Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/interrupt.h>
14 #include <linux/ratelimit.h>
15 #include <linux/kallsyms.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/sysdev.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/init.h>
30 #include <linux/kmod.h>
31 #include <linux/poll.h>
32 #include <linux/nmi.h>
33 #include <linux/cpu.h>
34 #include <linux/smp.h>
35 #include <linux/fs.h>
36 #include <linux/mm.h>
37 #include <linux/debugfs.h>
38
39 #include <asm/processor.h>
40 #include <asm/hw_irq.h>
41 #include <asm/apic.h>
42 #include <asm/idle.h>
43 #include <asm/ipi.h>
44 #include <asm/mce.h>
45 #include <asm/msr.h>
46
47 #include "mce-internal.h"
48
49 int mce_disabled __read_mostly;
50
51 #define MISC_MCELOG_MINOR 227
52
53 #define SPINUNIT 100 /* 100ns */
54
55 atomic_t mce_entry;
56
57 DEFINE_PER_CPU(unsigned, mce_exception_count);
58
59 /*
60 * Tolerant levels:
61 * 0: always panic on uncorrected errors, log corrected errors
62 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
63 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
64 * 3: never panic or SIGBUS, log all errors (for testing only)
65 */
66 static int tolerant __read_mostly = 1;
67 static int banks __read_mostly;
68 static int rip_msr __read_mostly;
69 static int mce_bootlog __read_mostly = -1;
70 static int monarch_timeout __read_mostly = -1;
71 static int mce_panic_timeout __read_mostly;
72 static int mce_dont_log_ce __read_mostly;
73 int mce_cmci_disabled __read_mostly;
74 int mce_ignore_ce __read_mostly;
75 int mce_ser __read_mostly;
76
77 struct mce_bank *mce_banks __read_mostly;
78
79 /* User mode helper program triggered by machine check event */
80 static unsigned long mce_need_notify;
81 static char mce_helper[128];
82 static char *mce_helper_argv[2] = { mce_helper, NULL };
83
84 static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
85 static DEFINE_PER_CPU(struct mce, mces_seen);
86 static int cpu_missing;
87
88
89 /* MCA banks polled by the period polling timer for corrected events */
90 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
91 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
92 };
93
94 static DEFINE_PER_CPU(struct work_struct, mce_work);
95
96 /* Do initial initialization of a struct mce */
97 void mce_setup(struct mce *m)
98 {
99 memset(m, 0, sizeof(struct mce));
100 m->cpu = m->extcpu = smp_processor_id();
101 rdtscll(m->tsc);
102 /* We hope get_seconds stays lockless */
103 m->time = get_seconds();
104 m->cpuvendor = boot_cpu_data.x86_vendor;
105 m->cpuid = cpuid_eax(1);
106 #ifdef CONFIG_SMP
107 m->socketid = cpu_data(m->extcpu).phys_proc_id;
108 #endif
109 m->apicid = cpu_data(m->extcpu).initial_apicid;
110 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
111 }
112
113 DEFINE_PER_CPU(struct mce, injectm);
114 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
115
116 /*
117 * Lockless MCE logging infrastructure.
118 * This avoids deadlocks on printk locks without having to break locks. Also
119 * separate MCEs from kernel messages to avoid bogus bug reports.
120 */
121
122 static struct mce_log mcelog = {
123 .signature = MCE_LOG_SIGNATURE,
124 .len = MCE_LOG_LEN,
125 .recordlen = sizeof(struct mce),
126 };
127
128 void mce_log(struct mce *mce)
129 {
130 unsigned next, entry;
131
132 mce->finished = 0;
133 wmb();
134 for (;;) {
135 entry = rcu_dereference(mcelog.next);
136 for (;;) {
137 /*
138 * When the buffer fills up discard new entries.
139 * Assume that the earlier errors are the more
140 * interesting ones:
141 */
142 if (entry >= MCE_LOG_LEN) {
143 set_bit(MCE_OVERFLOW,
144 (unsigned long *)&mcelog.flags);
145 return;
146 }
147 /* Old left over entry. Skip: */
148 if (mcelog.entry[entry].finished) {
149 entry++;
150 continue;
151 }
152 break;
153 }
154 smp_rmb();
155 next = entry + 1;
156 if (cmpxchg(&mcelog.next, entry, next) == entry)
157 break;
158 }
159 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
160 wmb();
161 mcelog.entry[entry].finished = 1;
162 wmb();
163
164 mce->finished = 1;
165 set_bit(0, &mce_need_notify);
166 }
167
168 void __weak decode_mce(struct mce *m)
169 {
170 return;
171 }
172
173 static void print_mce(struct mce *m)
174 {
175 printk(KERN_EMERG
176 "CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n",
177 m->extcpu, m->mcgstatus, m->bank, m->status);
178 if (m->ip) {
179 printk(KERN_EMERG "RIP%s %02x:<%016Lx> ",
180 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
181 m->cs, m->ip);
182 if (m->cs == __KERNEL_CS)
183 print_symbol("{%s}", m->ip);
184 printk(KERN_CONT "\n");
185 }
186 printk(KERN_EMERG "TSC %llx ", m->tsc);
187 if (m->addr)
188 printk(KERN_CONT "ADDR %llx ", m->addr);
189 if (m->misc)
190 printk(KERN_CONT "MISC %llx ", m->misc);
191 printk(KERN_CONT "\n");
192 printk(KERN_EMERG "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
193 m->cpuvendor, m->cpuid, m->time, m->socketid,
194 m->apicid);
195
196 decode_mce(m);
197 }
198
199 static void print_mce_head(void)
200 {
201 printk(KERN_EMERG "\nHARDWARE ERROR\n");
202 }
203
204 static void print_mce_tail(void)
205 {
206 printk(KERN_EMERG "This is not a software problem!\n"
207 "Run through mcelog --ascii to decode and contact your hardware vendor\n");
208 }
209
210 #define PANIC_TIMEOUT 5 /* 5 seconds */
211
212 static atomic_t mce_paniced;
213
214 static int fake_panic;
215 static atomic_t mce_fake_paniced;
216
217 /* Panic in progress. Enable interrupts and wait for final IPI */
218 static void wait_for_panic(void)
219 {
220 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
221 preempt_disable();
222 local_irq_enable();
223 while (timeout-- > 0)
224 udelay(1);
225 if (panic_timeout == 0)
226 panic_timeout = mce_panic_timeout;
227 panic("Panicing machine check CPU died");
228 }
229
230 static void mce_panic(char *msg, struct mce *final, char *exp)
231 {
232 int i;
233
234 if (!fake_panic) {
235 /*
236 * Make sure only one CPU runs in machine check panic
237 */
238 if (atomic_inc_return(&mce_paniced) > 1)
239 wait_for_panic();
240 barrier();
241
242 bust_spinlocks(1);
243 console_verbose();
244 } else {
245 /* Don't log too much for fake panic */
246 if (atomic_inc_return(&mce_fake_paniced) > 1)
247 return;
248 }
249 print_mce_head();
250 /* First print corrected ones that are still unlogged */
251 for (i = 0; i < MCE_LOG_LEN; i++) {
252 struct mce *m = &mcelog.entry[i];
253 if (!(m->status & MCI_STATUS_VAL))
254 continue;
255 if (!(m->status & MCI_STATUS_UC))
256 print_mce(m);
257 }
258 /* Now print uncorrected but with the final one last */
259 for (i = 0; i < MCE_LOG_LEN; i++) {
260 struct mce *m = &mcelog.entry[i];
261 if (!(m->status & MCI_STATUS_VAL))
262 continue;
263 if (!(m->status & MCI_STATUS_UC))
264 continue;
265 if (!final || memcmp(m, final, sizeof(struct mce)))
266 print_mce(m);
267 }
268 if (final)
269 print_mce(final);
270 if (cpu_missing)
271 printk(KERN_EMERG "Some CPUs didn't answer in synchronization\n");
272 print_mce_tail();
273 if (exp)
274 printk(KERN_EMERG "Machine check: %s\n", exp);
275 if (!fake_panic) {
276 if (panic_timeout == 0)
277 panic_timeout = mce_panic_timeout;
278 panic(msg);
279 } else
280 printk(KERN_EMERG "Fake kernel panic: %s\n", msg);
281 }
282
283 /* Support code for software error injection */
284
285 static int msr_to_offset(u32 msr)
286 {
287 unsigned bank = __get_cpu_var(injectm.bank);
288 if (msr == rip_msr)
289 return offsetof(struct mce, ip);
290 if (msr == MSR_IA32_MCx_STATUS(bank))
291 return offsetof(struct mce, status);
292 if (msr == MSR_IA32_MCx_ADDR(bank))
293 return offsetof(struct mce, addr);
294 if (msr == MSR_IA32_MCx_MISC(bank))
295 return offsetof(struct mce, misc);
296 if (msr == MSR_IA32_MCG_STATUS)
297 return offsetof(struct mce, mcgstatus);
298 return -1;
299 }
300
301 /* MSR access wrappers used for error injection */
302 static u64 mce_rdmsrl(u32 msr)
303 {
304 u64 v;
305
306 if (__get_cpu_var(injectm).finished) {
307 int offset = msr_to_offset(msr);
308
309 if (offset < 0)
310 return 0;
311 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
312 }
313
314 if (rdmsrl_safe(msr, &v)) {
315 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
316 /*
317 * Return zero in case the access faulted. This should
318 * not happen normally but can happen if the CPU does
319 * something weird, or if the code is buggy.
