somewhere we let the CPU who detects it handle it.
676 * Also must let continue the others, otherwise the handling
677 * CPU could deadlock on a lock.
678 */
679
680 /*
681 * No machine check event found. Must be some external
682 * source or one CPU is hung. Panic.
683 */
684 if (!m && tolerant < 3)
685 mce_panic("Machine check from unknown source", NULL, NULL);
686
687 /*
688 * Now clear all the mces_seen so that they don't reappear on
689 * the next mce.
690 */
691 for_each_possible_cpu(cpu)
692 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
693 }
694
695 static atomic_t global_nwo;
696
697 /*
698 * Start of Monarch synchronization. This waits until all CPUs have
699 * entered the exception handler and then determines if any of them
700 * saw a fatal event that requires panic. Then it executes them
701 * in the entry order.
702 * TBD double check parallel CPU hotunplug
703 */
704 static int mce_start(int *no_way_out)
705 {
706 int order;
707 int cpus = num_online_cpus();
708 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
709
710 if (!timeout)
711 return -1;
712
713 atomic_add(*no_way_out, &global_nwo);
714 /*
715 * global_nwo should be updated before mce_callin
716 */
717 smp_wmb();
718 order = atomic_add_return(1, &mce_callin);
719
720 /*
721 * Wait for everyone.
722 */
723 while (atomic_read(&mce_callin) != cpus) {
724 if (mce_timed_out(&timeout)) {
725 atomic_set(&global_nwo, 0);
726 return -1;
727 }
728 ndelay(SPINUNIT);
729 }
730
731 /*
732 * mce_callin should be read before global_nwo
733 */
734 smp_rmb();
735
736 if (order == 1) {
737 /*
738 * Monarch: Starts executing now, the others wait.
739 */
740 atomic_set(&mce_executing, 1);
741 } else {
742 /*
743 * Subject: Now start the scanning loop one by one in
744 * the original callin order.
745 * This way when there are any shared banks it will be
746 * only seen by one CPU before cleared, avoiding duplicates.
747 */
748 while (atomic_read(&mce_executing) < order) {
749 if (mce_timed_out(&timeout)) {
750 atomic_set(&global_nwo, 0);
751 return -1;
752 }
753 ndelay(SPINUNIT);
754 }
755 }
756
757 /*
758 * Cache the global no_way_out state.
759 */
760 *no_way_out = atomic_read(&global_nwo);
761
762 return order;
763 }
764
765 /*
766 * Synchronize between CPUs after main scanning loop.
767 * This invokes the bulk of the Monarch processing.
768 */
769 static int mce_end(int order)
770 {
771 int ret = -1;
772 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
773
774 if (!timeout)
775 goto reset;
776 if (order < 0)
777 goto reset;
778
779 /*
780 * Allow others to run.
781 */
782 atomic_inc(&mce_executing);
783
784 if (order == 1) {
785 /* CHECKME: Can this race with a parallel hotplug? */
786 int cpus = num_online_cpus();
787
788 /*
789 * Monarch: Wait for everyone to go through their scanning
790 * loops.
791 */
792 while (atomic_read(&mce_executing) <= cpus) {
793 if (mce_timed_out(&timeout))
794 goto reset;
795 ndelay(SPINUNIT);
796 }
797
798 mce_reign();
799 barrier();
800 ret = 0;
801 } else {
802 /*
803 * Subject: Wait for Monarch to finish.
804 */
805 while (atomic_read(&mce_executing) != 0) {
806 if (mce_timed_out(&timeout))
807 goto reset;
808 ndelay(SPINUNIT);
809 }
810
811 /*
812 * Don't reset anything. That's done by the Monarch.
813 */
814 return 0;
815 }
816
817 /*
818 * Reset all global state.
819 */
820 reset:
821 atomic_set(&global_nwo, 0);
822 atomic_set(&mce_callin, 0);
823 barrier();
824
825 /*
826 * Let others run again.
827 */
828 atomic_set(&mce_executing, 0);
829 return ret;
830 }
831
832 /*
833 * Check if the address reported by the CPU is in a format we can parse.
834 * It would be possible to add code for most other cases, but all would
835 * be somewhat complicated (e.g. segment offset would require an instruction
836 * parser). So only support physical addresses upto page granuality for now.
837 */
838 static int mce_usable_address(struct mce *m)
839 {
840 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
841 return 0;
842 if ((m->misc & 0x3f) > PAGE_SHIFT)
843 return 0;
844 if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
845 return 0;
846 return 1;
847 }
848
849 static void mce_clear_state(unsigned long *toclear)
850 {
851 int i;
852
853 for (i = 0; i < banks; i++) {
854 if (test_bit(i, toclear))
855 mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
856 }
857 }
858
859 /*
860 * The actual machine check handler. This only handles real
861 * exceptions when something got corrupted coming in through int 18.
862 *
863 * This is executed in NMI context not subject to normal locking rules. This
864 * implies that most kernel services cannot be safely used. Don't even
865 * think about putting a printk in there!
866 *
867 * On Intel systems this is entered on all CPUs in parallel through
868 * MCE broadcast. However some CPUs might be broken beyond repair,
869 * so be always careful when synchronizing with others.
