include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/interrupt.h>
14 #include <linux/ratelimit.h>
15 #include <linux/kallsyms.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/sysdev.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/fs.h>
37 #include <linux/mm.h>
38 #include <linux/debugfs.h>
39
40 #include <asm/processor.h>
41 #include <asm/hw_irq.h>
42 #include <asm/apic.h>
43 #include <asm/idle.h>
44 #include <asm/ipi.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47
48 #include "mce-internal.h"
49
50 static DEFINE_MUTEX(mce_read_mutex);
51
52 #define rcu_dereference_check_mce(p) \
53 rcu_dereference_check((p), \
54 rcu_read_lock_sched_held() || \
55 lockdep_is_held(&mce_read_mutex))
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mce.h>
59
60 int mce_disabled __read_mostly;
61
62 #define MISC_MCELOG_MINOR 227
63
64 #define SPINUNIT 100 /* 100ns */
65
66 atomic_t mce_entry;
67
68 DEFINE_PER_CPU(unsigned, mce_exception_count);
69
70 /*
71 * Tolerant levels:
72 * 0: always panic on uncorrected errors, log corrected errors
73 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
74 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
75 * 3: never panic or SIGBUS, log all errors (for testing only)
76 */
77 static int tolerant __read_mostly = 1;
78 static int banks __read_mostly;
79 static int rip_msr __read_mostly;
80 static int mce_bootlog __read_mostly = -1;
81 static int monarch_timeout __read_mostly = -1;
82 static int mce_panic_timeout __read_mostly;
83 static int mce_dont_log_ce __read_mostly;
84 int mce_cmci_disabled __read_mostly;
85 int mce_ignore_ce __read_mostly;
86 int mce_ser __read_mostly;
87
88 struct mce_bank *mce_banks __read_mostly;
89
90 /* User mode helper program triggered by machine check event */
91 static unsigned long mce_need_notify;
92 static char mce_helper[128];
93 static char *mce_helper_argv[2] = { mce_helper, NULL };
94
95 static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
96 static DEFINE_PER_CPU(struct mce, mces_seen);
97 static int cpu_missing;
98
99 /*
100 * CPU/chipset specific EDAC code can register a notifier call here to print
101 * MCE errors in a human-readable form.
102 */
103 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
104 EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
105
106 static int default_decode_mce(struct notifier_block *nb, unsigned long val,
107 void *data)
108 {
109 pr_emerg("No human readable MCE decoding support on this CPU type.\n");
110 pr_emerg("Run the message through 'mcelog --ascii' to decode.\n");
111
112 return NOTIFY_STOP;
113 }
114
115 static struct notifier_block mce_dec_nb = {
116 .notifier_call = default_decode_mce,
117 .priority = -1,
118 };
119
120 /* MCA banks polled by the period polling timer for corrected events */
121 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
122 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
123 };
124
125 static DEFINE_PER_CPU(struct work_struct, mce_work);
126
127 /* Do initial initialization of a struct mce */
128 void mce_setup(struct mce *m)
129 {
130 memset(m, 0, sizeof(struct mce));
131 m->cpu = m->extcpu = smp_processor_id();
132 rdtscll(m->tsc);
133 /* We hope get_seconds stays lockless */
134 m->time = get_seconds();
135 m->cpuvendor = boot_cpu_data.x86_vendor;
136 m->cpuid = cpuid_eax(1);
137 #ifdef CONFIG_SMP
138 m->socketid = cpu_data(m->extcpu).phys_proc_id;
139 #endif
140 m->apicid = cpu_data(m->extcpu).initial_apicid;
141 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
142 }
143
144 DEFINE_PER_CPU(struct mce, injectm);
145 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
146
147 /*
148 * Lockless MCE logging infrastructure.
149 * This avoids deadlocks on printk locks without having to break locks. Also
150 * separate MCEs from kernel messages to avoid bogus bug reports.
151 */
152
153 static struct mce_log mcelog = {
154 .signature = MCE_LOG_SIGNATURE,
155 .len = MCE_LOG_LEN,
156 .recordlen = sizeof(struct mce),
157 };
158
159 void mce_log(struct mce *mce)
160 {
161 unsigned next, entry;
162
163 /* Emit the trace record: */
164 trace_mce_record(mce);
165
166 mce->finished = 0;
167 wmb();
168 for (;;) {
169 entry = rcu_dereference_check_mce(mcelog.next);
170 for (;;) {
171 /*
172 * When the buffer fills up discard new entries.
173 * Assume that the earlier errors are the more
174 * interesting ones:
175 */
176 if (entry >= MCE_LOG_LEN) {
177 set_bit(MCE_OVERFLOW,
178 (unsigned long *)&mcelog.flags);
179 return;
180 }
181 /* Old left over entry. Skip: */
182 if (mcelog.entry[entry].finished) {
183 entry++;
184 continue;
185 }
186 break;
187 }
188 smp_rmb();
189 next = entry + 1;
190 if (cmpxchg(&mcelog.next, entry, next) == entry)
191 break;
192 }
193 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
194 wmb();
195 mcelog.entry[entry].finished = 1;
196 wmb();
197
198 mce->finished = 1;
199 set_bit(0, &mce_need_notify);
200 }
201
202 static void print_mce(struct mce *m)
203 {
204 pr_emerg("CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n",
205 m->extcpu, m->mcgstatus, m->bank, m->status);
206
207 if (m->ip) {
208 pr_emerg("RIP%s %02x:<%016Lx> ",
209 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
210 m->cs, m->ip);
211
212 if (m->cs == __KERNEL_CS)
213 print_symbol("{%s}", m->ip);
214 pr_cont("\n");
215 }
216
217 pr_emerg("TSC %llx ", m->tsc);
218 if (m->addr)
219 pr_cont("ADDR %llx ", m->addr);
220 if (m->misc)
221 pr_cont("MISC %llx ", m->misc);
222
223 pr_cont("\n");
224 pr_emerg("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
225 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid);
226
227 /*
228 * Print out human-readable details about the MCE error,
229 * (if the CPU has an implementation for that)
230 */
231 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
232 }
233
234 static void print_mce_head(void)
235 {
236 pr_emerg("\nHARDWARE ERROR\n");
237 }
238
239 static void print_mce_tail(void)
240 {
241 pr_emerg("This is not a software problem!\n");
242 }
243
244 #define PANIC_TIMEOUT 5 /* 5 seconds */
245
246 static atomic_t mce_paniced;
247
248 static int fake_panic;
249 static atomic_t mce_fake_paniced;
250
251 /* Panic in progress. Enable interrupts and wait for final IPI */
252 static void wait_for_panic(void)
253 {
254 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
255
256 preempt_disable();
257 local_irq_enable();
258 while (timeout-- > 0)
259 udelay(1);
260 if (panic_timeout == 0)
261 panic_timeout = mce_panic_timeout;
262 panic("Panicing machine check CPU died");
263 }
264
265 static void mce_panic(char *msg, struct mce *final, char *exp)
266 {
267 int i;
268
269 if (!fake_panic) {
270 /*
271 * Make sure only one CPU runs in machine check panic
272 */
273 if (atomic_inc_return(&mce_paniced) > 1)
274 wait_for_panic();
275 barrier();
276
277 bust_spinlocks(1);
278 console_verbose();
279 } else {
280 /* Don't log too much for fake panic */
281 if (atomic_inc_return(&mce_fake_paniced) > 1)
282 return;
283 }
284 print_mce_head();
285 /* First print corrected ones that are still unlogged */
286 for (i = 0; i < MCE_LOG_LEN; i++) {
287 struct mce *m = &mcelog.entry[i];
288 if (!(m->status & MCI_STATUS_VAL))