320 */
321 v = 0;
322 }
323
324 return v;
325 }
326
327 static void mce_wrmsrl(u32 msr, u64 v)
328 {
329 if (__get_cpu_var(injectm).finished) {
330 int offset = msr_to_offset(msr);
331
332 if (offset >= 0)
333 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
334 return;
335 }
336 wrmsrl(msr, v);
337 }
338
339 /*
340 * Simple lockless ring to communicate PFNs from the exception handler with the
341 * process context work function. This is vastly simplified because there's
342 * only a single reader and a single writer.
343 */
344 #define MCE_RING_SIZE 16 /* we use one entry less */
345
346 struct mce_ring {
347 unsigned short start;
348 unsigned short end;
349 unsigned long ring[MCE_RING_SIZE];
350 };
351 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
352
353 /* Runs with CPU affinity in workqueue */
354 static int mce_ring_empty(void)
355 {
356 struct mce_ring *r = &__get_cpu_var(mce_ring);
357
358 return r->start == r->end;
359 }
360
361 static int mce_ring_get(unsigned long *pfn)
362 {
363 struct mce_ring *r;
364 int ret = 0;
365
366 *pfn = 0;
367 get_cpu();
368 r = &__get_cpu_var(mce_ring);
369 if (r->start == r->end)
370 goto out;
371 *pfn = r->ring[r->start];
372 r->start = (r->start + 1) % MCE_RING_SIZE;
373 ret = 1;
374 out:
375 put_cpu();
376 return ret;
377 }
378
379 /* Always runs in MCE context with preempt off */
380 static int mce_ring_add(unsigned long pfn)
381 {
382 struct mce_ring *r = &__get_cpu_var(mce_ring);
383 unsigned next;
384
385 next = (r->end + 1) % MCE_RING_SIZE;
386 if (next == r->start)
387 return -1;
388 r->ring[r->end] = pfn;
389 wmb();
390 r->end = next;
391 return 0;
392 }
393
394 int mce_available(struct cpuinfo_x86 *c)
395 {
396 if (mce_disabled)
397 return 0;
398 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
399 }
400
401 static void mce_schedule_work(void)
402 {
403 if (!mce_ring_empty()) {
404 struct work_struct *work = &__get_cpu_var(mce_work);
405 if (!work_pending(work))
406 schedule_work(work);
407 }
408 }
409
410 /*
411 * Get the address of the instruction at the time of the machine check
412 * error.
413 */
414 static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
415 {
416
417 if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
418 m->ip = regs->ip;
419 m->cs = regs->cs;
420 } else {
421 m->ip = 0;
422 m->cs = 0;
423 }
424 if (rip_msr)
425 m->ip = mce_rdmsrl(rip_msr);
426 }
427
428 #ifdef CONFIG_X86_LOCAL_APIC
429 /*
430 * Called after interrupts have been reenabled again
431 * when a MCE happened during an interrupts off region
432 * in the kernel.
433 */
434 asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
435 {
436 ack_APIC_irq();
437 exit_idle();
438 irq_enter();
439 mce_notify_irq();
440 mce_schedule_work();
441 irq_exit();
442 }
443 #endif
444
445 static void mce_report_event(struct pt_regs *regs)
446 {
447 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
448 mce_notify_irq();
449 /*
450 * Triggering the work queue here is just an insurance
451 * policy in case the syscall exit notify handler
452 * doesn't run soon enough or ends up running on the
453 * wrong CPU (can happen when audit sleeps)
454 */
455 mce_schedule_work();
456 return;
457 }
458
459 #ifdef CONFIG_X86_LOCAL_APIC
460 /*
461 * Without APIC do not notify. The event will be picked
462 * up eventually.
463 */
464 if (!cpu_has_apic)
465 return;
466
467 /*
468 * When interrupts are disabled we cannot use
469 * kernel services safely. Trigger an self interrupt
470 * through the APIC to instead do the notification
471 * after interrupts are reenabled again.
472 */
473 apic->send_IPI_self(MCE_SELF_VECTOR);
474
475 /*
476 * Wait for idle afterwards again so that we don't leave the
477 * APIC in a non idle state because the normal APIC writes
478 * cannot exclude us.
479 */
480 apic_wait_icr_idle();
481 #endif
482 }
483
484 DEFINE_PER_CPU(unsigned, mce_poll_count);
485
486 /*
487 * Poll for corrected events or events that happened before reset.
488 * Those are just logged through /dev/mcelog.
489 *
490 * This is executed in standard interrupt context.
491 *
492 * Note: spec recommends to panic for fatal unsignalled
493 * errors here. However this would be quite problematic --
494 * we would need to reimplement the Monarch handling and
495 * it would mess up the exclusion between exception handler
496 * and poll hander -- * so we skip this for now.
497 * These cases should not happen anyways, or only when the CPU
498 * is already totally * confused. In this case it's likely it will
499 * not fully execute the machine check handler either.
500 */
501 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
502 {
503 struct mce m;
504 int i;
505
506 __get_cpu_var(mce_poll_count)++;
507
508 mce_setup(&m);
509
510 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
511 for (i = 0; i < banks; i++) {
512 if (!mce_banks[i].ctl || !test_bit(i, *b))
513 continue;
514
515 m.misc = 0;
516 m.addr = 0;
517 m.bank = i;
518 m.tsc = 0;
519
520 barrier();
521 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
522 if (!(m.status & MCI_STATUS_VAL))
523 continue;
524
525 /*
526 * Uncorrected or signalled events are handled by the exception
527 * handler when it is enabled, so don't process those here.
