Merge branches 'x86/cache', 'x86/debug' and 'x86/irq' into x86/urgent
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / arch / x86 / kernel / cpu / intel.c
1 #include <linux/kernel.h>
2
3 #include <linux/string.h>
4 #include <linux/bitops.h>
5 #include <linux/smp.h>
6 #include <linux/sched.h>
7 #include <linux/thread_info.h>
8 #include <linux/init.h>
9 #include <linux/uaccess.h>
10
11 #include <asm/cpufeature.h>
12 #include <asm/pgtable.h>
13 #include <asm/msr.h>
14 #include <asm/bugs.h>
15 #include <asm/cpu.h>
16 #include <asm/intel-family.h>
17 #include <asm/microcode_intel.h>
18
19 #ifdef CONFIG_X86_64
20 #include <linux/topology.h>
21 #endif
22
23 #include "cpu.h"
24
25 #ifdef CONFIG_X86_LOCAL_APIC
26 #include <asm/mpspec.h>
27 #include <asm/apic.h>
28 #endif
29
30 /*
31 * Just in case our CPU detection goes bad, or you have a weird system,
32 * allow a way to override the automatic disabling of MPX.
33 */
34 static int forcempx;
35
36 static int __init forcempx_setup(char *__unused)
37 {
38 forcempx = 1;
39
40 return 1;
41 }
42 __setup("intel-skd-046-workaround=disable", forcempx_setup);
43
44 void check_mpx_erratum(struct cpuinfo_x86 *c)
45 {
46 if (forcempx)
47 return;
48 /*
49 * Turn off the MPX feature on CPUs where SMEP is not
50 * available or disabled.
51 *
52 * Works around Intel Erratum SKD046: "Branch Instructions
53 * May Initialize MPX Bound Registers Incorrectly".
54 *
55 * This might falsely disable MPX on systems without
56 * SMEP, like Atom processors without SMEP. But there
57 * is no such hardware known at the moment.
58 */
59 if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
60 setup_clear_cpu_cap(X86_FEATURE_MPX);
61 pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
62 }
63 }
64
65 static void early_init_intel(struct cpuinfo_x86 *c)
66 {
67 u64 misc_enable;
68
69 /* Unmask CPUID levels if masked: */
70 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
71 if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
72 MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
73 c->cpuid_level = cpuid_eax(0);
74 get_cpu_cap(c);
75 }
76 }
77
78 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
79 (c->x86 == 0x6 && c->x86_model >= 0x0e))
80 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
81
82 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
83 c->microcode = intel_get_microcode_revision();
84
85 /*
86 * Atom erratum AAE44/AAF40/AAG38/AAH41:
87 *
88 * A race condition between speculative fetches and invalidating
89 * a large page. This is worked around in microcode, but we
90 * need the microcode to have already been loaded... so if it is
91 * not, recommend a BIOS update and disable large pages.
92 */
93 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
94 c->microcode < 0x20e) {
95 pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
96 clear_cpu_cap(c, X86_FEATURE_PSE);
97 }
98
99 #ifdef CONFIG_X86_64
100 set_cpu_cap(c, X86_FEATURE_SYSENTER32);
101 #else
102 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
103 if (c->x86 == 15 && c->x86_cache_alignment == 64)
104 c->x86_cache_alignment = 128;
105 #endif
106
107 /* CPUID workaround for 0F33/0F34 CPU */
108 if (c->x86 == 0xF && c->x86_model == 0x3
109 && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
110 c->x86_phys_bits = 36;
111
112 /*
113 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
114 * with P/T states and does not stop in deep C-states.
115 *
116 * It is also reliable across cores and sockets. (but not across
117 * cabinets - we turn it off in that case explicitly.)
118 */
119 if (c->x86_power & (1 << 8)) {
120 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
121 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
122 if (!check_tsc_unstable())
123 set_sched_clock_stable();
124 }
125
126 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
127 if (c->x86 == 6) {
128 switch (c->x86_model) {
129 case 0x27: /* Penwell */
130 case 0x35: /* Cloverview */
131 case 0x4a: /* Merrifield */
132 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
133 break;
134 default:
135 break;
136 }
137 }
138
139 /*
140 * There is a known erratum on Pentium III and Core Solo
141 * and Core Duo CPUs.
142 * " Page with PAT set to WC while associated MTRR is UC
143 * may consolidate to UC "
144 * Because of this erratum, it is better to stick with
145 * setting WC in MTRR rather than using PAT on these CPUs.
146 *
147 * Enable PAT WC only on P4, Core 2 or later CPUs.