289 continue;
290 if (!(m->status & MCI_STATUS_UC))
291 print_mce(m);
292 }
293 /* Now print uncorrected but with the final one last */
294 for (i = 0; i < MCE_LOG_LEN; i++) {
295 struct mce *m = &mcelog.entry[i];
296 if (!(m->status & MCI_STATUS_VAL))
297 continue;
298 if (!(m->status & MCI_STATUS_UC))
299 continue;
300 if (!final || memcmp(m, final, sizeof(struct mce)))
301 print_mce(m);
302 }
303 if (final)
304 print_mce(final);
305 if (cpu_missing)
306 printk(KERN_EMERG "Some CPUs didn't answer in synchronization\n");
307 print_mce_tail();
308 if (exp)
309 printk(KERN_EMERG "Machine check: %s\n", exp);
310 if (!fake_panic) {
311 if (panic_timeout == 0)
312 panic_timeout = mce_panic_timeout;
313 panic(msg);
314 } else
315 printk(KERN_EMERG "Fake kernel panic: %s\n", msg);
316 }
317
318 /* Support code for software error injection */
319
320 static int msr_to_offset(u32 msr)
321 {
322 unsigned bank = __get_cpu_var(injectm.bank);
323
324 if (msr == rip_msr)
325 return offsetof(struct mce, ip);
326 if (msr == MSR_IA32_MCx_STATUS(bank))
327 return offsetof(struct mce, status);
328 if (msr == MSR_IA32_MCx_ADDR(bank))
329 return offsetof(struct mce, addr);
330 if (msr == MSR_IA32_MCx_MISC(bank))
331 return offsetof(struct mce, misc);
332 if (msr == MSR_IA32_MCG_STATUS)
333 return offsetof(struct mce, mcgstatus);
334 return -1;
335 }
336
337 /* MSR access wrappers used for error injection */
338 static u64 mce_rdmsrl(u32 msr)
339 {
340 u64 v;
341
342 if (__get_cpu_var(injectm).finished) {
343 int offset = msr_to_offset(msr);
344
345 if (offset < 0)
346 return 0;
347 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
348 }
349
350 if (rdmsrl_safe(msr, &v)) {
351 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
352 /*
353 * Return zero in case the access faulted. This should
354 * not happen normally but can happen if the CPU does
355 * something weird, or if the code is buggy.
356 */
357 v = 0;
358 }
359
360 return v;
361 }
362
363 static void mce_wrmsrl(u32 msr, u64 v)
364 {
365 if (__get_cpu_var(injectm).finished) {
366 int offset = msr_to_offset(msr);
367
368 if (offset >= 0)
369 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
370 return;
371 }
372 wrmsrl(msr, v);
373 }
374
375 /*
376 * Simple lockless ring to communicate PFNs from the exception handler with the
377 * process context work function. This is vastly simplified because there's
378 * only a single reader and a single writer.
379 */
380 #define MCE_RING_SIZE 16 /* we use one entry less */
381
382 struct mce_ring {
383 unsigned short start;
384 unsigned short end;
385 unsigned long ring[MCE_RING_SIZE];
386 };
387 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
388
389 /* Runs with CPU affinity in workqueue */
390 static int mce_ring_empty(void)
391 {
392 struct mce_ring *r = &__get_cpu_var(mce_ring);
393
394 return r->start == r->end;
395 }
396
397 static int mce_ring_get(unsigned long *pfn)
398 {
399 struct mce_ring *r;
400 int ret = 0;
401
402 *pfn = 0;
403 get_cpu();
404 r = &__get_cpu_var(mce_ring);
405 if (r->start == r->end)
406 goto out;
407 *pfn = r->ring[r->start];
408 r->start = (r->start + 1) % MCE_RING_SIZE;
409 ret = 1;
410 out:
411 put_cpu();
412 return ret;
413 }
414
415 /* Always runs in MCE context with preempt off */
416 static int mce_ring_add(unsigned long pfn)
417 {
418 struct mce_ring *r = &__get_cpu_var(mce_ring);
419 unsigned next;
420
421 next = (r->end + 1) % MCE_RING_SIZE;
422 if (next == r->start)
423 return -1;
424 r->ring[r->end] = pfn;
425 wmb();
426 r->end = next;
427 return 0;
428 }
429
430 int mce_available(struct cpuinfo_x86 *c)
431 {
432 if (mce_disabled)
433 return 0;
434 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
435 }
436
437 static void mce_schedule_work(void)
438 {
439 if (!mce_ring_empty()) {
440 struct work_struct *work = &__get_cpu_var(mce_work);
441 if (!work_pending(work))
442 schedule_work(work);
443 }
444 }
445
446 /*
447 * Get the address of the instruction at the time of the machine check
448 * error.
449 */
450 static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
451 {
452
453 if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
454 m->ip = regs->ip;
455 m->cs = regs->cs;
456 } else {
457 m->ip = 0;
458 m->cs = 0;
459 }
460 if (rip_msr)
461 m->ip = mce_rdmsrl(rip_msr);
462 }
463
464 #ifdef CONFIG_X86_LOCAL_APIC
465 /*
466 * Called after interrupts have been reenabled again
467 * when a MCE happened during an interrupts off region
468 * in the kernel.
469 */
470 asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
471 {
472 ack_APIC_irq();
473 exit_idle();
474 irq_enter();
475 mce_notify_irq();
476 mce_schedule_work();
477 irq_exit();
478 }
479 #endif
480
481 static void mce_report_event(struct pt_regs *regs)
482 {
483 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
484 mce_notify_irq();
485 /*
486 * Triggering the work queue here is just an insurance
487 * policy in case the syscall exit notify handler
488 * doesn't run soon enough or ends up running on the
489 * wrong CPU (can happen when audit sleeps)
490 */
491 mce_schedule_work();
492 return;
493 }
494
495 #ifdef CONFIG_X86_LOCAL_APIC
496 /*
497 * Without APIC do not notify. The event will be picked
498 * up eventually.
499 */
500 if (!cpu_has_apic)
501 return;
502
503 /*
504 * When interrupts are disabled we cannot use
505 * kernel services safely. Trigger an self interrupt
506 * through the APIC to instead do the notification
507 * after interrupts are reenabled again.
508 */
509 apic->send_IPI_self(MCE_SELF_VECTOR);
510
511 /*
512 * Wait for idle afterwards again so that we don't leave the
513 * APIC in a non idle state because the normal APIC writes
514 * cannot exclude us.
515 */
516 apic_wait_icr_idle();
517 #endif
518 }
519
520 DEFINE_PER_CPU(unsigned, mce_poll_count);
521
522 /*
523 * Poll for corrected events or events that happened before reset.
524 * Those are just logged through /dev/mcelog.
525 *
526 * This is executed in standard interrupt context.
527 *
528 * Note: spec recommends to panic for fatal unsignalled
529 * errors here. However this would be quite problematic --
530 * we would need to reimplement the Monarch handling and
531 * it would mess up the exclusion between exception handler
532 * and poll hander -- * so we skip this for now.
533 * These cases should not happen anyways, or only when the CPU
534 * is already totally * confused. In this case it's likely it will
535 * not fully execute the machine check handler either.
536 */
537 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
538 {
539 struct mce m;
540 int i;
541
542 __get_cpu_var(mce_poll_count)++;
543
544 mce_setup(&m);
545
546 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
547 for (i = 0; i < banks; i++) {
548 if (!mce_banks[i].ctl || !test_bit(i, *b))
549 continue;
550
551 m.misc = 0;
552 m.addr = 0;
553 m.bank = i;
554 m.tsc = 0;
555
556 barrier();
557 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
558 if (!(m.status & MCI_STATUS_VAL))
559 continue;
560
561 /*
562 * Uncorrected or signalled events are handled by the exception
563 * handler when it is enabled, so don't process those here.