528 *
529 * TBD do the same check for MCI_STATUS_EN here?
530 */
531 if (!(flags & MCP_UC) &&
532 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
533 continue;
534
535 if (m.status & MCI_STATUS_MISCV)
536 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
537 if (m.status & MCI_STATUS_ADDRV)
538 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
539
540 if (!(flags & MCP_TIMESTAMP))
541 m.tsc = 0;
542 /*
543 * Don't get the IP here because it's unlikely to
544 * have anything to do with the actual error location.
545 */
546 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
547 mce_log(&m);
548 add_taint(TAINT_MACHINE_CHECK);
549 }
550
551 /*
552 * Clear state for this bank.
553 */
554 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
555 }
556
557 /*
558 * Don't clear MCG_STATUS here because it's only defined for
559 * exceptions.
560 */
561
562 sync_core();
563 }
564 EXPORT_SYMBOL_GPL(machine_check_poll);
565
566 /*
567 * Do a quick check if any of the events requires a panic.
568 * This decides if we keep the events around or clear them.
569 */
570 static int mce_no_way_out(struct mce *m, char **msg)
571 {
572 int i;
573
574 for (i = 0; i < banks; i++) {
575 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
576 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
577 return 1;
578 }
579 return 0;
580 }
581
582 /*
583 * Variable to establish order between CPUs while scanning.
584 * Each CPU spins initially until executing is equal its number.
585 */
586 static atomic_t mce_executing;
587
588 /*
589 * Defines order of CPUs on entry. First CPU becomes Monarch.
590 */
591 static atomic_t mce_callin;
592
593 /*
594 * Check if a timeout waiting for other CPUs happened.
595 */
596 static int mce_timed_out(u64 *t)
597 {
598 /*
599 * The others already did panic for some reason.
600 * Bail out like in a timeout.
601 * rmb() to tell the compiler that system_state
602 * might have been modified by someone else.
603 */
604 rmb();
605 if (atomic_read(&mce_paniced))
606 wait_for_panic();
607 if (!monarch_timeout)
608 goto out;
609 if ((s64)*t < SPINUNIT) {
610 /* CHECKME: Make panic default for 1 too? */
611 if (tolerant < 1)
612 mce_panic("Timeout synchronizing machine check over CPUs",
613 NULL, NULL);
614 cpu_missing = 1;
615 return 1;
616 }
617 *t -= SPINUNIT;
618 out:
619 touch_nmi_watchdog();
620 return 0;
621 }
622
623 /*
624 * The Monarch's reign. The Monarch is the CPU who entered
625 * the machine check handler first. It waits for the others to
626 * raise the exception too and then grades them. When any
627 * error is fatal panic. Only then let the others continue.
628 *
629 * The other CPUs entering the MCE handler will be controlled by the
630 * Monarch. They are called Subjects.
631 *
632 * This way we prevent any potential data corruption in a unrecoverable case
633 * and also makes sure always all CPU's errors are examined.
634 *
635 * Also this detects the case of a machine check event coming from outer
636 * space (not detected by any CPUs) In this case some external agent wants
637 * us to shut down, so panic too.
638 *
639 * The other CPUs might still decide to panic if the handler happens
640 * in a unrecoverable place, but in this case the system is in a semi-stable
641 * state and won't corrupt anything by itself. It's ok to let the others
642 * continue for a bit first.
643 *
644 * All the spin loops have timeouts; when a timeout happens a CPU
645 * typically elects itself to be Monarch.
646 */
647 static void mce_reign(void)
648 {
649 int cpu;
650 struct mce *m = NULL;
651 int global_worst = 0;
652 char *msg = NULL;
653 char *nmsg = NULL;
654
655 /*
656 * This CPU is the Monarch and the other CPUs have run
657 * through their handlers.
658 * Grade the severity of the errors of all the CPUs.
659 */
660 for_each_possible_cpu(cpu) {
661 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
662 &nmsg);
663 if (severity > global_worst) {
664 msg = nmsg;
665 global_worst = severity;
666 m = &per_cpu(mces_seen, cpu);
667 }
668 }
669
670 /*
671 * Cannot recover? Panic here then.
672 * This dumps all the mces in the log buffer and stops the
673 * other CPUs.
674 */
675 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
676 mce_panic("Fatal Machine check", m, msg);
677
678 /*
679 * For UC somewhere we let the CPU who detects it handle it.
680 * Also must let continue the others, otherwise the handling
681 * CPU could deadlock on a lock.
682 */
683
684 /*
685 * No machine check event found. Must be some external
686 * source or one CPU is hung. Panic.
687 */
688 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
689 mce_panic("Machine check from unknown source", NULL, NULL);
690
691 /*
692 * Now clear all the mces_seen so that they don't reappear on
693 * the next mce.
694 */
695 for_each_possible_cpu(cpu)
696 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
697 }
698
699 static atomic_t global_nwo;
700
701 /*
702 * Start of Monarch synchronization. This waits until all CPUs have
703 * entered the exception handler and then determines if any of them
704 * saw a fatal event that requires panic. Then it executes them
705 * in the entry order.
706 * TBD double check parallel CPU hotunplug
707 */
708 static int mce_start(int *no_way_out)
709 {
710 int order;
711 int cpus = num_online_cpus();
712 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
713
714 if (!timeout)
715 return -1;
716
717 atomic_add(*no_way_out, &global_nwo);
718 /*
719 * global_nwo should be updated before mce_callin
720 */
721 smp_wmb();
722 order = atomic_inc_return(&mce_callin);
723
724 /*
725 * Wait for everyone.
726 */
727 while (atomic_read(&mce_callin) != cpus) {
728 if (mce_timed_out(&timeout)) {
729 atomic_set(&global_nwo, 0);
730 return -1;
731 }
732 ndelay(SPINUNIT);
733 }
734
735 /*
736 * mce_callin should be read before global_nwo
737 */
738 smp_rmb();
739
740 if (order == 1) {
741 /*
742 * Monarch: Starts executing now, the others wait.
743 */
744 atomic_set(&mce_executing, 1);
745 } else {
746 /*
747 * Subject: Now start the scanning loop one by one in
748 * the original callin order.
749 * This way when there are any shared banks it will be
750 * only seen by one CPU before cleared, avoiding duplicates.
751 */
752 while (atomic_read(&mce_executing) < order) {
753 if (mce_timed_out(&timeout)) {
754 atomic_set(&global_nwo, 0);
755 return -1;
756 }
757 ndelay(SPINUNIT);
758 }
759 }
760
761 /*
762 * Cache the global no_way_out state.
763 */
764 *no_way_out = atomic_read(&global_nwo);
765
766 return order;
767 }
768
769 /*
770 * Synchronize between CPUs after main scanning loop.
771 * This invokes the bulk of the Monarch processing.
772 */
773 static int mce_end(int order)
774 {
775 int ret = -1;
776 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
777
778 if (!timeout)
779 goto reset;
780 if (order < 0)
781 goto reset;
782
783 /*
784 * Allow others to run.
785 */
786 atomic_inc(&mce_executing);
787
788 if (order == 1) {
789 /* CHECKME: Can this race with a parallel hotplug? */
790 int cpus = num_online_cpus();
791
792 /*
793 * Monarch: Wait for everyone to go through their scanning
794 * loops.
795 */
796 while (atomic_read(&mce_executing) <= cpus) {
797 if (mce_timed_out(&timeout))
798 goto reset;
799 ndelay(SPINUNIT);
800 }
801
802 mce_reign();
803 barrier();
804 ret = 0;
805 } else {
806 /*
807 * Subject: Wait for Monarch to finish.