148 */
149 if (c->x86 == 6 && c->x86_model < 15)
150 clear_cpu_cap(c, X86_FEATURE_PAT);
151
152 #ifdef CONFIG_KMEMCHECK
153 /*
154 * P4s have a "fast strings" feature which causes single-
155 * stepping REP instructions to only generate a #DB on
156 * cache-line boundaries.
157 *
158 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
159 * (model 2) with the same problem.
160 */
161 if (c->x86 == 15)
162 if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
163 MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
164 pr_info("kmemcheck: Disabling fast string operations\n");
165 #endif
166
167 /*
168 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
169 * clear the fast string and enhanced fast string CPU capabilities.
170 */
171 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
172 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
173 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
174 pr_info("Disabled fast string operations\n");
175 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
176 setup_clear_cpu_cap(X86_FEATURE_ERMS);
177 }
178 }
179
180 /*
181 * Intel Quark Core DevMan_001.pdf section 6.4.11
182 * "The operating system also is required to invalidate (i.e., flush)
183 * the TLB when any changes are made to any of the page table entries.
184 * The operating system must reload CR3 to cause the TLB to be flushed"
185 *
186 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
187 * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
188 * to be modified.
189 */
190 if (c->x86 == 5 && c->x86_model == 9) {
191 pr_info("Disabling PGE capability bit\n");
192 setup_clear_cpu_cap(X86_FEATURE_PGE);
193 }
194
195 if (c->cpuid_level >= 0x00000001) {
196 u32 eax, ebx, ecx, edx;
197
198 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
199 /*
200 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
201 * apicids which are reserved per package. Store the resulting
202 * shift value for the package management code.
203 */
204 if (edx & (1U << 28))
205 c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
206 }
207
208 check_mpx_erratum(c);
209 }
210
211 #ifdef CONFIG_X86_32
212 /*
213 * Early probe support logic for ppro memory erratum #50
214 *
215 * This is called before we do cpu ident work
216 */
217
218 int ppro_with_ram_bug(void)
219 {
220 /* Uses data from early_cpu_detect now */
221 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
222 boot_cpu_data.x86 == 6 &&
223 boot_cpu_data.x86_model == 1 &&
224 boot_cpu_data.x86_mask < 8) {
225 pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
226 return 1;
227 }
228 return 0;
229 }
230
231 static void intel_smp_check(struct cpuinfo_x86 *c)
232 {
233 /* calling is from identify_secondary_cpu() ? */
234 if (!c->cpu_index)
235 return;
236
237 /*
238 * Mask B, Pentium, but not Pentium MMX
239 */
240 if (c->x86 == 5 &&
241 c->x86_mask >= 1 && c->x86_mask <= 4 &&
242 c->x86_model <= 3) {
243 /*
244 * Remember we have B step Pentia with bugs
245 */
246 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
247 "with B stepping processors.\n");
248 }
249 }
250
251 static int forcepae;
252 static int __init forcepae_setup(char *__unused)
253 {
254 forcepae = 1;
255 return 1;
256 }
257 __setup("forcepae", forcepae_setup);
258
259 static void intel_workarounds(struct cpuinfo_x86 *c)
260 {
261 #ifdef CONFIG_X86_F00F_BUG
262 /*
263 * All models of Pentium and Pentium with MMX technology CPUs
264 * have the F0 0F bug, which lets nonprivileged users lock up the
265 * system. Announce that the fault handler will be checking for it.
266 * The Quark is also family 5, but does not have the same bug.
267 */
268 clear_cpu_bug(c, X86_BUG_F00F);
269 if (c->x86 == 5 && c->x86_model < 9) {
270 static int f00f_workaround_enabled;
271
272 set_cpu_bug(c, X86_BUG_F00F);
273 if (!f00f_workaround_enabled) {
274 pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
275 f00f_workaround_enabled = 1;
276 }
277 }
278 #endif
279
280 /*
281 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
282 * model 3 mask 3
283 */
284 if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
285 clear_cpu_cap(c, X86_FEATURE_SEP);
286
287 /*
288 * PAE CPUID issue: many Pentium M report no PAE but may have a
289 * functionally usable PAE implementation.
290 * Forcefully enable PAE if kernel parameter "forcepae" is present.
291 */
292 if (forcepae) {
293 pr_warn("PAE forced!\n");
294 set_cpu_cap(c, X86_FEATURE_PAE);
295 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
296 }
297
298 /*
299 * P4 Xeon erratum 037 workaround.
300 * Hardware prefetcher may cause stale data to be loaded into the cache.