564 *
565 * TBD do the same check for MCI_STATUS_EN here?
566 */
567 if (!(flags & MCP_UC) &&
568 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
569 continue;
570
571 if (m.status & MCI_STATUS_MISCV)
572 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
573 if (m.status & MCI_STATUS_ADDRV)
574 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
575
576 if (!(flags & MCP_TIMESTAMP))
577 m.tsc = 0;
578 /*
579 * Don't get the IP here because it's unlikely to
580 * have anything to do with the actual error location.
581 */
582 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
583 mce_log(&m);
584 add_taint(TAINT_MACHINE_CHECK);
585 }
586
587 /*
588 * Clear state for this bank.
589 */
590 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
591 }
592
593 /*
594 * Don't clear MCG_STATUS here because it's only defined for
595 * exceptions.
596 */
597
598 sync_core();
599 }
600 EXPORT_SYMBOL_GPL(machine_check_poll);
601
602 /*
603 * Do a quick check if any of the events requires a panic.
604 * This decides if we keep the events around or clear them.
605 */
606 static int mce_no_way_out(struct mce *m, char **msg)
607 {
608 int i;
609
610 for (i = 0; i < banks; i++) {
611 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
612 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
613 return 1;
614 }
615 return 0;
616 }
617
618 /*
619 * Variable to establish order between CPUs while scanning.
620 * Each CPU spins initially until executing is equal its number.
621 */
622 static atomic_t mce_executing;
623
624 /*
625 * Defines order of CPUs on entry. First CPU becomes Monarch.
626 */
627 static atomic_t mce_callin;
628
629 /*
630 * Check if a timeout waiting for other CPUs happened.
631 */
632 static int mce_timed_out(u64 *t)
633 {
634 /*
635 * The others already did panic for some reason.
636 * Bail out like in a timeout.
637 * rmb() to tell the compiler that system_state
638 * might have been modified by someone else.
639 */
640 rmb();
641 if (atomic_read(&mce_paniced))
642 wait_for_panic();
643 if (!monarch_timeout)
644 goto out;
645 if ((s64)*t < SPINUNIT) {
646 /* CHECKME: Make panic default for 1 too? */
647 if (tolerant < 1)
648 mce_panic("Timeout synchronizing machine check over CPUs",
649 NULL, NULL);
650 cpu_missing = 1;
651 return 1;
652 }
653 *t -= SPINUNIT;
654 out:
655 touch_nmi_watchdog();
656 return 0;
657 }
658
659 /*
660 * The Monarch's reign. The Monarch is the CPU who entered
661 * the machine check handler first. It waits for the others to
662 * raise the exception too and then grades them. When any
663 * error is fatal panic. Only then let the others continue.
664 *
665 * The other CPUs entering the MCE handler will be controlled by the
666 * Monarch. They are called Subjects.
667 *
668 * This way we prevent any potential data corruption in a unrecoverable case
669 * and also makes sure always all CPU's errors are examined.
670 *
671 * Also this detects the case of a machine check event coming from outer
672 * space (not detected by any CPUs) In this case some external agent wants
673 * us to shut down, so panic too.
674 *
675 * The other CPUs might still decide to panic if the handler happens
676 * in a unrecoverable place, but in this case the system is in a semi-stable
677 * state and won't corrupt anything by itself. It's ok to let the others
678 * continue for a bit first.
679 *
680 * All the spin loops have timeouts; when a timeout happens a CPU
681 * typically elects itself to be Monarch.
682 */
683 static void mce_reign(void)
684 {
685 int cpu;
686 struct mce *m = NULL;
687 int global_worst = 0;
688 char *msg = NULL;
689 char *nmsg = NULL;
690
691 /*
692 * This CPU is the Monarch and the other CPUs have run
693 * through their handlers.
694 * Grade the severity of the errors of all the CPUs.
695 */
696 for_each_possible_cpu(cpu) {
697 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
698 &nmsg);
699 if (severity > global_worst) {
700 msg = nmsg;
701 global_worst = severity;
702 m = &per_cpu(mces_seen, cpu);
703 }
704 }
705
706 /*
707 * Cannot recover? Panic here then.
708 * This dumps all the mces in the log buffer and stops the
709 * other CPUs.
710 */
711 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
712 mce_panic("Fatal Machine check", m, msg);
713
714 /*
715 * For UC somewhere we let the CPU who detects it handle it.
716 * Also must let continue the others, otherwise the handling
717 * CPU could deadlock on a lock.
718 */
719
720 /*
721 * No machine check event found. Must be some external
722 * source or one CPU is hung. Panic.
723 */
724 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
725 mce_panic("Machine check from unknown source", NULL, NULL);
726
727 /*
728 * Now clear all the mces_seen so that they don't reappear on
729 * the next mce.
730 */
731 for_each_possible_cpu(cpu)
732 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
733 }
734
735 static atomic_t global_nwo;
736
737 /*
738 * Start of Monarch synchronization. This waits until all CPUs have
739 * entered the exception handler and then determines if any of them
740 * saw a fatal event that requires panic. Then it executes them
741 * in the entry order.
742 * TBD double check parallel CPU hotunplug
743 */
744 static int mce_start(int *no_way_out)
745 {
746 int order;
747 int cpus = num_online_cpus();
748 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
749
750 if (!timeout)
751 return -1;
752
753 atomic_add(*no_way_out, &global_nwo);
754 /*
755 * global_nwo should be updated before mce_callin
756 */
757 smp_wmb();
758 order = atomic_inc_return(&mce_callin);
759
760 /*
761 * Wait for everyone.
762 */
763 while (atomic_read(&mce_callin) != cpus) {
764 if (mce_timed_out(&timeout)) {
765 atomic_set(&global_nwo, 0);
766 return -1;
767 }
768 ndelay(SPINUNIT);
769 }
770
771 /*
772 * mce_callin should be read before global_nwo
773 */
774 smp_rmb();
775
776 if (order == 1) {
777 /*
778 * Monarch: Starts executing now, the others wait.
779 */
780 atomic_set(&mce_executing, 1);
781 } else {
782 /*
783 * Subject: Now start the scanning loop one by one in
784 * the original callin order.
785 * This way when there are any shared banks it will be
786 * only seen by one CPU before cleared, avoiding duplicates.
787 */
788 while (atomic_read(&mce_executing) < order) {
789 if (mce_timed_out(&timeout)) {
790 atomic_set(&global_nwo, 0);
791 return -1;
792 }
793 ndelay(SPINUNIT);
794 }
795 }
796
797 /*
798 * Cache the global no_way_out state.
799 */
800 *no_way_out = atomic_read(&global_nwo);
801
802 return order;
803 }
804
805 /*
806 * Synchronize between CPUs after main scanning loop.
807 * This invokes the bulk of the Monarch processing.
808 */
809 static int mce_end(int order)
810 {
811 int ret = -1;
812 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
813
814 if (!timeout)
815 goto reset;
816 if (order < 0)
817 goto reset;
818
819 /*
820 * Allow others to run.
821 */
822 atomic_inc(&mce_executing);
823
824 if (order == 1) {
825 /* CHECKME: Can this race with a parallel hotplug? */
826 int cpus = num_online_cpus();
827
828 /*
829 * Monarch: Wait for everyone to go through their scanning
830 * loops.