808 */
809 while (atomic_read(&mce_executing) != 0) {
810 if (mce_timed_out(&timeout))
811 goto reset;
812 ndelay(SPINUNIT);
813 }
814
815 /*
816 * Don't reset anything. That's done by the Monarch.
817 */
818 return 0;
819 }
820
821 /*
822 * Reset all global state.
823 */
824 reset:
825 atomic_set(&global_nwo, 0);
826 atomic_set(&mce_callin, 0);
827 barrier();
828
829 /*
830 * Let others run again.
831 */
832 atomic_set(&mce_executing, 0);
833 return ret;
834 }
835
836 /*
837 * Check if the address reported by the CPU is in a format we can parse.
838 * It would be possible to add code for most other cases, but all would
839 * be somewhat complicated (e.g. segment offset would require an instruction
840 * parser). So only support physical addresses upto page granuality for now.
841 */
842 static int mce_usable_address(struct mce *m)
843 {
844 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
845 return 0;
846 if ((m->misc & 0x3f) > PAGE_SHIFT)
847 return 0;
848 if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
849 return 0;
850 return 1;
851 }
852
853 static void mce_clear_state(unsigned long *toclear)
854 {
855 int i;
856
857 for (i = 0; i < banks; i++) {
858 if (test_bit(i, toclear))
859 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
860 }
861 }
862
863 /*
864 * The actual machine check handler. This only handles real
865 * exceptions when something got corrupted coming in through int 18.
866 *
867 * This is executed in NMI context not subject to normal locking rules. This
868 * implies that most kernel services cannot be safely used. Don't even
869 * think about putting a printk in there!
870 *
871 * On Intel systems this is entered on all CPUs in parallel through
872 * MCE broadcast. However some CPUs might be broken beyond repair,
873 * so be always careful when synchronizing with others.
874 */
875 void do_machine_check(struct pt_regs *regs, long error_code)
876 {
877 struct mce m, *final;
878 int i;
879 int worst = 0;
880 int severity;
881 /*
882 * Establish sequential order between the CPUs entering the machine
883 * check handler.
884 */
885 int order;
886 /*
887 * If no_way_out gets set, there is no safe way to recover from this
888 * MCE. If tolerant is cranked up, we'll try anyway.
889 */
890 int no_way_out = 0;
891 /*
892 * If kill_it gets set, there might be a way to recover from this
893 * error.
894 */
895 int kill_it = 0;
896 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
897 char *msg = "Unknown";
898
899 atomic_inc(&mce_entry);
900
901 __get_cpu_var(mce_exception_count)++;
902
903 if (notify_die(DIE_NMI, "machine check", regs, error_code,
904 18, SIGKILL) == NOTIFY_STOP)
905 goto out;
906 if (!banks)
907 goto out;
908
909 mce_setup(&m);
910
911 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
912 final = &__get_cpu_var(mces_seen);
913 *final = m;
914
915 no_way_out = mce_no_way_out(&m, &msg);
916
917 barrier();
918
919 /*
920 * When no restart IP must always kill or panic.
921 */
922 if (!(m.mcgstatus & MCG_STATUS_RIPV))
923 kill_it = 1;
924
925 /*
926 * Go through all the banks in exclusion of the other CPUs.
927 * This way we don't report duplicated events on shared banks
928 * because the first one to see it will clear it.
929 */
930 order = mce_start(&no_way_out);
931 for (i = 0; i < banks; i++) {
932 __clear_bit(i, toclear);
933 if (!mce_banks[i].ctl)
934 continue;
935
936 m.misc = 0;
937 m.addr = 0;
938 m.bank = i;
939
940 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
941 if ((m.status & MCI_STATUS_VAL) == 0)
942 continue;
943
944 /*
945 * Non uncorrected or non signaled errors are handled by
946 * machine_check_poll. Leave them alone, unless this panics.
947 */
948 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
949 !no_way_out)
950 continue;
951
952 /*
953 * Set taint even when machine check was not enabled.
954 */
955 add_taint(TAINT_MACHINE_CHECK);
956
957 severity = mce_severity(&m, tolerant, NULL);
958
959 /*
960 * When machine check was for corrected handler don't touch,
961 * unless we're panicing.
962 */
963 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
964 continue;
965 __set_bit(i, toclear);
966 if (severity == MCE_NO_SEVERITY) {
967 /*
968 * Machine check event was not enabled. Clear, but
969 * ignore.
970 */
971 continue;
972 }
973
974 /*
975 * Kill on action required.
976 */
977 if (severity == MCE_AR_SEVERITY)
978 kill_it = 1;
979
980 if (m.status & MCI_STATUS_MISCV)
981 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
982 if (m.status & MCI_STATUS_ADDRV)
983 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
984
985 /*
986 * Action optional error. Queue address for later processing.
987 * When the ring overflows we just ignore the AO error.
988 * RED-PEN add some logging mechanism when
989 * usable_address or mce_add_ring fails.
990 * RED-PEN don't ignore overflow for tolerant == 0
991 */
992 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
993 mce_ring_add(m.addr >> PAGE_SHIFT);
994
995 mce_get_rip(&m, regs);
996 mce_log(&m);
997
998 if (severity > worst) {
999 *final = m;
1000 worst = severity;
1001 }
1002 }
1003
1004 if (!no_way_out)
1005 mce_clear_state(toclear);
1006
1007 /*
1008 * Do most of the synchronization with other CPUs.
1009 * When there's any problem use only local no_way_out state.
1010 */
1011 if (mce_end(order) < 0)
1012 no_way_out = worst >= MCE_PANIC_SEVERITY;
1013
1014 /*
1015 * If we have decided that we just CAN'T continue, and the user
1016 * has not set tolerant to an insane level, give up and die.
1017 *
1018 * This is mainly used in the case when the system doesn't
1019 * support MCE broadcasting or it has been disabled.
1020 */
1021 if (no_way_out && tolerant < 3)
1022 mce_panic("Fatal machine check on current CPU", final, msg);
1023
1024 /*
1025 * If the error seems to be unrecoverable, something should be
1026 * done. Try to kill as little as possible. If we can kill just
1027 * one task, do that. If the user has set the tolerance very
1028 * high, don't try to do anything at all.
1029 */
1030
1031 if (kill_it && tolerant < 3)
1032 force_sig(SIGBUS, current);
1033
1034 /* notify userspace ASAP */
1035 set_thread_flag(TIF_MCE_NOTIFY);
1036
1037 if (worst > 0)
1038 mce_report_event(regs);
1039 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1040 out:
1041 atomic_dec(&mce_entry);
1042 sync_core();
1043 }
1044 EXPORT_SYMBOL_GPL(do_machine_check);
1045
1046 /* dummy to break dependency. actual code is in mm/memory-failure.c */
1047 void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1048 {
1049 printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1050 }
1051
1052 /*
1053 * Called after mce notification in process context. This code
1054 * is allowed to sleep. Call the high level VM handler to process
1055 * any corrupted pages.
1056 * Assume that the work queue code only calls this one at a time
1057 * per CPU.
1058 * Note we don't disable preemption, so this code might run on the wrong
1059 * CPU. In this case the event is picked up by the scheduled work queue.
1060 * This is merely a fast path to expedite processing in some common
1061 * cases.