870 */
871 void do_machine_check(struct pt_regs *regs, long error_code)
872 {
873 struct mce m, *final;
874 int i;
875 int worst = 0;
876 int severity;
877 /*
878 * Establish sequential order between the CPUs entering the machine
879 * check handler.
880 */
881 int order;
882 /*
883 * If no_way_out gets set, there is no safe way to recover from this
884 * MCE. If tolerant is cranked up, we'll try anyway.
885 */
886 int no_way_out = 0;
887 /*
888 * If kill_it gets set, there might be a way to recover from this
889 * error.
890 */
891 int kill_it = 0;
892 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
893 char *msg = "Unknown";
894
895 atomic_inc(&mce_entry);
896
897 __get_cpu_var(mce_exception_count)++;
898
899 if (notify_die(DIE_NMI, "machine check", regs, error_code,
900 18, SIGKILL) == NOTIFY_STOP)
901 goto out;
902 if (!banks)
903 goto out;
904
905 mce_setup(&m);
906
907 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
908 no_way_out = mce_no_way_out(&m, &msg);
909
910 final = &__get_cpu_var(mces_seen);
911 *final = m;
912
913 barrier();
914
915 /*
916 * When no restart IP must always kill or panic.
917 */
918 if (!(m.mcgstatus & MCG_STATUS_RIPV))
919 kill_it = 1;
920
921 /*
922 * Go through all the banks in exclusion of the other CPUs.
923 * This way we don't report duplicated events on shared banks
924 * because the first one to see it will clear it.
925 */
926 order = mce_start(&no_way_out);
927 for (i = 0; i < banks; i++) {
928 __clear_bit(i, toclear);
929 if (!bank[i])
930 continue;
931
932 m.misc = 0;
933 m.addr = 0;
934 m.bank = i;
935
936 m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
937 if ((m.status & MCI_STATUS_VAL) == 0)
938 continue;
939
940 /*
941 * Non uncorrected or non signaled errors are handled by
942 * machine_check_poll. Leave them alone, unless this panics.
943 */
944 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
945 !no_way_out)
946 continue;
947
948 /*
949 * Set taint even when machine check was not enabled.
950 */
951 add_taint(TAINT_MACHINE_CHECK);
952
953 severity = mce_severity(&m, tolerant, NULL);
954
955 /*
956 * When machine check was for corrected handler don't touch,
957 * unless we're panicing.
958 */
959 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
960 continue;
961 __set_bit(i, toclear);
962 if (severity == MCE_NO_SEVERITY) {
963 /*
964 * Machine check event was not enabled. Clear, but
965 * ignore.
966 */
967 continue;
968 }
969
970 /*
971 * Kill on action required.
972 */
973 if (severity == MCE_AR_SEVERITY)
974 kill_it = 1;
975
976 if (m.status & MCI_STATUS_MISCV)
977 m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4);
978 if (m.status & MCI_STATUS_ADDRV)
979 m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4);
980
981 /*
982 * Action optional error. Queue address for later processing.
983 * When the ring overflows we just ignore the AO error.
984 * RED-PEN add some logging mechanism when
985 * usable_address or mce_add_ring fails.
986 * RED-PEN don't ignore overflow for tolerant == 0
987 */
988 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
989 mce_ring_add(m.addr >> PAGE_SHIFT);
990
991 mce_get_rip(&m, regs);
992 mce_log(&m);
993
994 if (severity > worst) {
995 *final = m;
996 worst = severity;
997 }
998 }
999
1000 if (!no_way_out)
1001 mce_clear_state(toclear);
1002
1003 /*
1004 * Do most of the synchronization with other CPUs.
1005 * When there's any problem use only local no_way_out state.
1006 */
1007 if (mce_end(order) < 0)
1008 no_way_out = worst >= MCE_PANIC_SEVERITY;
1009
1010 /*
1011 * If we have decided that we just CAN'T continue, and the user
1012 * has not set tolerant to an insane level, give up and die.
1013 *
1014 * This is mainly used in the case when the system doesn't
1015 * support MCE broadcasting or it has been disabled.
1016 */
1017 if (no_way_out && tolerant < 3)
1018 mce_panic("Fatal machine check on current CPU", final, msg);
1019
1020 /*
1021 * If the error seems to be unrecoverable, something should be
1022 * done. Try to kill as little as possible. If we can kill just
1023 * one task, do that. If the user has set the tolerance very
1024 * high, don't try to do anything at all.
1025 */
1026
1027 if (kill_it && tolerant < 3)
1028 force_sig(SIGBUS, current);
1029
1030 /* notify userspace ASAP */
1031 set_thread_flag(TIF_MCE_NOTIFY);
1032
1033 if (worst > 0)
1034 mce_report_event(regs);
1035 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1036 out:
1037 atomic_dec(&mce_entry);
1038 sync_core();
1039 }
1040 EXPORT_SYMBOL_GPL(do_machine_check);
1041
1042 /* dummy to break dependency. actual code is in mm/memory-failure.c */
1043 void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1044 {
1045 printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1046 }
1047
1048 /*
1049 * Called after mce notification in process context. This code
1050 * is allowed to sleep. Call the high level VM handler to process
1051 * any corrupted pages.