831 */
832 while (atomic_read(&mce_executing) <= cpus) {
833 if (mce_timed_out(&timeout))
834 goto reset;
835 ndelay(SPINUNIT);
836 }
837
838 mce_reign();
839 barrier();
840 ret = 0;
841 } else {
842 /*
843 * Subject: Wait for Monarch to finish.
844 */
845 while (atomic_read(&mce_executing) != 0) {
846 if (mce_timed_out(&timeout))
847 goto reset;
848 ndelay(SPINUNIT);
849 }
850
851 /*
852 * Don't reset anything. That's done by the Monarch.
853 */
854 return 0;
855 }
856
857 /*
858 * Reset all global state.
859 */
860 reset:
861 atomic_set(&global_nwo, 0);
862 atomic_set(&mce_callin, 0);
863 barrier();
864
865 /*
866 * Let others run again.
867 */
868 atomic_set(&mce_executing, 0);
869 return ret;
870 }
871
872 /*
873 * Check if the address reported by the CPU is in a format we can parse.
874 * It would be possible to add code for most other cases, but all would
875 * be somewhat complicated (e.g. segment offset would require an instruction
876 * parser). So only support physical addresses upto page granuality for now.
877 */
878 static int mce_usable_address(struct mce *m)
879 {
880 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
881 return 0;
882 if ((m->misc & 0x3f) > PAGE_SHIFT)
883 return 0;
884 if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
885 return 0;
886 return 1;
887 }
888
889 static void mce_clear_state(unsigned long *toclear)
890 {
891 int i;
892
893 for (i = 0; i < banks; i++) {
894 if (test_bit(i, toclear))
895 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
896 }
897 }
898
899 /*
900 * The actual machine check handler. This only handles real
901 * exceptions when something got corrupted coming in through int 18.
902 *
903 * This is executed in NMI context not subject to normal locking rules. This
904 * implies that most kernel services cannot be safely used. Don't even
905 * think about putting a printk in there!
906 *
907 * On Intel systems this is entered on all CPUs in parallel through
908 * MCE broadcast. However some CPUs might be broken beyond repair,
909 * so be always careful when synchronizing with others.
910 */
911 void do_machine_check(struct pt_regs *regs, long error_code)
912 {
913 struct mce m, *final;
914 int i;
915 int worst = 0;
916 int severity;
917 /*
918 * Establish sequential order between the CPUs entering the machine
919 * check handler.
920 */
921 int order;
922 /*
923 * If no_way_out gets set, there is no safe way to recover from this
924 * MCE. If tolerant is cranked up, we'll try anyway.
925 */
926 int no_way_out = 0;
927 /*
928 * If kill_it gets set, there might be a way to recover from this
929 * error.
930 */
931 int kill_it = 0;
932 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
933 char *msg = "Unknown";
934
935 atomic_inc(&mce_entry);
936
937 __get_cpu_var(mce_exception_count)++;
938
939 if (notify_die(DIE_NMI, "machine check", regs, error_code,
940 18, SIGKILL) == NOTIFY_STOP)
941 goto out;
942 if (!banks)
943 goto out;
944
945 mce_setup(&m);
946
947 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
948 final = &__get_cpu_var(mces_seen);
949 *final = m;
950
951 no_way_out = mce_no_way_out(&m, &msg);
952
953 barrier();
954
955 /*
956 * When no restart IP must always kill or panic.
957 */
958 if (!(m.mcgstatus & MCG_STATUS_RIPV))
959 kill_it = 1;
960
961 /*
962 * Go through all the banks in exclusion of the other CPUs.
963 * This way we don't report duplicated events on shared banks
964 * because the first one to see it will clear it.
965 */
966 order = mce_start(&no_way_out);
967 for (i = 0; i < banks; i++) {
968 __clear_bit(i, toclear);
969 if (!mce_banks[i].ctl)
970 continue;
971
972 m.misc = 0;
973 m.addr = 0;
974 m.bank = i;
975
976 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
977 if ((m.status & MCI_STATUS_VAL) == 0)
978 continue;
979
980 /*
981 * Non uncorrected or non signaled errors are handled by
982 * machine_check_poll. Leave them alone, unless this panics.
983 */
984 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
985 !no_way_out)
986 continue;
987
988 /*
989 * Set taint even when machine check was not enabled.
990 */
991 add_taint(TAINT_MACHINE_CHECK);
992
993 severity = mce_severity(&m, tolerant, NULL);
994
995 /*
996 * When machine check was for corrected handler don't touch,
997 * unless we're panicing.
998 */
999 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1000 continue;
1001 __set_bit(i, toclear);
1002 if (severity == MCE_NO_SEVERITY) {
1003 /*
1004 * Machine check event was not enabled. Clear, but
1005 * ignore.
1006 */
1007 continue;
1008 }
1009
1010 /*
1011 * Kill on action required.
1012 */
1013 if (severity == MCE_AR_SEVERITY)
1014 kill_it = 1;
1015
1016 if (m.status & MCI_STATUS_MISCV)
1017 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
1018 if (m.status & MCI_STATUS_ADDRV)
1019 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
1020
1021 /*
1022 * Action optional error. Queue address for later processing.
1023 * When the ring overflows we just ignore the AO error.
1024 * RED-PEN add some logging mechanism when
1025 * usable_address or mce_add_ring fails.
1026 * RED-PEN don't ignore overflow for tolerant == 0
1027 */
1028 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1029 mce_ring_add(m.addr >> PAGE_SHIFT);
1030
1031 mce_get_rip(&m, regs);
1032 mce_log(&m);
1033
1034 if (severity > worst) {
1035 *final = m;
1036 worst = severity;
1037 }
1038 }
1039
1040 if (!no_way_out)
1041 mce_clear_state(toclear);
1042
1043 /*
1044 * Do most of the synchronization with other CPUs.
1045 * When there's any problem use only local no_way_out state.
1046 */
1047 if (mce_end(order) < 0)
1048 no_way_out = worst >= MCE_PANIC_SEVERITY;
1049
1050 /*
1051 * If we have decided that we just CAN'T continue, and the user
1052 * has not set tolerant to an insane level, give up and die.
1053 *
1054 * This is mainly used in the case when the system doesn't
1055 * support MCE broadcasting or it has been disabled.
1056 */
1057 if (no_way_out && tolerant < 3)
1058 mce_panic("Fatal machine check on current CPU", final, msg);
1059
1060 /*
1061 * If the error seems to be unrecoverable, something should be
1062 * done. Try to kill as little as possible. If we can kill just
1063 * one task, do that. If the user has set the tolerance very
1064 * high, don't try to do anything at all.
1065 */
1066
1067 if (kill_it && tolerant < 3)
1068 force_sig(SIGBUS, current);
1069
1070 /* notify userspace ASAP */
1071 set_thread_flag(TIF_MCE_NOTIFY);
1072
1073 if (worst > 0)
1074 mce_report_event(regs);
1075 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1076 out:
1077 atomic_dec(&mce_entry);
1078 sync_core();
1079 }
1080 EXPORT_SYMBOL_GPL(do_machine_check);
1081
1082 /* dummy to break dependency. actual code is in mm/memory-failure.c */
1083 void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1084 {
1085 printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1086 }
1087
1088 /*
1089 * Called after mce notification in process context. This code
1090 * is allowed to sleep. Call the high level VM handler to process
1091 * any corrupted pages.
1092 * Assume that the work queue code only calls this one at a time
1093 * per CPU.
1094 * Note we don't disable preemption, so this code might run on the wrong
1095 * CPU. In this case the event is picked up by the scheduled work queue.
1096 * This is merely a fast path to expedite processing in some common
1097 * cases.
