x86: remove ifdef CONFIG_SWIOTLB in pci-dma.c
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / arch / x86 / kernel / cpu / common_64.c
1 #include <linux/init.h>
2 #include <linux/kernel.h>
3 #include <linux/sched.h>
4 #include <linux/string.h>
5 #include <linux/bootmem.h>
6 #include <linux/bitops.h>
7 #include <linux/module.h>
8 #include <linux/kgdb.h>
9 #include <linux/topology.h>
10 #include <linux/string.h>
11 #include <linux/delay.h>
12 #include <linux/smp.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <asm/processor.h>
16 #include <asm/i387.h>
17 #include <asm/msr.h>
18 #include <asm/io.h>
19 #include <asm/mmu_context.h>
20 #include <asm/mtrr.h>
21 #include <asm/mce.h>
22 #include <asm/pat.h>
23 #include <asm/numa.h>
24 #ifdef CONFIG_X86_LOCAL_APIC
25 #include <asm/mpspec.h>
26 #include <asm/apic.h>
27 #include <mach_apic.h>
28 #endif
29 #include <asm/pda.h>
30 #include <asm/pgtable.h>
31 #include <asm/processor.h>
32 #include <asm/desc.h>
33 #include <asm/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/sections.h>
36 #include <asm/setup.h>
37 #include <asm/genapic.h>
38
39 #include "cpu.h"
40
41 /* We need valid kernel segments for data and code in long mode too
42 * IRET will check the segment types kkeil 2000/10/28
43 * Also sysret mandates a special GDT layout
44 */
45 /* The TLS descriptors are currently at a different place compared to i386.
46 Hopefully nobody expects them at a fixed place (Wine?) */
47 DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
48 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
49 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
50 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
51 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
52 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
53 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
54 } };
55 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
56
57 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
58
59 /* Current gdt points %fs at the "master" per-cpu area: after this,
60 * it's on the real one. */
61 void switch_to_new_gdt(void)
62 {
63 struct desc_ptr gdt_descr;
64
65 gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
66 gdt_descr.size = GDT_SIZE - 1;
67 load_gdt(&gdt_descr);
68 }
69
70 struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
71
72 static void __cpuinit default_init(struct cpuinfo_x86 *c)
73 {
74 display_cacheinfo(c);
75 }
76
77 static struct cpu_dev __cpuinitdata default_cpu = {
78 .c_init = default_init,
79 .c_vendor = "Unknown",
80 };
81 static struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
82
83 int __cpuinit get_model_name(struct cpuinfo_x86 *c)
84 {
85 unsigned int *v;
86
87 if (c->extended_cpuid_level < 0x80000004)
88 return 0;
89
90 v = (unsigned int *) c->x86_model_id;
91 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
92 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
93 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
94 c->x86_model_id[48] = 0;
95 return 1;
96 }
97
98
99 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
100 {
101 unsigned int n, dummy, eax, ebx, ecx, edx;
102
103 n = c->extended_cpuid_level;
104
105 if (n >= 0x80000005) {
106 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
107 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
108 "D cache %dK (%d bytes/line)\n",
109 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
110 c->x86_cache_size = (ecx>>24) + (edx>>24);
111 /* On K8 L1 TLB is inclusive, so don't count it */
112 c->x86_tlbsize = 0;
113 }
114
115 if (n >= 0x80000006) {