301 */
302 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
303 if (msr_set_bit(MSR_IA32_MISC_ENABLE,
304 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
305 pr_info("CPU: C0 stepping P4 Xeon detected.\n");
306 pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
307 }
308 }
309
310 /*
311 * See if we have a good local APIC by checking for buggy Pentia,
312 * i.e. all B steppings and the C2 stepping of P54C when using their
313 * integrated APIC (see 11AP erratum in "Pentium Processor
314 * Specification Update").
315 */
316 if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
317 (c->x86_mask < 0x6 || c->x86_mask == 0xb))
318 set_cpu_bug(c, X86_BUG_11AP);
319
320
321 #ifdef CONFIG_X86_INTEL_USERCOPY
322 /*
323 * Set up the preferred alignment for movsl bulk memory moves
324 */
325 switch (c->x86) {
326 case 4: /* 486: untested */
327 break;
328 case 5: /* Old Pentia: untested */
329 break;
330 case 6: /* PII/PIII only like movsl with 8-byte alignment */
331 movsl_mask.mask = 7;
332 break;
333 case 15: /* P4 is OK down to 8-byte alignment */
334 movsl_mask.mask = 7;
335 break;
336 }
337 #endif
338
339 intel_smp_check(c);
340 }
341 #else
342 static void intel_workarounds(struct cpuinfo_x86 *c)
343 {
344 }
345 #endif
346
347 static void srat_detect_node(struct cpuinfo_x86 *c)
348 {
349 #ifdef CONFIG_NUMA
350 unsigned node;
351 int cpu = smp_processor_id();
352
353 /* Don't do the funky fallback heuristics the AMD version employs
354 for now. */
355 node = numa_cpu_node(cpu);
356 if (node == NUMA_NO_NODE || !node_online(node)) {
357 /* reuse the value from init_cpu_to_node() */
358 node = cpu_to_node(cpu);
359 }
360 numa_set_node(cpu, node);
361 #endif
362 }
363
364 /*
365 * find out the number of processor cores on the die
366 */
367 static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
368 {
369 unsigned int eax, ebx, ecx, edx;
370
371 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
372 return 1;
373
374 /* Intel has a non-standard dependency on %ecx for this CPUID level. */
375 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
376 if (eax & 0x1f)
377 return (eax >> 26) + 1;
378 else
379 return 1;
380 }
381
382 static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
383 {
384 /* Intel VMX MSR indicated features */
385 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
386 #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
387 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
388 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
389 #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
390 #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
391
392 u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
393
394 clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
395 clear_cpu_cap(c, X86_FEATURE_VNMI);
396 clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
397 clear_cpu_cap(c, X86_FEATURE_EPT);
398 clear_cpu_cap(c, X86_FEATURE_VPID);
399
400 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
401 msr_ctl = vmx_msr_high | vmx_msr_low;
402 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
403 set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
404 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
405 set_cpu_cap(c, X86_FEATURE_VNMI);
406 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
407 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
408 vmx_msr_low, vmx_msr_high);
409 msr_ctl2 = vmx_msr_high | vmx_msr_low;
410 if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
411 (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
412 set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
413 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
414 set_cpu_cap(c, X86_FEATURE_EPT);
415 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
416 set_cpu_cap(c, X86_FEATURE_VPID);
417 }
418 }
419
420 static void init_intel_energy_perf(struct cpuinfo_x86 *c)
421 {
422 u64 epb;
423
424 /*
425 * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
426 * (x86_energy_perf_policy(8) is available to change it at run-time.)
427 */
428 if (!cpu_has(c, X86_FEATURE_EPB))
429 return;
430
431 rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
432 if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
433 return;
434
435 pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
436 pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
437 epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
438 wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
439 }
440
441 static void intel_bsp_resume(struct cpuinfo_x86 *c)
442 {
443 /*
444 * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
445 * so reinitialize it properly like during bootup:
446 */
447 init_intel_energy_perf(c);
448 }
449
450 static void init_intel(struct cpuinfo_x86 *c)
451 {
452 unsigned int l2 = 0;
453
454 early_init_intel(c);
455
456 intel_workarounds(c);
457
458 /*
459 * Detect the extended topology information if available. This
460 * will reinitialise the initial_apicid which will be used
461 * in init_intel_cacheinfo()
462 */
463 detect_extended_topology(c);
464
465 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
466 /*
467 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
468 * detection.
