Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / arch / x86 / kernel / cpu / cpufreq / powernow-k8.c
1 /*
2 * (c) 2003-2010 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
6 *
7 * Support : mark.langsdorf@amd.com
8 *
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
15 *
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, Jacob Shin, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
22 *
23 * Tables for specific CPUs can be inferred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
36 #include <linux/io.h>
37 #include <linux/delay.h>
38
39 #include <asm/msr.h>
40
41 #include <linux/acpi.h>
42 #include <linux/mutex.h>
43 #include <acpi/processor.h>
44
45 #define PFX "powernow-k8: "
46 #define VERSION "version 2.20.00"
47 #include "powernow-k8.h"
48 #include "mperf.h"
49
50 /* serialize freq changes */
51 static DEFINE_MUTEX(fidvid_mutex);
52
53 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
54
55 static int cpu_family = CPU_OPTERON;
56
57 /* core performance boost */
58 static bool cpb_capable, cpb_enabled;
59 static struct msr __percpu *msrs;
60
61 static struct cpufreq_driver cpufreq_amd64_driver;
62
63 #ifndef CONFIG_SMP
64 static inline const struct cpumask *cpu_core_mask(int cpu)
65 {
66 return cpumask_of(0);
67 }
68 #endif
69
70 /* Return a frequency in MHz, given an input fid */
71 static u32 find_freq_from_fid(u32 fid)
72 {
73 return 800 + (fid * 100);
74 }
75
76 /* Return a frequency in KHz, given an input fid */
77 static u32 find_khz_freq_from_fid(u32 fid)
78 {
79 return 1000 * find_freq_from_fid(fid);
80 }
81
82 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
83 u32 pstate)
84 {
85 return data[pstate].frequency;
86 }
87
88 /* Return the vco fid for an input fid
89 *
90 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
91 * only from corresponding high fids. This returns "high" fid corresponding to
92 * "low" one.
93 */
94 static u32 convert_fid_to_vco_fid(u32 fid)
95 {
96 if (fid < HI_FID_TABLE_BOTTOM)
97 return 8 + (2 * fid);
98 else
99 return fid;
100 }
101
102 /*
103 * Return 1 if the pending bit is set. Unless we just instructed the processor
104 * to transition to a new state, seeing this bit set is really bad news.
105 */
106 static int pending_bit_stuck(void)
107 {
108 u32 lo, hi;
109
110 if (cpu_family == CPU_HW_PSTATE)
111 return 0;
112
113 rdmsr(MSR_FIDVID_STATUS, lo, hi);
114 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
115 }
116
117 /*
118 * Update the global current fid / vid values from the status msr.
119 * Returns 1 on error.
120 */
121 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
122 {
123 u32 lo, hi;
124 u32 i = 0;
125
126 if (cpu_family == CPU_HW_PSTATE) {
127 rdmsr(MSR_PSTATE_STATUS, lo, hi);
128 i = lo & HW_PSTATE_MASK;
129 data->currpstate = i;
130
131 /*
132 * a workaround for family 11h erratum 311 might cause
133 * an "out-of-range Pstate if the core is in Pstate-0
134 */
135 if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
136 data->currpstate = HW_PSTATE_0;
137
138 return 0;
139 }
140 do {
141 if (i++ > 10000) {
142 dprintk("detected change pending stuck\n");
143 return 1;
144 }
145 rdmsr(MSR_FIDVID_STATUS, lo, hi);
146 } while (lo & MSR_S_LO_CHANGE_PENDING);
147
148 data->currvid = hi & MSR_S_HI_CURRENT_VID;
149 data->currfid = lo & MSR_S_LO_CURRENT_FID;
150
151 return 0;
152 }
153
154 /* the isochronous relief time */
155 static void count_off_irt(struct powernow_k8_data *data)
156 {
157 udelay((1 << data->irt) * 10);
158 return;
159 }
160
161 /* the voltage stabilization time */
162 static void count_off_vst(struct powernow_k8_data *data)
163 {
164 udelay(data->vstable * VST_UNITS_20US);
165 return;
166 }
167
168 /* need to init the control msr to a safe value (for each cpu) */
169 static void fidvid_msr_init(void)
170 {
171 u32 lo, hi;
172 u8 fid, vid;
173
174 rdmsr(MSR_FIDVID_STATUS, lo, hi);
175 vid = hi & MSR_S_HI_CURRENT_VID;
176 fid = lo & MSR_S_LO_CURRENT_FID;
177 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
178 hi = MSR_C_HI_STP_GNT_BENIGN;
179 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
180 wrmsr(MSR_FIDVID_CTL, lo, hi);
181 }
182
183 /* write the new fid value along with the other control fields to the msr */
184 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
185 {
186 u32 lo;
187 u32 savevid = data->currvid;
188 u32 i = 0;
189
190 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
191 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
192 return 1;
193 }
194
195 lo = fid;
196 lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
197 lo |= MSR_C_LO_INIT_FID_VID;
198
199 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
200 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
201
202 do {
203 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
204 if (i++ > 100) {
205 printk(KERN_ERR PFX
206 "Hardware error - pending bit very stuck - "
207 "no further pstate changes possible\n");
208 return 1;
209 }
210 } while (query_current_values_with_pending_wait(data));
211
212 count_off_irt(data);
213
214 if (savevid != data->currvid) {
215 printk(KERN_ERR PFX
216 "vid change on fid trans, old 0x%x, new 0x%x\n",
217 savevid, data->currvid);
218 return 1;
219 }
220
221 if (fid != data->currfid) {
222 printk(KERN_ERR PFX
223 "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
224 data->currfid);
225 return 1;
226 }
227
228 return 0;
229 }
230
231 /* Write a new vid to the hardware */
232 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
233 {
234 u32 lo;
235 u32 savefid = data->currfid;
236 int i = 0;
237
238 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
239 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
240 return 1;
241 }
242
243 lo = data->currfid;
244 lo |= (vid << MSR_C_LO_VID_SHIFT);
245 lo |= MSR_C_LO_INIT_FID_VID;
246
247 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
248 vid, lo, STOP_GRANT_5NS);
249
250 do {
251 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
252 if (i++ > 100) {
253 printk(KERN_ERR PFX "internal error - pending bit "
254 "very stuck - no further pstate "
255 "changes possible\n");
256 return 1;
257 }
258 } while (query_current_values_with_pending_wait(data));
259
260 if (savefid != data->currfid) {
261 printk(KERN_ERR PFX "fid changed on vid trans, old "
262 "0x%x new 0x%x\n",
263 savefid, data->currfid);
264 return 1;
265 }
266
267 if (vid != data->currvid) {
268 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
269 "curr 0x%x\n",
270 vid, data->currvid);
271 return 1;
272 }
273
274 return 0;
275 }
276
277 /*
278 * Reduce the vid by the max of step or reqvid.