1062 */
1063 void mce_notify_process(void)
1064 {
1065 unsigned long pfn;
1066 mce_notify_irq();
1067 while (mce_ring_get(&pfn))
1068 memory_failure(pfn, MCE_VECTOR);
1069 }
1070
1071 static void mce_process_work(struct work_struct *dummy)
1072 {
1073 mce_notify_process();
1074 }
1075
1076 #ifdef CONFIG_X86_MCE_INTEL
1077 /***
1078 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1079 * @cpu: The CPU on which the event occurred.
1080 * @status: Event status information
1081 *
1082 * This function should be called by the thermal interrupt after the
1083 * event has been processed and the decision was made to log the event
1084 * further.
1085 *
1086 * The status parameter will be saved to the 'status' field of 'struct mce'
1087 * and historically has been the register value of the
1088 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1089 */
1090 void mce_log_therm_throt_event(__u64 status)
1091 {
1092 struct mce m;
1093
1094 mce_setup(&m);
1095 m.bank = MCE_THERMAL_BANK;
1096 m.status = status;
1097 mce_log(&m);
1098 }
1099 #endif /* CONFIG_X86_MCE_INTEL */
1100
1101 /*
1102 * Periodic polling timer for "silent" machine check errors. If the
1103 * poller finds an MCE, poll 2x faster. When the poller finds no more
1104 * errors, poll 2x slower (up to check_interval seconds).
1105 */
1106 static int check_interval = 5 * 60; /* 5 minutes */
1107
1108 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1109 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1110
1111 static void mcheck_timer(unsigned long data)
1112 {
1113 struct timer_list *t = &per_cpu(mce_timer, data);
1114 int *n;
1115
1116 WARN_ON(smp_processor_id() != data);
1117
1118 if (mce_available(&current_cpu_data)) {
1119 machine_check_poll(MCP_TIMESTAMP,
1120 &__get_cpu_var(mce_poll_banks));
1121 }
1122
1123 /*
1124 * Alert userspace if needed. If we logged an MCE, reduce the
1125 * polling interval, otherwise increase the polling interval.
1126 */
1127 n = &__get_cpu_var(mce_next_interval);
1128 if (mce_notify_irq())
1129 *n = max(*n/2, HZ/100);
1130 else
1131 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1132
1133 t->expires = jiffies + *n;
1134 add_timer_on(t, smp_processor_id());
1135 }
1136
1137 static void mce_do_trigger(struct work_struct *work)
1138 {
1139 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1140 }
1141
1142 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1143
1144 /*
1145 * Notify the user(s) about new machine check events.
1146 * Can be called from interrupt context, but not from machine check/NMI
1147 * context.
1148 */
1149 int mce_notify_irq(void)
1150 {
1151 /* Not more than two messages every minute */
1152 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1153
1154 clear_thread_flag(TIF_MCE_NOTIFY);
1155
1156 if (test_and_clear_bit(0, &mce_need_notify)) {
1157 wake_up_interruptible(&mce_wait);
1158
1159 /*
1160 * There is no risk of missing notifications because
1161 * work_pending is always cleared before the function is
1162 * executed.
1163 */
1164 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1165 schedule_work(&mce_trigger_work);
1166
1167 if (__ratelimit(&ratelimit))
1168 printk(KERN_INFO "Machine check events logged\n");
1169
1170 return 1;
1171 }
1172 return 0;
1173 }
1174 EXPORT_SYMBOL_GPL(mce_notify_irq);
1175
1176 static int mce_banks_init(void)
1177 {
1178 int i;
1179
1180 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1181 if (!mce_banks)
1182 return -ENOMEM;
1183 for (i = 0; i < banks; i++) {
1184 struct mce_bank *b = &mce_banks[i];
1185
1186 b->ctl = -1ULL;
1187 b->init = 1;
1188 }
1189 return 0;
1190 }
1191
1192 /*
1193 * Initialize Machine Checks for a CPU.
1194 */
1195 static int __cpuinit mce_cap_init(void)
1196 {
1197 unsigned b;
1198 u64 cap;
1199
1200 rdmsrl(MSR_IA32_MCG_CAP, cap);
1201
1202 b = cap & MCG_BANKCNT_MASK;
1203 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1204
1205 if (b > MAX_NR_BANKS) {
1206 printk(KERN_WARNING
1207 "MCE: Using only %u machine check banks out of %u\n",
1208 MAX_NR_BANKS, b);
1209 b = MAX_NR_BANKS;
1210 }
1211
1212 /* Don't support asymmetric configurations today */
1213 WARN_ON(banks != 0 && b != banks);
1214 banks = b;
1215 if (!mce_banks) {
1216 int err = mce_banks_init();
1217
1218 if (err)
1219 return err;
1220 }
1221
1222 /* Use accurate RIP reporting if available. */
1223 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1224 rip_msr = MSR_IA32_MCG_EIP;
1225
1226 if (cap & MCG_SER_P)
1227 mce_ser = 1;
1228
1229 return 0;
1230 }
1231
1232 static void mce_init(void)
1233 {
1234 mce_banks_t all_banks;
1235 u64 cap;
1236 int i;
1237
1238 /*
1239 * Log the machine checks left over from the previous reset.
1240 */
1241 bitmap_fill(all_banks, MAX_NR_BANKS);
1242 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1243
1244 set_in_cr4(X86_CR4_MCE);
1245
1246 rdmsrl(MSR_IA32_MCG_CAP, cap);
1247 if (cap & MCG_CTL_P)
1248 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1249
1250 for (i = 0; i < banks; i++) {
1251 struct mce_bank *b = &mce_banks[i];
1252
1253 if (!b->init)
1254 continue;
1255 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1256 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1257 }
1258 }
1259
1260 /* Add per CPU specific workarounds here */
1261 static int __cpuinit mce_cpu_quirks(struct cpuinfo_x86 *c)
1262 {
1263 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1264 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1265 return -EOPNOTSUPP;
1266 }
1267
1268 /* This should be disabled by the BIOS, but isn't always */
1269 if (c->x86_vendor == X86_VENDOR_AMD) {
1270 if (c->x86 == 15 && banks > 4) {
1271 /*
1272 * disable GART TBL walk error reporting, which
1273 * trips off incorrectly with the IOMMU & 3ware
1274 * & Cerberus:
1275 */
1276 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1277 }
1278 if (c->x86 <= 17 && mce_bootlog < 0) {
1279 /*
1280 * Lots of broken BIOS around that don't clear them
1281 * by default and leave crap in there. Don't log:
1282 */
1283 mce_bootlog = 0;
1284 }
1285 /*
1286 * Various K7s with broken bank 0 around. Always disable
1287 * by default.
1288 */
1289 if (c->x86 == 6 && banks > 0)
1290 mce_banks[0].ctl = 0;
1291 }
1292
1293 if (c->x86_vendor == X86_VENDOR_INTEL) {
1294 /*
1295 * SDM documents that on family 6 bank 0 should not be written
1296 * because it aliases to another special BIOS controlled
1297 * register.
1298 * But it's not aliased anymore on model 0x1a+
1299 * Don't ignore bank 0 completely because there could be a
1300 * valid event later, merely don't write CTL0.
1301 */
1302
1303 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1304 mce_banks[0].init = 0;
1305
1306 /*
1307 * All newer Intel systems support MCE broadcasting. Enable
1308 * synchronization with a one second timeout.