469 */
470 c->x86_max_cores = intel_num_cpu_cores(c);
471 #ifdef CONFIG_X86_32
472 detect_ht(c);
473 #endif
474 }
475
476 l2 = init_intel_cacheinfo(c);
477
478 /* Detect legacy cache sizes if init_intel_cacheinfo did not */
479 if (l2 == 0) {
480 cpu_detect_cache_sizes(c);
481 l2 = c->x86_cache_size;
482 }
483
484 if (c->cpuid_level > 9) {
485 unsigned eax = cpuid_eax(10);
486 /* Check for version and the number of counters */
487 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
488 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
489 }
490
491 if (cpu_has(c, X86_FEATURE_XMM2))
492 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
493
494 if (boot_cpu_has(X86_FEATURE_DS)) {
495 unsigned int l1;
496 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
497 if (!(l1 & (1<<11)))
498 set_cpu_cap(c, X86_FEATURE_BTS);
499 if (!(l1 & (1<<12)))
500 set_cpu_cap(c, X86_FEATURE_PEBS);
501 }
502
503 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
504 (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
505 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
506
507 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
508 ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
509 set_cpu_bug(c, X86_BUG_MONITOR);
510
511 #ifdef CONFIG_X86_64
512 if (c->x86 == 15)
513 c->x86_cache_alignment = c->x86_clflush_size * 2;
514 if (c->x86 == 6)
515 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
516 #else
517 /*
518 * Names for the Pentium II/Celeron processors
519 * detectable only by also checking the cache size.
520 * Dixon is NOT a Celeron.
521 */
522 if (c->x86 == 6) {
523 char *p = NULL;
524
525 switch (c->x86_model) {
526 case 5:
527 if (l2 == 0)
528 p = "Celeron (Covington)";
529 else if (l2 == 256)
530 p = "Mobile Pentium II (Dixon)";
531 break;
532
533 case 6:
534 if (l2 == 128)
535 p = "Celeron (Mendocino)";
536 else if (c->x86_mask == 0 || c->x86_mask == 5)
537 p = "Celeron-A";
538 break;
539
540 case 8:
541 if (l2 == 128)
542 p = "Celeron (Coppermine)";
543 break;
544 }
545
546 if (p)
547 strcpy(c->x86_model_id, p);
548 }
549
550 if (c->x86 == 15)
551 set_cpu_cap(c, X86_FEATURE_P4);
552 if (c->x86 == 6)
553 set_cpu_cap(c, X86_FEATURE_P3);
554 #endif
555
556 /* Work around errata */
557 srat_detect_node(c);
558
559 if (cpu_has(c, X86_FEATURE_VMX))
560 detect_vmx_virtcap(c);
561
562 init_intel_energy_perf(c);
563 }
564
565 #ifdef CONFIG_X86_32
566 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
567 {
568 /*
569 * Intel PIII Tualatin. This comes in two flavours.
570 * One has 256kb of cache, the other 512. We have no way
571 * to determine which, so we use a boottime override
572 * for the 512kb model, and assume 256 otherwise.
573 */
574 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
575 size = 256;
576
577 /*
578 * Intel Quark SoC X1000 contains a 4-way set associative
579 * 16K cache with a 16 byte cache line and 256 lines per tag
580 */
581 if ((c->x86 == 5) && (c->x86_model == 9))
582 size = 16;
583 return size;
584 }
585 #endif
586
587 #define TLB_INST_4K 0x01
588 #define TLB_INST_4M 0x02
589 #define TLB_INST_2M_4M 0x03
590
591 #define TLB_INST_ALL 0x05
592 #define TLB_INST_1G 0x06
593
594 #define TLB_DATA_4K 0x11
595 #define TLB_DATA_4M 0x12
596 #define TLB_DATA_2M_4M 0x13
597 #define TLB_DATA_4K_4M 0x14
598
599 #define TLB_DATA_1G 0x16
600
601 #define TLB_DATA0_4K 0x21
602 #define TLB_DATA0_4M 0x22
603 #define TLB_DATA0_2M_4M 0x23
604
605 #define STLB_4K 0x41
606 #define STLB_4K_2M 0x42
607
608 static const struct _tlb_table intel_tlb_table[] = {
609 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
610 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
611 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
612 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
613 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
614 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
615 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
616 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
617 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
618 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
619 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
620 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
621 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
622 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
623 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
624 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
625 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
626 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
627 { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
628 { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
629 { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
630 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
631 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
632 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
633 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
634 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
635 { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
636 { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
637 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
638 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
639 { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
640 { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
641 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
642 { 0x00, 0, 0 }
643 };
644
645 static void intel_tlb_lookup(const unsigned char desc)
646 {