279 * Decreasing vid codes represent increasing voltages:
280 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
281 */
282 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
283 u32 reqvid, u32 step)
284 {
285 if ((data->currvid - reqvid) > step)
286 reqvid = data->currvid - step;
287
288 if (write_new_vid(data, reqvid))
289 return 1;
290
291 count_off_vst(data);
292
293 return 0;
294 }
295
296 /* Change hardware pstate by single MSR write */
297 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
298 {
299 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
300 data->currpstate = pstate;
301 return 0;
302 }
303
304 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
305 static int transition_fid_vid(struct powernow_k8_data *data,
306 u32 reqfid, u32 reqvid)
307 {
308 if (core_voltage_pre_transition(data, reqvid, reqfid))
309 return 1;
310
311 if (core_frequency_transition(data, reqfid))
312 return 1;
313
314 if (core_voltage_post_transition(data, reqvid))
315 return 1;
316
317 if (query_current_values_with_pending_wait(data))
318 return 1;
319
320 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
321 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
322 "curr 0x%x 0x%x\n",
323 smp_processor_id(),
324 reqfid, reqvid, data->currfid, data->currvid);
325 return 1;
326 }
327
328 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
329 smp_processor_id(), data->currfid, data->currvid);
330
331 return 0;
332 }
333
334 /* Phase 1 - core voltage transition ... setup voltage */
335 static int core_voltage_pre_transition(struct powernow_k8_data *data,
336 u32 reqvid, u32 reqfid)
337 {
338 u32 rvosteps = data->rvo;
339 u32 savefid = data->currfid;
340 u32 maxvid, lo, rvomult = 1;
341
342 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
343 "reqvid 0x%x, rvo 0x%x\n",
344 smp_processor_id(),
345 data->currfid, data->currvid, reqvid, data->rvo);
346
347 if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
348 rvomult = 2;
349 rvosteps *= rvomult;
350 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
351 maxvid = 0x1f & (maxvid >> 16);
352 dprintk("ph1 maxvid=0x%x\n", maxvid);
353 if (reqvid < maxvid) /* lower numbers are higher voltages */
354 reqvid = maxvid;
355
356 while (data->currvid > reqvid) {
357 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
358 data->currvid, reqvid);
359 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
360 return 1;
361 }
362
363 while ((rvosteps > 0) &&
364 ((rvomult * data->rvo + data->currvid) > reqvid)) {
365 if (data->currvid == maxvid) {
366 rvosteps = 0;
367 } else {
368 dprintk("ph1: changing vid for rvo, req 0x%x\n",
369 data->currvid - 1);
370 if (decrease_vid_code_by_step(data, data->currvid-1, 1))
371 return 1;
372 rvosteps--;
373 }
374 }
375
376 if (query_current_values_with_pending_wait(data))
377 return 1;
378
379 if (savefid != data->currfid) {
380 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
381 data->currfid);
382 return 1;
383 }
384
385 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
386 data->currfid, data->currvid);
387
388 return 0;
389 }
390
391 /* Phase 2 - core frequency transition */
392 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
393 {
394 u32 vcoreqfid, vcocurrfid, vcofiddiff;
395 u32 fid_interval, savevid = data->currvid;
396
397 if (data->currfid == reqfid) {
398 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
399 data->currfid);
400 return 0;
401 }
402
403 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
404 "reqfid 0x%x\n",
405 smp_processor_id(),
406 data->currfid, data->currvid, reqfid);
407
408 vcoreqfid = convert_fid_to_vco_fid(reqfid);
409 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
410 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
411 : vcoreqfid - vcocurrfid;
412
413 if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
414 vcofiddiff = 0;
415
416 while (vcofiddiff > 2) {
417 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
418
419 if (reqfid > data->currfid) {
420 if (data->currfid > LO_FID_TABLE_TOP) {
421 if (write_new_fid(data,
422 data->currfid + fid_interval))
423 return 1;
424 } else {
425 if (write_new_fid
426 (data,
427 2 + convert_fid_to_vco_fid(data->currfid)))
428 return 1;
429 }
430 } else {
431 if (write_new_fid(data, data->currfid - fid_interval))
432 return 1;
433 }
434
435 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
436 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
437 : vcoreqfid - vcocurrfid;
438 }
439
440 if (write_new_fid(data, reqfid))
441 return 1;
442
443 if (query_current_values_with_pending_wait(data))
444 return 1;
445
446 if (data->currfid != reqfid) {
447 printk(KERN_ERR PFX
448 "ph2: mismatch, failed fid transition, "
449 "curr 0x%x, req 0x%x\n",
450 data->currfid, reqfid);
451 return 1;
452 }
453
454 if (savevid != data->currvid) {