1098 */
1099 void mce_notify_process(void)
1100 {
1101 unsigned long pfn;
1102 mce_notify_irq();
1103 while (mce_ring_get(&pfn))
1104 memory_failure(pfn, MCE_VECTOR);
1105 }
1106
1107 static void mce_process_work(struct work_struct *dummy)
1108 {
1109 mce_notify_process();
1110 }
1111
1112 #ifdef CONFIG_X86_MCE_INTEL
1113 /***
1114 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1115 * @cpu: The CPU on which the event occurred.
1116 * @status: Event status information
1117 *
1118 * This function should be called by the thermal interrupt after the
1119 * event has been processed and the decision was made to log the event
1120 * further.
1121 *
1122 * The status parameter will be saved to the 'status' field of 'struct mce'
1123 * and historically has been the register value of the
1124 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1125 */
1126 void mce_log_therm_throt_event(__u64 status)
1127 {
1128 struct mce m;
1129
1130 mce_setup(&m);
1131 m.bank = MCE_THERMAL_BANK;
1132 m.status = status;
1133 mce_log(&m);
1134 }
1135 #endif /* CONFIG_X86_MCE_INTEL */
1136
1137 /*
1138 * Periodic polling timer for "silent" machine check errors. If the
1139 * poller finds an MCE, poll 2x faster. When the poller finds no more
1140 * errors, poll 2x slower (up to check_interval seconds).
1141 */
1142 static int check_interval = 5 * 60; /* 5 minutes */
1143
1144 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1145 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1146
1147 static void mce_start_timer(unsigned long data)
1148 {
1149 struct timer_list *t = &per_cpu(mce_timer, data);
1150 int *n;
1151
1152 WARN_ON(smp_processor_id() != data);
1153
1154 if (mce_available(&current_cpu_data)) {
1155 machine_check_poll(MCP_TIMESTAMP,
1156 &__get_cpu_var(mce_poll_banks));
1157 }
1158
1159 /*
1160 * Alert userspace if needed. If we logged an MCE, reduce the
1161 * polling interval, otherwise increase the polling interval.
1162 */
1163 n = &__get_cpu_var(mce_next_interval);
1164 if (mce_notify_irq())
1165 *n = max(*n/2, HZ/100);
1166 else
1167 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1168
1169 t->expires = jiffies + *n;
1170 add_timer_on(t, smp_processor_id());
1171 }
1172
1173 static void mce_do_trigger(struct work_struct *work)
1174 {
1175 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1176 }
1177
1178 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1179
1180 /*
1181 * Notify the user(s) about new machine check events.
1182 * Can be called from interrupt context, but not from machine check/NMI
1183 * context.
1184 */
1185 int mce_notify_irq(void)
1186 {
1187 /* Not more than two messages every minute */
1188 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1189
1190 clear_thread_flag(TIF_MCE_NOTIFY);
1191
1192 if (test_and_clear_bit(0, &mce_need_notify)) {
1193 wake_up_interruptible(&mce_wait);
1194
1195 /*
1196 * There is no risk of missing notifications because
1197 * work_pending is always cleared before the function is
1198 * executed.
1199 */
1200 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1201 schedule_work(&mce_trigger_work);
1202
1203 if (__ratelimit(&ratelimit))
1204 printk(KERN_INFO "Machine check events logged\n");
1205
1206 return 1;
1207 }
1208 return 0;
1209 }
1210 EXPORT_SYMBOL_GPL(mce_notify_irq);
1211
1212 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1213 {
1214 int i;
1215
1216 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1217 if (!mce_banks)
1218 return -ENOMEM;
1219 for (i = 0; i < banks; i++) {
1220 struct mce_bank *b = &mce_banks[i];
1221
1222 b->ctl = -1ULL;
1223 b->init = 1;
1224 }
1225 return 0;
1226 }
1227
1228 /*
1229 * Initialize Machine Checks for a CPU.
1230 */
1231 static int __cpuinit __mcheck_cpu_cap_init(void)
1232 {
1233 unsigned b;
1234 u64 cap;
1235
1236 rdmsrl(MSR_IA32_MCG_CAP, cap);
1237
1238 b = cap & MCG_BANKCNT_MASK;
1239 if (!banks)
1240 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1241
1242 if (b > MAX_NR_BANKS) {
1243 printk(KERN_WARNING
1244 "MCE: Using only %u machine check banks out of %u\n",
1245 MAX_NR_BANKS, b);
1246 b = MAX_NR_BANKS;
1247 }
1248
1249 /* Don't support asymmetric configurations today */
1250 WARN_ON(banks != 0 && b != banks);
1251 banks = b;
1252 if (!mce_banks) {
1253 int err = __mcheck_cpu_mce_banks_init();
1254
1255 if (err)
1256 return err;
1257 }
1258
1259 /* Use accurate RIP reporting if available. */
1260 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1261 rip_msr = MSR_IA32_MCG_EIP;
1262
1263 if (cap & MCG_SER_P)
1264 mce_ser = 1;
1265
1266 return 0;
1267 }
1268
1269 static void __mcheck_cpu_init_generic(void)
1270 {
1271 mce_banks_t all_banks;
1272 u64 cap;
1273 int i;
1274
1275 /*
1276 * Log the machine checks left over from the previous reset.
1277 */
1278 bitmap_fill(all_banks, MAX_NR_BANKS);
1279 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1280
1281 set_in_cr4(X86_CR4_MCE);
1282
1283 rdmsrl(MSR_IA32_MCG_CAP, cap);
1284 if (cap & MCG_CTL_P)
1285 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1286
1287 for (i = 0; i < banks; i++) {
1288 struct mce_bank *b = &mce_banks[i];
1289
1290 if (!b->init)
1291 continue;
1292 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1293 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1294 }
1295 }
1296
1297 /* Add per CPU specific workarounds here */
1298 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1299 {
1300 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1301 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1302 return -EOPNOTSUPP;
1303 }
1304
1305 /* This should be disabled by the BIOS, but isn't always */
1306 if (c->x86_vendor == X86_VENDOR_AMD) {
1307 if (c->x86 == 15 && banks > 4) {
1308 /*
1309 * disable GART TBL walk error reporting, which
1310 * trips off incorrectly with the IOMMU & 3ware
1311 * & Cerberus:
1312 */
1313 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1314 }
1315 if (c->x86 <= 17 && mce_bootlog < 0) {
1316 /*
1317 * Lots of broken BIOS around that don't clear them
1318 * by default and leave crap in there. Don't log:
1319 */
1320 mce_bootlog = 0;
1321 }
1322 /*
1323 * Various K7s with broken bank 0 around. Always disable
1324 * by default.
1325 */
1326 if (c->x86 == 6 && banks > 0)
1327 mce_banks[0].ctl = 0;
1328 }
1329
1330 if (c->x86_vendor == X86_VENDOR_INTEL) {
1331 /*
1332 * SDM documents that on family 6 bank 0 should not be written
1333 * because it aliases to another special BIOS controlled
1334 * register.
1335 * But it's not aliased anymore on model 0x1a+
1336 * Don't ignore bank 0 completely because there could be a
1337 * valid event later, merely don't write CTL0.
1338 */
1339
1340 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1341 mce_banks[0].init = 0;
1342
1343 /*
1344 * All newer Intel systems support MCE broadcasting. Enable
1345 * synchronization with a one second timeout.