116 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
117 ecx = cpuid_ecx(0x80000006);
118 c->x86_cache_size = ecx >> 16;
119 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
120
121 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
122 c->x86_cache_size, ecx & 0xFF);
123 }
124 if (n >= 0x80000008) {
125 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
126 c->x86_virt_bits = (eax >> 8) & 0xff;
127 c->x86_phys_bits = eax & 0xff;
128 }
129 }
130
131 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
132 {
133 #ifdef CONFIG_SMP
134 u32 eax, ebx, ecx, edx;
135 int index_msb, core_bits;
136
137 cpuid(1, &eax, &ebx, &ecx, &edx);
138
139
140 if (!cpu_has(c, X86_FEATURE_HT))
141 return;
142 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
143 goto out;
144
145 smp_num_siblings = (ebx & 0xff0000) >> 16;
146
147 if (smp_num_siblings == 1) {
148 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
149 } else if (smp_num_siblings > 1) {
150
151 if (smp_num_siblings > NR_CPUS) {
152 printk(KERN_WARNING "CPU: Unsupported number of "
153 "siblings %d", smp_num_siblings);
154 smp_num_siblings = 1;
155 return;
156 }
157
158 index_msb = get_count_order(smp_num_siblings);
159 c->phys_proc_id = phys_pkg_id(index_msb);
160
161 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
162
163 index_msb = get_count_order(smp_num_siblings);
164
165 core_bits = get_count_order(c->x86_max_cores);
166
167 c->cpu_core_id = phys_pkg_id(index_msb) &
168 ((1 << core_bits) - 1);
169 }
170 out:
171 if ((c->x86_max_cores * smp_num_siblings) > 1) {
172 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
173 c->phys_proc_id);
174 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
175 c->cpu_core_id);
176 }
177
178 #endif
179 }
180
181 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
182 {
183 char *v = c->x86_vendor_id;
184 int i;
185 static int printed;
186
187 for (i = 0; i < X86_VENDOR_NUM; i++) {
188 if (cpu_devs[i]) {
189 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
190 (cpu_devs[i]->c_ident[1] &&
191 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
192 c->x86_vendor = i;
193 this_cpu = cpu_devs[i];
194 return;
195 }
196 }
197 }
198 if (!printed) {
199 printed++;
200 printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
201 printk(KERN_ERR "CPU: Your system may be unstable.\n");
202 }
203 c->x86_vendor = X86_VENDOR_UNKNOWN;
204 }
205
206 static void __init early_cpu_support_print(void)
207 {
208 int i,j;
209 struct cpu_dev *cpu_devx;
210
211 printk("KERNEL supported cpus:\n");
212 for (i = 0; i < X86_VENDOR_NUM; i++) {
213 cpu_devx = cpu_devs[i];
214 if (!cpu_devx)
215 continue;
216 for (j = 0; j < 2; j++) {
217 if (!cpu_devx->c_ident[j])
218 continue;
219 printk(" %s %s\n", cpu_devx->c_vendor,
220 cpu_devx->c_ident[j]);
221 }
222 }
223 }
224
225 static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
226
227 void __init early_cpu_init(void)
228 {
229 struct cpu_vendor_dev *cvdev;
230
231 for (cvdev = __x86cpuvendor_start ;
232 cvdev < __x86cpuvendor_end ;
233 cvdev++)
234 cpu_devs[cvdev->vendor] = cvdev->cpu_dev;
235 early_cpu_support_print();
236 early_identify_cpu(&boot_cpu_data);
237 }
238
239 /* Do some early cpuid on the boot CPU to get some parameter that are
240 needed before check_bugs. Everything advanced is in identify_cpu
241 below. */
242 static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
243 {
244 u32 tfms, xlvl;
245
246 c->loops_per_jiffy = loops_per_jiffy;
247 c->x86_cache_size = -1;
248 c->x86_vendor = X86_VENDOR_UNKNOWN;