1052 * Assume that the work queue code only calls this one at a time
1053 * per CPU.
1054 * Note we don't disable preemption, so this code might run on the wrong
1055 * CPU. In this case the event is picked up by the scheduled work queue.
1056 * This is merely a fast path to expedite processing in some common
1057 * cases.
1058 */
1059 void mce_notify_process(void)
1060 {
1061 unsigned long pfn;
1062 mce_notify_irq();
1063 while (mce_ring_get(&pfn))
1064 memory_failure(pfn, MCE_VECTOR);
1065 }
1066
1067 static void mce_process_work(struct work_struct *dummy)
1068 {
1069 mce_notify_process();
1070 }
1071
1072 #ifdef CONFIG_X86_MCE_INTEL
1073 /***
1074 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1075 * @cpu: The CPU on which the event occurred.
1076 * @status: Event status information
1077 *
1078 * This function should be called by the thermal interrupt after the
1079 * event has been processed and the decision was made to log the event
1080 * further.
1081 *
1082 * The status parameter will be saved to the 'status' field of 'struct mce'
1083 * and historically has been the register value of the
1084 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1085 */
1086 void mce_log_therm_throt_event(__u64 status)
1087 {
1088 struct mce m;
1089
1090 mce_setup(&m);
1091 m.bank = MCE_THERMAL_BANK;
1092 m.status = status;
1093 mce_log(&m);
1094 }
1095 #endif /* CONFIG_X86_MCE_INTEL */
1096
1097 /*
1098 * Periodic polling timer for "silent" machine check errors. If the
1099 * poller finds an MCE, poll 2x faster. When the poller finds no more
1100 * errors, poll 2x slower (up to check_interval seconds).
1101 */
1102 static int check_interval = 5 * 60; /* 5 minutes */
1103
1104 static DEFINE_PER_CPU(int, next_interval); /* in jiffies */
1105 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1106
1107 static void mcheck_timer(unsigned long data)
1108 {
1109 struct timer_list *t = &per_cpu(mce_timer, data);
1110 int *n;
1111
1112 WARN_ON(smp_processor_id() != data);
1113
1114 if (mce_available(&current_cpu_data)) {
1115 machine_check_poll(MCP_TIMESTAMP,
1116 &__get_cpu_var(mce_poll_banks));
1117 }
1118
1119 /*
1120 * Alert userspace if needed. If we logged an MCE, reduce the
1121 * polling interval, otherwise increase the polling interval.
1122 */
1123 n = &__get_cpu_var(next_interval);
1124 if (mce_notify_irq())
1125 *n = max(*n/2, HZ/100);
1126 else
1127 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1128
1129 t->expires = jiffies + *n;
1130 add_timer_on(t, smp_processor_id());
1131 }
1132
1133 static void mce_do_trigger(struct work_struct *work)
1134 {
1135 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1136 }
1137
1138 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1139
1140 /*
1141 * Notify the user(s) about new machine check events.
1142 * Can be called from interrupt context, but not from machine check/NMI
1143 * context.
1144 */
1145 int mce_notify_irq(void)
1146 {
1147 /* Not more than two messages every minute */
1148 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1149
1150 clear_thread_flag(TIF_MCE_NOTIFY);
1151
1152 if (test_and_clear_bit(0, &mce_need_notify)) {
1153 wake_up_interruptible(&mce_wait);
1154
1155 /*
1156 * There is no risk of missing notifications because
1157 * work_pending is always cleared before the function is
1158 * executed.
1159 */
1160 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1161 schedule_work(&mce_trigger_work);
1162
1163 if (__ratelimit(&ratelimit))
1164 printk(KERN_INFO "Machine check events logged\n");
1165
1166 return 1;
1167 }
1168 return 0;
1169 }
1170 EXPORT_SYMBOL_GPL(mce_notify_irq);
1171
1172 /*
1173 * Initialize Machine Checks for a CPU.
1174 */
1175 static int mce_cap_init(void)
1176 {
1177 unsigned b;
1178 u64 cap;
1179
1180 rdmsrl(MSR_IA32_MCG_CAP, cap);
1181
1182 b = cap & MCG_BANKCNT_MASK;
1183 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1184
1185 if (b > MAX_NR_BANKS) {
1186 printk(KERN_WARNING
1187 "MCE: Using only %u machine check banks out of %u\n",
1188 MAX_NR_BANKS, b);
1189 b = MAX_NR_BANKS;
1190 }
1191
1192 /* Don't support asymmetric configurations today */
1193 WARN_ON(banks != 0 && b != banks);
1194 banks = b;
1195 if (!bank) {
1196 bank = kmalloc(banks * sizeof(u64), GFP_KERNEL);
1197 if (!bank)
1198 return -ENOMEM;
1199 memset(bank, 0xff, banks * sizeof(u64));
1200 }
1201
1202 /* Use accurate RIP reporting if available. */
1203 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1204 rip_msr = MSR_IA32_MCG_EIP;
1205
1206 if (cap & MCG_SER_P)
1207 mce_ser = 1;
1208
1209 return 0;
1210 }
1211
1212 static void mce_init(void)
1213 {
1214 mce_banks_t all_banks;
1215 u64 cap;
1216 int i;
1217
1218 /*
1219 * Log the machine checks left over from the previous reset.