1346 */
1347 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1348 monarch_timeout < 0)
1349 monarch_timeout = USEC_PER_SEC;
1350
1351 /*
1352 * There are also broken BIOSes on some Pentium M and
1353 * earlier systems:
1354 */
1355 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1356 mce_bootlog = 0;
1357 }
1358 if (monarch_timeout < 0)
1359 monarch_timeout = 0;
1360 if (mce_bootlog != 0)
1361 mce_panic_timeout = 30;
1362
1363 return 0;
1364 }
1365
1366 static void __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1367 {
1368 if (c->x86 != 5)
1369 return;
1370 switch (c->x86_vendor) {
1371 case X86_VENDOR_INTEL:
1372 intel_p5_mcheck_init(c);
1373 break;
1374 case X86_VENDOR_CENTAUR:
1375 winchip_mcheck_init(c);
1376 break;
1377 }
1378 }
1379
1380 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1381 {
1382 switch (c->x86_vendor) {
1383 case X86_VENDOR_INTEL:
1384 mce_intel_feature_init(c);
1385 break;
1386 case X86_VENDOR_AMD:
1387 mce_amd_feature_init(c);
1388 break;
1389 default:
1390 break;
1391 }
1392 }
1393
1394 static void __mcheck_cpu_init_timer(void)
1395 {
1396 struct timer_list *t = &__get_cpu_var(mce_timer);
1397 int *n = &__get_cpu_var(mce_next_interval);
1398
1399 setup_timer(t, mce_start_timer, smp_processor_id());
1400
1401 if (mce_ignore_ce)
1402 return;
1403
1404 *n = check_interval * HZ;
1405 if (!*n)
1406 return;
1407 t->expires = round_jiffies(jiffies + *n);
1408 add_timer_on(t, smp_processor_id());
1409 }
1410
1411 /* Handle unconfigured int18 (should never happen) */
1412 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1413 {
1414 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1415 smp_processor_id());
1416 }
1417
1418 /* Call the installed machine check handler for this CPU setup. */
1419 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1420 unexpected_machine_check;
1421
1422 /*
1423 * Called for each booted CPU to set up machine checks.
1424 * Must be called with preempt off:
1425 */
1426 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1427 {
1428 if (mce_disabled)
1429 return;
1430
1431 __mcheck_cpu_ancient_init(c);
1432
1433 if (!mce_available(c))
1434 return;
1435
1436 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1437 mce_disabled = 1;
1438 return;
1439 }
1440
1441 machine_check_vector = do_machine_check;
1442
1443 __mcheck_cpu_init_generic();
1444 __mcheck_cpu_init_vendor(c);
1445 __mcheck_cpu_init_timer();
1446 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1447
1448 }
1449
1450 /*
1451 * Character device to read and clear the MCE log.
1452 */
1453
1454 static DEFINE_SPINLOCK(mce_state_lock);
1455 static int open_count; /* #times opened */
1456 static int open_exclu; /* already open exclusive? */
1457
1458 static int mce_open(struct inode *inode, struct file *file)
1459 {
1460 spin_lock(&mce_state_lock);
1461
1462 if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1463 spin_unlock(&mce_state_lock);
1464
1465 return -EBUSY;
1466 }
1467
1468 if (file->f_flags & O_EXCL)
1469 open_exclu = 1;
1470 open_count++;
1471
1472 spin_unlock(&mce_state_lock);
1473
1474 return nonseekable_open(inode, file);
1475 }
1476
1477 static int mce_release(struct inode *inode, struct file *file)
1478 {
1479 spin_lock(&mce_state_lock);
1480
1481 open_count--;
1482 open_exclu = 0;
1483
1484 spin_unlock(&mce_state_lock);
1485
1486 return 0;
1487 }
1488
1489 static void collect_tscs(void *data)
1490 {
1491 unsigned long *cpu_tsc = (unsigned long *)data;
1492
1493 rdtscll(cpu_tsc[smp_processor_id()]);
1494 }
1495
1496 static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1497 loff_t *off)
1498 {
1499 char __user *buf = ubuf;
1500 unsigned long *cpu_tsc;
1501 unsigned prev, next;
1502 int i, err;
1503
1504 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1505 if (!cpu_tsc)
1506 return -ENOMEM;
1507
1508 mutex_lock(&mce_read_mutex);
1509 next = rcu_dereference_check_mce(mcelog.next);
1510
1511 /* Only supports full reads right now */
1512 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce)) {
1513 mutex_unlock(&mce_read_mutex);
1514 kfree(cpu_tsc);
1515
1516 return -EINVAL;
1517 }
1518
1519 err = 0;
1520 prev = 0;
1521 do {
1522 for (i = prev; i < next; i++) {
1523 unsigned long start = jiffies;
1524
1525 while (!mcelog.entry[i].finished) {
1526 if (time_after_eq(jiffies, start + 2)) {
1527 memset(mcelog.entry + i, 0,
1528 sizeof(struct mce));
1529 goto timeout;
1530 }
1531 cpu_relax();
1532 }
1533 smp_rmb();
1534 err |= copy_to_user(buf, mcelog.entry + i,
1535 sizeof(struct mce));
1536 buf += sizeof(struct mce);
1537 timeout:
1538 ;
1539 }
1540
1541 memset(mcelog.entry + prev, 0,
1542 (next - prev) * sizeof(struct mce));
1543 prev = next;
1544 next = cmpxchg(&mcelog.next, prev, 0);
1545 } while (next != prev);
1546
1547 synchronize_sched();
1548
1549 /*
1550 * Collect entries that were still getting written before the
1551 * synchronize.
1552 */
1553 on_each_cpu(collect_tscs, cpu_tsc, 1);
1554
1555 for (i = next; i < MCE_LOG_LEN; i++) {
1556 if (mcelog.entry[i].finished &&
1557 mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1558 err |= copy_to_user(buf, mcelog.entry+i,
1559 sizeof(struct mce));
1560 smp_rmb();
1561 buf += sizeof(struct mce);
1562 memset(&mcelog.entry[i], 0, sizeof(struct mce));
1563 }
1564 }
1565 mutex_unlock(&mce_read_mutex);
1566 kfree(cpu_tsc);
1567
1568 return err ? -EFAULT : buf - ubuf;
1569 }
1570
1571 static unsigned int mce_poll(struct file *file, poll_table *wait)
1572 {
1573 poll_wait(file, &mce_wait, wait);
1574 if (rcu_dereference_check_mce(mcelog.next))
1575 return POLLIN | POLLRDNORM;
1576 return 0;
1577 }
1578
1579 static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1580 {
1581 int __user *p = (int __user *)arg;
1582
1583 if (!capable(CAP_SYS_ADMIN))
1584 return -EPERM;
1585
1586 switch (cmd) {
1587 case MCE_GET_RECORD_LEN:
1588 return put_user(sizeof(struct mce), p);
1589 case MCE_GET_LOG_LEN:
1590 return put_user(MCE_LOG_LEN, p);
1591 case MCE_GETCLEAR_FLAGS: {
1592 unsigned flags;
1593
1594 do {
1595 flags = mcelog.flags;
1596 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1597
1598 return put_user(flags, p);
1599 }
1600 default:
1601 return -ENOTTY;
1602 }
1603 }
1604
1605 /* Modified in mce-inject.c, so not static or const */
1606 struct file_operations mce_chrdev_ops = {
1607 .open = mce_open,
1608 .release = mce_release,
1609 .read = mce_read,
1610 .poll = mce_poll,
1611 .unlocked_ioctl = mce_ioctl,
1612 };
1613 EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1614
1615 static struct miscdevice mce_log_device = {
1616 MISC_MCELOG_MINOR,
1617 "mcelog",
1618 &mce_chrdev_ops,
1619 };
1620
1621 /*
1622 * mce=off Disables machine check
1623 * mce=no_cmci Disables CMCI
1624 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1625 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1626 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1627 * monarchtimeout is how long to wait for other CPUs on machine
1628 * check, or 0 to not wait
1629 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1630 * mce=nobootlog Don't log MCEs from before booting.