455 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
456 savevid, data->currvid);
457 return 1;
458 }
459
460 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
461 data->currfid, data->currvid);
462
463 return 0;
464 }
465
466 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
467 static int core_voltage_post_transition(struct powernow_k8_data *data,
468 u32 reqvid)
469 {
470 u32 savefid = data->currfid;
471 u32 savereqvid = reqvid;
472
473 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
474 smp_processor_id(),
475 data->currfid, data->currvid);
476
477 if (reqvid != data->currvid) {
478 if (write_new_vid(data, reqvid))
479 return 1;
480
481 if (savefid != data->currfid) {
482 printk(KERN_ERR PFX
483 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
484 savefid, data->currfid);
485 return 1;
486 }
487
488 if (data->currvid != reqvid) {
489 printk(KERN_ERR PFX
490 "ph3: failed vid transition\n, "
491 "req 0x%x, curr 0x%x",
492 reqvid, data->currvid);
493 return 1;
494 }
495 }
496
497 if (query_current_values_with_pending_wait(data))
498 return 1;
499
500 if (savereqvid != data->currvid) {
501 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
502 return 1;
503 }
504
505 if (savefid != data->currfid) {
506 dprintk("ph3 failed, currfid changed 0x%x\n",
507 data->currfid);
508 return 1;
509 }
510
511 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
512 data->currfid, data->currvid);
513
514 return 0;
515 }
516
517 static void check_supported_cpu(void *_rc)
518 {
519 u32 eax, ebx, ecx, edx;
520 int *rc = _rc;
521
522 *rc = -ENODEV;
523
524 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
525 return;
526
527 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
528 if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
529 ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
530 return;
531
532 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
533 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
534 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
535 printk(KERN_INFO PFX
536 "Processor cpuid %x not supported\n", eax);
537 return;
538 }
539
540 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
541 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
542 printk(KERN_INFO PFX
543 "No frequency change capabilities detected\n");
544 return;
545 }
546
547 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
548 if ((edx & P_STATE_TRANSITION_CAPABLE)
549 != P_STATE_TRANSITION_CAPABLE) {
550 printk(KERN_INFO PFX
551 "Power state transitions not supported\n");
552 return;
553 }
554 } else { /* must be a HW Pstate capable processor */
555 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
556 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
557 cpu_family = CPU_HW_PSTATE;
558 else
559 return;
560 }
561
562 *rc = 0;
563 }
564
565 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
566 u8 maxvid)
567 {
568 unsigned int j;
569 u8 lastfid = 0xff;
570
571 for (j = 0; j < data->numps; j++) {
572 if (pst[j].vid > LEAST_VID) {
573 printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
574 j, pst[j].vid);
575 return -EINVAL;
576 }
577 if (pst[j].vid < data->rvo) {
578 /* vid + rvo >= 0 */
579 printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
580 " %d\n", j);
581 return -ENODEV;
582 }
583 if (pst[j].vid < maxvid + data->rvo) {
584 /* vid + rvo >= maxvid */
585 printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
586 " %d\n", j);
587 return -ENODEV;
588 }
589 if (pst[j].fid > MAX_FID) {
590 printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
591 " %d\n", j);
592 return -ENODEV;
593 }
594 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
595 /* Only first fid is allowed to be in "low" range */
596 printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
597 "0x%x\n", j, pst[j].fid);
598 return -EINVAL;
599 }
600 if (pst[j].fid < lastfid)
601 lastfid = pst[j].fid;
602 }
603 if (lastfid & 1) {
604 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
605 return -EINVAL;
606 }
607 if (lastfid > LO_FID_TABLE_TOP)
608 printk(KERN_INFO FW_BUG PFX
609 "first fid not from lo freq table\n");
610
611 return 0;
612 }
613
614 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
615 unsigned int entry)
616 {
617 powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
618 }
619
620 static void print_basics(struct powernow_k8_data *data)
621 {
622 int j;
623 for (j = 0; j < data->numps; j++) {
624 if (data->powernow_table[j].frequency !=
625 CPUFREQ_ENTRY_INVALID) {
626 if (cpu_family == CPU_HW_PSTATE) {
627 printk(KERN_INFO PFX
628 " %d : pstate %d (%d MHz)\n", j,
629 data->powernow_table[j].index,
630 data->powernow_table[j].frequency/1000);
631 } else {
632 printk(KERN_INFO PFX
633 " %d : fid 0x%x (%d MHz), vid 0x%x\n",
634 j,
635 data->powernow_table[j].index & 0xff,