1309 */
1310 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1311 monarch_timeout < 0)
1312 monarch_timeout = USEC_PER_SEC;
1313
1314 /*
1315 * There are also broken BIOSes on some Pentium M and
1316 * earlier systems:
1317 */
1318 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1319 mce_bootlog = 0;
1320 }
1321 if (monarch_timeout < 0)
1322 monarch_timeout = 0;
1323 if (mce_bootlog != 0)
1324 mce_panic_timeout = 30;
1325
1326 return 0;
1327 }
1328
1329 static void __cpuinit mce_ancient_init(struct cpuinfo_x86 *c)
1330 {
1331 if (c->x86 != 5)
1332 return;
1333 switch (c->x86_vendor) {
1334 case X86_VENDOR_INTEL:
1335 intel_p5_mcheck_init(c);
1336 break;
1337 case X86_VENDOR_CENTAUR:
1338 winchip_mcheck_init(c);
1339 break;
1340 }
1341 }
1342
1343 static void mce_cpu_features(struct cpuinfo_x86 *c)
1344 {
1345 switch (c->x86_vendor) {
1346 case X86_VENDOR_INTEL:
1347 mce_intel_feature_init(c);
1348 break;
1349 case X86_VENDOR_AMD:
1350 mce_amd_feature_init(c);
1351 break;
1352 default:
1353 break;
1354 }
1355 }
1356
1357 static void mce_init_timer(void)
1358 {
1359 struct timer_list *t = &__get_cpu_var(mce_timer);
1360 int *n = &__get_cpu_var(mce_next_interval);
1361
1362 if (mce_ignore_ce)
1363 return;
1364
1365 *n = check_interval * HZ;
1366 if (!*n)
1367 return;
1368 setup_timer(t, mcheck_timer, smp_processor_id());
1369 t->expires = round_jiffies(jiffies + *n);
1370 add_timer_on(t, smp_processor_id());
1371 }
1372
1373 /* Handle unconfigured int18 (should never happen) */
1374 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1375 {
1376 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1377 smp_processor_id());
1378 }
1379
1380 /* Call the installed machine check handler for this CPU setup. */
1381 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1382 unexpected_machine_check;
1383
1384 /*
1385 * Called for each booted CPU to set up machine checks.
1386 * Must be called with preempt off:
1387 */
1388 void __cpuinit mcheck_init(struct cpuinfo_x86 *c)
1389 {
1390 if (mce_disabled)
1391 return;
1392
1393 mce_ancient_init(c);
1394
1395 if (!mce_available(c))
1396 return;
1397
1398 if (mce_cap_init() < 0 || mce_cpu_quirks(c) < 0) {
1399 mce_disabled = 1;
1400 return;
1401 }
1402
1403 machine_check_vector = do_machine_check;
1404
1405 mce_init();
1406 mce_cpu_features(c);
1407 mce_init_timer();
1408 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1409 }
1410
1411 /*
1412 * Character device to read and clear the MCE log.
1413 */
1414
1415 static DEFINE_SPINLOCK(mce_state_lock);
1416 static int open_count; /* #times opened */
1417 static int open_exclu; /* already open exclusive? */
1418
1419 static int mce_open(struct inode *inode, struct file *file)
1420 {
1421 spin_lock(&mce_state_lock);
1422
1423 if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1424 spin_unlock(&mce_state_lock);
1425
1426 return -EBUSY;
1427 }
1428
1429 if (file->f_flags & O_EXCL)
1430 open_exclu = 1;
1431 open_count++;
1432
1433 spin_unlock(&mce_state_lock);
1434
1435 return nonseekable_open(inode, file);
1436 }
1437
1438 static int mce_release(struct inode *inode, struct file *file)
1439 {
1440 spin_lock(&mce_state_lock);
1441
1442 open_count--;
1443 open_exclu = 0;
1444
1445 spin_unlock(&mce_state_lock);
1446
1447 return 0;
1448 }
1449
1450 static void collect_tscs(void *data)
1451 {
1452 unsigned long *cpu_tsc = (unsigned long *)data;
1453
1454 rdtscll(cpu_tsc[smp_processor_id()]);
1455 }
1456
1457 static DEFINE_MUTEX(mce_read_mutex);
1458
1459 static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1460 loff_t *off)
1461 {
1462 char __user *buf = ubuf;
1463 unsigned long *cpu_tsc;
1464 unsigned prev, next;
1465 int i, err;
1466
1467 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1468 if (!cpu_tsc)
1469 return -ENOMEM;
1470
1471 mutex_lock(&mce_read_mutex);
1472 next = rcu_dereference(mcelog.next);
1473
1474 /* Only supports full reads right now */
1475 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce)) {
1476 mutex_unlock(&mce_read_mutex);
1477 kfree(cpu_tsc);
1478
1479 return -EINVAL;
1480 }
1481
1482 err = 0;
1483 prev = 0;
1484 do {
1485 for (i = prev; i < next; i++) {
1486 unsigned long start = jiffies;
1487
1488 while (!mcelog.entry[i].finished) {
1489 if (time_after_eq(jiffies, start + 2)) {
1490 memset(mcelog.entry + i, 0,
1491 sizeof(struct mce));
1492 goto timeout;
1493 }
1494 cpu_relax();
1495 }
1496 smp_rmb();
1497 err |= copy_to_user(buf, mcelog.entry + i,
1498 sizeof(struct mce));
1499 buf += sizeof(struct mce);
1500 timeout:
1501 ;
1502 }
1503
1504 memset(mcelog.entry + prev, 0,
1505 (next - prev) * sizeof(struct mce));
1506 prev = next;
1507 next = cmpxchg(&mcelog.next, prev, 0);
1508 } while (next != prev);
1509
1510 synchronize_sched();
1511
1512 /*
1513 * Collect entries that were still getting written before the
1514 * synchronize.
1515 */
1516 on_each_cpu(collect_tscs, cpu_tsc, 1);
1517
1518 for (i = next; i < MCE_LOG_LEN; i++) {
1519 if (mcelog.entry[i].finished &&
1520 mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1521 err |= copy_to_user(buf, mcelog.entry+i,
1522 sizeof(struct mce));
1523 smp_rmb();
1524 buf += sizeof(struct mce);
1525 memset(&mcelog.entry[i], 0, sizeof(struct mce));
1526 }
1527 }
1528 mutex_unlock(&mce_read_mutex);
1529 kfree(cpu_tsc);
1530
1531 return err ? -EFAULT : buf - ubuf;
1532 }
1533
1534 static unsigned int mce_poll(struct file *file, poll_table *wait)
1535 {
1536 poll_wait(file, &mce_wait, wait);
1537 if (rcu_dereference(mcelog.next))
1538 return POLLIN | POLLRDNORM;
1539 return 0;
1540 }
1541
1542 static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1543 {
1544 int __user *p = (int __user *)arg;
1545
1546 if (!capable(CAP_SYS_ADMIN))
1547 return -EPERM;
1548
1549 switch (cmd) {
1550 case MCE_GET_RECORD_LEN:
1551 return put_user(sizeof(struct mce), p);
1552 case MCE_GET_LOG_LEN:
1553 return put_user(MCE_LOG_LEN, p);
1554 case MCE_GETCLEAR_FLAGS: {
1555 unsigned flags;
1556
1557 do {
1558 flags = mcelog.flags;
1559 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1560
1561 return put_user(flags, p);
1562 }
1563 default:
1564 return -ENOTTY;
1565 }
1566 }
1567
1568 /* Modified in mce-inject.c, so not static or const */
1569 struct file_operations mce_chrdev_ops = {
1570 .open = mce_open,
1571 .release = mce_release,
1572 .read = mce_read,
1573 .poll = mce_poll,
1574 .unlocked_ioctl = mce_ioctl,
1575 };
1576 EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1577
1578 static struct miscdevice mce_log_device = {
1579 MISC_MCELOG_MINOR,
1580 "mcelog",
1581 &mce_chrdev_ops,
1582 };
1583
1584 /*
1585 * mce=off Disables machine check
1586 * mce=no_cmci Disables CMCI
1587 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1588 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1589 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1590 * monarchtimeout is how long to wait for other CPUs on machine
1591 * check, or 0 to not wait
1592 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1593 * mce=nobootlog Don't log MCEs from before booting.