647 unsigned char k;
648 if (desc == 0)
649 return;
650
651 /* look up this descriptor in the table */
652 for (k = 0; intel_tlb_table[k].descriptor != desc && \
653 intel_tlb_table[k].descriptor != 0; k++)
654 ;
655
656 if (intel_tlb_table[k].tlb_type == 0)
657 return;
658
659 switch (intel_tlb_table[k].tlb_type) {
660 case STLB_4K:
661 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
662 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
663 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
664 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
665 break;
666 case STLB_4K_2M:
667 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
668 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
669 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
670 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
671 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
672 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
673 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
674 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
675 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
676 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
677 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
678 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
679 break;
680 case TLB_INST_ALL:
681 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
682 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
683 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
684 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
685 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
686 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
687 break;
688 case TLB_INST_4K:
689 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
690 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
691 break;
692 case TLB_INST_4M:
693 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
694 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
695 break;
696 case TLB_INST_2M_4M:
697 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
698 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
699 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
700 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
701 break;
702 case TLB_DATA_4K:
703 case TLB_DATA0_4K:
704 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
705 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
706 break;
707 case TLB_DATA_4M:
708 case TLB_DATA0_4M:
709 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
710 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
711 break;
712 case TLB_DATA_2M_4M:
713 case TLB_DATA0_2M_4M:
714 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
715 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
716 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
717 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
718 break;
719 case TLB_DATA_4K_4M:
720 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
721 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
722 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
723 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
724 break;
725 case TLB_DATA_1G:
726 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
727 tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
728 break;
729 }
730 }
731
732 static void intel_detect_tlb(struct cpuinfo_x86 *c)
733 {
734 int i, j, n;
735 unsigned int regs[4];
736 unsigned char *desc = (unsigned char *)regs;
737
738 if (c->cpuid_level < 2)
739 return;
740
741 /* Number of times to iterate */
742 n = cpuid_eax(2) & 0xFF;
743
744 for (i = 0 ; i < n ; i++) {
745 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
746
747 /* If bit 31 is set, this is an unknown format */
748 for (j = 0 ; j < 3 ; j++)
749 if (regs[j] & (1 << 31))
750 regs[j] = 0;
751
752 /* Byte 0 is level count, not a descriptor */
753 for (j = 1 ; j < 16 ; j++)
754 intel_tlb_lookup(desc[j]);
755 }
756 }
757
758 static const struct cpu_dev intel_cpu_dev = {
759 .c_vendor = "Intel",
760 .c_ident = { "GenuineIntel" },
761 #ifdef CONFIG_X86_32
762 .legacy_models = {
763 { .family = 4, .model_names =
764 {
765 [0] = "486 DX-25/33",
766 [1] = "486 DX-50",
767 [2] = "486 SX",
768 [3] = "486 DX/2",
769 [4] = "486 SL",
770 [5] = "486 SX/2",
771 [7] = "486 DX/2-WB",
772 [8] = "486 DX/4",
773 [9] = "486 DX/4-WB"
774 }
775 },
776 { .family = 5, .model_names =
777 {
778 [0] = "Pentium 60/66 A-step",
779 [1] = "Pentium 60/66",
780 [2] = "Pentium 75 - 200",
781 [3] = "OverDrive PODP5V83",
782 [4] = "Pentium MMX",
783 [7] = "Mobile Pentium 75 - 200",
784 [8] = "Mobile Pentium MMX",
785 [9] = "Quark SoC X1000",
786 }
787 },
788 { .family = 6, .model_names =
789 {
790 [0] = "Pentium Pro A-step",
791 [1] = "Pentium Pro",
792 [3] = "Pentium II (Klamath)",
793 [4] = "Pentium II (Deschutes)",
794 [5] = "Pentium II (Deschutes)",
795 [6] = "Mobile Pentium II",
796 [7] = "Pentium III (Katmai)",
797 [8] = "Pentium III (Coppermine)",
798 [10] = "Pentium III (Cascades)",
799 [11] = "Pentium III (Tualatin)",
800 }
801 },
802 { .family = 15, .model_names =
803 {
804 [0] = "Pentium 4 (Unknown)",
805 [1] = "Pentium 4 (Willamette)",
806 [2] = "Pentium 4 (Northwood)",
807 [4] = "Pentium 4 (Foster)",
808 [5] = "Pentium 4 (Foster)",
809 }
810 },
811 },
812 .legacy_cache_size = intel_size_cache,
813 #endif
814 .c_detect_tlb = intel_detect_tlb,
815 .c_early_init = early_init_intel,
816 .c_init = init_intel,
817 .c_bsp_resume = intel_bsp_resume,
818 .c_x86_vendor = X86_VENDOR_INTEL,
819 };
820
821 cpu_dev_register(intel_cpu_dev);
822