636 data->powernow_table[j].frequency/1000,
637 data->powernow_table[j].index >> 8);
638 }
639 }
640 }
641 if (data->batps)
642 printk(KERN_INFO PFX "Only %d pstates on battery\n",
643 data->batps);
644 }
645
646 static u32 freq_from_fid_did(u32 fid, u32 did)
647 {
648 u32 mhz = 0;
649
650 if (boot_cpu_data.x86 == 0x10)
651 mhz = (100 * (fid + 0x10)) >> did;
652 else if (boot_cpu_data.x86 == 0x11)
653 mhz = (100 * (fid + 8)) >> did;
654 else
655 BUG();
656
657 return mhz * 1000;
658 }
659
660 static int fill_powernow_table(struct powernow_k8_data *data,
661 struct pst_s *pst, u8 maxvid)
662 {
663 struct cpufreq_frequency_table *powernow_table;
664 unsigned int j;
665
666 if (data->batps) {
667 /* use ACPI support to get full speed on mains power */
668 printk(KERN_WARNING PFX
669 "Only %d pstates usable (use ACPI driver for full "
670 "range\n", data->batps);
671 data->numps = data->batps;
672 }
673
674 for (j = 1; j < data->numps; j++) {
675 if (pst[j-1].fid >= pst[j].fid) {
676 printk(KERN_ERR PFX "PST out of sequence\n");
677 return -EINVAL;
678 }
679 }
680
681 if (data->numps < 2) {
682 printk(KERN_ERR PFX "no p states to transition\n");
683 return -ENODEV;
684 }
685
686 if (check_pst_table(data, pst, maxvid))
687 return -EINVAL;
688
689 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
690 * (data->numps + 1)), GFP_KERNEL);
691 if (!powernow_table) {
692 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
693 return -ENOMEM;
694 }
695
696 for (j = 0; j < data->numps; j++) {
697 int freq;
698 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
699 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
700 freq = find_khz_freq_from_fid(pst[j].fid);
701 powernow_table[j].frequency = freq;
702 }
703 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
704 powernow_table[data->numps].index = 0;
705
706 if (query_current_values_with_pending_wait(data)) {
707 kfree(powernow_table);
708 return -EIO;
709 }
710
711 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
712 data->powernow_table = powernow_table;
713 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
714 print_basics(data);
715
716 for (j = 0; j < data->numps; j++)
717 if ((pst[j].fid == data->currfid) &&
718 (pst[j].vid == data->currvid))
719 return 0;
720
721 dprintk("currfid/vid do not match PST, ignoring\n");
722 return 0;
723 }
724
725 /* Find and validate the PSB/PST table in BIOS. */
726 static int find_psb_table(struct powernow_k8_data *data)
727 {
728 struct psb_s *psb;
729 unsigned int i;
730 u32 mvs;
731 u8 maxvid;
732 u32 cpst = 0;
733 u32 thiscpuid;
734
735 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
736 /* Scan BIOS looking for the signature. */
737 /* It can not be at ffff0 - it is too big. */
738
739 psb = phys_to_virt(i);
740 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
741 continue;
742
743 dprintk("found PSB header at 0x%p\n", psb);
744
745 dprintk("table vers: 0x%x\n", psb->tableversion);
746 if (psb->tableversion != PSB_VERSION_1_4) {
747 printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
748 return -ENODEV;
749 }
750
751 dprintk("flags: 0x%x\n", psb->flags1);
752 if (psb->flags1) {
753 printk(KERN_ERR FW_BUG PFX "unknown flags\n");
754 return -ENODEV;
755 }
756
757 data->vstable = psb->vstable;
758 dprintk("voltage stabilization time: %d(*20us)\n",
759 data->vstable);
760
761 dprintk("flags2: 0x%x\n", psb->flags2);
762 data->rvo = psb->flags2 & 3;
763 data->irt = ((psb->flags2) >> 2) & 3;
764 mvs = ((psb->flags2) >> 4) & 3;
765 data->vidmvs = 1 << mvs;
766 data->batps = ((psb->flags2) >> 6) & 3;
767
768 dprintk("ramp voltage offset: %d\n", data->rvo);
769 dprintk("isochronous relief time: %d\n", data->irt);
770 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
771
772 dprintk("numpst: 0x%x\n", psb->num_tables);
773 cpst = psb->num_tables;
774 if ((psb->cpuid == 0x00000fc0) ||
775 (psb->cpuid == 0x00000fe0)) {
776 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
777 if ((thiscpuid == 0x00000fc0) ||
778 (thiscpuid == 0x00000fe0))
779 cpst = 1;
780 }
781 if (cpst != 1) {
782 printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
783 return -ENODEV;
784 }
785
786 data->plllock = psb->plllocktime;
787 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
788 dprintk("maxfid: 0x%x\n", psb->maxfid);
789 dprintk("maxvid: 0x%x\n", psb->maxvid);
790 maxvid = psb->maxvid;
791
792 data->numps = psb->numps;
793 dprintk("numpstates: 0x%x\n", data->numps);
794 return fill_powernow_table(data,
795 (struct pst_s *)(psb+1), maxvid);
796 }
797 /*
798 * If you see this message, complain to BIOS manufacturer. If
799 * he tells you "we do not support Linux" or some similar
800 * nonsense, remember that Windows 2000 uses the same legacy
801 * mechanism that the old Linux PSB driver uses. Tell them it
802 * is broken with Windows 2000.