1594 */
1595 static int __init mcheck_enable(char *str)
1596 {
1597 if (*str == 0) {
1598 enable_p5_mce();
1599 return 1;
1600 }
1601 if (*str == '=')
1602 str++;
1603 if (!strcmp(str, "off"))
1604 mce_disabled = 1;
1605 else if (!strcmp(str, "no_cmci"))
1606 mce_cmci_disabled = 1;
1607 else if (!strcmp(str, "dont_log_ce"))
1608 mce_dont_log_ce = 1;
1609 else if (!strcmp(str, "ignore_ce"))
1610 mce_ignore_ce = 1;
1611 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1612 mce_bootlog = (str[0] == 'b');
1613 else if (isdigit(str[0])) {
1614 get_option(&str, &tolerant);
1615 if (*str == ',') {
1616 ++str;
1617 get_option(&str, &monarch_timeout);
1618 }
1619 } else {
1620 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1621 str);
1622 return 0;
1623 }
1624 return 1;
1625 }
1626 __setup("mce", mcheck_enable);
1627
1628 /*
1629 * Sysfs support
1630 */
1631
1632 /*
1633 * Disable machine checks on suspend and shutdown. We can't really handle
1634 * them later.
1635 */
1636 static int mce_disable(void)
1637 {
1638 int i;
1639
1640 for (i = 0; i < banks; i++) {
1641 struct mce_bank *b = &mce_banks[i];
1642
1643 if (b->init)
1644 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1645 }
1646 return 0;
1647 }
1648
1649 static int mce_suspend(struct sys_device *dev, pm_message_t state)
1650 {
1651 return mce_disable();
1652 }
1653
1654 static int mce_shutdown(struct sys_device *dev)
1655 {
1656 return mce_disable();
1657 }
1658
1659 /*
1660 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1661 * Only one CPU is active at this time, the others get re-added later using
1662 * CPU hotplug:
1663 */
1664 static int mce_resume(struct sys_device *dev)
1665 {
1666 mce_init();
1667 mce_cpu_features(&current_cpu_data);
1668
1669 return 0;
1670 }
1671
1672 static void mce_cpu_restart(void *data)
1673 {
1674 del_timer_sync(&__get_cpu_var(mce_timer));
1675 if (!mce_available(&current_cpu_data))
1676 return;
1677 mce_init();
1678 mce_init_timer();
1679 }
1680
1681 /* Reinit MCEs after user configuration changes */
1682 static void mce_restart(void)
1683 {
1684 on_each_cpu(mce_cpu_restart, NULL, 1);
1685 }
1686
1687 /* Toggle features for corrected errors */
1688 static void mce_disable_ce(void *all)
1689 {
1690 if (!mce_available(&current_cpu_data))
1691 return;
1692 if (all)
1693 del_timer_sync(&__get_cpu_var(mce_timer));
1694 cmci_clear();
1695 }
1696
1697 static void mce_enable_ce(void *all)
1698 {
1699 if (!mce_available(&current_cpu_data))
1700 return;
1701 cmci_reenable();
1702 cmci_recheck();
1703 if (all)
1704 mce_init_timer();
1705 }
1706
1707 static struct sysdev_class mce_sysclass = {
1708 .suspend = mce_suspend,
1709 .shutdown = mce_shutdown,
1710 .resume = mce_resume,
1711 .name = "machinecheck",
1712 };
1713
1714 DEFINE_PER_CPU(struct sys_device, mce_dev);
1715
1716 __cpuinitdata
1717 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1718
1719 static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1720 {
1721 return container_of(attr, struct mce_bank, attr);
1722 }
1723
1724 static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1725 char *buf)
1726 {
1727 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1728 }
1729
1730 static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1731 const char *buf, size_t size)
1732 {
1733 u64 new;
1734
1735 if (strict_strtoull(buf, 0, &new) < 0)
1736 return -EINVAL;
1737
1738 attr_to_bank(attr)->ctl = new;
1739 mce_restart();
1740
1741 return size;
1742 }
1743
1744 static ssize_t
1745 show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1746 {
1747 strcpy(buf, mce_helper);
1748 strcat(buf, "\n");
1749 return strlen(mce_helper) + 1;
1750 }
1751
1752 static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1753 const char *buf, size_t siz)
1754 {
1755 char *p;
1756
1757 strncpy(mce_helper, buf, sizeof(mce_helper));
1758 mce_helper[sizeof(mce_helper)-1] = 0;
1759 p = strchr(mce_helper, '\n');
1760
1761 if (p)
1762 *p = 0;
1763
1764 return strlen(mce_helper) + !!p;
1765 }
1766
1767 static ssize_t set_ignore_ce(struct sys_device *s,
1768 struct sysdev_attribute *attr,
1769 const char *buf, size_t size)
1770 {
1771 u64 new;
1772
1773 if (strict_strtoull(buf, 0, &new) < 0)
1774 return -EINVAL;
1775
1776 if (mce_ignore_ce ^ !!new) {
1777 if (new) {
1778 /* disable ce features */
1779 on_each_cpu(mce_disable_ce, (void *)1, 1);
1780 mce_ignore_ce = 1;
1781 } else {
1782 /* enable ce features */
1783 mce_ignore_ce = 0;
1784 on_each_cpu(mce_enable_ce, (void *)1, 1);
1785 }
1786 }
1787 return size;
1788 }
1789
1790 static ssize_t set_cmci_disabled(struct sys_device *s,
1791 struct sysdev_attribute *attr,
1792 const char *buf, size_t size)
1793 {
1794 u64 new;
1795
1796 if (strict_strtoull(buf, 0, &new) < 0)
1797 return -EINVAL;
1798
1799 if (mce_cmci_disabled ^ !!new) {
1800 if (new) {
1801 /* disable cmci */
1802 on_each_cpu(mce_disable_ce, NULL, 1);
1803 mce_cmci_disabled = 1;
1804 } else {
1805 /* enable cmci */
1806 mce_cmci_disabled = 0;
1807 on_each_cpu(mce_enable_ce, NULL, 1);
1808 }
1809 }
1810 return size;
1811 }
1812
1813 static ssize_t store_int_with_restart(struct sys_device *s,
1814 struct sysdev_attribute *attr,
1815 const char *buf, size_t size)
1816 {
1817 ssize_t ret = sysdev_store_int(s, attr, buf, size);
1818 mce_restart();
1819 return ret;
1820 }
1821
1822 static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1823 static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1824 static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1825 static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1826
1827 static struct sysdev_ext_attribute attr_check_interval = {
1828 _SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1829 store_int_with_restart),
1830 &check_interval
1831 };
1832
1833 static struct sysdev_ext_attribute attr_ignore_ce = {
1834 _SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1835 &mce_ignore_ce
1836 };
1837
1838 static struct sysdev_ext_attribute attr_cmci_disabled = {
1839 _SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1840 &mce_cmci_disabled
1841 };
1842
1843 static struct sysdev_attribute *mce_attrs[] = {
1844 &attr_tolerant.attr,
1845 &attr_check_interval.attr,
1846 &attr_trigger,
1847 &attr_monarch_timeout.attr,
1848 &attr_dont_log_ce.attr,