1220 */
1221 bitmap_fill(all_banks, MAX_NR_BANKS);
1222 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1223
1224 set_in_cr4(X86_CR4_MCE);
1225
1226 rdmsrl(MSR_IA32_MCG_CAP, cap);
1227 if (cap & MCG_CTL_P)
1228 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1229
1230 for (i = 0; i < banks; i++) {
1231 if (skip_bank_init(i))
1232 continue;
1233 wrmsrl(MSR_IA32_MC0_CTL+4*i, bank[i]);
1234 wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
1235 }
1236 }
1237
1238 /* Add per CPU specific workarounds here */
1239 static int mce_cpu_quirks(struct cpuinfo_x86 *c)
1240 {
1241 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1242 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1243 return -EOPNOTSUPP;
1244 }
1245
1246 /* This should be disabled by the BIOS, but isn't always */
1247 if (c->x86_vendor == X86_VENDOR_AMD) {
1248 if (c->x86 == 15 && banks > 4) {
1249 /*
1250 * disable GART TBL walk error reporting, which
1251 * trips off incorrectly with the IOMMU & 3ware
1252 * & Cerberus:
1253 */
1254 clear_bit(10, (unsigned long *)&bank[4]);
1255 }
1256 if (c->x86 <= 17 && mce_bootlog < 0) {
1257 /*
1258 * Lots of broken BIOS around that don't clear them
1259 * by default and leave crap in there. Don't log:
1260 */
1261 mce_bootlog = 0;
1262 }
1263 /*
1264 * Various K7s with broken bank 0 around. Always disable
1265 * by default.
1266 */
1267 if (c->x86 == 6 && banks > 0)
1268 bank[0] = 0;
1269 }
1270
1271 if (c->x86_vendor == X86_VENDOR_INTEL) {
1272 /*
1273 * SDM documents that on family 6 bank 0 should not be written
1274 * because it aliases to another special BIOS controlled
1275 * register.
1276 * But it's not aliased anymore on model 0x1a+
1277 * Don't ignore bank 0 completely because there could be a
1278 * valid event later, merely don't write CTL0.
1279 */
1280
1281 if (c->x86 == 6 && c->x86_model < 0x1A)
1282 __set_bit(0, &dont_init_banks);
1283
1284 /*
1285 * All newer Intel systems support MCE broadcasting. Enable
1286 * synchronization with a one second timeout.
1287 */
1288 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1289 monarch_timeout < 0)
1290 monarch_timeout = USEC_PER_SEC;
1291
1292 /*
1293 * There are also broken BIOSes on some Pentium M and
1294 * earlier systems:
1295 */
1296 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1297 mce_bootlog = 0;
1298 }
1299 if (monarch_timeout < 0)
1300 monarch_timeout = 0;
1301 if (mce_bootlog != 0)
1302 mce_panic_timeout = 30;
1303
1304 return 0;
1305 }
1306
1307 static void __cpuinit mce_ancient_init(struct cpuinfo_x86 *c)
1308 {
1309 if (c->x86 != 5)
1310 return;
1311 switch (c->x86_vendor) {
1312 case X86_VENDOR_INTEL:
1313 intel_p5_mcheck_init(c);
1314 break;
1315 case X86_VENDOR_CENTAUR:
1316 winchip_mcheck_init(c);
1317 break;
1318 }
1319 }
1320
1321 static void mce_cpu_features(struct cpuinfo_x86 *c)
1322 {
1323 switch (c->x86_vendor) {
1324 case X86_VENDOR_INTEL:
1325 mce_intel_feature_init(c);
1326 break;
1327 case X86_VENDOR_AMD:
1328 mce_amd_feature_init(c);
1329 break;
1330 default:
1331 break;
1332 }
1333 }
1334
1335 static void mce_init_timer(void)
1336 {
1337 struct timer_list *t = &__get_cpu_var(mce_timer);
1338 int *n = &__get_cpu_var(next_interval);
1339
1340 if (mce_ignore_ce)
1341 return;
1342
1343 *n = check_interval * HZ;
1344 if (!*n)
1345 return;
1346 setup_timer(t, mcheck_timer, smp_processor_id());
1347 t->expires = round_jiffies(jiffies + *n);
1348 add_timer_on(t, smp_processor_id());
1349 }
1350
1351 /*
1352 * Called for each booted CPU to set up machine checks.
1353 * Must be called with preempt off:
1354 */
1355 void __cpuinit mcheck_init(struct cpuinfo_x86 *c)
1356 {
1357 if (mce_disabled)
1358 return;
1359
1360 mce_ancient_init(c);
1361
1362 if (!mce_available(c))
1363 return;
1364
1365 if (mce_cap_init() < 0 || mce_cpu_quirks(c) < 0) {
1366 mce_disabled = 1;
1367 return;
1368 }
1369
1370 machine_check_vector = do_machine_check;
1371
1372 mce_init();
1373 mce_cpu_features(c);
1374 mce_init_timer();
1375 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1376 }
1377
1378 /*
1379 * Character device to read and clear the MCE log.