249 c->x86_model = c->x86_mask = 0; /* So far unknown... */
250 c->x86_vendor_id[0] = '\0'; /* Unset */
251 c->x86_model_id[0] = '\0'; /* Unset */
252 c->x86_clflush_size = 64;
253 c->x86_cache_alignment = c->x86_clflush_size;
254 c->x86_max_cores = 1;
255 c->x86_coreid_bits = 0;
256 c->extended_cpuid_level = 0;
257 memset(&c->x86_capability, 0, sizeof c->x86_capability);
258
259 /* Get vendor name */
260 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
261 (unsigned int *)&c->x86_vendor_id[0],
262 (unsigned int *)&c->x86_vendor_id[8],
263 (unsigned int *)&c->x86_vendor_id[4]);
264
265 get_cpu_vendor(c);
266
267 /* Initialize the standard set of capabilities */
268 /* Note that the vendor-specific code below might override */
269
270 /* Intel-defined flags: level 0x00000001 */
271 if (c->cpuid_level >= 0x00000001) {
272 __u32 misc;
273 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
274 &c->x86_capability[0]);
275 c->x86 = (tfms >> 8) & 0xf;
276 c->x86_model = (tfms >> 4) & 0xf;
277 c->x86_mask = tfms & 0xf;
278 if (c->x86 == 0xf)
279 c->x86 += (tfms >> 20) & 0xff;
280 if (c->x86 >= 0x6)
281 c->x86_model += ((tfms >> 16) & 0xF) << 4;
282 if (test_cpu_cap(c, X86_FEATURE_CLFLSH))
283 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
284 } else {
285 /* Have CPUID level 0 only - unheard of */
286 c->x86 = 4;
287 }
288
289 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xff;
290 #ifdef CONFIG_SMP
291 c->phys_proc_id = c->initial_apicid;
292 #endif
293 /* AMD-defined flags: level 0x80000001 */
294 xlvl = cpuid_eax(0x80000000);
295 c->extended_cpuid_level = xlvl;
296 if ((xlvl & 0xffff0000) == 0x80000000) {
297 if (xlvl >= 0x80000001) {
298 c->x86_capability[1] = cpuid_edx(0x80000001);
299 c->x86_capability[6] = cpuid_ecx(0x80000001);
300 }
301 if (xlvl >= 0x80000004)
302 get_model_name(c); /* Default name */
303 }
304
305 /* Transmeta-defined flags: level 0x80860001 */
306 xlvl = cpuid_eax(0x80860000);
307 if ((xlvl & 0xffff0000) == 0x80860000) {
308 /* Don't set x86_cpuid_level here for now to not confuse. */
309 if (xlvl >= 0x80860001)
310 c->x86_capability[2] = cpuid_edx(0x80860001);
311 }
312
313 c->extended_cpuid_level = cpuid_eax(0x80000000);
314 if (c->extended_cpuid_level >= 0x80000007)
315 c->x86_power = cpuid_edx(0x80000007);
316
317 if (c->x86_vendor != X86_VENDOR_UNKNOWN &&
318 cpu_devs[c->x86_vendor]->c_early_init)
319 cpu_devs[c->x86_vendor]->c_early_init(c);
320
321 validate_pat_support(c);
322
323 /* early_param could clear that, but recall get it set again */
324 if (disable_apic)
325 clear_cpu_cap(c, X86_FEATURE_APIC);
326 }
327
328 /*
329 * This does the hard work of actually picking apart the CPU stuff...
330 */
331 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
332 {
333 int i;
334
335 early_identify_cpu(c);
336
337 init_scattered_cpuid_features(c);
338
339 c->apicid = phys_pkg_id(0);
340
341 /*
342 * Vendor-specific initialization. In this section we
343 * canonicalize the feature flags, meaning if there are
344 * features a certain CPU supports which CPUID doesn't
345 * tell us, CPUID claiming incorrect flags, or other bugs,
346 * we handle them here.
347 *
348 * At the end of this section, c->x86_capability better
349 * indicate the features this CPU genuinely supports!
350 */
351 if (this_cpu->c_init)
352 this_cpu->c_init(c);
353
354 detect_ht(c);
355
356 /*
357 * On SMP, boot_cpu_data holds the common feature set between
358 * all CPUs; so make sure that we indicate which features are
359 * common between the CPUs. The first time this routine gets
360 * executed, c == &boot_cpu_data.