803 *
804 * The reference to the AMD documentation is chapter 9 in the
805 * BIOS and Kernel Developer's Guide, which is available on
806 * www.amd.com
807 */
808 printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
809 return -ENODEV;
810 }
811
812 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
813 unsigned int index)
814 {
815 u64 control;
816
817 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
818 return;
819
820 control = data->acpi_data.states[index].control;
821 data->irt = (control >> IRT_SHIFT) & IRT_MASK;
822 data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
823 data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
824 data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
825 data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
826 data->vstable = (control >> VST_SHIFT) & VST_MASK;
827 }
828
829 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
830 {
831 struct cpufreq_frequency_table *powernow_table;
832 int ret_val = -ENODEV;
833 u64 control, status;
834
835 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
836 dprintk("register performance failed: bad ACPI data\n");
837 return -EIO;
838 }
839
840 /* verify the data contained in the ACPI structures */
841 if (data->acpi_data.state_count <= 1) {
842 dprintk("No ACPI P-States\n");
843 goto err_out;
844 }
845
846 control = data->acpi_data.control_register.space_id;
847 status = data->acpi_data.status_register.space_id;
848
849 if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
850 (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
851 dprintk("Invalid control/status registers (%x - %x)\n",
852 control, status);
853 goto err_out;
854 }
855
856 /* fill in data->powernow_table */
857 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
858 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
859 if (!powernow_table) {
860 dprintk("powernow_table memory alloc failure\n");
861 goto err_out;
862 }
863
864 /* fill in data */
865 data->numps = data->acpi_data.state_count;
866 powernow_k8_acpi_pst_values(data, 0);
867
868 if (cpu_family == CPU_HW_PSTATE)
869 ret_val = fill_powernow_table_pstate(data, powernow_table);
870 else
871 ret_val = fill_powernow_table_fidvid(data, powernow_table);
872 if (ret_val)
873 goto err_out_mem;
874
875 powernow_table[data->acpi_data.state_count].frequency =
876 CPUFREQ_TABLE_END;
877 powernow_table[data->acpi_data.state_count].index = 0;
878 data->powernow_table = powernow_table;
879
880 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
881 print_basics(data);
882
883 /* notify BIOS that we exist */
884 acpi_processor_notify_smm(THIS_MODULE);
885
886 if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
887 printk(KERN_ERR PFX
888 "unable to alloc powernow_k8_data cpumask\n");
889 ret_val = -ENOMEM;
890 goto err_out_mem;
891 }
892
893 return 0;
894
895 err_out_mem:
896 kfree(powernow_table);
897
898 err_out:
899 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
900
901 /* data->acpi_data.state_count informs us at ->exit()
902 * whether ACPI was used */
903 data->acpi_data.state_count = 0;
904
905 return ret_val;
906 }
907
908 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
909 struct cpufreq_frequency_table *powernow_table)
910 {
911 int i;
912 u32 hi = 0, lo = 0;
913 rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
914 data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
915
916 for (i = 0; i < data->acpi_data.state_count; i++) {
917 u32 index;
918
919 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
920 if (index > data->max_hw_pstate) {
921 printk(KERN_ERR PFX "invalid pstate %d - "
922 "bad value %d.\n", i, index);
923 printk(KERN_ERR PFX "Please report to BIOS "
924 "manufacturer\n");
925 invalidate_entry(powernow_table, i);
926 continue;
927 }
928 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
929 if (!(hi & HW_PSTATE_VALID_MASK)) {
930 dprintk("invalid pstate %d, ignoring\n", index);
931 invalidate_entry(powernow_table, i);
932 continue;
933 }
934
935 powernow_table[i].index = index;
936
937 /* Frequency may be rounded for these */
938 if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
939 || boot_cpu_data.x86 == 0x11) {
940 powernow_table[i].frequency =
941 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
942 } else
943 powernow_table[i].frequency =
944 data->acpi_data.states[i].core_frequency * 1000;
945 }
946 return 0;
947 }
948
949 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
950 struct cpufreq_frequency_table *powernow_table)
951 {
952 int i;
953
954 for (i = 0; i < data->acpi_data.state_count; i++) {
955 u32 fid;
956 u32 vid;
957 u32 freq, index;
958 u64 status, control;
959
960 if (data->exttype) {
961 status = data->acpi_data.states[i].status;
962 fid = status & EXT_FID_MASK;
963 vid = (status >> VID_SHIFT) & EXT_VID_MASK;
964 } else {
965 control = data->acpi_data.states[i].control;
966 fid = control & FID_MASK;
967 vid = (control >> VID_SHIFT) & VID_MASK;
968 }
969
970 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
971
972 index = fid | (vid<<8);
973 powernow_table[i].index = index;
974
975 freq = find_khz_freq_from_fid(fid);
976 powernow_table[i].frequency = freq;
977
978 /* verify frequency is OK */
979 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
980 dprintk("invalid freq %u kHz, ignoring\n", freq);
981 invalidate_entry(powernow_table, i);
982 continue;
983 }
984
985 /* verify voltage is OK -
986 * BIOSs are using "off" to indicate invalid */
987 if (vid == VID_OFF) {
988 dprintk("invalid vid %u, ignoring\n", vid);
989 invalidate_entry(powernow_table, i);
990 continue;
991 }
992
993 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
994 printk(KERN_INFO PFX "invalid freq entries "
995 "%u kHz vs. %u kHz\n", freq,
996 (unsigned int)
997 (data->acpi_data.states[i].core_frequency
998 * 1000));
999 invalidate_entry(powernow_table, i);
1000 continue;
1001 }
1002 }
1003 return 0;
1004 }
1005
1006 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1007 {
1008 if (data->acpi_data.state_count)
1009 acpi_processor_unregister_performance(&data->acpi_data,
1010 data->cpu);
1011 free_cpumask_var(data->acpi_data.shared_cpu_map);
1012 }
1013
1014 static int get_transition_latency(struct powernow_k8_data *data)
1015 {
1016 int max_latency = 0;
1017 int i;
1018 for (i = 0; i < data->acpi_data.state_count; i++) {
1019 int cur_latency = data->acpi_data.states[i].transition_latency
1020 + data->acpi_data.states[i].bus_master_latency;
1021 if (cur_latency > max_latency)
1022 max_latency = cur_latency;
1023 }
1024 if (max_latency == 0) {
1025 /*
1026 * Fam 11h always returns 0 as transition latency.