1849 &attr_ignore_ce.attr,
1850 &attr_cmci_disabled.attr,
1851 NULL
1852 };
1853
1854 static cpumask_var_t mce_dev_initialized;
1855
1856 /* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1857 static __cpuinit int mce_create_device(unsigned int cpu)
1858 {
1859 int err;
1860 int i, j;
1861
1862 if (!mce_available(&boot_cpu_data))
1863 return -EIO;
1864
1865 memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1866 per_cpu(mce_dev, cpu).id = cpu;
1867 per_cpu(mce_dev, cpu).cls = &mce_sysclass;
1868
1869 err = sysdev_register(&per_cpu(mce_dev, cpu));
1870 if (err)
1871 return err;
1872
1873 for (i = 0; mce_attrs[i]; i++) {
1874 err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1875 if (err)
1876 goto error;
1877 }
1878 for (j = 0; j < banks; j++) {
1879 err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1880 &mce_banks[j].attr);
1881 if (err)
1882 goto error2;
1883 }
1884 cpumask_set_cpu(cpu, mce_dev_initialized);
1885
1886 return 0;
1887 error2:
1888 while (--j >= 0)
1889 sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[j].attr);
1890 error:
1891 while (--i >= 0)
1892 sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[i].attr);
1893
1894 sysdev_unregister(&per_cpu(mce_dev, cpu));
1895
1896 return err;
1897 }
1898
1899 static __cpuinit void mce_remove_device(unsigned int cpu)
1900 {
1901 int i;
1902
1903 if (!cpumask_test_cpu(cpu, mce_dev_initialized))
1904 return;
1905
1906 for (i = 0; mce_attrs[i]; i++)
1907 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1908
1909 for (i = 0; i < banks; i++)
1910 sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[i].attr);
1911
1912 sysdev_unregister(&per_cpu(mce_dev, cpu));
1913 cpumask_clear_cpu(cpu, mce_dev_initialized);
1914 }
1915
1916 /* Make sure there are no machine checks on offlined CPUs. */
1917 static void mce_disable_cpu(void *h)
1918 {
1919 unsigned long action = *(unsigned long *)h;
1920 int i;
1921
1922 if (!mce_available(&current_cpu_data))
1923 return;
1924 if (!(action & CPU_TASKS_FROZEN))
1925 cmci_clear();
1926 for (i = 0; i < banks; i++) {
1927 struct mce_bank *b = &mce_banks[i];
1928
1929 if (b->init)
1930 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1931 }
1932 }
1933
1934 static void mce_reenable_cpu(void *h)
1935 {
1936 unsigned long action = *(unsigned long *)h;
1937 int i;
1938
1939 if (!mce_available(&current_cpu_data))
1940 return;
1941
1942 if (!(action & CPU_TASKS_FROZEN))
1943 cmci_reenable();
1944 for (i = 0; i < banks; i++) {
1945 struct mce_bank *b = &mce_banks[i];
1946
1947 if (b->init)
1948 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1949 }
1950 }
1951
1952 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
1953 static int __cpuinit
1954 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
1955 {
1956 unsigned int cpu = (unsigned long)hcpu;
1957 struct timer_list *t = &per_cpu(mce_timer, cpu);
1958
1959 switch (action) {
1960 case CPU_ONLINE:
1961 case CPU_ONLINE_FROZEN:
1962 mce_create_device(cpu);
1963 if (threshold_cpu_callback)
1964 threshold_cpu_callback(action, cpu);
1965 break;
1966 case CPU_DEAD:
1967 case CPU_DEAD_FROZEN:
1968 if (threshold_cpu_callback)
1969 threshold_cpu_callback(action, cpu);
1970 mce_remove_device(cpu);
1971 break;
1972 case CPU_DOWN_PREPARE:
1973 case CPU_DOWN_PREPARE_FROZEN:
1974 del_timer_sync(t);
1975 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
1976 break;
1977 case CPU_DOWN_FAILED:
1978 case CPU_DOWN_FAILED_FROZEN:
1979 t->expires = round_jiffies(jiffies +
1980 __get_cpu_var(mce_next_interval));
1981 add_timer_on(t, cpu);
1982 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
1983 break;
1984 case CPU_POST_DEAD:
1985 /* intentionally ignoring frozen here */
1986 cmci_rediscover(cpu);
1987 break;
1988 }
1989 return NOTIFY_OK;
1990 }
1991
1992 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
1993 .notifier_call = mce_cpu_callback,
1994 };
1995
1996 static __init void mce_init_banks(void)
1997 {
1998 int i;
1999
2000 for (i = 0; i < banks; i++) {
2001 struct mce_bank *b = &mce_banks[i];
2002 struct sysdev_attribute *a = &b->attr;
2003
2004 a->attr.name = b->attrname;
2005 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2006
2007 a->attr.mode = 0644;
2008 a->show = show_bank;
2009 a->store = set_bank;
2010 }
2011 }
2012
2013 static __init int mce_init_device(void)
2014 {
2015 int err;
2016 int i = 0;
2017
2018 if (!mce_available(&boot_cpu_data))
2019 return -EIO;
2020
2021 zalloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
2022
2023 mce_init_banks();
2024
2025 err = sysdev_class_register(&mce_sysclass);
2026 if (err)
2027 return err;
2028
2029 for_each_online_cpu(i) {
2030 err = mce_create_device(i);
2031 if (err)
2032 return err;
2033 }
2034
2035 register_hotcpu_notifier(&mce_cpu_notifier);
2036 misc_register(&mce_log_device);
2037
2038 return err;
2039 }
2040
2041 device_initcall(mce_init_device);
2042
2043 /*
2044 * Old style boot options parsing. Only for compatibility.
2045 */
2046 static int __init mcheck_disable(char *str)
2047 {
2048 mce_disabled = 1;
2049 return 1;
2050 }
2051 __setup("nomce", mcheck_disable);
2052
2053 #ifdef CONFIG_DEBUG_FS
2054 struct dentry *mce_get_debugfs_dir(void)
2055 {
2056 static struct dentry *dmce;
2057
2058 if (!dmce)
2059 dmce = debugfs_create_dir("mce", NULL);
2060
2061 return dmce;
2062 }
2063
2064 static void mce_reset(void)
2065 {
2066 cpu_missing = 0;
2067 atomic_set(&mce_fake_paniced, 0);
2068 atomic_set(&mce_executing, 0);
2069 atomic_set(&mce_callin, 0);
2070 atomic_set(&global_nwo, 0);
2071 }
2072
2073 static int fake_panic_get(void *data, u64 *val)
2074 {
2075 *val = fake_panic;
2076 return 0;
2077 }
2078
2079 static int fake_panic_set(void *data, u64 val)
2080 {
2081 mce_reset();
2082 fake_panic = val;
2083 return 0;
2084 }
2085
2086 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2087 fake_panic_set, "%llu\n");
2088
2089 static int __init mce_debugfs_init(void)
2090 {
2091 struct dentry *dmce, *ffake_panic;
2092
2093 dmce = mce_get_debugfs_dir();
2094 if (!dmce)
2095 return -ENOMEM;
2096 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2097 &fake_panic_fops);
2098 if (!ffake_panic)
2099 return -ENOMEM;
2100
2101 return 0;
2102 }
2103 late_initcall(mce_debugfs_init);
2104 #endif