1631 */
1632 static int __init mcheck_enable(char *str)
1633 {
1634 if (*str == 0) {
1635 enable_p5_mce();
1636 return 1;
1637 }
1638 if (*str == '=')
1639 str++;
1640 if (!strcmp(str, "off"))
1641 mce_disabled = 1;
1642 else if (!strcmp(str, "no_cmci"))
1643 mce_cmci_disabled = 1;
1644 else if (!strcmp(str, "dont_log_ce"))
1645 mce_dont_log_ce = 1;
1646 else if (!strcmp(str, "ignore_ce"))
1647 mce_ignore_ce = 1;
1648 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1649 mce_bootlog = (str[0] == 'b');
1650 else if (isdigit(str[0])) {
1651 get_option(&str, &tolerant);
1652 if (*str == ',') {
1653 ++str;
1654 get_option(&str, &monarch_timeout);
1655 }
1656 } else {
1657 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1658 str);
1659 return 0;
1660 }
1661 return 1;
1662 }
1663 __setup("mce", mcheck_enable);
1664
1665 int __init mcheck_init(void)
1666 {
1667 atomic_notifier_chain_register(&x86_mce_decoder_chain, &mce_dec_nb);
1668
1669 mcheck_intel_therm_init();
1670
1671 return 0;
1672 }
1673
1674 /*
1675 * Sysfs support
1676 */
1677
1678 /*
1679 * Disable machine checks on suspend and shutdown. We can't really handle
1680 * them later.
1681 */
1682 static int mce_disable_error_reporting(void)
1683 {
1684 int i;
1685
1686 for (i = 0; i < banks; i++) {
1687 struct mce_bank *b = &mce_banks[i];
1688
1689 if (b->init)
1690 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1691 }
1692 return 0;
1693 }
1694
1695 static int mce_suspend(struct sys_device *dev, pm_message_t state)
1696 {
1697 return mce_disable_error_reporting();
1698 }
1699
1700 static int mce_shutdown(struct sys_device *dev)
1701 {
1702 return mce_disable_error_reporting();
1703 }
1704
1705 /*
1706 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1707 * Only one CPU is active at this time, the others get re-added later using
1708 * CPU hotplug:
1709 */
1710 static int mce_resume(struct sys_device *dev)
1711 {
1712 __mcheck_cpu_init_generic();
1713 __mcheck_cpu_init_vendor(&current_cpu_data);
1714
1715 return 0;
1716 }
1717
1718 static void mce_cpu_restart(void *data)
1719 {
1720 del_timer_sync(&__get_cpu_var(mce_timer));
1721 if (!mce_available(&current_cpu_data))
1722 return;
1723 __mcheck_cpu_init_generic();
1724 __mcheck_cpu_init_timer();
1725 }
1726
1727 /* Reinit MCEs after user configuration changes */
1728 static void mce_restart(void)
1729 {
1730 on_each_cpu(mce_cpu_restart, NULL, 1);
1731 }
1732
1733 /* Toggle features for corrected errors */
1734 static void mce_disable_ce(void *all)
1735 {
1736 if (!mce_available(&current_cpu_data))
1737 return;
1738 if (all)
1739 del_timer_sync(&__get_cpu_var(mce_timer));
1740 cmci_clear();
1741 }
1742
1743 static void mce_enable_ce(void *all)
1744 {
1745 if (!mce_available(&current_cpu_data))
1746 return;
1747 cmci_reenable();
1748 cmci_recheck();
1749 if (all)
1750 __mcheck_cpu_init_timer();
1751 }
1752
1753 static struct sysdev_class mce_sysclass = {
1754 .suspend = mce_suspend,
1755 .shutdown = mce_shutdown,
1756 .resume = mce_resume,
1757 .name = "machinecheck",
1758 };
1759
1760 DEFINE_PER_CPU(struct sys_device, mce_dev);
1761
1762 __cpuinitdata
1763 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1764
1765 static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1766 {
1767 return container_of(attr, struct mce_bank, attr);
1768 }
1769
1770 static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1771 char *buf)
1772 {
1773 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1774 }
1775
1776 static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1777 const char *buf, size_t size)
1778 {
1779 u64 new;
1780
1781 if (strict_strtoull(buf, 0, &new) < 0)
1782 return -EINVAL;
1783
1784 attr_to_bank(attr)->ctl = new;
1785 mce_restart();
1786
1787 return size;
1788 }
1789
1790 static ssize_t
1791 show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1792 {
1793 strcpy(buf, mce_helper);
1794 strcat(buf, "\n");
1795 return strlen(mce_helper) + 1;
1796 }
1797
1798 static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1799 const char *buf, size_t siz)
1800 {
1801 char *p;
1802
1803 strncpy(mce_helper, buf, sizeof(mce_helper));
1804 mce_helper[sizeof(mce_helper)-1] = 0;
1805 p = strchr(mce_helper, '\n');
1806
1807 if (p)
1808 *p = 0;
1809
1810 return strlen(mce_helper) + !!p;
1811 }
1812
1813 static ssize_t set_ignore_ce(struct sys_device *s,
1814 struct sysdev_attribute *attr,
1815 const char *buf, size_t size)
1816 {
1817 u64 new;
1818
1819 if (strict_strtoull(buf, 0, &new) < 0)
1820 return -EINVAL;
1821
1822 if (mce_ignore_ce ^ !!new) {
1823 if (new) {
1824 /* disable ce features */
1825 on_each_cpu(mce_disable_ce, (void *)1, 1);
1826 mce_ignore_ce = 1;
1827 } else {
1828 /* enable ce features */
1829 mce_ignore_ce = 0;
1830 on_each_cpu(mce_enable_ce, (void *)1, 1);
1831 }
1832 }
1833 return size;
1834 }
1835
1836 static ssize_t set_cmci_disabled(struct sys_device *s,
1837 struct sysdev_attribute *attr,
1838 const char *buf, size_t size)
1839 {
1840 u64 new;
1841
1842 if (strict_strtoull(buf, 0, &new) < 0)
1843 return -EINVAL;
1844
1845 if (mce_cmci_disabled ^ !!new) {
1846 if (new) {
1847 /* disable cmci */
1848 on_each_cpu(mce_disable_ce, NULL, 1);
1849 mce_cmci_disabled = 1;
1850 } else {
1851 /* enable cmci */
1852 mce_cmci_disabled = 0;
1853 on_each_cpu(mce_enable_ce, NULL, 1);
1854 }
1855 }
1856 return size;
1857 }
1858
1859 static ssize_t store_int_with_restart(struct sys_device *s,
1860 struct sysdev_attribute *attr,
1861 const char *buf, size_t size)
1862 {
1863 ssize_t ret = sysdev_store_int(s, attr, buf, size);
1864 mce_restart();
1865 return ret;
1866 }
1867
1868 static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1869 static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1870 static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1871 static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1872
1873 static struct sysdev_ext_attribute attr_check_interval = {
1874 _SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1875 store_int_with_restart),
1876 &check_interval
1877 };
1878
1879 static struct sysdev_ext_attribute attr_ignore_ce = {
1880 _SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1881 &mce_ignore_ce
1882 };
1883
1884 static struct sysdev_ext_attribute attr_cmci_disabled = {
1885 _SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1886 &mce_cmci_disabled
1887 };
1888
1889 static struct sysdev_attribute *mce_attrs[] = {
1890 &attr_tolerant.attr,