1027 * This is intended and means "very fast". While cpufreq core
1028 * and governors currently can handle that gracefully, better
1029 * set it to 1 to avoid problems in the future.
1030 * For all others it's a BIOS bug.
1031 */
1032 if (boot_cpu_data.x86 != 0x11)
1033 printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1034 "latency\n");
1035 max_latency = 1;
1036 }
1037 /* value in usecs, needs to be in nanoseconds */
1038 return 1000 * max_latency;
1039 }
1040
1041 /* Take a frequency, and issue the fid/vid transition command */
1042 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1043 unsigned int index)
1044 {
1045 u32 fid = 0;
1046 u32 vid = 0;
1047 int res, i;
1048 struct cpufreq_freqs freqs;
1049
1050 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1051
1052 /* fid/vid correctness check for k8 */
1053 /* fid are the lower 8 bits of the index we stored into
1054 * the cpufreq frequency table in find_psb_table, vid
1055 * are the upper 8 bits.
1056 */
1057 fid = data->powernow_table[index].index & 0xFF;
1058 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1059
1060 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1061
1062 if (query_current_values_with_pending_wait(data))
1063 return 1;
1064
1065 if ((data->currvid == vid) && (data->currfid == fid)) {
1066 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
1067 fid, vid);
1068 return 0;
1069 }
1070
1071 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1072 smp_processor_id(), fid, vid);
1073 freqs.old = find_khz_freq_from_fid(data->currfid);
1074 freqs.new = find_khz_freq_from_fid(fid);
1075
1076 for_each_cpu(i, data->available_cores) {
1077 freqs.cpu = i;
1078 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1079 }
1080
1081 res = transition_fid_vid(data, fid, vid);
1082 freqs.new = find_khz_freq_from_fid(data->currfid);
1083
1084 for_each_cpu(i, data->available_cores) {
1085 freqs.cpu = i;
1086 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1087 }
1088 return res;
1089 }
1090
1091 /* Take a frequency, and issue the hardware pstate transition command */
1092 static int transition_frequency_pstate(struct powernow_k8_data *data,
1093 unsigned int index)
1094 {
1095 u32 pstate = 0;
1096 int res, i;
1097 struct cpufreq_freqs freqs;
1098
1099 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1100
1101 /* get MSR index for hardware pstate transition */
1102 pstate = index & HW_PSTATE_MASK;
1103 if (pstate > data->max_hw_pstate)
1104 return 0;
1105 freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1106 data->currpstate);
1107 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1108
1109 for_each_cpu(i, data->available_cores) {
1110 freqs.cpu = i;
1111 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1112 }
1113
1114 res = transition_pstate(data, pstate);
1115 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1116
1117 for_each_cpu(i, data->available_cores) {
1118 freqs.cpu = i;
1119 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1120 }
1121 return res;
1122 }
1123
1124 /* Driver entry point to switch to the target frequency */
1125 static int powernowk8_target(struct cpufreq_policy *pol,
1126 unsigned targfreq, unsigned relation)
1127 {
1128 cpumask_var_t oldmask;
1129 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1130 u32 checkfid;
1131 u32 checkvid;
1132 unsigned int newstate;
1133 int ret = -EIO;
1134
1135 if (!data)
1136 return -EINVAL;
1137
1138 checkfid = data->currfid;
1139 checkvid = data->currvid;
1140
1141 /* only run on specific CPU from here on. */
1142 /* This is poor form: use a workqueue or smp_call_function_single */
1143 if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
1144 return -ENOMEM;
1145
1146 cpumask_copy(oldmask, tsk_cpus_allowed(current));
1147 set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
1148
1149 if (smp_processor_id() != pol->cpu) {
1150 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1151 goto err_out;
1152 }
1153
1154 if (pending_bit_stuck()) {
1155 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1156 goto err_out;
1157 }
1158
1159 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1160 pol->cpu, targfreq, pol->min, pol->max, relation);
1161
1162 if (query_current_values_with_pending_wait(data))
1163 goto err_out;
1164
1165 if (cpu_family != CPU_HW_PSTATE) {
1166 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1167 data->currfid, data->currvid);
1168
1169 if ((checkvid != data->currvid) ||
1170 (checkfid != data->currfid)) {
1171 printk(KERN_INFO PFX
1172 "error - out of sync, fix 0x%x 0x%x, "
1173 "vid 0x%x 0x%x\n",
1174 checkfid, data->currfid,
1175 checkvid, data->currvid);
1176 }
1177 }
1178
1179 if (cpufreq_frequency_table_target(pol, data->powernow_table,
1180 targfreq, relation, &newstate))
1181 goto err_out;
1182
1183 mutex_lock(&fidvid_mutex);
1184
1185 powernow_k8_acpi_pst_values(data, newstate);
1186
1187 if (cpu_family == CPU_HW_PSTATE)
1188 ret = transition_frequency_pstate(data, newstate);
1189 else
1190 ret = transition_frequency_fidvid(data, newstate);
1191 if (ret) {
1192 printk(KERN_ERR PFX "transition frequency failed\n");
1193 ret = 1;
1194 mutex_unlock(&fidvid_mutex);
1195 goto err_out;
1196 }
1197 mutex_unlock(&fidvid_mutex);
1198
1199 if (cpu_family == CPU_HW_PSTATE)
1200 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1201 newstate);
1202 else
1203 pol->cur = find_khz_freq_from_fid(data->currfid);
1204 ret = 0;
1205
1206 err_out:
1207 set_cpus_allowed_ptr(current, oldmask);
1208 free_cpumask_var(oldmask);
1209 return ret;
1210 }
1211
1212 /* Driver entry point to verify the policy and range of frequencies */
1213 static int powernowk8_verify(struct cpufreq_policy *pol)
1214 {