1380 */
1381
1382 static DEFINE_SPINLOCK(mce_state_lock);
1383 static int open_count; /* #times opened */
1384 static int open_exclu; /* already open exclusive? */
1385
1386 static int mce_open(struct inode *inode, struct file *file)
1387 {
1388 spin_lock(&mce_state_lock);
1389
1390 if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1391 spin_unlock(&mce_state_lock);
1392
1393 return -EBUSY;
1394 }
1395
1396 if (file->f_flags & O_EXCL)
1397 open_exclu = 1;
1398 open_count++;
1399
1400 spin_unlock(&mce_state_lock);
1401
1402 return nonseekable_open(inode, file);
1403 }
1404
1405 static int mce_release(struct inode *inode, struct file *file)
1406 {
1407 spin_lock(&mce_state_lock);
1408
1409 open_count--;
1410 open_exclu = 0;
1411
1412 spin_unlock(&mce_state_lock);
1413
1414 return 0;
1415 }
1416
1417 static void collect_tscs(void *data)
1418 {
1419 unsigned long *cpu_tsc = (unsigned long *)data;
1420
1421 rdtscll(cpu_tsc[smp_processor_id()]);
1422 }
1423
1424 static DEFINE_MUTEX(mce_read_mutex);
1425
1426 static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1427 loff_t *off)
1428 {
1429 char __user *buf = ubuf;
1430 unsigned long *cpu_tsc;
1431 unsigned prev, next;
1432 int i, err;
1433
1434 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1435 if (!cpu_tsc)
1436 return -ENOMEM;
1437
1438 mutex_lock(&mce_read_mutex);
1439 next = rcu_dereference(mcelog.next);
1440
1441 /* Only supports full reads right now */
1442 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce)) {
1443 mutex_unlock(&mce_read_mutex);
1444 kfree(cpu_tsc);
1445
1446 return -EINVAL;
1447 }
1448
1449 err = 0;
1450 prev = 0;
1451 do {
1452 for (i = prev; i < next; i++) {
1453 unsigned long start = jiffies;
1454
1455 while (!mcelog.entry[i].finished) {
1456 if (time_after_eq(jiffies, start + 2)) {
1457 memset(mcelog.entry + i, 0,
1458 sizeof(struct mce));
1459 goto timeout;
1460 }
1461 cpu_relax();
1462 }
1463 smp_rmb();
1464 err |= copy_to_user(buf, mcelog.entry + i,
1465 sizeof(struct mce));
1466 buf += sizeof(struct mce);
1467 timeout:
1468 ;
1469 }
1470
1471 memset(mcelog.entry + prev, 0,
1472 (next - prev) * sizeof(struct mce));
1473 prev = next;
1474 next = cmpxchg(&mcelog.next, prev, 0);
1475 } while (next != prev);
1476
1477 synchronize_sched();
1478
1479 /*
1480 * Collect entries that were still getting written before the
1481 * synchronize.
1482 */
1483 on_each_cpu(collect_tscs, cpu_tsc, 1);
1484
1485 for (i = next; i < MCE_LOG_LEN; i++) {
1486 if (mcelog.entry[i].finished &&
1487 mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1488 err |= copy_to_user(buf, mcelog.entry+i,
1489 sizeof(struct mce));
1490 smp_rmb();
1491 buf += sizeof(struct mce);
1492 memset(&mcelog.entry[i], 0, sizeof(struct mce));
1493 }
1494 }
1495 mutex_unlock(&mce_read_mutex);
1496 kfree(cpu_tsc);
1497
1498 return err ? -EFAULT : buf - ubuf;
1499 }
1500
1501 static unsigned int mce_poll(struct file *file, poll_table *wait)
1502 {
1503 poll_wait(file, &mce_wait, wait);
1504 if (rcu_dereference(mcelog.next))
1505 return POLLIN | POLLRDNORM;
1506 return 0;
1507 }
1508
1509 static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1510 {
1511 int __user *p = (int __user *)arg;
1512
1513 if (!capable(CAP_SYS_ADMIN))
1514 return -EPERM;
1515
1516 switch (cmd) {
1517 case MCE_GET_RECORD_LEN:
1518 return put_user(sizeof(struct mce), p);
1519 case MCE_GET_LOG_LEN:
1520 return put_user(MCE_LOG_LEN, p);
1521 case MCE_GETCLEAR_FLAGS: {
1522 unsigned flags;
1523
1524 do {
1525 flags = mcelog.flags;
1526 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1527
1528 return put_user(flags, p);
1529 }
1530 default:
1531 return -ENOTTY;
1532 }
1533 }
1534
1535 /* Modified in mce-inject.c, so not static or const */
1536 struct file_operations mce_chrdev_ops = {
1537 .open = mce_open,
1538 .release = mce_release,
1539 .read = mce_read,
1540 .poll = mce_poll,
1541 .unlocked_ioctl = mce_ioctl,
1542 };
1543 EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1544
1545 static struct miscdevice mce_log_device = {
1546 MISC_MCELOG_MINOR,
1547 "mcelog",
1548 &mce_chrdev_ops,
1549 };
1550
1551 /*
1552 * mce=off Disables machine check
1553 * mce=no_cmci Disables CMCI
1554 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1555 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1556 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1557 * monarchtimeout is how long to wait for other CPUs on machine
1558 * check, or 0 to not wait
1559 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1560 * mce=nobootlog Don't log MCEs from before booting.