1891 &attr_check_interval.attr,
1892 &attr_trigger,
1893 &attr_monarch_timeout.attr,
1894 &attr_dont_log_ce.attr,
1895 &attr_ignore_ce.attr,
1896 &attr_cmci_disabled.attr,
1897 NULL
1898 };
1899
1900 static cpumask_var_t mce_dev_initialized;
1901
1902 /* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1903 static __cpuinit int mce_create_device(unsigned int cpu)
1904 {
1905 int err;
1906 int i, j;
1907
1908 if (!mce_available(&boot_cpu_data))
1909 return -EIO;
1910
1911 memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1912 per_cpu(mce_dev, cpu).id = cpu;
1913 per_cpu(mce_dev, cpu).cls = &mce_sysclass;
1914
1915 err = sysdev_register(&per_cpu(mce_dev, cpu));
1916 if (err)
1917 return err;
1918
1919 for (i = 0; mce_attrs[i]; i++) {
1920 err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1921 if (err)
1922 goto error;
1923 }
1924 for (j = 0; j < banks; j++) {
1925 err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1926 &mce_banks[j].attr);
1927 if (err)
1928 goto error2;
1929 }
1930 cpumask_set_cpu(cpu, mce_dev_initialized);
1931
1932 return 0;
1933 error2:
1934 while (--j >= 0)
1935 sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[j].attr);
1936 error:
1937 while (--i >= 0)
1938 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1939
1940 sysdev_unregister(&per_cpu(mce_dev, cpu));
1941
1942 return err;
1943 }
1944
1945 static __cpuinit void mce_remove_device(unsigned int cpu)
1946 {
1947 int i;
1948
1949 if (!cpumask_test_cpu(cpu, mce_dev_initialized))
1950 return;
1951
1952 for (i = 0; mce_attrs[i]; i++)
1953 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1954
1955 for (i = 0; i < banks; i++)
1956 sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[i].attr);
1957
1958 sysdev_unregister(&per_cpu(mce_dev, cpu));
1959 cpumask_clear_cpu(cpu, mce_dev_initialized);
1960 }
1961
1962 /* Make sure there are no machine checks on offlined CPUs. */
1963 static void __cpuinit mce_disable_cpu(void *h)
1964 {
1965 unsigned long action = *(unsigned long *)h;
1966 int i;
1967
1968 if (!mce_available(&current_cpu_data))
1969 return;
1970
1971 if (!(action & CPU_TASKS_FROZEN))
1972 cmci_clear();
1973 for (i = 0; i < banks; i++) {
1974 struct mce_bank *b = &mce_banks[i];
1975
1976 if (b->init)
1977 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1978 }
1979 }
1980
1981 static void __cpuinit mce_reenable_cpu(void *h)
1982 {
1983 unsigned long action = *(unsigned long *)h;
1984 int i;
1985
1986 if (!mce_available(&current_cpu_data))
1987 return;
1988
1989 if (!(action & CPU_TASKS_FROZEN))
1990 cmci_reenable();
1991 for (i = 0; i < banks; i++) {
1992 struct mce_bank *b = &mce_banks[i];
1993
1994 if (b->init)
1995 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1996 }
1997 }
1998
1999 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2000 static int __cpuinit
2001 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2002 {
2003 unsigned int cpu = (unsigned long)hcpu;
2004 struct timer_list *t = &per_cpu(mce_timer, cpu);
2005
2006 switch (action) {
2007 case CPU_ONLINE:
2008 case CPU_ONLINE_FROZEN:
2009 mce_create_device(cpu);
2010 if (threshold_cpu_callback)
2011 threshold_cpu_callback(action, cpu);
2012 break;
2013 case CPU_DEAD:
2014 case CPU_DEAD_FROZEN:
2015 if (threshold_cpu_callback)
2016 threshold_cpu_callback(action, cpu);
2017 mce_remove_device(cpu);
2018 break;
2019 case CPU_DOWN_PREPARE:
2020 case CPU_DOWN_PREPARE_FROZEN:
2021 del_timer_sync(t);
2022 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2023 break;
2024 case CPU_DOWN_FAILED:
2025 case CPU_DOWN_FAILED_FROZEN:
2026 if (!mce_ignore_ce && check_interval) {
2027 t->expires = round_jiffies(jiffies +
2028 __get_cpu_var(mce_next_interval));
2029 add_timer_on(t, cpu);
2030 }
2031 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2032 break;
2033 case CPU_POST_DEAD:
2034 /* intentionally ignoring frozen here */
2035 cmci_rediscover(cpu);
2036 break;
2037 }
2038 return NOTIFY_OK;
2039 }
2040
2041 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2042 .notifier_call = mce_cpu_callback,
2043 };
2044
2045 static __init void mce_init_banks(void)
2046 {
2047 int i;
2048
2049 for (i = 0; i < banks; i++) {
2050 struct mce_bank *b = &mce_banks[i];
2051 struct sysdev_attribute *a = &b->attr;
2052
2053 sysfs_attr_init(&a->attr);
2054 a->attr.name = b->attrname;
2055 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2056
2057 a->attr.mode = 0644;
2058 a->show = show_bank;
2059 a->store = set_bank;
2060 }
2061 }
2062
2063 static __init int mcheck_init_device(void)
2064 {
2065 int err;
2066 int i = 0;
2067
2068 if (!mce_available(&boot_cpu_data))
2069 return -EIO;
2070
2071 zalloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
2072
2073 mce_init_banks();
2074
2075 err = sysdev_class_register(&mce_sysclass);
2076 if (err)
2077 return err;
2078
2079 for_each_online_cpu(i) {
2080 err = mce_create_device(i);
2081 if (err)
2082 return err;
2083 }
2084
2085 register_hotcpu_notifier(&mce_cpu_notifier);
2086 misc_register(&mce_log_device);
2087
2088 return err;
2089 }
2090
2091 device_initcall(mcheck_init_device);
2092
2093 /*
2094 * Old style boot options parsing. Only for compatibility.
2095 */
2096 static int __init mcheck_disable(char *str)
2097 {
2098 mce_disabled = 1;
2099 return 1;
2100 }
2101 __setup("nomce", mcheck_disable);
2102
2103 #ifdef CONFIG_DEBUG_FS
2104 struct dentry *mce_get_debugfs_dir(void)
2105 {
2106 static struct dentry *dmce;
2107
2108 if (!dmce)
2109 dmce = debugfs_create_dir("mce", NULL);
2110
2111 return dmce;
2112 }
2113
2114 static void mce_reset(void)
2115 {
2116 cpu_missing = 0;
2117 atomic_set(&mce_fake_paniced, 0);
2118 atomic_set(&mce_executing, 0);
2119 atomic_set(&mce_callin, 0);
2120 atomic_set(&global_nwo, 0);
2121 }
2122
2123 static int fake_panic_get(void *data, u64 *val)
2124 {
2125 *val = fake_panic;
2126 return 0;
2127 }
2128
2129 static int fake_panic_set(void *data, u64 val)
2130 {
2131 mce_reset();
2132 fake_panic = val;
2133 return 0;
2134 }
2135
2136 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2137 fake_panic_set, "%llu\n");
2138
2139 static int __init mcheck_debugfs_init(void)
2140 {
2141 struct dentry *dmce, *ffake_panic;
2142
2143 dmce = mce_get_debugfs_dir();
2144 if (!dmce)
2145 return -ENOMEM;
2146 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2147 &fake_panic_fops);
2148 if (!ffake_panic)
2149 return -ENOMEM;
2150
2151 return 0;
2152 }
2153 late_initcall(mcheck_debugfs_init);
2154 #endif