1215 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1216
1217 if (!data)
1218 return -EINVAL;
1219
1220 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1221 }
1222
1223 struct init_on_cpu {
1224 struct powernow_k8_data *data;
1225 int rc;
1226 };
1227
1228 static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1229 {
1230 struct init_on_cpu *init_on_cpu = _init_on_cpu;
1231
1232 if (pending_bit_stuck()) {
1233 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1234 init_on_cpu->rc = -ENODEV;
1235 return;
1236 }
1237
1238 if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1239 init_on_cpu->rc = -ENODEV;
1240 return;
1241 }
1242
1243 if (cpu_family == CPU_OPTERON)
1244 fidvid_msr_init();
1245
1246 init_on_cpu->rc = 0;
1247 }
1248
1249 /* per CPU init entry point to the driver */
1250 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1251 {
1252 static const char ACPI_PSS_BIOS_BUG_MSG[] =
1253 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1254 FW_BUG PFX "Try again with latest BIOS.\n";
1255 struct powernow_k8_data *data;
1256 struct init_on_cpu init_on_cpu;
1257 int rc;
1258 struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1259
1260 if (!cpu_online(pol->cpu))
1261 return -ENODEV;
1262
1263 smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1264 if (rc)
1265 return -ENODEV;
1266
1267 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1268 if (!data) {
1269 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1270 return -ENOMEM;
1271 }
1272
1273 data->cpu = pol->cpu;
1274 data->currpstate = HW_PSTATE_INVALID;
1275
1276 if (powernow_k8_cpu_init_acpi(data)) {
1277 /*
1278 * Use the PSB BIOS structure. This is only availabe on
1279 * an UP version, and is deprecated by AMD.
1280 */
1281 if (num_online_cpus() != 1) {
1282 printk_once(ACPI_PSS_BIOS_BUG_MSG);
1283 goto err_out;
1284 }
1285 if (pol->cpu != 0) {
1286 printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1287 "CPU other than CPU0. Complain to your BIOS "
1288 "vendor.\n");
1289 goto err_out;
1290 }
1291 rc = find_psb_table(data);
1292 if (rc)
1293 goto err_out;
1294
1295 /* Take a crude guess here.
1296 * That guess was in microseconds, so multiply with 1000 */
1297 pol->cpuinfo.transition_latency = (
1298 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1299 ((1 << data->irt) * 30)) * 1000;
1300 } else /* ACPI _PSS objects available */
1301 pol->cpuinfo.transition_latency = get_transition_latency(data);
1302
1303 /* only run on specific CPU from here on */
1304 init_on_cpu.data = data;
1305 smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1306 &init_on_cpu, 1);
1307 rc = init_on_cpu.rc;
1308 if (rc != 0)
1309 goto err_out_exit_acpi;
1310
1311 if (cpu_family == CPU_HW_PSTATE)
1312 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1313 else
1314 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1315 data->available_cores = pol->cpus;
1316
1317 if (cpu_family == CPU_HW_PSTATE)
1318 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1319 data->currpstate);
1320 else
1321 pol->cur = find_khz_freq_from_fid(data->currfid);
1322 dprintk("policy current frequency %d kHz\n", pol->cur);
1323
1324 /* min/max the cpu is capable of */
1325 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1326 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1327 powernow_k8_cpu_exit_acpi(data);
1328 kfree(data->powernow_table);
1329 kfree(data);
1330 return -EINVAL;
1331 }
1332
1333 /* Check for APERF/MPERF support in hardware */
1334 if (cpu_has(c, X86_FEATURE_APERFMPERF))
1335 cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1336
1337 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1338
1339 if (cpu_family == CPU_HW_PSTATE)
1340 dprintk("cpu_init done, current pstate 0x%x\n",
1341 data->currpstate);
1342 else
1343 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1344 data->currfid, data->currvid);
1345
1346 per_cpu(powernow_data, pol->cpu) = data;
1347
1348 return 0;
1349
1350 err_out_exit_acpi:
1351 powernow_k8_cpu_exit_acpi(data);
1352
1353 err_out:
1354 kfree(data);
1355 return -ENODEV;
1356 }
1357
1358 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1359 {
1360 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1361
1362 if (!data)
1363 return -EINVAL;
1364
1365 powernow_k8_cpu_exit_acpi(data);
1366
1367 cpufreq_frequency_table_put_attr(pol->cpu);
1368
1369 kfree(data->powernow_table);
1370 kfree(data);
1371 per_cpu(powernow_data, pol->cpu) = NULL;
1372
1373 return 0;
1374 }
1375
1376 static void query_values_on_cpu(void *_err)
1377 {
1378 int *err = _err;
1379 struct powernow_k8_data *data = __get_cpu_var(powernow_data);
1380
1381 *err = query_current_values_with_pending_wait(data);
1382 }
1383
1384 static unsigned int powernowk8_get(unsigned int cpu)
1385 {
1386 struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1387 unsigned int khz = 0;
1388 int err;
1389
1390 if (!data)
1391 return 0;
1392
1393 smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1394 if (err)
1395 goto out;
1396
1397 if (cpu_family == CPU_HW_PSTATE)
1398 khz = find_khz_freq_from_pstate(data->powernow_table,
1399 data->currpstate);
1400 else
1401 khz = find_khz_freq_from_fid(data->currfid);
1402
1403
1404 out:
1405 return khz;
1406 }
1407
1408 static void _cpb_toggle_msrs(bool t)
1409 {
1410 int cpu;
1411
1412 get_online_cpus();
1413
1414 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1415
1416 for_each_cpu(cpu, cpu_online_mask) {
1417 struct msr *reg = per_cpu_ptr(msrs, cpu);
1418 if (t)
1419 reg->l &= ~BIT(25);
1420 else
1421 reg->l |= BIT(25);
1422 }
1423 wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1424
1425 put_online_cpus();
1426 }
1427
1428 /*
1429 * Switch on/off core performance boosting.