1561 */
1562 static int __init mcheck_enable(char *str)
1563 {
1564 if (*str == 0)
1565 enable_p5_mce();
1566 if (*str == '=')
1567 str++;
1568 if (!strcmp(str, "off"))
1569 mce_disabled = 1;
1570 else if (!strcmp(str, "no_cmci"))
1571 mce_cmci_disabled = 1;
1572 else if (!strcmp(str, "dont_log_ce"))
1573 mce_dont_log_ce = 1;
1574 else if (!strcmp(str, "ignore_ce"))
1575 mce_ignore_ce = 1;
1576 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1577 mce_bootlog = (str[0] == 'b');
1578 else if (isdigit(str[0])) {
1579 get_option(&str, &tolerant);
1580 if (*str == ',') {
1581 ++str;
1582 get_option(&str, &monarch_timeout);
1583 }
1584 } else {
1585 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1586 str);
1587 return 0;
1588 }
1589 return 1;
1590 }
1591 __setup("mce", mcheck_enable);
1592
1593 /*
1594 * Sysfs support
1595 */
1596
1597 /*
1598 * Disable machine checks on suspend and shutdown. We can't really handle
1599 * them later.
1600 */
1601 static int mce_disable(void)
1602 {
1603 int i;
1604
1605 for (i = 0; i < banks; i++) {
1606 if (!skip_bank_init(i))
1607 wrmsrl(MSR_IA32_MC0_CTL + i*4, 0);
1608 }
1609 return 0;
1610 }
1611
1612 static int mce_suspend(struct sys_device *dev, pm_message_t state)
1613 {
1614 return mce_disable();
1615 }
1616
1617 static int mce_shutdown(struct sys_device *dev)
1618 {
1619 return mce_disable();
1620 }
1621
1622 /*
1623 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1624 * Only one CPU is active at this time, the others get re-added later using
1625 * CPU hotplug:
1626 */
1627 static int mce_resume(struct sys_device *dev)
1628 {
1629 mce_init();
1630 mce_cpu_features(&current_cpu_data);
1631
1632 return 0;
1633 }
1634
1635 static void mce_cpu_restart(void *data)
1636 {
1637 del_timer_sync(&__get_cpu_var(mce_timer));
1638 if (!mce_available(&current_cpu_data))
1639 return;
1640 mce_init();
1641 mce_init_timer();
1642 }
1643
1644 /* Reinit MCEs after user configuration changes */
1645 static void mce_restart(void)
1646 {
1647 on_each_cpu(mce_cpu_restart, NULL, 1);
1648 }
1649
1650 /* Toggle features for corrected errors */
1651 static void mce_disable_ce(void *all)
1652 {
1653 if (!mce_available(&current_cpu_data))
1654 return;
1655 if (all)
1656 del_timer_sync(&__get_cpu_var(mce_timer));
1657 cmci_clear();
1658 }
1659
1660 static void mce_enable_ce(void *all)
1661 {
1662 if (!mce_available(&current_cpu_data))
1663 return;
1664 cmci_reenable();
1665 cmci_recheck();
1666 if (all)
1667 mce_init_timer();
1668 }
1669
1670 static struct sysdev_class mce_sysclass = {
1671 .suspend = mce_suspend,
1672 .shutdown = mce_shutdown,
1673 .resume = mce_resume,
1674 .name = "machinecheck",
1675 };
1676
1677 DEFINE_PER_CPU(struct sys_device, mce_dev);
1678
1679 __cpuinitdata
1680 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1681
1682 static struct sysdev_attribute *bank_attrs;
1683
1684 static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1685 char *buf)
1686 {
1687 u64 b = bank[attr - bank_attrs];
1688
1689 return sprintf(buf, "%llx\n", b);
1690 }
1691
1692 static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1693 const char *buf, size_t size)
1694 {
1695 u64 new;
1696
1697 if (strict_strtoull(buf, 0, &new) < 0)
1698 return -EINVAL;
1699
1700 bank[attr - bank_attrs] = new;
1701 mce_restart();
1702
1703 return size;
1704 }
1705
1706 static ssize_t
1707 show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1708 {
1709 strcpy(buf, mce_helper);
1710 strcat(buf, "\n");
1711 return strlen(mce_helper) + 1;
1712 }
1713
1714 static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1715 const char *buf, size_t siz)
1716 {
1717 char *p;
1718
1719 strncpy(mce_helper, buf, sizeof(mce_helper));
1720 mce_helper[sizeof(mce_helper)-1] = 0;
1721 p = strchr(mce_helper, '\n');
1722
1723 if (p)
1724 *p = 0;
1725
1726 return strlen(mce_helper) + !!p;
1727 }
1728
1729 static ssize_t set_ignore_ce(struct sys_device *s,
1730 struct sysdev_attribute *attr,
1731 const char *buf, size_t size)
1732 {
1733 u64 new;
1734
1735 if (strict_strtoull(buf, 0, &new) < 0)
1736 return -EINVAL;
1737
1738 if (mce_ignore_ce ^ !!new) {