361 */
362 if (c != &boot_cpu_data) {
363 /* AND the already accumulated flags with these */
364 for (i = 0; i < NCAPINTS; i++)
365 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
366 }
367
368 /* Clear all flags overriden by options */
369 for (i = 0; i < NCAPINTS; i++)
370 c->x86_capability[i] &= ~cleared_cpu_caps[i];
371
372 #ifdef CONFIG_X86_MCE
373 mcheck_init(c);
374 #endif
375 select_idle_routine(c);
376
377 #ifdef CONFIG_NUMA
378 numa_add_cpu(smp_processor_id());
379 #endif
380
381 }
382
383 void __cpuinit identify_boot_cpu(void)
384 {
385 identify_cpu(&boot_cpu_data);
386 }
387
388 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
389 {
390 BUG_ON(c == &boot_cpu_data);
391 identify_cpu(c);
392 mtrr_ap_init();
393 }
394
395 static __init int setup_noclflush(char *arg)
396 {
397 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
398 return 1;
399 }
400 __setup("noclflush", setup_noclflush);
401
402 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
403 {
404 if (c->x86_model_id[0])
405 printk(KERN_CONT "%s", c->x86_model_id);
406
407 if (c->x86_mask || c->cpuid_level >= 0)
408 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
409 else
410 printk(KERN_CONT "\n");
411 }
412
413 static __init int setup_disablecpuid(char *arg)
414 {
415 int bit;
416 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
417 setup_clear_cpu_cap(bit);
418 else
419 return 0;
420 return 1;
421 }
422 __setup("clearcpuid=", setup_disablecpuid);
423
424 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
425
426 struct x8664_pda **_cpu_pda __read_mostly;
427 EXPORT_SYMBOL(_cpu_pda);
428
429 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
430
431 char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
432
433 unsigned long __supported_pte_mask __read_mostly = ~0UL;
434 EXPORT_SYMBOL_GPL(__supported_pte_mask);
435
436 static int do_not_nx __cpuinitdata;
437
438 /* noexec=on|off
439 Control non executable mappings for 64bit processes.
440
441 on Enable(default)
442 off Disable
443 */
444 static int __init nonx_setup(char *str)
445 {
446 if (!str)
447 return -EINVAL;
448 if (!strncmp(str, "on", 2)) {
449 __supported_pte_mask |= _PAGE_NX;
450 do_not_nx = 0;
451 } else if (!strncmp(str, "off", 3)) {
452 do_not_nx = 1;
453 __supported_pte_mask &= ~_PAGE_NX;
454 }
455 return 0;
456 }
457 early_param("noexec", nonx_setup);
458
459 int force_personality32;
460
461 /* noexec32=on|off
462 Control non executable heap for 32bit processes.
463 To control the stack too use noexec=off
464
465 on PROT_READ does not imply PROT_EXEC for 32bit processes (default)
466 off PROT_READ implies PROT_EXEC
467 */
468 static int __init nonx32_setup(char *str)
469 {
470 if (!strcmp(str, "on"))
471 force_personality32 &= ~READ_IMPLIES_EXEC;
472 else if (!strcmp(str, "off"))
473 force_personality32 |= READ_IMPLIES_EXEC;
474 return 1;
475 }
476 __setup("noexec32=", nonx32_setup);
477
478 void pda_init(int cpu)
479 {
480 struct x8664_pda *pda = cpu_pda(cpu);
481
482 /* Setup up data that may be needed in __get_free_pages early */
483 loadsegment(fs, 0);
484 loadsegment(gs, 0);
485 /* Memory clobbers used to order PDA accessed */
486 mb();
487 wrmsrl(MSR_GS_BASE, pda);
488 mb();
489
490 pda->cpunumber = cpu;
491 pda->irqcount = -1;
492 pda->kernelstack = (unsigned long)stack_thread_info() -
493 PDA_STACKOFFSET + THREAD_SIZE;
494 pda->active_mm = &init_mm;
495 pda->mmu_state = 0;
496
497 if (cpu == 0) {
498 /* others are initialized in smpboot.c */
499 pda->pcurrent = &init_task;
500 pda->irqstackptr = boot_cpu_stack;
501 } else {
502 pda->irqstackptr = (char *)
503 __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
504 if (!pda->irqstackptr)
505 panic("cannot allocate irqstack for cpu %d", cpu);
506
507 if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
508 pda->nodenumber = cpu_to_node(cpu);
509 }
510
511 pda->irqstackptr += IRQSTACKSIZE-64;
512 }
513
514 char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
515 DEBUG_STKSZ]
516 __attribute__((section(".bss.page_aligned")));
517
518 extern asmlinkage void ignore_sysret(void);
519
520 /* May not be marked __init: used by software suspend */
521 void syscall_init(void)
522 {
523 /*
524 * LSTAR and STAR live in a bit strange symbiosis.