1430 *
1431 * 0=disable
1432 * 1=enable.
1433 */
1434 static void cpb_toggle(bool t)
1435 {
1436 if (!cpb_capable)
1437 return;
1438
1439 if (t && !cpb_enabled) {
1440 cpb_enabled = true;
1441 _cpb_toggle_msrs(t);
1442 printk(KERN_INFO PFX "Core Boosting enabled.\n");
1443 } else if (!t && cpb_enabled) {
1444 cpb_enabled = false;
1445 _cpb_toggle_msrs(t);
1446 printk(KERN_INFO PFX "Core Boosting disabled.\n");
1447 }
1448 }
1449
1450 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1451 size_t count)
1452 {
1453 int ret = -EINVAL;
1454 unsigned long val = 0;
1455
1456 ret = strict_strtoul(buf, 10, &val);
1457 if (!ret && (val == 0 || val == 1) && cpb_capable)
1458 cpb_toggle(val);
1459 else
1460 return -EINVAL;
1461
1462 return count;
1463 }
1464
1465 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1466 {
1467 return sprintf(buf, "%u\n", cpb_enabled);
1468 }
1469
1470 #define define_one_rw(_name) \
1471 static struct freq_attr _name = \
1472 __ATTR(_name, 0644, show_##_name, store_##_name)
1473
1474 define_one_rw(cpb);
1475
1476 static struct freq_attr *powernow_k8_attr[] = {
1477 &cpufreq_freq_attr_scaling_available_freqs,
1478 &cpb,
1479 NULL,
1480 };
1481
1482 static struct cpufreq_driver cpufreq_amd64_driver = {
1483 .verify = powernowk8_verify,
1484 .target = powernowk8_target,
1485 .bios_limit = acpi_processor_get_bios_limit,
1486 .init = powernowk8_cpu_init,
1487 .exit = __devexit_p(powernowk8_cpu_exit),
1488 .get = powernowk8_get,
1489 .name = "powernow-k8",
1490 .owner = THIS_MODULE,
1491 .attr = powernow_k8_attr,
1492 };
1493
1494 /*
1495 * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1496 * cannot block the remaining ones from boosting. On the CPU_UP path we
1497 * simply keep the boost-disable flag in sync with the current global
1498 * state.
1499 */
1500 static int cpb_notify(struct notifier_block *nb, unsigned long action,
1501 void *hcpu)
1502 {
1503 unsigned cpu = (long)hcpu;
1504 u32 lo, hi;
1505
1506 switch (action) {
1507 case CPU_UP_PREPARE:
1508 case CPU_UP_PREPARE_FROZEN:
1509
1510 if (!cpb_enabled) {
1511 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1512 lo |= BIT(25);
1513 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1514 }
1515 break;
1516
1517 case CPU_DOWN_PREPARE:
1518 case CPU_DOWN_PREPARE_FROZEN:
1519 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1520 lo &= ~BIT(25);
1521 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1522 break;
1523
1524 default:
1525 break;
1526 }
1527
1528 return NOTIFY_OK;
1529 }
1530
1531 static struct notifier_block cpb_nb = {
1532 .notifier_call = cpb_notify,
1533 };
1534
1535 /* driver entry point for init */
1536 static int __cpuinit powernowk8_init(void)
1537 {
1538 unsigned int i, supported_cpus = 0, cpu;
1539
1540 for_each_online_cpu(i) {
1541 int rc;
1542 smp_call_function_single(i, check_supported_cpu, &rc, 1);
1543 if (rc == 0)
1544 supported_cpus++;
1545 }
1546
1547 if (supported_cpus != num_online_cpus())
1548 return -ENODEV;
1549
1550 printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1551 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1552
1553 if (boot_cpu_has(X86_FEATURE_CPB)) {
1554
1555 cpb_capable = true;
1556
1557 register_cpu_notifier(&cpb_nb);
1558
1559 msrs = msrs_alloc();
1560 if (!msrs) {
1561 printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1562 return -ENOMEM;
1563 }
1564
1565 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1566
1567 for_each_cpu(cpu, cpu_online_mask) {
1568 struct msr *reg = per_cpu_ptr(msrs, cpu);
1569 cpb_enabled |= !(!!(reg->l & BIT(25)));
1570 }
1571
1572 printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1573 (cpb_enabled ? "on" : "off"));
1574 }
1575
1576 return cpufreq_register_driver(&cpufreq_amd64_driver);
1577 }
1578
1579 /* driver entry point for term */
1580 static void __exit powernowk8_exit(void)
1581 {
1582 dprintk("exit\n");
1583
1584 if (boot_cpu_has(X86_FEATURE_CPB)) {
1585 msrs_free(msrs);
1586 msrs = NULL;
1587
1588 unregister_cpu_notifier(&cpb_nb);
1589 }
1590
1591 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1592 }
1593
1594 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1595 "Mark Langsdorf <mark.langsdorf@amd.com>");
1596 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1597 MODULE_LICENSE("GPL");
1598
1599 late_initcall(powernowk8_init);
1600 module_exit(powernowk8_exit);