1739 if (new) {
1740 /* disable ce features */
1741 on_each_cpu(mce_disable_ce, (void *)1, 1);
1742 mce_ignore_ce = 1;
1743 } else {
1744 /* enable ce features */
1745 mce_ignore_ce = 0;
1746 on_each_cpu(mce_enable_ce, (void *)1, 1);
1747 }
1748 }
1749 return size;
1750 }
1751
1752 static ssize_t set_cmci_disabled(struct sys_device *s,
1753 struct sysdev_attribute *attr,
1754 const char *buf, size_t size)
1755 {
1756 u64 new;
1757
1758 if (strict_strtoull(buf, 0, &new) < 0)
1759 return -EINVAL;
1760
1761 if (mce_cmci_disabled ^ !!new) {
1762 if (new) {
1763 /* disable cmci */
1764 on_each_cpu(mce_disable_ce, NULL, 1);
1765 mce_cmci_disabled = 1;
1766 } else {
1767 /* enable cmci */
1768 mce_cmci_disabled = 0;
1769 on_each_cpu(mce_enable_ce, NULL, 1);
1770 }
1771 }
1772 return size;
1773 }
1774
1775 static ssize_t store_int_with_restart(struct sys_device *s,
1776 struct sysdev_attribute *attr,
1777 const char *buf, size_t size)
1778 {
1779 ssize_t ret = sysdev_store_int(s, attr, buf, size);
1780 mce_restart();
1781 return ret;
1782 }
1783
1784 static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1785 static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1786 static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1787 static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1788
1789 static struct sysdev_ext_attribute attr_check_interval = {
1790 _SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1791 store_int_with_restart),
1792 &check_interval
1793 };
1794
1795 static struct sysdev_ext_attribute attr_ignore_ce = {
1796 _SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1797 &mce_ignore_ce
1798 };
1799
1800 static struct sysdev_ext_attribute attr_cmci_disabled = {
1801 _SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1802 &mce_cmci_disabled
1803 };
1804
1805 static struct sysdev_attribute *mce_attrs[] = {
1806 &attr_tolerant.attr,
1807 &attr_check_interval.attr,
1808 &attr_trigger,
1809 &attr_monarch_timeout.attr,
1810 &attr_dont_log_ce.attr,
1811 &attr_ignore_ce.attr,
1812 &attr_cmci_disabled.attr,
1813 NULL
1814 };
1815
1816 static cpumask_var_t mce_dev_initialized;
1817
1818 /* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1819 static __cpuinit int mce_create_device(unsigned int cpu)
1820 {
1821 int err;
1822 int i, j;
1823
1824 if (!mce_available(&boot_cpu_data))
1825 return -EIO;
1826
1827 memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1828 per_cpu(mce_dev, cpu).id = cpu;
1829 per_cpu(mce_dev, cpu).cls = &mce_sysclass;
1830
1831 err = sysdev_register(&per_cpu(mce_dev, cpu));
1832 if (err)
1833 return err;
1834
1835 for (i = 0; mce_attrs[i]; i++) {
1836 err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1837 if (err)
1838 goto error;
1839 }
1840 for (j = 0; j < banks; j++) {
1841 err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1842 &bank_attrs[j]);
1843 if (err)
1844 goto error2;
1845 }
1846 cpumask_set_cpu(cpu, mce_dev_initialized);
1847
1848 return 0;
1849 error2:
1850 while (--j >= 0)
1851 sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[j]);
1852 error:
1853 while (--i >= 0)
1854 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1855
1856 sysdev_unregister(&per_cpu(mce_dev, cpu));
1857
1858 return err;
1859 }
1860
1861 static __cpuinit void mce_remove_device(unsigned int cpu)
1862 {
1863 int i;
1864
1865 if (!cpumask_test_cpu(cpu, mce_dev_initialized))
1866 return;
1867
1868 for (i = 0; mce_attrs[i]; i++)
1869 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1870
1871 for (i = 0; i < banks; i++)
1872 sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[i]);
1873
1874 sysdev_unregister(&per_cpu(mce_dev, cpu));
1875 cpumask_clear_cpu(cpu, mce_dev_initialized);
1876 }
1877
1878 /* Make sure there are no machine checks on offlined CPUs. */
1879 static void mce_disable_cpu(void *h)
1880 {
1881 unsigned long action = *(unsigned long *)h;
1882 int i;
1883
1884 if (!mce_available(&current_cpu_data))
1885 return;
1886 if (!(action & CPU_TASKS_FROZEN))
1887 cmci_clear();
1888 for (i = 0; i < banks; i++) {
1889 if (!skip_bank_init(i))
1890 wrmsrl(MSR_IA32_MC0_CTL + i*4, 0);
1891 }
1892 }