525 * They both write to the same internal register. STAR allows to
526 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
527 */
528 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
529 wrmsrl(MSR_LSTAR, system_call);
530 wrmsrl(MSR_CSTAR, ignore_sysret);
531
532 #ifdef CONFIG_IA32_EMULATION
533 syscall32_cpu_init();
534 #endif
535
536 /* Flags to clear on syscall */
537 wrmsrl(MSR_SYSCALL_MASK,
538 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
539 }
540
541 void __cpuinit check_efer(void)
542 {
543 unsigned long efer;
544
545 rdmsrl(MSR_EFER, efer);
546 if (!(efer & EFER_NX) || do_not_nx)
547 __supported_pte_mask &= ~_PAGE_NX;
548 }
549
550 unsigned long kernel_eflags;
551
552 /*
553 * Copies of the original ist values from the tss are only accessed during
554 * debugging, no special alignment required.
555 */
556 DEFINE_PER_CPU(struct orig_ist, orig_ist);
557
558 /*
559 * cpu_init() initializes state that is per-CPU. Some data is already
560 * initialized (naturally) in the bootstrap process, such as the GDT
561 * and IDT. We reload them nevertheless, this function acts as a
562 * 'CPU state barrier', nothing should get across.
563 * A lot of state is already set up in PDA init.
564 */
565 void __cpuinit cpu_init(void)
566 {
567 int cpu = stack_smp_processor_id();
568 struct tss_struct *t = &per_cpu(init_tss, cpu);
569 struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
570 unsigned long v;
571 char *estacks = NULL;
572 struct task_struct *me;
573 int i;
574
575 /* CPU 0 is initialised in head64.c */
576 if (cpu != 0)
577 pda_init(cpu);
578 else
579 estacks = boot_exception_stacks;
580
581 me = current;
582
583 if (cpu_test_and_set(cpu, cpu_initialized))
584 panic("CPU#%d already initialized!\n", cpu);
585
586 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
587
588 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
589
590 /*
591 * Initialize the per-CPU GDT with the boot GDT,
592 * and set up the GDT descriptor:
593 */
594
595 switch_to_new_gdt();
596 load_idt((const struct desc_ptr *)&idt_descr);
597
598 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
599 syscall_init();
600
601 wrmsrl(MSR_FS_BASE, 0);
602 wrmsrl(MSR_KERNEL_GS_BASE, 0);
603 barrier();
604
605 check_efer();
606
607 /*
608 * set up and load the per-CPU TSS
609 */
610 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
611 static const unsigned int order[N_EXCEPTION_STACKS] = {
612 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
613 [DEBUG_STACK - 1] = DEBUG_STACK_ORDER
614 };
615 if (cpu) {
616 estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
617 if (!estacks)
618 panic("Cannot allocate exception stack %ld %d\n",
619 v, cpu);
620 }
621 estacks += PAGE_SIZE << order[v];
622 orig_ist->ist[v] = t->x86_tss.ist[v] = (unsigned long)estacks;
623 }
624
625 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
626 /*
627 * <= is required because the CPU will access up to
628 * 8 bits beyond the end of the IO permission bitmap.
629 */
630 for (i = 0; i <= IO_BITMAP_LONGS; i++)
631 t->io_bitmap[i] = ~0UL;
632
633 atomic_inc(&init_mm.mm_count);
634 me->active_mm = &init_mm;
635 if (me->mm)
636 BUG();
637 enter_lazy_tlb(&init_mm, me);
638
639 load_sp0(t, &current->thread);
640 set_tss_desc(cpu, t);
641 load_TR_desc();
642 load_LDT(&init_mm.context);
643
644 #ifdef CONFIG_KGDB
645 /*
646 * If the kgdb is connected no debug regs should be altered. This
647 * is only applicable when KGDB and a KGDB I/O module are built
648 * into the kernel and you are using early debugging with
649 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
650 */
651 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
652 arch_kgdb_ops.correct_hw_break();
653 else {
654 #endif
655 /*
656 * Clear all 6 debug registers:
657 */
658
659 set_debugreg(0UL, 0);
660 set_debugreg(0UL, 1);
661 set_debugreg(0UL, 2);
662 set_debugreg(0UL, 3);
663 set_debugreg(0UL, 6);
664 set_debugreg(0UL, 7);
665 #ifdef CONFIG_KGDB
666 /* If the kgdb is connected no debug regs should be altered. */
667 }
668 #endif
669
670 fpu_init();
671
672 raw_local_save_flags(kernel_eflags);
673
674 if (is_uv_system())
675 uv_cpu_init();
676 }