1893
1894 static void mce_reenable_cpu(void *h)
1895 {
1896 unsigned long action = *(unsigned long *)h;
1897 int i;
1898
1899 if (!mce_available(&current_cpu_data))
1900 return;
1901
1902 if (!(action & CPU_TASKS_FROZEN))
1903 cmci_reenable();
1904 for (i = 0; i < banks; i++) {
1905 if (!skip_bank_init(i))
1906 wrmsrl(MSR_IA32_MC0_CTL + i*4, bank[i]);
1907 }
1908 }
1909
1910 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
1911 static int __cpuinit
1912 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
1913 {
1914 unsigned int cpu = (unsigned long)hcpu;
1915 struct timer_list *t = &per_cpu(mce_timer, cpu);
1916
1917 switch (action) {
1918 case CPU_ONLINE:
1919 case CPU_ONLINE_FROZEN:
1920 mce_create_device(cpu);
1921 if (threshold_cpu_callback)
1922 threshold_cpu_callback(action, cpu);
1923 break;
1924 case CPU_DEAD:
1925 case CPU_DEAD_FROZEN:
1926 if (threshold_cpu_callback)
1927 threshold_cpu_callback(action, cpu);
1928 mce_remove_device(cpu);
1929 break;
1930 case CPU_DOWN_PREPARE:
1931 case CPU_DOWN_PREPARE_FROZEN:
1932 del_timer_sync(t);
1933 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
1934 break;
1935 case CPU_DOWN_FAILED:
1936 case CPU_DOWN_FAILED_FROZEN:
1937 t->expires = round_jiffies(jiffies +
1938 __get_cpu_var(next_interval));
1939 add_timer_on(t, cpu);
1940 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
1941 break;
1942 case CPU_POST_DEAD:
1943 /* intentionally ignoring frozen here */
1944 cmci_rediscover(cpu);
1945 break;
1946 }
1947 return NOTIFY_OK;
1948 }
1949
1950 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
1951 .notifier_call = mce_cpu_callback,
1952 };
1953
1954 static __init int mce_init_banks(void)
1955 {
1956 int i;
1957
1958 bank_attrs = kzalloc(sizeof(struct sysdev_attribute) * banks,
1959 GFP_KERNEL);
1960 if (!bank_attrs)
1961 return -ENOMEM;
1962
1963 for (i = 0; i < banks; i++) {
1964 struct sysdev_attribute *a = &bank_attrs[i];
1965
1966 a->attr.name = kasprintf(GFP_KERNEL, "bank%d", i);
1967 if (!a->attr.name)
1968 goto nomem;
1969
1970 a->attr.mode = 0644;
1971 a->show = show_bank;
1972 a->store = set_bank;
1973 }
1974 return 0;
1975
1976 nomem:
1977 while (--i >= 0)
1978 kfree(bank_attrs[i].attr.name);
1979 kfree(bank_attrs);
1980 bank_attrs = NULL;
1981
1982 return -ENOMEM;
1983 }
1984
1985 static __init int mce_init_device(void)
1986 {
1987 int err;
1988 int i = 0;
1989
1990 if (!mce_available(&boot_cpu_data))
1991 return -EIO;
1992
1993 zalloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
1994
1995 err = mce_init_banks();
1996 if (err)
1997 return err;
1998
1999 err = sysdev_class_register(&mce_sysclass);
2000 if (err)
2001 return err;
2002
2003 for_each_online_cpu(i) {
2004 err = mce_create_device(i);
2005 if (err)
2006 return err;
2007 }
2008
2009 register_hotcpu_notifier(&mce_cpu_notifier);
2010 misc_register(&mce_log_device);
2011
2012 return err;
2013 }
2014
2015 device_initcall(mce_init_device);
2016
2017 #else /* CONFIG_X86_OLD_MCE: */
2018
2019 int nr_mce_banks;
2020 EXPORT_SYMBOL_GPL(nr_mce_banks); /* non-fatal.o */
2021
2022 /* This has to be run for each processor */
2023 void mcheck_init(struct cpuinfo_x86 *c)
2024 {
2025 if (mce_disabled)
2026 return;
2027
2028 switch (c->x86_vendor) {
2029 case X86_VENDOR_AMD:
2030 amd_mcheck_init(c);
2031 break;
2032
2033 case X86_VENDOR_INTEL:
2034 if (c->x86 == 5)
2035 intel_p5_mcheck_init(c);
2036 if (c->x86 == 6)
2037 intel_p6_mcheck_init(c);
2038 if (c->x86 == 15)
2039 intel_p4_mcheck_init(c);
2040 break;
2041
2042 case X86_VENDOR_CENTAUR:
2043 if (c->x86 == 5)
2044 winchip_mcheck_init(c);
2045 break;
2046
2047 default:
2048 break;
2049 }
2050 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", nr_mce_banks);
2051 }
2052
2053 static int __init mcheck_enable(char *str)
2054 {
2055 mce_p5_enabled = 1;
2056 return 1;
2057 }
2058 __setup("mce", mcheck_enable);
2059
2060 #endif /* CONFIG_X86_OLD_MCE */
2061
2062 /*
2063 * Old style boot options parsing. Only for compatibility.
2064 */
2065 static int __init mcheck_disable(char *str)
2066 {
2067 mce_disabled = 1;
2068 return 1;
2069 }
2070 __setup("nomce", mcheck_disable);